
1

HandsHands--On TimeOn Time--Series Series
Analysis with Analysis with MatlabMatlab

Michalis Vlachos and Spiros Papadimitriou
IBM T.J. Watson Research Center

Tutorial | Time-Series with Matlab

Disclaimer
Feel free to use any of the following slides
for educational purposes, however kindly
acknowledge the source.

We would also like to know how you have
used these slides, so please send us emails
with comments or suggestions.

Tutorial | Time-Series with Matlab

About this tutorial
The goal of this tutorial is to show you that time-series
research (or research in general) can be made fun, when it
involves visualizing ideas, that can be achieved with
concise programming.
Matlab enables us to do that.

Will I be able Will I be able
to use this to use this
MATLAB MATLAB

right away right away
after the after the
tutorial?tutorial?

I am definitely I am definitely
smarter than smarter than herher, ,

but I am not a timebut I am not a time--
series person, perseries person, per--sese..

I wonder what I gain I wonder what I gain
from this tutorialfrom this tutorial……

Tutorial | Time-Series with Matlab

Disclaimer

We are not affiliated with Mathworks in any way
… but we do like using Matlab a lot

since it makes our lives easier

Errors and bugs are most likely contained in this tutorial.Errors and bugs are most likely contained in this tutorial.
We might be responsible for some of them.We might be responsible for some of them.

Tutorial | Time-Series with Matlab

What this tutorial is NOT about

Moving averagesMoving averages
Autoregressive modelsAutoregressive models
Forecasting/PredictionForecasting/Prediction
StationarityStationarity
SeasonalitySeasonality

Tutorial | Time-Series with Matlab

Overview
PART A — The Matlab programming environment

PART B — Basic mathematics
Introduction / geometric intuition
Coordinates and transforms
Quantized representations
Non-Euclidean distances

PART C — Similarity Search and Applications
IntroductionIntroduction
RepresentationsRepresentations
Distance MeasuresDistance Measures
Lower BoundingLower Bounding
Clustering/Classification/VisualizationClustering/Classification/Visualization
ApplicationsApplications

2

Tutorial | Time-Series with Matlab

PART A: PART A: MatlabMatlab IntroductionIntroduction

Tutorial | Time-Series with Matlab

Why does anyone need Matlab?

Matlab enables the efficient
Exploratory Data Analysis (EDA)

“Science progresses through observation”
-- Isaac Newton

“The greatest value of a picture is that is forces us to
notice what we never expected to see”
-- John Tukey

Isaac Newton

John Tukey

Tutorial | Time-Series with Matlab

Interpreted Language
– Easy code maintenance (code is very compact)

– Very fast array/vector manipulation

– Support for OOP

Easy plotting and visualization

Easy Integration with other Languages/OS’s
– Interact with C/C++, COM Objects, DLLs

– Build in Java support (and compiler)

– Ability to make executable files

– Multi-Platform Support (Windows, Mac, Linux)

Extensive number of Toolboxes
– Image, Statistics, Bioinformatics, etc

Matlab
Tutorial | Time-Series with Matlab

History of Matlab (MATrix LABoratory)

Video:http://www.mathworks.com/company/aboutus/founders/origins_of_matlab_wm.html

Programmed by Cleve Moler as an interface for
EISPACK & LINPACK
1957: Moler goes to Caltech. Studies numerical
Analysis

1961: Goes to Stanford. Works with G. Forsythe on
Laplacian eigenvalues.

1977: First edition of Matlab; 2000 lines of Fortran
– 80 functions (now more than 8000 functions)

1979: Met with Jack Little in Stanford. Started working
on porting it to C

1984: Mathworks is founded

Cleve Moler

“The most important thing in the programming language is the name.
I have recently invented a very good name and now I am looking for a
suitable language”. -- R. Knuth

Tutorial | Time-Series with Matlab Tutorial | Time-Series with Matlab

Current State of Matlab/Mathworks
Matlab, Simulink, Stateflow

Matlab version 7.3, R2006b

Used in variety of industries
– Aerospace, defense, computers, communication, biotech

Mathworks still is privately owned

Used in >3,500 Universities, with >500,000 users worldwide

2005 Revenue: >350 M.

2005 Employees: 1,400+

Pricing:
– starts from 1900$ (Commercial use),

– ~100$ (Student Edition)

Money is better than
poverty, if only for

financial reasons……

Money is better than
poverty, if only for

financial reasons……

3

Tutorial | Time-Series with Matlab

Matlab 7.3

R2006b, Released on Sept 1 2006
– Distributed computing

– Better support for large files

– New optimization Toolbox

– Matlab builder for Java
• create Java classes from Matlab

– Demos, Webinars in Flash format
– (http://www.mathworks.com/products/matlab/demos.

html)

Tutorial | Time-Series with Matlab

Who needs Matlab?
R&D companies for easy application deployment

Professors
– Lab assignments
– Matlab allows focus on algorithms not on language features

Students
– Batch processing of files

• No more incomprehensible perl code!
– Great environment for testing ideas

• Quick coding of ideas, then porting to C/Java etc
– Easy visualization

– It’s cheap! (for students at least…)

Tutorial | Time-Series with Matlab

Starting up Matlab
Dos/Unix like directory navigation

Commands like:
– cd

– pwd

– mkdir

For navigation it is easier to just
copy/paste the path from explorer
E.g.:
cd ‘c:\documents\’

Personally I'm always ready to learn, although I do not always like
being taught.

Sir Winston Churchill

Tutorial | Time-Series with Matlab

Matlab Environment

Workspace:
Loaded Variables/Types/Size

Command Window:
- type commands
- load scripts

Tutorial | Time-Series with Matlab

Matlab Environment

Workspace:
Loaded Variables/Types/Size

Command Window:
- type commands
- load scripts

Help contains a comprehensive
introduction to all functions

Tutorial | Time-Series with Matlab

Matlab Environment

Workspace:
Loaded Variables/Types/Size

Command Window:
- type commands
- load scripts

Excellent demos and
tutorial of the various

features and toolboxes

4

Tutorial | Time-Series with Matlab

Starting with Matlab
Everything is arrays

Manipulation of arrays is faster than regular manipulation
with for-loops

a = [1 2 3 4 5 6 7 9 10] % define an arraya = [1 2 3 4 5 6 7 9 10] % define an array

Tutorial | Time-Series with Matlab

Populating arrays
Plot sinusoid function

a = [0:0.3:2*pi]a = [0:0.3:2*pi] % generate values from 0 to 2pi (with step of 0.3)% generate values from 0 to 2pi (with step of 0.3)

b = b = cos(acos(a)) % access % access coscos at positions contained in array [a]at positions contained in array [a]

plot(a,bplot(a,b)) % plot a (x% plot a (x--axis) against b (yaxis) against b (y--axis)axis)

Related:

linspace(-100,100,15); % generate 15 values between -100 and 100

Tutorial | Time-Series with Matlab

Array Access
Access array elements

Set array elements

>> a(1)>> a(1)

ansans = =

00

>> a(1) = 100>> a(1) = 100

>> a(1:3)>> a(1:3)
ans =ans =

0 0.3000 0.60000 0.3000 0.6000

>> a(1:3) = [100 100 >> a(1:3) = [100 100 100100]]

Tutorial | Time-Series with Matlab

2D Arrays
Can access whole columns or rows

– Let’s define a 2D array

>> a = [1 2 3; 4 5 6] >> a = [1 2 3; 4 5 6]
a =a =

1 2 31 2 3
4 5 64 5 6

>> a(2,2)>> a(2,2)

ansans ==

55

>> a(1,:)>> a(1,:)

ansans = =

1 2 31 2 3

>> a(:,1)>> a(:,1)

ans =ans =

11
44

Row-wise access

Column-wise access

A good listener is not only popular everywhere, but after a while he gets to know something. –Wilson Mizner

Tutorial | Time-Series with Matlab

Column-wise computation
For arrays greater than 1D, all computations happen
column-by-column

>> a = [1 2 3; 3 2 1] >> a = [1 2 3; 3 2 1]
a =a =

1 2 31 2 3
3 2 13 2 1

>> >> mean(amean(a))

ansans ==

2.0000 2.0000 2.00002.0000 2.00002.0000

>> >> max(amax(a))

ansans = =

3 2 33 2 3

>> sort(a)>> sort(a)

ans =ans =

1 2 11 2 1
3 2 33 2 3

Tutorial | Time-Series with Matlab

Concatenating arrays
Column-wise or row-wise

>> a = [1 2 3];>> a = [1 2 3];
>> b = [4 5 6];>> b = [4 5 6];
>> c = [a b]>> c = [a b]

c =c =

1 2 3 4 5 61 2 3 4 5 6

>> a = [1 2 3];>> a = [1 2 3];
>> b = [4 5 6];>> b = [4 5 6];
>> c = [a; b]>> c = [a; b]

c =c =

1 2 31 2 3
4 5 64 5 6

>> a = [1;2];>> a = [1;2];
>> b = [3;4];>> b = [3;4];
>> c = [a b]>> c = [a b]
c =c =

1 31 3
2 42 4

Row next to row

Row below row

Column next to column

Column below column >> a = [1;2];>> a = [1;2];
>> b = [3;4];>> b = [3;4];
>> c = [a; b]>> c = [a; b]

c =c =

11
22
33
44

5

Tutorial | Time-Series with Matlab

Initializing arrays
Create array of ones [ones]
>> a = ones(1,3)>> a = ones(1,3)
a =a =

1 1 1 1 1 1

>> a = ones(1,3)*inf >> a = ones(1,3)*inf
a = a =

InfInf InfInf InfInf

>> a = ones(2,2)*5;>> a = ones(2,2)*5;
a =a =

5 55 5
5 55 5

>> a = zeros(1,4)>> a = zeros(1,4)
a =a =

0 0 0 00 0 0 0

>> a = zeros(3,1) + [1 2 3]>> a = zeros(3,1) + [1 2 3]’’
a =a =

11
22
33

Create array of zeroes [zeros]

– Good for initializing arrays

Tutorial | Time-Series with Matlab

Reshaping and Replicating Arrays
Changing the array shape [reshape]
– (eg, for easier column-wise computation)

>> a = [1 2 3 4 5 6]>> a = [1 2 3 4 5 6]’’;; % make it into a column% make it into a column
>> reshape(a,2,3)>> reshape(a,2,3)

ans =ans =

1 3 51 3 5
2 4 62 4 6

repmat(X,[M,N]):
make [M,N] tiles of X

Replicating an array [repmat]
>> a = [1 2 3]; >> a = [1 2 3];
>> repmat(a,1,2)>> repmat(a,1,2)

ans = ans = 1 2 3 1 2 31 2 3 1 2 3

>> >> repmatrepmat(a,2,1)(a,2,1)
ans = ans =

1 2 31 2 3
1 2 31 2 3

reshape(X,[M,N]):
[M,N] matrix of
columnwise version
of X

Tutorial | Time-Series with Matlab

Useful Array functions
Last element of array [end]
>> a = [1 3 2 5]; >> a = [1 3 2 5];
>> a(end) >> a(end)

ans = ans =

55

>> a = [1 3 2 5]; >> a = [1 3 2 5];
>> a(end>> a(end--1) 1)

ans = ans =

22

Length of array [length]
>> length(a)>> length(a)

ans = ans =

44

1 3 2 5a =

Length = 4

Dimensions of array [size]
>> [rows, columns] = size(a)>> [rows, columns] = size(a)
rows = 1rows = 1

columns = 4columns = 4

1 2 3 5

columns = 4

r
o
w
s

=

1

Tutorial | Time-Series with Matlab

Useful Array functions
Find a specific element [find] **
>> a = [1 3 2 5 10 5 2 3]; >> a = [1 3 2 5 10 5 2 3];
>> b = find(a==2) >> b = find(a==2)

b =b =

3 73 7

Sorting [sort] ***

>> a = [1 3 2 5]; >> a = [1 3 2 5];
>> [s,i]=sort(a)>> [s,i]=sort(a)

s =s =
1 2 3 51 2 3 5

i =i =
1 3 2 41 3 2 4

1 3 2 5

1 2 3 5

a =

i =

s =

1 3 2 4 Indicates the index
where the element
came from

Tutorial | Time-Series with Matlab

Visualizing Data and Exporting Figures
Use Fisher’s Iris dataset

– 4 dimensions, 3 species

– Petal length & width, sepal length & width

– Iris:
• virginica/versicolor/setosa

>> load fisheriris>> load fisheriris

meas (150x4 array):
Holds 4D measurements

species (150x1 cell array):
Holds name of species for
the specific measurement

. . .
'versicolor'
'versicolor'
'versicolor'
'versicolor'
'versicolor'
'virginica'
'virginica'
'virginica'
'virginica‘

. . .

Tutorial | Time-Series with Matlab

Visualizing Data (2D)
>> idx_setosa = strcmp(species, >> idx_setosa = strcmp(species, ‘‘setosasetosa’’);); % rows of setosa data% rows of setosa data
>> idx_virginica = strcmp(species, >> idx_virginica = strcmp(species, ‘‘virginicavirginica’’);); % rows of virginica% rows of virginica
>>>>
>> setosa = meas(idx_setosa,[1:2]);>> setosa = meas(idx_setosa,[1:2]);
>> virgin = meas(idx_virginica,[1:2]);>> virgin = meas(idx_virginica,[1:2]);
>> scatter(setosa(:,1), setosa(:,2));>> scatter(setosa(:,1), setosa(:,2)); % plot in blue circles by default% plot in blue circles by default
>> hold on;>> hold on;
>> scatter(virgin(:,1), virgin(:,2), scatter(virgin(:,1), virgin(:,2), ‘‘rsrs’’);); % % redred[r[r]] squaressquares[s[s]] for these for these

strcmp, scatter, hold on

. . .
1
1
1
0
0
0

. . .

idx_setosaidx_setosa

An array of zeros and
ones indicating the
positions where the
keyword ‘setosa’ was
found

The world is governed more by appearances rather than realities… --Daniel Webster

6

Tutorial | Time-Series with Matlab

Visualizing Data (3D)
>> idx_setosa = strcmp(species, >> idx_setosa = strcmp(species, ‘‘setosasetosa’’);); % rows of setosa data% rows of setosa data
>> idx_virginica = strcmp(species, >> idx_virginica = strcmp(species, ‘‘virginicavirginica’’);); % rows of virginica% rows of virginica
>> idx_versicolor = strcmp(species, >> idx_versicolor = strcmp(species, ‘‘versicolorversicolor’’);); % rows of versicolor% rows of versicolor

>> setosa = meas(idx_setosa,[1:3]);>> setosa = meas(idx_setosa,[1:3]);
>> virgin = meas(idx_virginica,[1:3]);>> virgin = meas(idx_virginica,[1:3]);
>> versi = meas(idx_versicolor,[1:3]);>> versi = meas(idx_versicolor,[1:3]);
>> scatter3(setosa(:,1), setosa(:,2),setosa(:,3));>> scatter3(setosa(:,1), setosa(:,2),setosa(:,3)); % plot in blue circles by default% plot in blue circles by default
>> hold on;>> hold on;
>> scatter3(virgin(:,1), virgin(:,2),virgin(:,3), >> scatter3(virgin(:,1), virgin(:,2),virgin(:,3), ‘‘rsrs’’);); % % redred[r[r]] squaressquares[s[s]] for these for these
>>>> scatter3(versi(:,1), virgin(:,2),versi(:,3), scatter3(versi(:,1), virgin(:,2),versi(:,3), ‘‘gxgx’’);); % green % green xx’’ss

scatter3

>> grid on; >> grid on; % show grid on axis% show grid on axis
>> rotate3D on; >> rotate3D on; % rotate with mouse% rotate with mouse

4
4.5

5
5.5

6
6.5

7
7.5

8

2

2.5

3

3.5

4

4.5
1

2

3

4

5

6

7

Tutorial | Time-Series with Matlab

Changing Plots Visually

Create line

Create Arrow

Add textSelect Object

Zoom out

Zoom in

Computers are
useless. They can

only give you

answers…

Computers are
useless. They can

only give you

answers…

Tutorial | Time-Series with Matlab

Changing Plots Visually
Add titles

Add labels on axis

Change tick labels

Add grids to axis

Change color of line

Change thickness/
Linestyle

etc

Tutorial | Time-Series with Matlab

Changing Plots Visually (Example)

Right click

A

B

C

Change color and
width of a line

Tutorial | Time-Series with Matlab

Changing Plots Visually (Example)

The result …

Other Styles:

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3

Tutorial | Time-Series with Matlab

Changing Figure Properties with Code

Real men do it command-line… --Anonymous

GUI’s are easy, but sooner or later we realize that
coding is faster

>> a = cumsum(randn(365,1)); >> a = cumsum(randn(365,1)); % random walk of 365 values% random walk of 365 values

If this represents a year’s
worth of measurements of an
imaginary quantity, we will
change:

•• xx--axis annotation to monthsaxis annotation to months

•• Axis labelsAxis labels

•• Put title in the figurePut title in the figure

•• Include some Include some greekgreek letters letters
in the title in the title just for funjust for fun

7

Tutorial | Time-Series with Matlab

Changing Figure Properties with Code

Real men do it command-line… --Anonymous

Axis annotation to months
>> axis tight; >> axis tight; % irrelevant but useful...% irrelevant but useful...
>> xx = [15:30:365];>> xx = [15:30:365];
>> set(gca, >> set(gca, ‘‘xtickxtick’’,xx) ,xx) The result …

Tutorial | Time-Series with Matlab

Changing Figure Properties with Code

Real men do it command-line… --Anonymous

Axis annotation to months
>> set(gca,>> set(gca,’’xticklabelxticklabel’’,[,[‘‘JanJan’’;;

‘‘FebFeb’’;;‘‘MarMar’’])])
The result …

Tutorial | Time-Series with Matlab

Changing Figure Properties with Code

Real men do it command-line… --Anonymous

Axis labels and title

>> xlabel(>> xlabel(‘‘Month of 2005Month of 2005’’))

>> ylabel(>> ylabel(‘‘Imaginary QuantityImaginary Quantity’’))

>> title(>> title(‘‘My measurements (My measurements (\\epsilon/epsilon/\\pi)pi)’’))

Other latex examples:

\alpha, \beta, e^{-\alpha} etc

Tutorial | Time-Series with Matlab

Saving Figures

.fig can be later
opened through

Matlab

You can always put-off for tomorrow, what you can do today. -Anonymous

Matlab allows to save the figures (.fig) for later
processing

Tutorial | Time-Series with Matlab

Exporting Figures

Export to:
emf, eps, jpg, etc

Tutorial | Time-Series with Matlab

Exporting figures (code)

% extract to color % extract to color epseps
print print --depscdepsc myImage.epsmyImage.eps; ; % from command% from command--lineline
print(gcf,print(gcf,’’--depscdepsc’’,,’’myImagemyImage’’)) % using variable as name% using variable as name

Matlab code:

You can also achieve the same result with Matlab code

8

Tutorial | Time-Series with Matlab

Visualizing Data - 2D Bars

time = [100 120 80 70];time = [100 120 80 70]; % our data% our data
h = h = bar(timebar(time);); % get handle% get handle
cmapcmap = [1 0 0; 0 1 0; 0 0 1; .5 0 1]; = [1 0 0; 0 1 0; 0 0 1; .5 0 1]; % colors % colors
colormap(cmapcolormap(cmap);); % create % create colormapcolormap

cdatacdata = [1 2 3 4]; = [1 2 3 4]; % assign colors% assign colors
set(h,'CDataMapping','direct','CData',cdataset(h,'CDataMapping','direct','CData',cdata););

1
2
3
4

colormap

bars

Tutorial | Time-Series with Matlab

Visualizing Data - 3D Bars

data = [10 8 7; 9 6 5; 8 6 4; 6 5 4; 6 3 2; 3 2 1];data = [10 8 7; 9 6 5; 8 6 4; 6 5 4; 6 3 2; 3 2 1];
bar3([1 2 3 5 6 7], data);bar3([1 2 3 5 6 7], data);

c = c = colormap(graycolormap(gray);); % get colors of % get colors of colormapcolormap
c = c(20:55,:);c = c(20:55,:); % get some colors% get some colors
colormap(ccolormap(c);); % new % new colormapcolormap

1
2

3

1
2

3

5
6

7

0

2

4

6

8

10 10 8 7
9 6 5
8 6 4
6 5 4
6 3 2
3 2 1

data
0 0 0

0.0198 0.0124 0.0079
0.0397 0.0248 0.0158
0.0595 0.0372 0.0237
0.0794 0.0496 0.0316
0.0992 0.0620 0.0395

. . .
1.0000 0.7440 0.4738
1.0000 0.7564 0.4817
1.0000 0.7688 0.4896
1.0000 0.7812 0.4975

64

colormap

3

Tutorial | Time-Series with Matlab

Visualizing Data - Surfaces

data = [1:10]; data = [1:10];
data = repmat(data,10,1); data = repmat(data,10,1); % create data% create data
surface(data,'FaceColor',[1 1 1], 'surface(data,'FaceColor',[1 1 1], 'EdgecolorEdgecolor', [0 0 1]);', [0 0 1]); % plot data% plot data
view(3); grid on;view(3); grid on; % change viewpoint and put axis lines% change viewpoint and put axis lines

0
2

4
6

8
10

0

2
4

6
8

10
1

2

3

4

5

6

7

8

9

10

data

1
1

10

2 10

109
1

3 …

The value at position
x-y of the array
indicates the height of
the surface

Tutorial | Time-Series with Matlab

Creating .m files

Standard text files
– Script: A series of Matlab commands (no input/output arguments)

– Functions: Programs that accept input and return output

Right click

Tutorial | Time-Series with Matlab

Creating .m files

Double click

M editor

Tutorial | Time-Series with Matlab

Creating .m files
The following script will create:
– An array with 10 random walk vectors

– Will save them under text files: 1.dat, …, 10.dat

cumsum, num2str, save

1

2

3

4

5

1

3

6

10

15

A cumsum(A)

…and execute by typing the
name on the Matlab

command line

Write this in the
M editor…

1000 10 20 30 40 50 60 70 80 90
-5

0

5

10

a = cumsum(randn(100,10));a = cumsum(randn(100,10)); % 10 random walk data of length 100% 10 random walk data of length 100
for i=1:size(a,2),for i=1:size(a,2), % number of columns% number of columns

data = a(:,i)data = a(:,i);;
fname = [num2str(i) fname = [num2str(i) ‘‘.dat.dat’’];]; % a string is a vector of characters!% a string is a vector of characters!
save(fname, save(fname, ’’datadata’’,,’’--ASCIIASCII’’);); % save each column in a text file% save each column in a text file

endend

Sample Script

A random walk time-series

myScript.m

9

Tutorial | Time-Series with Matlab

Functions in .m scripts

function dataN = zNorm(data)function dataN = zNorm(data)
% ZNORM zNormalization of vector% ZNORM zNormalization of vector
% subtract mean and divide by std% subtract mean and divide by std

if (if (narginnargin<1),<1), % check parameters% check parameters
error(error(‘‘NotNot enough argumentsenough arguments’’););

endend
data = data data = data –– mean(datamean(data);); % subtract mean% subtract mean
data = data/data = data/std(datastd(data);); % divide by std% divide by std
dataNdataN = data;= data;

When we need to:
– Organize our code

– Frequently change parameters in our scripts

See also:varargin, varargout

keyword output argument function name

input argument

Help Text
(help function_name)

Function Body

function [a,b] = myFunc(data, x, y)function [a,b] = myFunc(data, x, y) % pass & return more arguments% pass & return more arguments

Tutorial | Time-Series with Matlab

Cell Arrays
Cells that hold other Matlab arrays
– Let’s read the files of a directory
>> f = dir(>> f = dir(‘‘*.dat*.dat’’)) % read file contents% read file contents
f = f =
15x1 15x1 structstruct array with fields:array with fields:

namename
datedate
bytesbytes
isdirisdir

for i=1:length(f),for i=1:length(f),
a{i} = load(f(i).name);a{i} = load(f(i).name);
N = length(a{i});N = length(a{i});
plot3([1:N], a{i}(:,1), a{i}(:,2), ...plot3([1:N], a{i}(:,1), a{i}(:,2), ...

‘‘rr--’’, , ‘‘LinewidthLinewidth’’, 1.5);, 1.5);
grid on;grid on;
pause;pause;
cla;cla;

endend

1

2

3

4

5

Struct Array
name
date
bytes
isdir

f(1).name

500

1000
1500

500

1000
0

100

200

300

400

500

600

Tutorial | Time-Series with Matlab

Reading/Writing Files

fid = fopen('fischer.txt', 'wt');fid = fopen('fischer.txt', 'wt');

for i=1:length(species),for i=1:length(species),
fprintf(fid, '%6.4f %6.4f %6.4f %6.4f %sfprintf(fid, '%6.4f %6.4f %6.4f %6.4f %s\\n', meas(i,:), species{i});n', meas(i,:), species{i});

endend
fclose(fid);fclose(fid);

Load/Save are faster than C style I/O operations
– But fscanf, fprintf can be useful for file formatting

or reading non-Matlab files

Output file: Elements are accessed column-wise (again…)
x = 0:.1:1; y = [x; exp(x)];x = 0:.1:1; y = [x; exp(x)];
fid = fopen('exp.txt','w');fid = fopen('exp.txt','w');
fprintf(fid,'%6.2f %12.8ffprintf(fid,'%6.2f %12.8f\\n',y);n',y);
fclose(fid);fclose(fid);

0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 4 0.5 0.6 0.7
1 1.1052 1.2214 1.3499 1.4918 1.641 1.1052 1.2214 1.3499 1.4918 1.6487 1.8221 2.013887 1.8221 2.0138

Tutorial | Time-Series with Matlab

Flow Control/Loops

if (else/elseif) , switch
– Check logical conditions

while
– Execute statements infinite number of times

for
– Execute statements a fixed number of times

break, continue

return
– Return execution to the invoking function

Life is pleasant. Death is peaceful. It’s the transition that’s troublesome. –Isaac Asimov

Tutorial | Time-Series with Matlab

For-Loop or vectorization? Pre-allocate arrays that
store output results
– No need for Matlab to

resize everytime

Functions are faster than
scripts
– Compiled into pseudo-

code

Load/Save faster than
Matlab I/O functions

After v. 6.5 of Matlab there
is for-loop vectorization
(interpreter)

Vectorizations help, but
not so obvious how to
achieve many times

clear all;clear all;
tic;tic;
for i=1:50000for i=1:50000

a(ia(i) =) = sin(isin(i););
endend
toctoc

clear all;clear all;
a = zeros(1,50000);a = zeros(1,50000);
tic;tic;
for i=1:50000for i=1:50000

a(ia(i) =) = sin(isin(i););
endend
toctoc

clear all;clear all;
tic;tic;
i = [1:50000];i = [1:50000];
a = a = sin(isin(i););
toctoc;;

elapsed_time =

5.0070

elapsed_time =

0.1400

elapsed_time =

0.0200

tic, toc, clear all

Time not important…only life important. –The Fifth Element

Tutorial | Time-Series with Matlab

Matlab Profiler

Time not important…only life important. –The Fifth Element

Find which portions of code take up
most of the execution time
– Identify bottlenecks

– Vectorize offending code

10

Tutorial | Time-Series with Matlab

Hints &Tips

There is always an easier (and faster) way
– Typically there is a specialized function for what you want to

achieve

Learn vectorization techniques, by ‘peaking’ at the
actual Matlab files:
– edit [fname], eg

– edit mean

– edit princomp

Matlab Help contains many
vectorization examples

Tutorial | Time-Series with Matlab

Debugging
Not as frequently required as in C/C++
– Set breakpoints, step, step in, check variables values

Set breakpoints

Beware of bugs in the above code; I have only proved it correct, not tried it

-- R. Knuth

Tutorial | Time-Series with Matlab

Debugging
Full control over variables and execution path
– F10: step, F11: step in (visit functions, as well)

A

B

C

F10

Either this man is
dead or my watch

has stopped.

Either this man is
dead or my watch

has stopped.

Tutorial | Time-Series with Matlab

Advanced Features – 3D modeling/Volume Rendering
Very easy volume manipulation and rendering

Tutorial | Time-Series with Matlab

Advanced Features – Making Animations (Example)
Create animation by changing the camera viewpoint

azimuth = [50:100 99:azimuth = [50:100 99:--1:50]; 1:50]; % azimuth range of values% azimuth range of values
for k = 1:length(azimuth),for k = 1:length(azimuth),

plot3(1:length(a), a(:,1), a(:,2), 'r', 'Linewidth',2);plot3(1:length(a), a(:,1), a(:,2), 'r', 'Linewidth',2);
grid on;grid on;
view(azimuth(k),30); view(azimuth(k),30); % change new% change new
M(kM(k) =) = getframegetframe; ; % save the frame% save the frame

endend

movie(M,20); movie(M,20); % play movie 20 times% play movie 20 times

See also:movie2avi

0

50

100-1 0 1 2 3 4

-3

-2

-1

0

1

2

3

0

50

100
-1 0 1 2 3 4

-3

-2

-1

0

1

2

3

0

50

100 -1
0

1
2

3
4

-3

-2

-1

0

1

2

3

Tutorial | Time-Series with Matlab

Several Examples in Help
– Directory listing

– Address book reader

– GUI with multiple axis

Advanced Features – GUI’s
Built-in Development Environment
– Buttons, figures, Menus, sliders, etc

11

Tutorial | Time-Series with Matlab

Advanced Features – Using Java
Matlab is shipped with Java Virtual
Machine (JVM)

Access Java API (eg I/O or networking)

Import Java classes and construct objects

Pass data between Java objects and
Matlab variables

Tutorial | Time-Series with Matlab

Advanced Features – Using Java (Example)
Stock Quote Query
– Connect to Yahoo server

– http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?
objectId=4069&objectType=file

disp('Contactingdisp('Contacting YAHOO server using ...');YAHOO server using ...');
disp(['urldisp(['url = = java.net.URLjava.net.URL(' (' urlStringurlString ')']);')']);

end;end;
urlurl = = java.net.URL(urlStringjava.net.URL(urlString););

trytry
stream = stream = openStream(urlopenStream(url););
ireaderireader = = java.io.InputStreamReader(streamjava.io.InputStreamReader(stream););
breaderbreader = = java.io.BufferedReader(ireaderjava.io.BufferedReader(ireader););
connect_query_dataconnect_query_data= 1; %connect made;= 1; %connect made;

catchcatch
connect_query_dataconnect_query_data= = --1; %could not connect 1; %could not connect

case;case;
disp(['URLdisp(['URL: ' : ' urlStringurlString]);]);
error(['Coulderror(['Could not connect to server. It may not connect to server. It may

be unavailable. Try again later.']);be unavailable. Try again later.']);
stockdatastockdata={};={};
return;return;

endend

Tutorial | Time-Series with Matlab

Matlab Toolboxes
You can buy many specialized toolboxes from Mathworks
– Image Processing, Statistics, Bio-Informatics, etc

There are many equivalent free toolboxes too:
– SVM toolbox

• http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/

– Wavelets
• http://www.math.rutgers.edu/~ojanen/wavekit/

– Speech Processing
• http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

– Bayesian Networks
• http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html

Tutorial | Time-Series with Matlab

In case I get stuck…
help [command] (on the command line)
eg. help fft

Menu: help -> matlab help
– Excellent introduction on various topics

Matlab webinars
– http://www.mathworks.com/company/events/archived_webinars.html?fp

Google groups
– comp.soft-sys.matlab
– You can find *anything* here
– Someone else had the same

problem before you!

I’ve had a wonderful
evening. But this

wasn’t it…

I’ve had a wonderful
evening. But this

wasn’t it…

Tutorial | Time-Series with Matlab

PART B: Mathematical notionsPART B: Mathematical notions

Eight percent of
success is showing

up.

Eight percent of
success is showing

up.

Tutorial | Time-Series with Matlab

Overview of Part B
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)

12

Tutorial | Time-Series with Matlab

What is a time-series

Definition: A sequence of measurements over timeDefinition: A sequence of measurements over time

Medicine
Stock Market
Meteorology
Geology
Astronomy
Chemistry
Biometrics
Robotics

ECG

Sunspot

Earthquake

64.0
62.8
62.0
66.0
62.0
32.0
86.4
. . .

21.6
45.2
43.2
53.0
43.2
42.8
43.2
36.4
16.9
10.0

…
time

Tutorial | Time-Series with Matlab

Applications
Images

50 100 150 200 250
0

200

400

600

50 100 150 200 250
0

200

400

50 100 150 200 250
0

200

400

600

800

Image

Color Histogram

Time-Series

Acer platanoides

Salix fragilis

Motion captureShapes

…more to come

Tutorial | Time-Series with Matlab

Time Series

time

x1

x2

x3

x4

x5

x6

va
lu

e

Tutorial | Time-Series with Matlab

Time Series

Sequence of numeric values
– Finite:

– N-dimensional vectors/points

– Infinite:

– Infinite-dimensional vectors

time

va
lu

e

3

8

4

1

9

6

x = (3, 8, 4, 1, 9, 6)

Tutorial | Time-Series with Matlab

Mean

Definition:

From now on, we will generally assume zero mean —
mean normalization:

Tutorial | Time-Series with Matlab

Variance

Definition:

or, if zero mean, then

From now on, we will generally assume unit variance
— variance normalization:

13

Tutorial | Time-Series with Matlab

Mean and variance

mean μ

variance σ

Tutorial | Time-Series with Matlab

Why and when to normalize

Intuitively, the notion of “shape” is generally
independent of
– Average level (mean)

– Magnitude (variance)

Unless otherwise specified, we normalize to zero
mean and unit variance

Tutorial | Time-Series with Matlab

Variance “=” Length

Variance of zero-mean series:

Length of N-dimensional vector (L2-norm):

So that:

x1

x2

||x
||

Tutorial | Time-Series with Matlab

Covariance and correlation

Definition

or, if zero mean and unit variance, then

Tutorial | Time-Series with Matlab

Correlation and similarity

How “strong” is the linear relationship

between xt and yt ?
For normalized series,

-2 -1 0 1 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

FRF

BE
F

-2 -1 0 1 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

FRF

C
AD

ρ = -0.23 ρ = 0.99slope

residual

Tutorial | Time-Series with Matlab

Correlation “=” Angle

Correlation of normalized series:

Cosine law:

So that:
x

y
x.y

θ

14

Tutorial | Time-Series with Matlab

Correlation and distance

For normalized series,

i.e., correlation and squared Euclidean distance are
linearly related.

||x-y||

y
x.y

θ

x

Tutorial | Time-Series with Matlab

Ergodicity
Example

Assume I eat chicken at the same restaurant every day
and

Question: How often is the food good?
– Answer one:

– Answer two:

Answers are equal ⇒ ergodic
– “If the chicken is usually good, then my guests today can

safely order other things.”

Tutorial | Time-Series with Matlab

Ergodicity
Example

Ergodicity is a common and fundamental
assumption, but sometimes can be wrong:

“Total number of murders this year is 5% of the
population”
“If I live 100 years, then I will commit about 5
murders, and if I live 60 years, I will commit about 3
murders”

… non-ergodic!
Such ergodicity assumptions on population
ensembles is commonly called “racism.”

Tutorial | Time-Series with Matlab

Stationarity
Example

Is the chicken quality consistent?
– Last week:

– Two weeks ago:

– Last month:

– Last year:

Answers are equal ⇒ stationary

Tutorial | Time-Series with Matlab

Autocorrelation

Definition:

Is well-defined if and only if the series is (weakly)
stationary

Depends only on lag ℓ, not time t

Tutorial | Time-Series with Matlab

Time-domain “coordinates”

=

-0.5 4 1.5 -2

2 6 3.5 1

-0.5

4

1.5

-2

2

6

3.5

1

+ + +

++++

15

Tutorial | Time-Series with Matlab

2x5 6x6 1x8

Time-domain “coordinates”

=

-0.5 4 1.5 -2

3.5

-0.5

4

1.5

-2

2

6

3.5

1

+ + +

++++

x1 £ e1 x2 £ e2 x3 £ e3 x4 £ e4

£ e5 £ e6 x7 £ e7 £ e8

Tutorial | Time-Series with Matlab

Orthonormal basis

Set of N vectors, { e1, e2, …, eN }
– Normal: ||ei|| = 1, for all 1 ≤ i ≤ N

– Orthogonal: ei¢ej = 0, for i ≠ j

Describe a Cartesian coordinate system
– Preserve length (aka. “Parseval theorem”)

– Preserve angles (inner-product, correlations)

Tutorial | Time-Series with Matlab

Orthonormal basis

Note that the coefficients xi w.r.t. the basis { e1, …, eN
} are the corresponding “similarities” of x to each
basis vector/series:

-0.5

4

1.5

-2

2

6

3.5

1 =

x

-0.5 4+ + …

e1 e2

x2

Tutorial | Time-Series with Matlab

Orthonormal bases

The time-domain basis is a trivial tautology:
– Each coefficient is simply the value at one time instant

What other bases may be of interest? Coefficients may
correspond to:
– Frequency (Fourier)

– Time/scale (wavelets)

– Features extracted from series collection (PCA)

Tutorial | Time-Series with Matlab

Frequency domain “coordinates”
Preview

=

5.6 -2.2 0 2.8

4.9 -3 0 0.05

+ + +

+++-

-0.5

4

1.5

-2

2

6

3.5

1

Tutorial | Time-Series with Matlab

Time series geometry
Summary

Basic concepts:
– Series / vector

– Mean: “average level”

– Variance: “magnitude/length”

– Correlation: “similarity”, “distance”, “angle”

– Basis: “Cartesian coordinate system”

16

Tutorial | Time-Series with Matlab

Time series geometry
Preview — Applications

The quest for the right basis…

Compression / pattern extraction
– Filtering

– Similarity / distance

– Indexing

– Clustering

– Forecasting

– Periodicity estimation

– Correlation

Tutorial | Time-Series with Matlab

Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)

Tutorial | Time-Series with Matlab

Frequency

One cycle every 20 time units (period)

Tutorial | Time-Series with Matlab

Frequency and time

Why is the period 20?
It’s not 8, because its “similarity” (projection) to a
period-8 series (of the same length) is zero.

period = 8

.

= 0

Tutorial | Time-Series with Matlab

Frequency and time

Why is the cycle 20?
It’s not 10, because its “similarity” (projection) to a
period-10 series (of the same length) is zero.

period = 10

.

= 0

Tutorial | Time-Series with Matlab

Frequency and time

Why is the cycle 20?
It’s not 40, because its “similarity” (projection) to a
period-40 series (of the same length) is zero.

period = 40

.

= 0

…and so on

17

Tutorial | Time-Series with Matlab

Frequency
Fourier transform - Intuition

To find the period, we compared the time series with
sinusoids of many different periods

Therefore, a good “description” (or basis) would
consist of all these sinusoids

This is precisely the idea behind the discrete Fourier
transform
– The coefficients capture the similarity (in terms of amplitude

and phase) of the series with sinusoids of different periods

Tutorial | Time-Series with Matlab

Frequency
Fourier transform - Intuition

Technical details:
– We have to ensure we get an orthonormal basis

– Real form: sines and cosines at N/2 different frequencies

– Complex form: exponentials at N different frequencies

Tutorial | Time-Series with Matlab

Fourier transform
Real form

For odd-length series,

The pair of bases at frequency fk are

plus the zero-frequency (mean) component

Tutorial | Time-Series with Matlab

Fourier transform
Real form — Amplitude and phase

Observe that, for any fk, we can write

where

are the amplitude and phase, respectively.

Tutorial | Time-Series with Matlab

Fourier transform
Real form — Amplitude and phase

It is often easier to think in terms of amplitude rk and
phase θk – e.g.,

0 10 20 30 40 50 60 70 80
-1

-0.5

0

0.5

1

5

Tutorial | Time-Series with Matlab

Fourier transform
Complex form

The equations become easier to handle if we allow
the series and the Fourier coefficients Xk to take
complex values:

Matlab note: fft omits the scaling factor and
is not unitary—however, ifft includes an
scaling factor, so always ifft(fft(x)) == x.

18

Tutorial | Time-Series with Matlab

Fourier transform
Example

-1
0

1

2

G
BP

-1

0

1

2

G
BP

-1

0

1

2

G
BP

-1

0

1

2

G
BP

-1

0

1

2

G
BP

-1

0

1

2

G
BP

1 frequency

2 frequencies

3 frequencies

5 frequencies

10 frequencies

20 frequencies

Tutorial | Time-Series with Matlab

Other frequency-based transforms

Discrete Cosine Transform (DCT)
– Matlab: dct / idct

Modified Discrete Cosine Transform (MDCT)

Tutorial | Time-Series with Matlab

Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)

Tutorial | Time-Series with Matlab

Frequency and time

What is the cycle now?
No single cycle, because the series isn’t exactly similar
with any series of the same length.

period = 20

period = 10

.

.
≠ 0

≠ 0

e.g.,

etc…

Tutorial | Time-Series with Matlab

Frequency and time

Fourier is successful for summarization of series with a
few, stable periodic components

However, content is “smeared” across frequencies
when there are
– Frequency shifts or jumps, e.g.,

– Discontinuities (jumps) in time, e.g.,

Tutorial | Time-Series with Matlab

Frequency and time

If there are discontinuities in time/frequency or
frequency shifts, then we should seek an alternate
“description” or basis

Main idea: Localize bases in time
– Short-time Fourier transform (STFT)

– Discrete wavelet transform (DWT)

19

Tutorial | Time-Series with Matlab

Frequency and time
Intuition

What if we examined, e.g., eight values at a time?

Tutorial | Time-Series with Matlab

Frequency and time
Intuition

What if we examined, e.g., eight values at a time?
Can only compare with periods up to eight.
– Results may be different for each group (window)

Tutorial | Time-Series with Matlab

Frequency and time
Intuition

Can “adapt” to localized phenomena

Fixed window: short-window Fourier (STFT)
– How to choose window size?

Variable windows: wavelets

Tutorial | Time-Series with Matlab

Wavelets
Intuition

Main idea
– Use small windows for small periods

• Remove high-frequency component, then
– Use larger windows for larger periods

• Twice as large
– Repeat recursively

Technical details
– Need to ensure we get an orthonormal basis

Tutorial | Time-Series with Matlab

Wavelets
Intuition

Time

Fr
eq

ue
nc

y

Sc
al

e
(fr

eq
ue

nc
y)

Time

Tutorial | Time-Series with Matlab

Wavelets
Intuition — Tiling time and frequency

Fr
eq

ue
nc

y

Sc
al

e
(fr

eq
ue

nc
y)

Time

Fr
eq

ue
nc

y

Time

Fourier, DCT, … STFT Wavelets

20

Tutorial | Time-Series with Matlab

Wavelet transform
Pyramid algorithm

High
pass

Low
pass

Tutorial | Time-Series with Matlab

Wavelet transform
Pyramid algorithm

High
pass

Low
pass

Tutorial | Time-Series with Matlab

Wavelet transform
Pyramid algorithm

High
pass

Low
pass

Tutorial | Time-Series with Matlab

Wavelet transform
Pyramid algorithm

High
pass

Low
pass

High
pass

Low
pass

High
pass

Low
pass

x ≡ w0

w1

w2

w3

v3

v1

v2

Tutorial | Time-Series with Matlab

Wavelet transforms
General form

A high-pass / low-pass filter pair
– Example: pairwise difference / average (Haar)

– In general: Quadrature Mirror Filter (QMF) pair
• Orthogonal spans, which cover the entire space

– Additional requirements to ensure orthonormality of overall
transform…

Use to recursively analyze into top / bottom half of
frequency band

Tutorial | Time-Series with Matlab

Wavelet transforms
Other filters — examples

Haar (Daubechies-1)

Daubechies-2

Daubechies-3

Daubechies-4

Wavelet filter, or
Mother filter
(high-pass)

Scaling filter, or
Father filter
(low-pass)

Better frequency isolation
W

orse tim
e localization

21

Tutorial | Time-Series with Matlab

Wavelet coefficients (GBP, Haar)

200 400 600 800 1000 1200
-1

0

1

W
1

100 200 300 400 500 600
-1

0

1

W
2

50 100 150 200 250 300
-2

0

2

W
3

20 40 60 80 100 120 140 160
-2

0

2

W
4

10 20 30 40 50 60 70 80
-5

0

5

W
5

5 10 15 20 25 30 35 40
-10

0

10

W
6

5 10 15 20 25 30 35 40
-20

0

20

V6

Wavelets
Example

500 1000 1500 2000 2500

-1
0
1
2

G
BP

200 400 600 800 1000 1200
-1

0

1

100 200 300 400 500 600
-1

0

1

50 100 150 200 250 300
-1

0

1

20 40 60 80 100 120 140 160
-2

0

2

10 20 30 40 50 60 70 80
-5

0

5

5 10 15 20 25 30 35 40 45
-20

0

20
5 10 15 20 25 30 35 40 45

-5

0

5

500 1000 1500 2000 2500

-1
0
1
2

Wavelet coefficients (GBP, Daubechies-3)

Tutorial | Time-Series with Matlab

500 1000 1500 2000 2500
-0.6
-0.4
-0.2

0

500 1000 1500 2000 2500
-0.6
-0.4
-0.2

0
0.2

500 1000 1500 2000 2500
-0.4
-0.2

0
0.2

500 1000 1500 2000 2500
-0.4
-0.2

0
0.2

500 1000 1500 2000 2500
-0.5

0

0.5

500 1000 1500 2000 2500

-0.5
0

0.5

500 1000 1500 2000 2500
-1
0
1
2

500 1000 1500 2000 2500
-0.3
-0.2
-0.1

0
0.1

D
1

500 1000 1500 2000 2500

-0.2
0

0.2

D
2

500 1000 1500 2000 2500
-0.4
-0.2

0
0.2
0.4

D
3

500 1000 1500 2000 2500
-0.4
-0.2

0
0.2
0.4

D
4

500 1000 1500 2000 2500

-0.5
0

0.5

D
5

500 1000 1500 2000 2500

-0.5
0

0.5

D
6

500 1000 1500 2000 2500

-1
0
1
2

A6

Multi-resolution analysis (GBP, Haar)

Wavelets
Example

500 1000 1500 2000 2500

-1
0
1
2

G
BP

500 1000 1500 2000 2500

-1
0
1
2

Multi-resolution analysis (GBP, Daubechies-3)

Tutorial | Time-Series with Matlab

500 1000 1500 2000 2500
-0.6
-0.4
-0.2

0

500 1000 1500 2000 2500
-0.6
-0.4
-0.2

0
0.2

500 1000 1500 2000 2500
-0.4
-0.2

0
0.2

500 1000 1500 2000 2500
-0.4
-0.2

0
0.2

500 1000 1500 2000 2500
-0.5

0

0.5

500 1000 1500 2000 2500

-0.5
0

0.5

500 1000 1500 2000 2500
-1
0
1
2

500 1000 1500 2000 2500
-0.3
-0.2
-0.1

0
0.1

D
1

500 1000 1500 2000 2500

-0.2
0

0.2

D
2

500 1000 1500 2000 2500
-0.4
-0.2

0
0.2
0.4

D
3

500 1000 1500 2000 2500
-0.4
-0.2

0
0.2
0.4

D
4

500 1000 1500 2000 2500

-0.5
0

0.5

D
5

500 1000 1500 2000 2500

-0.5
0

0.5

D
6

500 1000 1500 2000 2500

-1
0
1
2

A6

Multi-resolution analysis (GBP, Haar)

Wavelets
Example

500 1000 1500 2000 2500

-1
0
1
2

G
BP

500 1000 1500 2000 2500

-1
0
1
2

Multi-resolution analysis (GBP, Daubechies-3)

500 1000 1500 2000 2500

-1

0

1

2
Haar analysis: simple, piecewise constant

500 1000 1500 2000 2500

-1

0

1

2
Daubechies-3 analysis: less artifacting

Analysis levels are orthogonal,
Di¢Dj = 0, for i ≠ j

Tutorial | Time-Series with Matlab

Wavelets
Matlab

Wavelet GUI: wavemenu

Single level: dwt / idwt

Multiple level: wavedec / waverec
– wmaxlev

Wavelet bases: wavefun

Tutorial | Time-Series with Matlab

Other wavelets
Only scratching the surface…
Wavelet packets
– All possible tilings (binary)
– Best-basis transform

Overcomplete wavelet transform (ODWT), aka.
maximum-overlap wavelets (MODWT), aka. shift-
invariant wavelets

Further reading:
1. Donald B. Percival, Andrew T. Walden, Wavelet Methods for Time Series Analysis,
Cambridge Univ. Press, 2006.
2. Gilbert Strang, Truong Nguyen, Wavelets and Filter Banks, Wellesley College, 1996.
3. Tao Li, Qi Li, Shenghuo Zhu, Mitsunori Ogihara, A Survey of Wavelet Applications in
Data Mining, SIGKDD Explorations, 4(2), 2002.

Tutorial | Time-Series with Matlab

More on wavelets

Signal representation and compressibility

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Compression (% coefficients)

Q
ua

lit
y

(%
 e

ne
rg

y)

Partial energy (GBP)

Time
FFT
Haar
DB3

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

Compression (% coefficients)

Q
ua

lit
y

(%
 e

ne
rg

y)

Partial energy (Light)

Time
FFT
Haar
DB3

22

Tutorial | Time-Series with Matlab

More wavelets

Keeping the highest coefficients minimizes total error
(L2-distance)

Other coefficient selection/thresholding schemes for
different error metrics (e.g., maximum per-instant
error, or L1-dist.)
– Typically use Haar bases

Further reading:
1. Minos Garofalakis, Amit Kumar, Wavelet Synopses for General Error Metrics, ACM
TODS, 30(4), 2005.
2.Panagiotis Karras, Nikos Mamoulis, One-pass Wavelet Synopses for Maximum-Error
Metrics, VLDB 2005.

Tutorial | Time-Series with Matlab

Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)

Tutorial | Time-Series with Matlab

Wavelets
Incremental estimation

Tutorial | Time-Series with Matlab

Wavelets
Incremental estimation

Tutorial | Time-Series with Matlab

Wavelets
Incremental estimation

Tutorial | Time-Series with Matlab

Wavelets
Incremental estimation

23

Tutorial | Time-Series with Matlab

Wavelets
Incremental estimation

Tutorial | Time-Series with Matlab

Wavelets
Incremental estimation

post-order traversal

Tutorial | Time-Series with Matlab

Wavelets
Incremental estimation

Forward transform :
– Post-order traversal of wavelet coefficient tree

– O(1) time (amortized)

– O(logN) buffer space (total)

Inverse transform:
– Pre-order traversal of wavelet coefficient tree

– Same complexity

constant factor:
filter length

Tutorial | Time-Series with Matlab

Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)

Tutorial | Time-Series with Matlab

Time series collections
Overview

Fourier and wavelets are the most prevalent and
successful “descriptions” of time series.

Next, we will consider collections of M time series,
each of length N.
– What is the series that is “most similar” to all series in the

collection?

– What is the second “most similar”, and so on…

Tutorial | Time-Series with Matlab

Time series collections

Some notation:

i-th series, x(i)

values at time t, xt

24

Tutorial | Time-Series with Matlab

Principal Component Analysis
Example

-2
0
2

AU
D

-2
0
2

B
E

F

-2
0
2

C
AD

-2
0
2

FR
F

-2
0
2

D
E

M

-2
0
2

JP
Y

-2
0
2

N
LG

-2
0
2

N
ZL

-2
0
2

E
S

P

-2
0
2

S
E

K

-2
0
2

C
H

F

500 1000 1500 2000 2500
-2
0
2

Time

G
B

P

Exchange rates (vs. USD)

-0.05

0

0.05

U
1

-0.05

0
0.05

U
2

-0.05

0
0.05

U
3

500 1000 1500 2000 2500
-0.05

0
0.05

Time

U
4

Principal components 1-4

= 48%

+ 33%
= 81%

+ 11%
= 92%

+ 4%
= 96%

u 1
u 2

u 3
u 4

Coefficients of each time series
w.r.t. basis { u1, u2, u3, u4 } :

“Best” basis : { u1, u2, u3, u4 }
x(2) = 49.1u1 + 8.1u2 + 7.8u3 + 3.6u4 + ε1

(μ ≠ 0)

Tutorial | Time-Series with Matlab

Principal component analysis

-30 -20 -10 0 10 20 30 40 50 60

-20

-10

0

10

20

30

40

50

υi,1

υ i,2

First two principal components

-2
0
2

FR
F

-2
0
2

B
E

F

-2
0
2

D
E

M

-2
0
2

N
LG

-2
0
2

E
S

P

-2
0
2

G
B

P

-2
0
2

C
AD

-2
0
2

JP
Y

AUD

SEK

NZL
CHF

Tutorial | Time-Series with Matlab

Principal Component Analysis
Matrix notation — Singular Value Decomposition (SVD)

X = UΣVT

x(1) x(2) x(M) υ1 υ2 υ3 υM
u1 u2 uk= .

time series basis for
time series

X U
ΣVT

coefficients w.r.t.
basis in U
(columns)

Tutorial | Time-Series with Matlab

Principal Component Analysis
Matrix notation — Singular Value Decomposition (SVD)

X = UΣVT

u1 u2 ukx(1) x(2) x(M) = . υ1 υ2 υ3 υN

v’1

v’2

v’k

X U
ΣVT

time series basis for
time series

coefficients w.r.t.
basis in U
(columns)

basis for
measurements

(rows)

Tutorial | Time-Series with Matlab

Principal Component Analysis
Matrix notation — Singular Value Decomposition (SVD)

X = UΣVT

u1 u2 ukx(1) x(2) x(M) = .

v1

v2

vk

.

σ1

σ2

σk

X U
Σ VT

basis for
measurements

(rows)time series basis for
time series

scaling factors

Tutorial | Time-Series with Matlab

Principal component analysis
Properties — Singular Value Decomposition (SVD)

V are the eigenvectors of the covariance matrix XTX,
since

U are the eigenvectors of the Gram (inner-product)
matrix XXT, since

Further reading:
1. Ian T. Jolliffe, Principal Component Analysis (2nd ed), Springer, 2002.
2. Gilbert Strang, Linear Algebra and Its Applications (4th ed), Brooks Cole, 2005.

25

Tutorial | Time-Series with Matlab

Kernels and KPCA
What are kernels?
– Usual definition of inner product w.r.t.

vector coordinates is x¢y = ∑i xiyi

– However, other definitions that preserve

the fundamental properties are possible

Why kernels?
– We no longer have explicit “coordinates”

• Objects do not even need to be numeric
– But we can still talk about distances and angles

– Many algorithms rely just on these two concepts

Further reading:
1. Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond, MIT Press, 2001.

Exchange rates

AUD

SEK

NZL
CHF

CAD
GBP

ESP

NLG

JPY

FRF
BEFDEM

Tutorial | Time-Series with Matlab

Multidimensional scaling (MDS)

Kernels are still “Euclidean” in some sense
– We still have a Hilbert (inner-product) space, even though it

may not be the space of the original data

For arbitrary similarities, we can still find the eigen-
decomposition of the similarity matrix
– Multidimensional scaling (MDS)

– Maps arbitrary metric data into a

low-dimensional space Exchange rates

AUD

SEK

NZL
CHF

CAD
GBP

ESP

NLG

JPY

FRF
BEFDEM

Tutorial | Time-Series with Matlab

Principal components
Matlab

pcacov

princomp

[U, S, V] = svd(X)

[U, S, V] = svds(X, k)

Tutorial | Time-Series with Matlab

PCA on sliding windows

Empirical orthogonal functions (EOF), aka. Singular
Spectrum Analysis (SSA)

If the series is stationary, then it can be shown that
– The eigenvectors of its autocovariance matrix are the

Fourier bases

– The principal components are the Fourier coefficients

Further reading:
1. M. Ghil, et al., Advanced Spectral Methods for Climatic Time Series, Rev. Geophys.,
40(1), 2002.

Tutorial | Time-Series with Matlab

Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)

Tutorial | Time-Series with Matlab

Principal components
Incremental estimation

PCA via SVD on X 2 �N£M — recap:

– Singular values Σ 2 � k£k (diagonal)
• Energy / reconstruction accuracy

– Left singular vectors U 2 � N£k

• Basis for time series
• Eigenvectors of Gram matrix XXT

– Right singular vectors V 2 �M£k

• Basis for measurements’ space
• Eigenvectors of covariance matrix XTX

26

Tutorial | Time-Series with Matlab

Principal components
Incremental estimation

PCA via SVD on X 2 �N£M — recap:

– Singular values Σ 2 � k£k (diagonal)
• Energy / reconstruction accuracy

– Left singular vectors U 2 � N£k

• Basis for time series
• Eigenvectors of Gram matrix XXT

– Right singular vectors V 2 �M£k

• Basis for measurements’ space
• Eigenvectors of covariance matrix XTX

u1 u2 ukx(1) x(2) x(M) = .
v1

v2

vk

.
σ1

σ2

σk

X U
Σ VT

Tutorial | Time-Series with Matlab

Principal components
Incremental estimation — Example

20oC

30oC

S
er

ie
s

x(1
)

First series

First three values
Other values

Tutorial | Time-Series with Matlab

Principal components
Incremental estimation — Example

First series

Second series

First three values
Other values

20oC

30oC

S
er

ie
s

x(2
)

Tutorial | Time-Series with Matlab

20oC 30oC

Principal components
Incremental estimation — Example

20oC

30oC

Series x(1)
First three values
Other values

Correlations:

Let’s take a closer look at the
first three measurement-
pairs…

S
er

ie
s

x(2
)

Tutorial | Time-Series with Matlab

20oC 30oC

Principal components
Incremental estimation — Example

20oC

30oC

S
er

ie
s

x(2
)

Series x(1)
First three values
Other values

First three lie (almost) on a
line in the space of
measurement-pairs…

O(M) numbers for
the slope, and

One number for
each measurement-
pair (offset on line =
PC)

of
fs
et

= p
rin

cip
al

co
m

po
ne

nt

Tutorial | Time-Series with Matlab

Principal components
Incremental estimation — Example

20oC 30oC

20oC

30oC

S
er

ie
s

x(2
)

Series x(1)
First three values
Other values

Other pairs also follow the
same pattern: they lie
(approximately) on this line

27

Tutorial | Time-Series with Matlab

Principal components
Incremental estimation — Example

error

20oC 30oC

20oC

30oC

S
er

ie
s

x(2
)

Series x(1)

For each new point

Project onto current line

Estimate error

New value

Tutorial | Time-Series with Matlab

Principal components
Incremental estimation — Example (update)

error

20oC

30oC

20oC 30oC

S
er

ie
s

x(2
)

Series x(1)

For each new point

Project onto current line

Estimate error

Rotate line in the
direction of the error and
in proportion to its
magnitude

O(M) time

New value

Tutorial | Time-Series with Matlab

Principal components
Incremental estimation — Example (update)

20oC

30oC

20oC 30oC

S
er

ie
s

x(2
)

Series x(1)

For each new point

Project onto current line

Estimate error

Rotate line in the
direction of the error and
in proportion to its
magnitude

Tutorial | Time-Series with Matlab

Principal components
Incremental estimation — Example

The “line” is the first principal component (PC)
direction

This line is optimal: it minimizes the sum of
squared projection errors

Tutorial | Time-Series with Matlab

Principal components
Incremental estimation — Update equations

For each new point xt and for j = 1, …, k :

yj := vj
Txt (proj. onto vj)

σj
2 ← λσj + yj

2 (energy ∝ j-th eigenval.)

ej := x – yjwj (error)

vj ← vj + (1/σj
2) yjej (update estimate)

xt ← xt – yjvj (repeat with remainder)

y1

v1

xt
e1

v1 updated

Tutorial | Time-Series with Matlab

Principal components
Incremental estimation — Complexity

O(Mk) space (total) and time (per tuple), i.e.,

Independent of # points

Linear w.r.t. # streams (M)

Linear w.r.t. # principal components (k)

28

Tutorial | Time-Series with Matlab

Principal components
Incremental estimation — Applications

Incremental PCs (measurement space)
– Incremental tracking of correlations

– Forecasting / imputation

– Change detection

Further reading:
1. Sudipto Guha, Dimitrios Gunopulos, Nick Koudas, Correlating synchronous and
asynchronous data streams, KDD 2003.
2. Spiros Papadimitriou, Jimeng Sun, Christos Faloutsos, Streaming Pattern Discovery
in Multiple Time-Series, VLDB 2005.
3. Matthew Brand, Fast Online SVD Revisions for Lightweight Recommender Systems,
SDM 2003.

Tutorial | Time-Series with Matlab

Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)

Tutorial | Time-Series with Matlab

Piecewise constant (APCA)
So far our “windows” were pre-determined
– DFT: Entire series
– STFT: Single, fixed window
– DWT: Geometric progression of windows

Within each window we sought fairly complex
patterns (sinusoids, wavelets, etc.)

Next, we will allow any window size, but constrain the
“pattern” within each window to the simplest
possible (mean)

Tutorial | Time-Series with Matlab

Piecewise constant
Example

500 1000 1500 2000 2500

-1

0

1

2

APCA (k=10)

500 1000 1500 2000 2500

-1

0

1

2

APCA (k=21)

500 1000 1500 2000 2500

-1

0

1

2

APCA (k=41)

Tutorial | Time-Series with Matlab

Piecewise constant (APCA)

Divide series into k segments with endpoints

– Constant length: PAA

– Variable length: APCA

Represent all points within one segment with their
average mj, 1 ≤ j ≤ k, thus minimizing

Further reading:
1. Kaushik Chakrabarti, Eamonn Keogh, Sharad Mehrotra, Michael Pazzani, Locally
Adaptive Dimensionality Reduction for Indexing Large Time Series Databases, TODS,
27(2), 2002.

Single-level Haar smooths,
if tj+1-tj = 2ℓ , for all 1 ≤ j ≤ k

500 1000 1500 2000
-1
0
1
2

Tutorial | Time-Series with Matlab

Piecewise constant
Example

500 1000 1500 2000 2500

-1

0

1

2

APCA (k=10)

500 1000 1500 2000 2500

-1

0

1

2

APCA (k=21) / Haar (level 7, 21 coeffs)

500 1000 1500 2000 2500

-1

0

1

2

APCA (k=41) / Haar (level 6, 41 coeffs)

500 1000 1500 2000 2500

-1

0

1

2

500 1000 1500 2000 2500

-1

0

1

2

29

Tutorial | Time-Series with Matlab

Piecewise constant
Example

500 1000 1500 2000 2500

-1

0

1

2

APCA (k=10)

500 1000 1500 2000 2500

-1

0

1

2

APCA (k=21) / Haar (level 7, 21 coeffs)

500 1000 1500 2000 2500

-1

0

1

2

500 1000 1500 2000 2500

-1

0

1

2

APCA / Haar (top-21 out of 7 levels)

Tutorial | Time-Series with Matlab

Piecewise constant
Example

500 1000 1500 2000 2500

-1

0

1

2

APCA (k=10)

500 1000 1500 2000 2500

-1

0

1

2

APCA (k=21) / Haar (level 7, 21 coeffs)

500 1000 1500 2000 2500

-1

0

1

2

500 1000 1500 2000 2500

-1

0

1

2

APCA (k=15) / Daubechies-3 (level 7, 15 coeffs)

500 1000 1500 2000 2500

-1

0

1

2

Tutorial | Time-Series with Matlab

k/h-segmentation

Again, divide the series into k segments (variable
length)

For each segment choose one of h quantization
levels to represent all points

– Now, mj can take only h ≤ k possible values

APCA = k/k-segmentation (h = k)

Further reading:
1. Aristides Gionis, Heikki Mannila, Finding Recurrent Sources in Sequences, Recomb
2003.

Tutorial | Time-Series with Matlab

Symbolic aggregate approximation (SAX)

Quantization of values

Segmentation of time based on these quantization
levels

More in next part…

Tutorial | Time-Series with Matlab

Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)

Tutorial | Time-Series with Matlab

K-means / Vector quantization (VQ)

APCA considers one time series and
– Groups time instants

– Approximates them via their (scalar) mean

Vector Quantization / K-means applies to a collection
of M time series (of length N)
– Groups time series

– Approximates them via their (vector) mean

30

Tutorial | Time-Series with Matlab

K-means

m1

m2

Tutorial | Time-Series with Matlab

K-means

Partitions the time series x(1), …, x(M) into k
groups, Ij, for 1 ≤ j ≤ k .

All time series in the j-th group, 1 ≤ j ≤ k, are
represented by their centroid, mj .

Objective is to choose mj so as to minimize the
overall squared distortion,

1-D on values +
contiguity requirement:

APCA

Tutorial | Time-Series with Matlab

K-means

Objective implies that, given Ij, for 1 ≤ j ≤ k,

i.e., mj is the vector mean of all points in cluster j.

Tutorial | Time-Series with Matlab

K-means

m1

m2

Tutorial | Time-Series with Matlab

K-means

1. Start with arbitrary cluster assignment.
2. Compute centroids.
3. Re-assign to clusters based on new centroids.
4. Repeat from (2), until no improvement.

Finds local optimum of D.

Matlab: [idx, M] = kmeans(X’, k)

Tutorial | Time-Series with Matlab

K-means
Example

-30 -20 -10 0 10 20 30 40 50 60

-20

-10

0

10

20

30

40

50

υi,1

υ i,2

Exchange rates

AUD

SEK

NZL
CHF

CAD

GBP

ESP

NLG

JPY

FRF
BEFDEM

k = 2

k = 4

-0.05

0

0.05

-0.05

0
0.05

-1
0
1

-1
0
12

-1
0
1
2

-10
12

-2
0
2

-2
0
2

PCs

σ ≠ 1

σ ≠ 1

31

Tutorial | Time-Series with Matlab

K-means in other coordinates

An orthonormal transform (e.g., DFT, DWT, PCA)
preserves distances.

K-means can be applied in any of these “coordinate
systems.”

Can transform data to speed up distance
computations (if N large)

Tutorial | Time-Series with Matlab

K-means and PCA

Further reading:
1. Hongyuan Zha, Xiaofeng He, Chris H.Q. Ding, Ming Gu, Horst D. Simon, Spectral
Relaxation for K-means Clustering, NIPS 2001.

Tutorial | Time-Series with Matlab

Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)

Tutorial | Time-Series with Matlab

Dynamic time warping (DTW)

So far we have been discussing shapes via various
kinds of “features” or “descriptions” (bases)

However, the series were always fixed

Dynamic time warping:
– Allows local deformations (stretch/shrink)

– Can thus also handle series of different lengths

Tutorial | Time-Series with Matlab

Dynamic time warping (DTW)
Euclidean (L2) distance is

or, recursively,

Dynamic time warping distance is

where x1:i is the subsequence (x1, …, xi)
shrink x / stretch y

stretch x / shrink y

Tutorial | Time-Series with Matlab

Dynamic time warping (DTW)
Each cell c = (i,j) is a pair of
indices whose
corresponding values will
be compared, (xi –yj)2,
and included in the sum
for the distance
Euclidean path:
– i = j always
– Ignores off-diagonal cells

x[1:i]

y[
1:

j]

32

Tutorial | Time-Series with Matlab

(i, j)

Dynamic time warping (DTW)

DTW allows any path
Examine all paths:

Standard dynamic programming
to fill in table—top-right cell
contains final resultx[1:i]

y[
1:

j]

(i, j)
(i-1, j)

(i-1, j-1) (i, j-1)

shrink x / stretch y

stretch x
/ shrink y

Tutorial | Time-Series with Matlab

Dynamic time-warping
Fast estimation

Standard dynamic programming: O(N2)

Envelope-based technique
– Introduced by [Keogh 2000 & 2002]

– Multi-scale, wavelet-like technique and formalism by
[Salvador et al. 2004] and, independently, by [Sakurai et al.
2005]

Further reading:
1. Eamonn J. Keogh, Exact Indexing of Dynamic Time Warping, VLDB 2002.
2. Stan Salvador, Philip Chan, FastDTW: Toward Accurate Dynamic Time Warping in
Linear Time and Space, TDM 2004.
3. Yasushi Sakurai, Masatoshi Yoshikawa, Christos Faloutsos, FTW: Fast Similarity
Under the Time Warping Distance, PODS 2005.

Tutorial | Time-Series with Matlab

Dynamic time warping
Fast estimation — Summary

Create lower-bounding
distance on coarser
granularity, either at
– Single scale

– Multiple scales

Use to prune search space

x[1:i]

y[
1:

j]

Tutorial | Time-Series with Matlab

Non-Euclidean metrics

More in part 3

Tutorial | Time-Series with Matlab

PART C: Similarity Search and ApplicationsPART C: Similarity Search and Applications

Tutorial | Time-Series with Matlab

Timeline of part C

–– IntroductionIntroduction

–– TimeTime--Series RepresentationsSeries Representations

–– Distance MeasuresDistance Measures

–– Lower BoundingLower Bounding

–– Clustering/Classification/VisualizationClustering/Classification/Visualization

–– ApplicationsApplications

33

Tutorial | Time-Series with Matlab

Applications (Image Matching)

Many types of data can be
converted to time-series

50 100 150 200 250
0

200

400

600

50 100 150 200 250
0

200

400

50 100 150 200 250
0

200

400

600

800

Cluster 1

Cluster 2

Image

Color Histogram

Time-Series

Tutorial | Time-Series with Matlab

Applications (Shapes)

Recognize type of leaf based on its shape

Acer platanoidesUlmus carpinifolia Salix fragilis Tilia Quercus robur

Convert perimeter into a sequence of values

Special thanks to A. Ratanamahatana &
E. Keogh for the leaf video.

Tutorial | Time-Series with Matlab

Applications (Motion Capture)

Motion-Capture (MOCAP) Data (Movies, Games)
– Track position of several joints over time

– 3*17 joints = 51 parameters per frame

MOCAP data…
…my precious…
MOCAP data…
…my precious…

Tutorial | Time-Series with Matlab

Applications (Video)

Video-tracking / Surveillance
– Visual tracking of body features (2D time-series)

– Sign Language recognition (3D time-series)
Video Tracking of body feature
over time (Athens1, Athens2)

Tutorial | Time-Series with Matlab

Time-Series and Matlab
Time-series can be represented as vectors or arrays

– Fast vector manipulation
• Most linear operations (eg euclidean distance, correlation) can

be trivially vectorized
– Easy visualization

– Many built-in functions

– Specialized Toolboxes

Tutorial | Time-Series with Matlab

••PART II: Time Series MatchingPART II: Time Series Matching
IntroductionIntroduction

Becoming sufficiently
familiar with something

is a substitute for
understanding it.

Becoming sufficiently
familiar with something

is a substitute for
understanding it.

34

Tutorial | Time-Series with Matlab

Basic Data-Mining problem
Today’s databases are becoming too large. Search is difficult.

How can we overcome this obstacle?

Basic structure of data-mining solution:
– Represent data in a new format

– Search few data in the new representation

– Examine even fewer original data

– Provide guarantees about the search results

– Provide some type of data/result visualization

Tutorial | Time-Series with Matlab

Basic Time-Series Matching Problem

Database with time-series:
– Medical sequences

– Images, etc

Sequence Length:100-1000pts
DB Size: 1 TByte

Database with time-series:
– Medical sequences

– Images, etc

Sequence Length:100-1000pts
DB Size: 1 TByte

query

D = 7.3

D = 10.2

D = 11.8

D = 17

D = 22

Distance

Objective: Compare the query with
all sequences in DB and return
the k most similar sequences to
the query.

Linear Scan:

Tutorial | Time-Series with Matlab

What other problems can we solve?
Clustering: “Place time-series into ‘similar’ groups”

Classification: “To which group is a time-series most ‘similar’ to?”

query
?

?
?

Tutorial | Time-Series with Matlab

Hierarchical Clustering

Very generic & powerful tool

Provides visual data grouping

Z = linkage(D);
H = dendrogram(Z);

Pairwise
distances

D1,1

D2,1

DM,N

1. Merge objects with
smallest distance

2. Reevaluate distances

3. Repeat process

Tutorial | Time-Series with Matlab

Partitional Clustering

K-Means Algorithm:

1. Initialize k clusters (k specified
by user) randomly.

2. Repeat until convergence
1. Assign each object to the

nearest cluster center.

2. Re-estimate cluster centers.

Faster than hierarchical clustering

Typically provides suboptimal solutions (local minima)

Not good performance for high dimensions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

See: kmeans

Tutorial | Time-Series with Matlab

K-Means Demo

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

35

Tutorial | Time-Series with Matlab

K-Means Clustering for Time-Series

So how is kMeans applied for Time-Series that are high-dimensional?

Perform kMeans on a compressed dimensionality

Original
sequences

Compressed
sequences

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Clustering
space

Tutorial | Time-Series with Matlab

Classification
Typically classification can be made easier if we have clustered the objects

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Class A

Class B

Project query in the
new space and find
its closest cluster

So, query Q is more
similar to class B

Q

Tutorial | Time-Series with Matlab

Nearest Neighbor Classification

H
ai

r L
en

gt
h

H
ai

r L
en

gt
h

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

Hobbits
Elfs

HeightHeight

We need not perform clustering before classification. We can classify an
object based on the class majority of its nearest neighbors/matches.

Tutorial | Time-Series with Matlab

Example

What do we need?What do we need?
1. Define Similarity

2. Search fast
– Dimensionality Reduction

(compress data)

Tutorial | Time-Series with Matlab

••PART II: Time Series MatchingPART II: Time Series Matching
Similarity/Distance functionsSimilarity/Distance functions

All models are wrong,
but some are useful…
All models are wrong,
but some are useful…

Tutorial | Time-Series with Matlab

Notion of Similarity I
Solution to any time-series problem, boils down to a proper
definition of *similarity*

Similarity is always subjective.
(i.e. it depends on the application)

36

Tutorial | Time-Series with Matlab

Notion of Similarity II
Similarity depends on the features we consider

(i.e. how we will describe or compress the sequences)

Tutorial | Time-Series with Matlab

Metric and Non-metric Distance Functions
Distance functions

Metric Non-Metric

Euclidean Distance

Correlation
Time Warping

LCSS

Positivity: d(x,y) ≥0 and d(x,y)=0, if x=y

Symmetry: d(x,y) = d(y,x)

Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)

Positivity: d(x,y) ≥0 and d(x,y)=0, if x=y

Symmetry: d(x,y) = d(y,x)

Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)

Properties

If any of these is not
obeyed then the distance
is a non-metric

If any of these is not
obeyed then the distance
is a non-metric

Tutorial | Time-Series with Matlab

Triangle Inequality

Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)

x y

z
Metric distance
functions can exploit
the triangle inequality
to speed-up search

Intuitively, if:
- x is similar to y and,
- y is similar to z, then,
- x is similar to z too.

Tutorial | Time-Series with Matlab

Triangle Inequality (Importance)

Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)

A

B

C

Q

A B C

A 0 20 110

B 20 0 90

C 110 90 0

Assume: d(Q,bestMatch) = 20

and d(Q,B) =150

Then, since d(A,B)=20

d(Q,A) ≥ d(Q,B) – d(B,A)

d(Q,A) ≥ 150 – 20 = 130

So we don’t have to retrieve A from disk

Tutorial | Time-Series with Matlab

Non-Metric Distance Functions

• Matching flexibility

• Robustness to outliers

• Stretching in time/space

• Support for different sizes/lengths

• Matching flexibility

• Robustness to outliers

• Stretching in time/space

• Support for different sizes/lengths

• Speeding-up search can be
difficult
• Speeding-up search can be
difficult

Bat
similar to
batman

Batman
similar
to man

Man
similar to

bat??

Tutorial | Time-Series with Matlab

Euclidean Distance

∑
=

−=
n

i
ibiaL

1

2
2])[][(

L2 = sqrt(sum((aL2 = sqrt(sum((a--b).^2)); b).^2)); % return Euclidean distance% return Euclidean distance

Most widely used distance measure

Definition:

0 20 40 60 80 100

37

Tutorial | Time-Series with Matlab

Euclidean Distance (Vectorization)

Question: If I want to compare many sequences to each other do I have to
use a for-loop?

Answer: No, one can use the following equation to perform matrix
computations only…

||A-B|| = sqrt (||A||2 + ||B||2 - 2*A.B)

aaaa==sum(asum(a.*a); bb=.*a); bb=sum(bsum(b.*b); .*b); abab=a'*b; =a'*b;
d = sqrt(repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) d = sqrt(repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) -- 2*2*abab););

A: DxM matrix

B: DxN matrix

Result is MxN matrix

O
f l

en
gt

h
D

O
f l

en
gt

h
D

M sequencesM sequences

…A =

result

D1,1

D2,1

DM,N

Tutorial | Time-Series with Matlab

Data Preprocessing (Baseline Removal)

a = a a = a –– mean(amean(a););

average value of A

average value of B

A

B

Tutorial | Time-Series with Matlab

Data Preprocessing (Rescaling)

a = a ./ a = a ./ std(astd(a););

Tutorial | Time-Series with Matlab

Dynamic Time-Warping (Motivation)

Euclidean distance or warping cannot compensate for small distortions in
time axis.

Solution: Allow for compression & decompression in time

A

B

C

According to Euclidean distance
B is more similar to A than to C

Tutorial | Time-Series with Matlab

Dynamic Time-Warping

First used in speech recognition
for recognizing words spoken at
different speeds

Same idea can work equally well for
generic time-series data

---Maat--llaabb-------------------

----Mat-lab--------------------------

Tutorial | Time-Series with Matlab

Euclidean distance
T1 = [1, 1, 2, 2]

d = 1
T2 = [1, 2, 2, 2]

Euclidean distance
T1 = [1, 1, 2, 2]

d = 1d = 1
T2 = [1, 2, 2, 2]

Dynamic Time-Warping (how does it work?)

The intuition is that we copy an element multiple times so as to achieve a
better matching

Warping distance
T1 = [1, 1, 2, 2]

d = 0
T2 = [1, 2, 2, 2]

Warping distance
T1 = [1, 1, 2, 2]

d = 0d = 0
T2 = [1, 2, 2, 2]

One-to-one linear alignment

One-to-many non-linear alignment

38

Tutorial | Time-Series with Matlab

Dynamic Time-Warping (implementation)

It is implemented using dynamic programming. Create an array that stores
all solutions for all possible subsequences.

A

B

c(i,j) = D(Ai,Bj) +
min{ c(i-1,j-1) , c(i-1,j) , c(i,j-1) }

c(i,j) = D(Ai,Bj) +
min{ c(i-1,j-1) , c(i-1,j) , c(i,j-1) }

Recursive equation

Tutorial | Time-Series with Matlab

Dynamic Time-Warping (Examples)

So does it work better than Euclidean? Well yes! After all it is more costly..

1

4

10

2

6

5

7

8

9

3

11

15

19

12

14

16

13

17

20

18

Dynamic Time Warping

1

4

8

12

5

17

20

10

19

11

15

2

6

9

3

14

13

7

16

18

Euclidean Distance

MIT arrhythmia database

Tutorial | Time-Series with Matlab

Dynamic Time-Warping (Can we speed it up?)

Complexity is O(n2). We can reduce it to O(δn) simply by restricting the
warping path.

A

B
We now only fill only a small
portion of the array

δ

δ

Minimum
Bounding
Envelope

(MBE)

Tutorial | Time-Series with Matlab

Dynamic Time-Warping (restricted warping)

The restriction of the warping path helps:

A. Speed-up execution

B. Avoid extreme (degenerate) matchings

C. Improve clustering/classification
accuracy

Classification Accuracy

Camera Mouse

Australian Sign Language

Warping Length10% warping is adequate

Camera-Mouse dataset

Tutorial | Time-Series with Matlab

Longest Common Subsequence (LCSS)

ignore majority
of noise

match

match

With Time Warping extreme values (outliers) can destroy the distance
estimates. The LCSS model can offer more resilience to noise and impose
spatial constraints too.

δ

ε

Matching within δδ time and εε in space
Everything that is outside the bounding
envelope can never be matched

Tutorial | Time-Series with Matlab

Longest Common Subsequence (LCSS)

ignore majority
of noise

match

match

Advantages of LCSS:

A. Outlying values not matched

B. Distance/Similarity distorted less

C. Constraints in time & space

Disadvantages of DTW:

A. All points are matched

B. Outliers can distort distance

C. One-to-many mapping

LCSS is more resilient to noise than DTW.

39

Tutorial | Time-Series with Matlab

Longest Common Subsequence (Implementation)

Similar dynamic programming solution as DTW, but now we measure
similarity not distance.

Can also be expressed as distance

Tutorial | Time-Series with Matlab

Distance Measure Comparison

31%8.3LCSS
15%9.3DTW
11%2.1EuclideanASL+noise
46%8.2LCSS
44%9.1DTW
33%2.2EuclideanASL

100%210LCSS
80%237DTW
20%34EuclideanCamera-Mouse

AccuracyTime (sec)MethodDataset

LCSS offers enhanced robustness under noisy conditions

Tutorial | Time-Series with Matlab

Distance Measure Comparison (Overview)

Noise
Robustness

O(n*δ)LCSS
O(n*δ)DTW
O(n)Euclidean

One-to-one MatchingElastic MatchingComplexityMethod

Tutorial | Time-Series with Matlab

••PART II: Time Series MatchingPART II: Time Series Matching
Lower BoundingLower Bounding

Tutorial | Time-Series with Matlab

Basic Time-Series Problem Revisited

query

Objective: Instead of comparing the query to the
original sequences (Linear Scan/LS) , let’s compare
the query to simplified versions of the DB time-
series.

This DB can typically
fit in memory

This DB can typically
fit in memory

Tutorial | Time-Series with Matlab

Compression – Dimensionality Reduction

Question: When searching the original space it is guaranteed that we
will find the best match. Does this hold (or under which circumstances)
in the new compressed space?

query

Project all sequences into a new space, and
search this space instead (eg project time-
series from 100-D space to 2-D space)

Fe
at

ur
e

1

Feature 2

One can also organize the low-dimensional
points into a hierarchical ‘index’ structure. In
this tutorial we will not go over indexing
techniques.

A

B

C

40

Tutorial | Time-Series with Matlab

Concept of Lower Bounding
You can guarantee similar results to Linear Scan in the original
dimensionality, as long as you provide a Lower Bounding (LB) function
(in low dim) to the original distance (high dim.)
GEMINI, GEneric Multimedia INdexIng

0 1 2 3 4 5

Α C B D E F

False alarm (not a problem)

Projection onto X-axis

0 1 2 3 4 5

D FEB C

False dismissal (bad!)

Projection on some other axis

0 1 2 3 4 5
0

1

2

3

4

5

Α
Β

C

D

E
F

“Find everything within range of 1 from A”

DLB (a,b) <= Dtrue(A,B)DLB (a,b) <= Dtrue(A,B)

– So, for projection from high dim. (N) to low dim. (n): A a, B b etc

Tutorial | Time-Series with Matlab

Generic Search using Lower Bounding

query

simplified
query

simplified
DB

original
DB

Answer
Superset

Verify
against
original

DB

Final
Answer

set

Tutorial | Time-Series with Matlab

Lower Bounding Example

querysequences

Tutorial | Time-Series with Matlab

querysequences

Lower Bounding Example

Tutorial | Time-Series with Matlab

sequences Lower Bounds

4.6399

37.9032

19.5174

72.1846

67.1436

78.0920

70.9273

63.7253

1.4121

Lower Bounding Example
Tutorial | Time-Series with Matlab

sequences Lower Bounds

4.6399

37.9032

19.5174

72.1846

67.1436

78.0920

70.9273

63.7253

1.4121

True Distance

46.7790

108.8856

113.5873

104.5062

119.4087

120.0066

111.6011

119.0635

17.2540 BestSoFar

Lower Bounding Example

41

Tutorial | Time-Series with Matlab

Lower Bounding the Euclidean distance

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 1001200 20 40 60 80 100 120 0 20 40 60 80 100120

DFT DWT SVD APCA PAA PLA

There are many dimensionality reduction (compression) techniques for time-series
data. The following ones can be used to lower bound the Euclidean distance.

Figure by Eamonn Keogh, ‘Time-Series Tutorial’

Tutorial | Time-Series with Matlab

Fourier Decomposition

DFT:

IDFT:

“Every signal can
be represented as
a superposition of
sines and cosines”

(…alas nobody
believes me…)

“Every signal can
be represented as
a superposition of
sines and cosines”

(…alas nobody
believes me…)

Decompose a time-series into sum of sine waves

Tutorial | Time-Series with Matlab

Fourier Decomposition

Decompose a time-series into sum of sine waves

fafa = = fft(afft(a);); % Fourier decomposition% Fourier decomposition
fa(5:end) = 0; fa(5:end) = 0; % keep first 5 coefficients (low frequencies)% keep first 5 coefficients (low frequencies)
reconstrreconstr = = real(ifft(fareal(ifft(fa));)); % reconstruct signal% reconstruct signal

DFT:

IDFT:

-0.4446

-0.9864

-0.3254

-0.6938

-0.1086

-0.3470

0.5849

1.5927

-0.9430

-0.3037

-0.7805

-0.1953

-0.3037

0.2381

2.8389

-0.7046

-0.5529

-0.6721

0.1189

0.2706

-0.0003

1.3976

-0.4987

-0.2387

-0.7588

x(n)

-0.3633

-0.6280 + 0.2709i

-0.4929 + 0.0399i

-1.0143 + 0.9520i

0.7200 - 1.0571i

-0.0411 + 0.1674i

-0.5120 - 0.3572i

0.9860 + 0.8043i

-0.3680 - 0.1296i

-0.0517 - 0.0830i

-0.9158 + 0.4481i

1.1212 - 0.6795i

0.2667 + 0.1100i

0.2667 - 0.1100i

1.1212 + 0.6795i

-0.9158 - 0.4481i

-0.0517 + 0.0830i

-0.3680 + 0.1296i

0.9860 - 0.8043i

-0.5120 + 0.3572i

-0.0411 - 0.1674i

0.7200 + 1.0571i

-1.0143 - 0.9520i

-0.4929 - 0.0399i

-0.6280 - 0.2709i

X(f)

Life is complex, it has both real and imaginary parts.

Tutorial | Time-Series with Matlab

Fourier Decomposition
How much space we gain by compressing random walk data?

1 coeff > 60% of energy

10 coeff > 90% of energy

50 100 150 200 250

-5

0

5

Reconstruction using 1coefficients

Tutorial | Time-Series with Matlab

Fourier Decomposition
How much space we gain by compressing random walk data?

1 coeff > 60% of energy

10 coeff > 90% of energy

50 100 150 200 250

-5

0

5

Reconstruction using 2coefficients

Tutorial | Time-Series with Matlab

Fourier Decomposition
How much space we gain by compressing random walk data?

1 coeff > 60% of energy

10 coeff > 90% of energy

50 100 150 200 250

-5

0

5

Reconstruction using 7coefficients

42

Tutorial | Time-Series with Matlab

Fourier Decomposition
How much space we gain by compressing random walk data?

1 coeff > 60% of energy

10 coeff > 90% of energy

50 100 150 200 250

-5

0

5

Reconstruction using 20coefficients

Tutorial | Time-Series with Matlab

20 40 60 80 100 120
0

500

1000

1500

Coefficients

Error

20 40 60 80 100 120

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Coefficients

Energy Percentage

Fourier Decomposition
How much space we gain by compressing random walk data?

1 coeff > 60% of energy

10 coeff > 90% of energy

Tutorial | Time-Series with Matlab

Fourier Decomposition
Which coefficients are important?

– We can measure the ‘energy’ of each coefficient

– Energy = Real(X(fk))2 + Imag(X(fk))2

Most of data-mining research
uses first k coefficients:

Good for random walk
signals (eg stock market)

Easy to ‘index’

Not good for general signals

fafa = = fft(afft(a);); % Fourier decomposition% Fourier decomposition
N = N = length(alength(a);); % how many?% how many?
fafa = fa(1:ceil(N/2)); = fa(1:ceil(N/2)); % keep first half only% keep first half only
magmag = 2*abs(fa).^2;= 2*abs(fa).^2; % calculate energy% calculate energy

Tutorial | Time-Series with Matlab

Fourier Decomposition
Which coefficients are important?

– We can measure the ‘energy’ of each coefficient

– Energy = Real(X(fk))2 + Imag(X(fk))2

Usage of the coefficients with
highest energy:

Good for all types of signals

Believed to be difficult to
index

CAN be indexed using
metric trees

Tutorial | Time-Series with Matlab

Code for Reconstructed Sequence
a = load('randomWalk.dat');a = load('randomWalk.dat');
a = (aa = (a--mean(a))/std(a); mean(a))/std(a); % z% z--normalizationnormalization

fa = fft(a);fa = fft(a);

maxInd = ceil(length(a)/2); maxInd = ceil(length(a)/2); % until the middle% until the middle
N = length(a); N = length(a);

energy = zeros(maxIndenergy = zeros(maxInd--1, 1);1, 1);
E = sum(a.^2); E = sum(a.^2); % energy of a% energy of a

for ind=2:maxInd,for ind=2:maxInd,

fa_N = fa; fa_N = fa; % copy fourier% copy fourier
fa_N(ind+1:Nfa_N(ind+1:N--ind+1) = 0; ind+1) = 0; % zero out unused% zero out unused
r = real(ifft(fa_N)); r = real(ifft(fa_N)); % reconstruction% reconstruction

plot(r, 'r','LineWidth',2); hold on;plot(r, 'r','LineWidth',2); hold on;
plot(a,'k');plot(a,'k');
title(['Reconstruction using ' num2str(indtitle(['Reconstruction using ' num2str(ind--1) 'coefficients']);1) 'coefficients']);
set(gca,'plotboxaspectratio', [3 1 1]);set(gca,'plotboxaspectratio', [3 1 1]);
axis tightaxis tight
pause;pause; % wait for key% wait for key
cla;cla; % clear axis% clear axis

endend

0

-0.6280 + 0.2709i

-0.4929 + 0.0399i

-1.0143 + 0.9520i

0.7200 - 1.0571i

-0.0411 + 0.1674i

-0.5120 - 0.3572i

0.9860 + 0.8043i

-0.3680 - 0.1296i

-0.0517 - 0.0830i

-0.9158 + 0.4481i

1.1212 - 0.6795i

0.2667 + 0.1100i

0.2667 - 0.1100i

1.1212 + 0.6795i

-0.9158 - 0.4481i

-0.0517 + 0.0830i

-0.3680 + 0.1296i

0.9860 - 0.8043i

-0.5120 + 0.3572i

-0.0411 - 0.1674i

0.7200 + 1.0571i

-1.0143 - 0.9520i

-0.4929 - 0.0399i

-0.6280 - 0.2709i

X(f)

keepkeep

IgnoreIgnore

keepkeep

Tutorial | Time-Series with Matlab

Code for Plotting the Error
a = load('randomWalk.dat');a = load('randomWalk.dat');
a = (aa = (a--mean(a))/std(a); mean(a))/std(a); % z% z--normalizationnormalization
fa = fft(a);fa = fft(a);
maxInd = ceil(length(a)/2); maxInd = ceil(length(a)/2); % until the middle% until the middle
N = length(a); N = length(a);
energy = zeros(maxIndenergy = zeros(maxInd--1, 1);1, 1);
E = sum(a.^2); E = sum(a.^2); % energy of a% energy of a

for ind=2:maxInd,for ind=2:maxInd,
fa_N = fa; fa_N = fa; % copy fourier% copy fourier
fa_N(ind+1:Nfa_N(ind+1:N--ind+1) = 0; ind+1) = 0; % zero out unused% zero out unused
r = real(ifft(fa_N)); r = real(ifft(fa_N)); % reconstruction% reconstruction

energy(indenergy(ind--1) = sum(r.^2); 1) = sum(r.^2); % energy of reconstruction% energy of reconstruction
error(inderror(ind--1) = sum(abs(r1) = sum(abs(r--a).^2); a).^2); % error% error

endend

E = ones(maxIndE = ones(maxInd--1, 1)*E; 1, 1)*E;
error = E error = E -- energy;energy;
ratio = energy ./ E;ratio = energy ./ E;

subplot(1,2,1); subplot(1,2,1); % left plot% left plot
plot([1:maxIndplot([1:maxInd--1], error, 'r', 'LineWidth',1.5); 1], error, 'r', 'LineWidth',1.5);
subplot(1,2,2); subplot(1,2,2); % right plot% right plot
plot([1:maxIndplot([1:maxInd--1], ratio, 'b', 'LineWidth',1.5);1], ratio, 'b', 'LineWidth',1.5);

This is the same

43

Tutorial | Time-Series with Matlab

Lower Bounding using Fourier coefficients
Parseval’s Theorem states that energy in the frequency domain equals the
energy in the time domain:

Euclidean distanceor, that

If we just keep some of the coefficients, their sum of squares always
underestimates (ie lower bounds) the Euclidean distance:

Tutorial | Time-Series with Matlab

Lower Bounding using Fourier coefficients -Example

x = cumsum(randn(100,1));x = cumsum(randn(100,1));
y = cumsum(randn(100,1));y = cumsum(randn(100,1));
euclid_Timeeuclid_Time = sqrt(sum((x= sqrt(sum((x--y).^2));y).^2));

fxfx = = fft(x)/sqrt(length(xfft(x)/sqrt(length(x));));
fyfy = = fft(y)/sqrt(length(xfft(y)/sqrt(length(x));));
euclid_Freqeuclid_Freq = = sqrt(sum(abs(fxsqrt(sum(abs(fx -- fy).^2));fy).^2));

x

y

Note the normalization

120.9051

120.9051

Keeping 10 coefficients
the distance is:
115.5556 < 120.9051

Tutorial | Time-Series with Matlab

Fourier Decomposition

O(nlogn) complexity

Tried and tested

Hardware implementations

Many applications:
– compression

– smoothing

– periodicity detection

O(nlogn) complexity

Tried and tested

Hardware implementations

Many applications:
– compression

– smoothing

– periodicity detection

Not good approximation for
bursty signals

Not good approximation for
signals with flat and busy
sections
(requires many coefficients)

Not good approximation for
bursty signals

Not good approximation for
signals with flat and busy
sections
(requires many coefficients)

Tutorial | Time-Series with Matlab

Wavelets – Why exist?
Similar concept with Fourier decomposition

Fourier coefficients represent global contributions,
wavelets are localized

Fourier is good for smooth, random walk data,
but not for bursty data or flat data

Tutorial | Time-Series with Matlab

Wavelets (Haar) - Intuition
Wavelet coefficients, still represent an inner product
(projection) of the signal with some basis functions.

These functions have lengths that are powers of two (full
sequence length, half, quarter etc)

See also:wavemenu

Haar coefficients: {c, d00, d10, d11,…}

D
c+d00

c-d00

etc

An arithmetic example

X = [9,7,3,5]

Haar = [6,2,1,-1]

c = 6 = (9+7+3+5)/4

c + d00 = 6+2 = 8 = (9+7)/2

c - d00 = 6-2 = 4 = (3+5)/2

etc

Tutorial | Time-Series with Matlab

Wavelets in Matlab

Specialized Matlab interface
for wavelets

See also:wavemenu

44

Tutorial | Time-Series with Matlab

Code for Haar Wavelets
a = load('randomWalk.dat');a = load('randomWalk.dat');
a = (aa = (a--mean(a))/std(a); mean(a))/std(a); % z% z--normalizationnormalization
maxlevels = wmaxlev(length(a),'haar');maxlevels = wmaxlev(length(a),'haar');
[Ca, La] = wavedec(a,maxlevels,'haar');[Ca, La] = wavedec(a,maxlevels,'haar');

% Plot coefficients and MRA% Plot coefficients and MRA
for level = 1:maxlevelsfor level = 1:maxlevels

cla;cla;
subplot(2,1,1);subplot(2,1,1);
plot(detcoef(Ca,La,level)); axis tight;plot(detcoef(Ca,La,level)); axis tight;
title(sprintf('Wavelet coefficients title(sprintf('Wavelet coefficients –– Level %d',level));Level %d',level));
subplot(2,1,2);subplot(2,1,2);
plot(wrcoef('d',Ca,La,'haar',level)); axis tight;plot(wrcoef('d',Ca,La,'haar',level)); axis tight;
title(sprintf('MRA title(sprintf('MRA –– Level %d',level));Level %d',level));
pause;pause;

endend

% Top% Top--20 coefficient reconstruction20 coefficient reconstruction
[Ca_sorted, Ca_sortind] = sort(Ca);[Ca_sorted, Ca_sortind] = sort(Ca);
Ca_top20 = Ca; Ca_top20(Ca_sortind(1:endCa_top20 = Ca; Ca_top20(Ca_sortind(1:end--19)) = 0;19)) = 0;
a_top20 = waverec(Ca_top20,La,'haar');a_top20 = waverec(Ca_top20,La,'haar');
figure; hold on;figure; hold on;
plot(a, 'b'); plot(a_top20, 'r');plot(a, 'b'); plot(a_top20, 'r');

Tutorial | Time-Series with Matlab

PAA (Piecewise Aggregate Approximation)

Represent time-series as a sequence of segments

Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250

-2

-1

0

1

2

Reconstruction using 1coefficients

Tutorial | Time-Series with Matlab

PAA (Piecewise Aggregate Approximation)

Represent time-series as a sequence of segments

Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250

-2

-1

0

1

2

Reconstruction using 2coefficients

Tutorial | Time-Series with Matlab

PAA (Piecewise Aggregate Approximation)

Represent time-series as a sequence of segments

Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250

-2

-1

0

1

2

Reconstruction using 4coefficients

Tutorial | Time-Series with Matlab

PAA (Piecewise Aggregate Approximation)

Represent time-series as a sequence of segments

Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250

-2

-1

0

1

2

Reconstruction using 8coefficients

Tutorial | Time-Series with Matlab

PAA (Piecewise Aggregate Approximation)

Represent time-series as a sequence of segments

Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250

-2

-1

0

1

2

Reconstruction using 16coefficients

45

Tutorial | Time-Series with Matlab

PAA (Piecewise Aggregate Approximation)

Represent time-series as a sequence of segments

Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250

-2

-1

0

1

2

Reconstruction using 32coefficients

Tutorial | Time-Series with Matlab

PAA Matlab Code
function data = paa(s, numCoeff)function data = paa(s, numCoeff)
% PAA(s, numcoeff) % PAA(s, numcoeff)
% s: sequence vector (Nx1 or Nx1)% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)% data: PAA sequence (Nx1)

N = length(s); N = length(s); % length of sequence% length of sequence
segLen = N/numCoeff; segLen = N/numCoeff; % assume it's integer% assume it's integer

sN = reshape(s, segLen, numCoeff); sN = reshape(s, segLen, numCoeff); % break in segments% break in segments
avg = mean(sN); avg = mean(sN); % average segments% average segments
data = repmat(avg, segLen, 1); data = repmat(avg, segLen, 1); % expand segments% expand segments
data = data(:); data = data(:); % make column% make column

1 2 3 4 5 6 7 8s numCoeff 4

Tutorial | Time-Series with Matlab

PAA Matlab Code
function data = paa(s, numCoeff)function data = paa(s, numCoeff)
% PAA(s, numcoeff) % PAA(s, numcoeff)
% s: sequence vector (Nx1 or Nx1)% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)% data: PAA sequence (Nx1)

N = length(s); N = length(s); % length of sequence% length of sequence
segLen = N/numCoeff; segLen = N/numCoeff; % assume it's integer% assume it's integer

sN = reshape(s, segLen, numCoeff); sN = reshape(s, segLen, numCoeff); % break in segments% break in segments
avg = mean(sN); avg = mean(sN); % average segments% average segments
data = repmat(avg, segLen, 1); data = repmat(avg, segLen, 1); % expand segments% expand segments
data = data(:); data = data(:); % make column% make column

1 2 3 4 5 6 7 8s numCoeff 4

N=8
segLen = 2

Tutorial | Time-Series with Matlab

PAA Matlab Code
function data = paa(s, numCoeff)function data = paa(s, numCoeff)
% PAA(s, numcoeff) % PAA(s, numcoeff)
% s: sequence vector (Nx1 or Nx1)% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)% data: PAA sequence (Nx1)

N = length(s); N = length(s); % length of sequence% length of sequence
segLen = N/numCoeff; segLen = N/numCoeff; % assume it's integer% assume it's integer

sN = reshape(s, segLen, numCoeff); sN = reshape(s, segLen, numCoeff); % break in segments% break in segments
avg = mean(sN); avg = mean(sN); % average segments% average segments
data = repmat(avg, segLen, 1); data = repmat(avg, segLen, 1); % expand segments% expand segments
data = data(:); data = data(:); % make column% make column

1 2 3 4 5 6 7 8s numCoeff 4

N=8
segLen = 2

2 4

sN 1

2

3

4

5

6

7

8

Tutorial | Time-Series with Matlab

PAA Matlab Code
function data = paa(s, numCoeff)function data = paa(s, numCoeff)
% PAA(s, numcoeff) % PAA(s, numcoeff)
% s: sequence vector (Nx1 or Nx1)% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)% data: PAA sequence (Nx1)

N = length(s); N = length(s); % length of sequence% length of sequence
segLen = N/numCoeff; segLen = N/numCoeff; % assume it's integer% assume it's integer

sN = reshape(s, segLen, numCoeff); sN = reshape(s, segLen, numCoeff); % break in segments% break in segments
avg = mean(sN); avg = mean(sN); % average segments% average segments
data = repmat(avg, segLen, 1); data = repmat(avg, segLen, 1); % expand segments% expand segments
data = data(:); data = data(:); % make column% make column

1 2 3 4 5 6 7 8s numCoeff 4

N=8
segLen = 2

sN 1

2

3

4

5

6

7

8

avg 1.5 3.5 5.5 7.5

Tutorial | Time-Series with Matlab

PAA Matlab Code
function data = paa(s, numCoeff)function data = paa(s, numCoeff)
% PAA(s, numcoeff) % PAA(s, numcoeff)
% s: sequence vector (1xN)% s: sequence vector (1xN)
% numCoeff: number of PAA segments% numCoeff: number of PAA segments
% data: PAA sequence (1xN)% data: PAA sequence (1xN)

N = length(s); N = length(s); % length of sequence% length of sequence
segLen = N/numCoeff; segLen = N/numCoeff; % assume it's integer% assume it's integer

sN = reshape(s, segLen, numCoeff); sN = reshape(s, segLen, numCoeff); % break in segments% break in segments
avg = mean(sN); avg = mean(sN); % average segments% average segments
data = repmat(avg, segLen, 1); data = repmat(avg, segLen, 1); % expand segments% expand segments
data = data(:)data = data(:)’’; ; % make row% make row

1 2 3 4 5 6 7 8s numCoeff 4

N=8
segLen = 2

sN 1

2

3

4

5

6

7

8

avg 1.5 3.5 5.5 7.5

1.5 3.5 5.5 7.5

1.5 3.5 5.5 7.5

2

data

46

Tutorial | Time-Series with Matlab

PAA Matlab Code
function data = paa(s, numCoeff)function data = paa(s, numCoeff)
% PAA(s, numcoeff) % PAA(s, numcoeff)
% s: sequence vector (1xN)% s: sequence vector (1xN)
% numCoeff: number of PAA segments% numCoeff: number of PAA segments
% data: PAA sequence (1xN)% data: PAA sequence (1xN)

N = length(s); N = length(s); % length of sequence% length of sequence
segLen = N/numCoeff; segLen = N/numCoeff; % assume it's integer% assume it's integer

sN = reshape(s, segLen, numCoeff); sN = reshape(s, segLen, numCoeff); % break in segments% break in segments
avg = mean(sN); avg = mean(sN); % average segments% average segments
data = repmat(avg, segLen, 1); data = repmat(avg, segLen, 1); % expand segments% expand segments
data = data(:)data = data(:)’’; ; % make row% make row

1 2 3 4 5 6 7 8s numCoeff 4

N=8
segLen = 2

sN 1

2

3

4

5

6

7

8

avg 1.5 3.5 5.5 7.5

1.5 3.5 5.5 7.5

1.5 3.5 5.5 7.5
data

data 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5

Tutorial | Time-Series with Matlab

APCA (Adaptive Piecewise Constant Approximation)

Not all haar/PAA coefficients
are equally important

Intuition: Keep ones with the
highest energy

Segments of variable length

APCA is good for bursty
signals

PAA requires 1 number per
segment, APCA requires
2: [value, length]

PAAPAA

APCAAPCA

Segments of Segments of
equal sizeequal size

Segments of Segments of
variable sizevariable size

E.g. 10 bits for a
sequence of 1024 points

Tutorial | Time-Series with Matlab

Wavelet Decomposition

O(n) complexity

Hierarchical structure

Progressive transmission

Better localization

Good for bursty signals

Many applications:
– compression

– periodicity detection

O(n) complexity

Hierarchical structure

Progressive transmission

Better localization

Good for bursty signals

Many applications:
– compression

– periodicity detection

Most data-mining research
still utilizes Haar wavelets
because of their simplicity.

Most data-mining research
still utilizes Haar wavelets
because of their simplicity.

Tutorial | Time-Series with Matlab

Piecewise Linear Approximation (PLA)

You can find a bottom-up implementation here:
– http://www.cs.ucr.edu/~eamonn/TSDMA/time_series_toolbox/

Approximate a sequence
with multiple linear
segments

First such algorithms
appeared in cartography
for map approximation

Many implementations
– Optimal

– Greedy Bottom-Up

– Greedy Top-down

– Genetic, etc

Tutorial | Time-Series with Matlab

Piecewise Linear Approximation (PLA)
Approximate a sequence
with multiple linear
segments

First such algorithms
appeared in cartography
for map approximation

Tutorial | Time-Series with Matlab

Piecewise Linear Approximation (PLA)
Approximate a sequence
with multiple linear
segments

First such algorithms
appeared in cartography
for map approximation

47

Tutorial | Time-Series with Matlab

Piecewise Linear Approximation (PLA)
Approximate a sequence
with multiple linear
segments

First such algorithms
appeared in cartography
for map approximation

Tutorial | Time-Series with Matlab

Piecewise Linear Approximation (PLA)
Approximate a sequence
with multiple linear
segments

First such algorithms
appeared in cartography
for map approximation

Tutorial | Time-Series with Matlab

Piecewise Linear Approximation (PLA)
Approximate a sequence
with multiple linear
segments

First such algorithms
appeared in cartography
for map approximation

Tutorial | Time-Series with Matlab

Piecewise Linear Approximation (PLA)

O(nlogn) complexity for
“bottom up” algorithm

Incremental computation
possible

Provable error bounds

Applications for:
– Image / signal

simplification

– Trend detection

O(nlogn) complexity for
“bottom up” algorithm

Incremental computation
possible

Provable error bounds

Applications for:
– Image / signal

simplification

– Trend detection

Visually not very smooth or
pleasing.

Visually not very smooth or
pleasing.

Tutorial | Time-Series with Matlab

Singular Value Decomposition (SVD)
SVD attempts to find the ‘optimal’ basis for describing a set
of multidimensional points

Objective: Find the axis (‘directions’) that describe better the
data variance

x

y

We need 2 numbers (x,y)
for every point

x

y
Now we can describe each
point with 1 number, their

projection on the line

New axis and position of points
(after projection and rotation)

Tutorial | Time-Series with Matlab

Singular Value Decomposition (SVD)
Each time-series is essentially a multidimensional point

Objective: Find the ‘eigenwaves’ (basis) whose linear
combination describes best the sequences. Eigenwaves are
data-dependent.

eigenwave 0

eigenwave 1

eigenwave 3

eigenwave 4

A linear combination of the
eigenwaves can produce any

sequence in the database

AMxn = UMxr *Σ rxr * VT
nxr

M
 s

eq
ue

nc
es

M
 s

eq
ue

nc
es

each of length neach of length n

……

Factoring of data array into 3
matrices

[U,S,V] = [U,S,V] = svd(Asvd(A))

48

Tutorial | Time-Series with Matlab

Code for SVD / PCA
A = cumsum(randn(100,10));A = cumsum(randn(100,10));
% z% z--normalizationnormalization
A = (AA = (A--repmat(mean(A),size(A,1),1))./repmat(std(A),size(A,1),1);repmat(mean(A),size(A,1),1))./repmat(std(A),size(A,1),1);
[U,S,V] = svd(A,0);[U,S,V] = svd(A,0);

% Plot relative energy% Plot relative energy
figure; plot(cumsum(diag(S).^2)/norm(diag(S))^2);figure; plot(cumsum(diag(S).^2)/norm(diag(S))^2);
set(gca, 'YLim', [0 1]); pause;set(gca, 'YLim', [0 1]); pause;

% Top% Top--3 eigenvector reconstruction3 eigenvector reconstruction
A_top3 = U(:,1:3)*S(1:3,1:3)*V(:,1:3)';A_top3 = U(:,1:3)*S(1:3,1:3)*V(:,1:3)';

% Plot original and reconstruction% Plot original and reconstruction
figure;figure;
for i = 1:10for i = 1:10

cla;cla;
subplot(2,1,1);subplot(2,1,1);
plot(A(:,i));plot(A(:,i));
title('Original'); axis tight;title('Original'); axis tight;
subplot(2,1,2);subplot(2,1,2);
plot(A_top3(:,i));plot(A_top3(:,i));
title('Reconstruction'); axis tight;title('Reconstruction'); axis tight;
pause;pause;

endend

Tutorial | Time-Series with Matlab

Singular Value Decomposition

Optimal dimensionality
reduction in Euclidean
distance sense

SVD is a very powerful tool
in many domains:
– Websearch (PageRank)

Optimal dimensionality
reduction in Euclidean
distance sense

SVD is a very powerful tool
in many domains:
– Websearch (PageRank)

Cannot be applied for just
one sequence. A set of
sequences is required.

Addition of a sequence in
database requires
recomputation

Very costly to compute.
Time: min{ O(M2n), O(Mn2)}
Space: O(Mn)
M sequences of length n

Cannot be applied for just
one sequence. A set of
sequences is required.

Addition of a sequence in
database requires
recomputation

Very costly to compute.
Time: min{ O(M2n), O(Mn2)}
Space: O(Mn)
M sequences of length n

Tutorial | Time-Series with Matlab

Symbolic Approximation
Assign a different symbol based on range of values

Find ranges either from data histogram or uniformly

You can find an implementation here:
– http://www.ise.gmu.edu/~jessica/sax.htm

0

--

0 20 40 60 80 100 120

bb
b

a

c
c

c

a

baabccbc

Tutorial | Time-Series with Matlab

Symbolic Approximations

Linear complexity

After ‘symbolization’ many
tools from bioinformatics
can be used
– Markov models

– Suffix-Trees, etc

Linear complexity

After ‘symbolization’ many
tools from bioinformatics
can be used
– Markov models

– Suffix-Trees, etc

Number of regions
(alphabet length) can affect
the quality of result

Number of regions
(alphabet length) can affect
the quality of result

Tutorial | Time-Series with Matlab

Multidimensional Time-Series
Catching momentum lately

Applications for mobile trajectories, sensor
networks, epidemiology, etc

Let’s see how to approximate 2D
trajectories with
Minimum Bounding Rectangles

Aristotle

Ari, are you sure the

world is not 1D?

Ari, are you sure the

world is not 1D?

Tutorial | Time-Series with Matlab

Multidimensional MBRs
Find Bounding rectangles that completely contain a trajectory
given some optimization criteria (eg minimize volume)

On my income tax 1040 it says "Check this box
if you are blind." I wanted to put a check mark
about three inches away.
- Tom Lehrer

49

Tutorial | Time-Series with Matlab

Comparison of different Dim. Reduction Techniques
Tutorial | Time-Series with Matlab

So which dimensionality reduction is the best?

Absence of proof is no proof of absence.
- Michael Crichton

1993 2000 2001 2004 2005

Fourier is

good…

Fourier is

good…
PAA!PAA!

APCA is
better

than PAA!

APCA is
better

than PAA!

Chebyshev
is better

than APCA!

Chebyshev
is better

than APCA!

The
future is

symbolic!

The
future is

symbolic!

Tutorial | Time-Series with Matlab

Comparisons
Lets see how tight the lower bounds are for a variety on 65 datasets

Average Lower Bound

Median Lower Bound

A. No approach
is better on all
datasets

B. Best coeff.
techniques
can offer
tighter
bounds

C. Choice of
compression
depends on
application

Note: similar results also reported by Keogh in SIGKDD02

Tutorial | Time-Series with Matlab

••PART II: Time Series MatchingPART II: Time Series Matching
Lower Bounding the DTW and LCSSLower Bounding the DTW and LCSS

Tutorial | Time-Series with Matlab

Lower Bounding the Dynamic Time Warping
Recent approaches use the Minimum Bounding Envelope
for bounding the DTW
– Create Minimum Bounding Envelope (MBE) of query Q

– Calculate distance between MBE of Q and any sequence A

– One can show that: D(MBE(QD(MBE(Q))δδ,A) < DTW(Q,A),A) < DTW(Q,A)

Q

A
MBE(Q)

δ

However, this representation
is uncompressed. Both MBE
and the DB sequence can be
compressed using any of the
previously mentioned
techniques.

U

L

LB = sqrt(sum([[A > U].* [A-U]; [A < L].* [L-A]].^2));
One Matlab command!

Tutorial | Time-Series with Matlab

Lower Bounding the Dynamic Time Warping

LB by Keogh
approximate MBE and
sequence using MBRs

LB = 13.84

LB by Zhu and Shasha
approximate MBE and
sequence using PAA

LB = 25.41

Q A

Q

A

50

Tutorial | Time-Series with Matlab

An even tighter lower bound can be achieved by ‘warping’ the MBE
approximation against any other compressed signal.

LB_Warp = 29.05

Lower Bounding the Dynamic Time Warping

Lower Bounding approaches for DTW,
will typically yield at least an order of
magnitude speed improvement
compared to the naïve approach.

Let’s compare the 3 LB approaches:

Tutorial | Time-Series with Matlab

Time Comparisons
We will use DTW (and the corresponding LBs) for recognition of hand-written
digits/shapes.

Accuracy: Using DTW we can achieve recognition above 90%.

Running Time: runTime LB_Warp < runTime LB_Zhu < runTime LB-Keogh

Pruning Power: For some queries LB_Warp can examine up to 65 time
fewer sequences

Tutorial | Time-Series with Matlab

Upper Bounding the LCSS
Since LCSS measures similarity and similarity is the inverse of distance, to
speed up LCSS we need to upper bound it.

QueryIndexed Sequence

44 points + 6 points

Sim.=50/77
= 0.64

LCSS(MBEQ,A) >= LCSS(Q,A)LCSS(MBEQ,A) >= LCSS(Q,A)

Tutorial | Time-Series with Matlab

LCSS Application – Image Handwriting
Library of Congress has 54 million
manuscripts (20TB of text)

Increasing interest for automatic
transcribing

George Washington Manuscript

1. Extract words from document
2. Extract image features
3. Annotate a subset of words
4. Classify remaining words

1. Extract words from document
2. Extract image features
3. Annotate a subset of words
4. Classify remaining words

Word annotation:

Features:

- Black pixels / column
- Ink-paper transitions/ col , etc

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Column

Fe
at

ur
e

Va
lu

e

Tutorial | Time-Series with Matlab

Utilized 2D time-series (2 features)

Returned 3-Nearest Neighbors of following words

Classification accuracy > 70%

LCSS Application – Image Handwriting
Tutorial | Time-Series with Matlab

••PART II: Time Series AnalysisPART II: Time Series Analysis
Test Case and Structural Similarity MeasuresTest Case and Structural Similarity Measures

51

Tutorial | Time-Series with Matlab

Analyzing Time-Series Weblogs

“PKDD 2005”

“Porto”

“Priceline”

Weblog of user
requests over

time

Tutorial | Time-Series with Matlab

Weblog Data Representation
We canRecord aggregate information, eg, number of requests per day for each
keyword

Capture trends and periodicities
Privacy preserving

Query: Spiderman

Jan Feb Mar Apr May Jun Jul Aug Sep Okt Nov Dec

R
eq

ue
st

s

May 2002. Spiderman 1
was released in theaters

Google Zeitgeist

Tutorial | Time-Series with Matlab

Finding similar patterns in query logs
We can find useful patterns and correlation in the user demand
patterns which can be useful for:

Search engine optimization
Recommendations
Advertisement pricing (e.g. keyword more expensive at the popular
months)

Query: ps2

Query: xbox

Jan Feb Mar Apr May Jun Jul Aug Sep Okt Nov Dec

R
eq

ue
st

s

Game consoles are more
popular closer to Christmas

Tutorial | Time-Series with Matlab

Finding similar patterns in query logs
We can find useful patterns and correlation in the user demand
patterns which can be useful for:

Search engine optimization
Recommendations
Advertisement pricing (e.g. keyword more expensive at the popular
months)

Query: elvis

Jan Feb Mar Apr May Jun Jul Aug Sep Okt Nov Dec

R
eq

ue
st

s

Burst on Aug. 16
th

Death Anniversary of Elvis

Tutorial | Time-Series with Matlab

Matching of Weblog data
Use Euclidean distance to match time-series. But which dimensionality
reduction technique to use?

Let’s look at the data:

Query “Bach”

Query “stock market”

1 year span

The data is smooth and highly
periodic, so we can use Fourier
decomposition.

Instead of using the first Fourier
coefficients we can use the best ones
instead.

Let’s see how the approximation will
look:

Tutorial | Time-Series with Matlab

First Fourier Coefficients vs Best Fourier Coefficients

Using the best coefficients, provides a
very high quality approximation of the
original time-series

52

Tutorial | Time-Series with Matlab

Matching results I

2000 2001 2002
0

LeTour

2000 2001 2002
0

Tour De France

2000 2001 2002

Query = “Lance Armstrong”

Tutorial | Time-Series with Matlab

2000 2001 2002

Query = “Christmas”

Knn4: Christmas coloring
books

Knn8: Christmas baking

Knn12: Christmas clipart

Knn20: Santa Letters

Matching results II

Tutorial | Time-Series with Matlab

Finding Structural Matches
The Euclidean distance cannot distill all the potentially useful
information in the weblog data.

Some data are periodic, while other are bursty. We will attempt to
provide similarity measures that are based on periodicity and
burstiness.

Query “Elvis”. Burst in demand on
16th August. Death anniversary of
Elvis Presley

Query “cinema”. Weakly periodicity.
Peak of period every Friday.

Tutorial | Time-Series with Matlab

Periodic Matching

Frequency
Ignore Phase/

Keep important
components

)(,||)(||maxarg +xFxF
k

)(),(yFxF
)(,||)(||maxarg +yFyF

k

Calculate
Distance

||)()(||1
++ −= yFxFD

||)()(||2
++ ⋅= yFxFD

cinema

stock

easter

christmas

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

Periodogram

Tutorial | Time-Series with Matlab

Matching Results with Periodic Measure
Now we can discover more flexible matches. We observe a clear
separation between seasonal and periodic sequences.

Tutorial | Time-Series with Matlab

Matching Results with Periodic Measure
Compute pairwise periodic distances and do a mapping of the
sequences on 2D using Multi-dimensional scaling (MDS).

53

Tutorial | Time-Series with Matlab

50 100 150 200 250 300 350

Matching Based on Bursts
Another method of performing structural matching can be achieved
using burst features of sequences.

Burst feature detection can be useful for:
Identification of important events
‘Query-by-burst’

2002: Harry Potter demand
Harry Potter 1
(Movie)

Harry Potter 1
(DVD)

Harry Potter 2 (November 15 2002)

Tutorial | Time-Series with Matlab

Burst Detection
Burst detection is similar to anomaly detection.
Create distribution of values (eg gaussian model)
Any value that deviates from the observed distribution (eg more than 3
std) can be considered as burst.

Valentine’s
Day

Mother’s
Day

Tutorial | Time-Series with Matlab

Query-by-burst
To perform ‘query-by-burst’ we can perform the following steps:

1. Find burst regions in given query
2. Represent query bursts as time segments
3. Find which sequences in DB have overlapping burst regions.

Tutorial | Time-Series with Matlab

Query-by-burst Results

Cheap gifts

ScarfsTropical Storm

www.nhc.noaa.govPentagon attack

Nostradamus prediction

Queries

Matches

Tutorial | Time-Series with Matlab

Structural Similarity Measures
Periodic similarity achieves high clustering/classification accuracy in
ECG data

1
5
8
12
4
10
2
3
6
9
7
11
14
16
18
15
19
22
20
23
13
17
21
24
25
29
32
28
31
36
26
27
35
30
33
34

Incorrect
Grouping 1

4
6
10
3
9
5
11
7
2
8
12
13
21
15
14
16
22
24
17
19
20
23
18
25
29
31
30
34
32
26
27
28
33
35
36

DTW Periodic Measure

Tutorial | Time-Series with Matlab

Structural Similarity Measures
Periodic similarity is a very powerful visualization tool.

MotorCurrent: broken bars 1

MotorCurrent: broken bars 2

MotorCurrent: healthy 1

MotorCurrent: healthy 2

Koski ECG: slow 1

Koski ECG: slow 2

Koski ECG: fast 1

Koski ECG: fast 2

Video Surveillance: Ann, gun

Video Surveillance: Ann, no gun

Video Surveillance: Eamonn, gun

Video Surveillance: Eamonn, no gun

Random

Random

Power Demand: Jan-March (Italian)

Power Demand: April-June (Italian)

Power Demand: Jan-March (Dutch)

Power Demand: April-June (Dutch)

Great Lakes (Erie)

Great Lakes (Ontario)

Sunspots: 1749 to 1869

Sunspots: 1869 to 1990

Random Walk

Random Walk

54

Tutorial | Time-Series with Matlab

Structural Similarity Measures
Burst correlation can provide useful insights for understanding which
sequences are related/connected. Applications for:
Gene Expression Data
Stock market data (identification of causal chains of events)

PRICELINE:
Stock value dropped

NICE SYSTEMS:
Stock value increased
(provider of air traffic
control systems)

Query: Which stocks exhibited trading bursts during 9/11 attacks?

Tutorial | Time-Series with Matlab

Conclusion
The traditional shape matching measures cannot address all time-
series matching problems and applications.
Structural distance measures can provide more flexibility.

There are many other exciting time-series problems that haven’t been
covered in this tutorial:

Anomaly Detection

Frequent pattern Discovery

Rule Discovery
etc

I don’t want to
achieve immortality
through my work…I
want to achieve it
through not dying.

I don’t want to
achieve immortality
through my work…I
want to achieve it
through not dying.

