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Disclaimer
Feel free to use any of the following slides 
for educational purposes, however kindly 
acknowledge the source.

We would also like to know how you have 
used these slides, so please send us emails
with comments or suggestions.
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About this tutorial
The goal of this tutorial is to show you that time-series 
research (or research in general) can be made fun, when it 
involves visualizing ideas, that can be achieved with 
concise programming.
Matlab enables us to do that.

Will I be able Will I be able 
to use this to use this 
MATLAB MATLAB 

right away right away 
after the after the 
tutorial?tutorial?

I am definitely I am definitely 
smarter than smarter than herher, , 

but I am not a timebut I am not a time--
series person, perseries person, per--sese..

I wonder what I gain  I wonder what I gain  
from this tutorialfrom this tutorial……
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Disclaimer

We are not affiliated with Mathworks in any way
… but we do like using Matlab a lot

since it makes our lives easier

Errors and bugs are most likely contained in this tutorial.Errors and bugs are most likely contained in this tutorial.
We might be responsible for some of them.We might be responsible for some of them.
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What this tutorial is NOT about

Moving averagesMoving averages
Autoregressive modelsAutoregressive models
Forecasting/PredictionForecasting/Prediction
StationarityStationarity
SeasonalitySeasonality
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Overview
PART A — The Matlab programming environment

PART B — Basic mathematics
Introduction / geometric intuition
Coordinates and transforms
Quantized representations
Non-Euclidean distances

PART C — Similarity Search and Applications
IntroductionIntroduction
RepresentationsRepresentations
Distance MeasuresDistance Measures
Lower BoundingLower Bounding
Clustering/Classification/VisualizationClustering/Classification/Visualization
ApplicationsApplications
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PART A: PART A: MatlabMatlab IntroductionIntroduction
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Why does anyone need Matlab?

Matlab enables the efficient 
Exploratory Data Analysis (EDA)

“Science progresses through observation”
-- Isaac Newton

“The greatest value of a picture is that is forces us to 
notice what we never expected to see”
-- John Tukey

Isaac Newton

John Tukey
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Interpreted Language
– Easy code maintenance (code is very compact)

– Very fast array/vector manipulation

– Support for OOP

Easy plotting and visualization

Easy Integration with other Languages/OS’s
– Interact with C/C++, COM Objects, DLLs

– Build in Java support (and compiler)

– Ability to make executable files

– Multi-Platform Support (Windows, Mac, Linux)

Extensive number of Toolboxes
– Image, Statistics, Bioinformatics, etc

Matlab
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History of Matlab (MATrix LABoratory)

Video:http://www.mathworks.com/company/aboutus/founders/origins_of_matlab_wm.html

Programmed by Cleve Moler as an interface for 
EISPACK & LINPACK
1957: Moler goes to Caltech. Studies numerical 
Analysis

1961: Goes to Stanford. Works with G. Forsythe on 
Laplacian eigenvalues.

1977: First edition of Matlab; 2000 lines of Fortran
– 80 functions (now more than 8000 functions)

1979: Met with Jack Little in Stanford. Started working 
on porting it to C

1984: Mathworks is founded

Cleve Moler

“The most important thing in the programming language is the name. 
I have recently invented a very good name and now I am looking for a 
suitable language”. -- R. Knuth
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Current State of Matlab/Mathworks
Matlab, Simulink, Stateflow

Matlab version 7.3, R2006b

Used in variety of industries
– Aerospace, defense, computers, communication, biotech

Mathworks still is privately owned

Used in >3,500 Universities, with >500,000 users worldwide

2005 Revenue: >350 M.

2005 Employees: 1,400+

Pricing: 
– starts from 1900$ (Commercial use), 

– ~100$ (Student Edition)

Money is better than 
poverty, if only for 

financial reasons……

Money is better than 
poverty, if only for 

financial reasons……
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Matlab 7.3

R2006b, Released on Sept 1 2006
– Distributed computing

– Better support for large files

– New optimization Toolbox

– Matlab builder for Java
• create Java classes from Matlab

– Demos, Webinars in Flash format
– (http://www.mathworks.com/products/matlab/demos.

html)
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Who needs Matlab?
R&D companies for easy application deployment

Professors
– Lab assignments
– Matlab allows focus on algorithms not on language features

Students
– Batch processing of files 

• No more incomprehensible perl code!
– Great environment for testing ideas

• Quick coding of ideas, then porting to C/Java etc
– Easy visualization

– It’s cheap! (for students at least…)
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Starting up Matlab
Dos/Unix like directory navigation

Commands like:
– cd

– pwd

– mkdir

For navigation it is easier to just 
copy/paste the path from explorer 
E.g.:
cd ‘c:\documents\’

Personally I'm always ready to learn, although I do not always like 
being taught.

Sir Winston Churchill
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Matlab Environment

Workspace:
Loaded Variables/Types/Size

Command Window:
- type commands 
- load scripts

Tutorial | Time-Series with Matlab

Matlab Environment

Workspace:
Loaded Variables/Types/Size

Command Window:
- type commands 
- load scripts

Help contains a comprehensive 
introduction to all functions
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Matlab Environment

Workspace:
Loaded Variables/Types/Size

Command Window:
- type commands 
- load scripts

Excellent demos and 
tutorial of the various 

features and toolboxes
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Starting with Matlab
Everything is arrays

Manipulation of arrays is faster than regular manipulation 
with for-loops

a = [1 2 3 4 5 6 7 9 10] % define an arraya = [1 2 3 4 5 6 7 9 10] % define an array
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Populating arrays
Plot sinusoid function

a = [0:0.3:2*pi]a = [0:0.3:2*pi] % generate values from 0 to 2pi (with step of 0.3)% generate values from 0 to 2pi (with step of 0.3)

b = b = cos(acos(a)) % access % access coscos at positions contained in array [a]at positions contained in array [a]

plot(a,bplot(a,b)) % plot a (x% plot a (x--axis) against b (yaxis) against b (y--axis)axis)

Related:

linspace(-100,100,15); % generate 15 values between -100 and 100
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Array Access
Access array elements

Set array elements

>> a(1)>> a(1)

ansans = = 

00

>> a(1) = 100>> a(1) = 100

>> a(1:3)>> a(1:3)
ans =ans =

0    0.3000    0.60000    0.3000    0.6000

>> a(1:3) = [100 100 >> a(1:3) = [100 100 100100]]
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2D Arrays
Can access whole columns or rows

– Let’s define a 2D array

>> a = [1 2 3; 4 5 6] >> a = [1 2 3; 4 5 6] 
a =a =

1     2     31     2     3
4     5     64     5     6

>> a(2,2)>> a(2,2)

ansans ==

55

>> a(1,:)>> a(1,:)

ansans = = 

1     2     31     2     3

>> a(:,1)>> a(:,1)

ans =ans =

11
44

Row-wise access

Column-wise access

A good listener is not only popular everywhere, but after a while he gets to know something. –Wilson Mizner
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Column-wise computation
For arrays greater than 1D, all computations happen
column-by-column

>> a = [1 2 3; 3 2 1] >> a = [1 2 3; 3 2 1] 
a =a =

1     2     31     2     3
3     2     13     2     1

>> >> mean(amean(a))

ansans ==

2.0000    2.0000    2.00002.0000 2.00002.0000

>> >> max(amax(a))

ansans = = 

3     2     33     2     3

>> sort(a)>> sort(a)

ans =ans =

1     2     11     2     1
3     2     33     2     3

Tutorial | Time-Series with Matlab

Concatenating arrays
Column-wise or row-wise

>> a = [1 2 3];>> a = [1 2 3];
>> b = [4 5 6];>> b = [4 5 6];
>> c = [a b]>> c = [a b]

c =c =

1     2     3     4     5     61     2     3     4     5     6

>> a = [1 2 3];>> a = [1 2 3];
>> b = [4 5 6];>> b = [4 5 6];
>> c = [a; b]>> c = [a; b]

c =c =

1     2     31     2     3
4     5     64     5     6

>> a = [1;2];>> a = [1;2];
>> b = [3;4];>> b = [3;4];
>> c = [a b]>> c = [a b]
c =c =

1     31     3
2     42     4

Row next to row 

Row below  row 

Column next to column 

Column below column >> a = [1;2];>> a = [1;2];
>> b = [3;4];>> b = [3;4];
>> c = [a; b]>> c = [a; b]

c =c =

11
22
33
44
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Initializing arrays
Create array of ones [ones]
>> a = ones(1,3)>> a = ones(1,3)
a =a =

1     1     1  1     1     1  

>> a = ones(1,3)*inf  >> a = ones(1,3)*inf  
a = a = 

InfInf InfInf InfInf

>> a = ones(2,2)*5;>> a = ones(2,2)*5;
a =a =

5     55     5
5     55     5

>> a = zeros(1,4)>> a = zeros(1,4)
a =a =

0     0     0     00     0     0     0

>> a = zeros(3,1) + [1 2 3]>> a = zeros(3,1) + [1 2 3]’’
a =a =

11
22
33

Create array of zeroes [zeros]

– Good for initializing arrays
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Reshaping and Replicating Arrays
Changing the array shape [reshape]
– (eg, for easier column-wise computation)

>> a = [1 2 3 4 5 6]>> a = [1 2 3 4 5 6]’’;; % make it into a column% make it into a column
>> reshape(a,2,3)>> reshape(a,2,3)

ans =ans =

1     3     51     3     5
2     4     62     4     6

repmat(X,[M,N]):
make [M,N] tiles of X

Replicating an array [repmat]
>> a = [1 2 3]; >> a = [1 2 3]; 
>> repmat(a,1,2)>> repmat(a,1,2)

ans = ans = 1     2     3     1     2     31     2     3     1     2     3

>> >> repmatrepmat(a,2,1)(a,2,1)
ans = ans = 

1     2     31     2     3
1     2     31     2     3

reshape(X,[M,N]):
[M,N] matrix of 
columnwise version 
of X
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Useful Array functions
Last element of array [end]
>> a = [1 3 2 5]; >> a = [1 3 2 5]; 
>> a(end) >> a(end) 

ans = ans = 

55

>> a = [1 3 2 5]; >> a = [1 3 2 5]; 
>> a(end>> a(end--1) 1) 

ans = ans = 

22

Length of array [length]
>> length(a)>> length(a)

ans =   ans =   

44

1 3 2 5a =

Length = 4

Dimensions of array [size]
>> [rows, columns] = size(a)>> [rows, columns] = size(a)
rows = 1rows = 1

columns = 4columns = 4

1 2 3 5

columns = 4

r
o
w
s
 
=
 
1
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Useful Array functions
Find a specific element [find] **
>> a = [1 3 2 5 10 5 2 3]; >> a = [1 3 2 5 10 5 2 3]; 
>> b = find(a==2) >> b = find(a==2) 

b =b =

3     73     7

Sorting [sort] ***

>> a = [1 3 2 5]; >> a = [1 3 2 5]; 
>> [s,i]=sort(a)>> [s,i]=sort(a)

s =s =
1     2     3     51     2     3     5

i =i =
1     3     2     41     3     2     4

1 3 2 5

1 2 3 5

a =

i =

s =

1 3 2 4 Indicates the index 
where the element 
came from
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Visualizing Data and Exporting Figures
Use Fisher’s Iris dataset

– 4 dimensions, 3 species

– Petal length & width, sepal length & width

– Iris:
• virginica/versicolor/setosa

>> load fisheriris>> load fisheriris

meas (150x4 array):
Holds 4D measurements

species (150x1 cell array):
Holds name of species for 
the specific measurement

. . .
'versicolor'
'versicolor'
'versicolor'
'versicolor'
'versicolor'
'virginica'
'virginica'
'virginica'
'virginica‘

. . .
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Visualizing Data (2D)
>> idx_setosa = strcmp(species, >> idx_setosa = strcmp(species, ‘‘setosasetosa’’);); % rows of setosa data% rows of setosa data
>> idx_virginica = strcmp(species, >> idx_virginica = strcmp(species, ‘‘virginicavirginica’’);); % rows of virginica% rows of virginica
>>>>
>> setosa = meas(idx_setosa,[1:2]);>> setosa = meas(idx_setosa,[1:2]);
>> virgin = meas(idx_virginica,[1:2]);>> virgin = meas(idx_virginica,[1:2]);
>> scatter(setosa(:,1), setosa(:,2));>> scatter(setosa(:,1), setosa(:,2)); % plot in blue circles by default% plot in blue circles by default
>> hold on;>> hold on;
>> scatter(virgin(:,1), virgin(:,2), scatter(virgin(:,1), virgin(:,2), ‘‘rsrs’’);); % % redred[r[r]] squaressquares[s[s]] for these         for these         

strcmp, scatter, hold on

. . .
1
1
1
0
0
0

. . .

idx_setosaidx_setosa

An array of zeros and 
ones indicating the 
positions where the 
keyword ‘setosa’ was 
found

The world is governed more by appearances rather than realities… --Daniel Webster



6

Tutorial | Time-Series with Matlab

Visualizing Data (3D)
>> idx_setosa = strcmp(species, >> idx_setosa = strcmp(species, ‘‘setosasetosa’’);); % rows of setosa data% rows of setosa data
>> idx_virginica = strcmp(species, >> idx_virginica = strcmp(species, ‘‘virginicavirginica’’);); % rows of virginica% rows of virginica
>> idx_versicolor = strcmp(species, >> idx_versicolor = strcmp(species, ‘‘versicolorversicolor’’);); % rows of versicolor% rows of versicolor

>> setosa = meas(idx_setosa,[1:3]);>> setosa = meas(idx_setosa,[1:3]);
>> virgin = meas(idx_virginica,[1:3]);>> virgin = meas(idx_virginica,[1:3]);
>> versi = meas(idx_versicolor,[1:3]);>> versi = meas(idx_versicolor,[1:3]);
>> scatter3(setosa(:,1), setosa(:,2),setosa(:,3));>> scatter3(setosa(:,1), setosa(:,2),setosa(:,3)); % plot in blue circles by default% plot in blue circles by default
>> hold on;>> hold on;
>> scatter3(virgin(:,1), virgin(:,2),virgin(:,3), >> scatter3(virgin(:,1), virgin(:,2),virgin(:,3), ‘‘rsrs’’);); % % redred[r[r]] squaressquares[s[s]] for these  for these  
>>>> scatter3(versi(:,1), virgin(:,2),versi(:,3), scatter3(versi(:,1), virgin(:,2),versi(:,3), ‘‘gxgx’’);); % green % green xx’’ss

scatter3

>> grid on; >> grid on; % show grid on axis% show grid on axis
>> rotate3D on; >> rotate3D on; % rotate with mouse% rotate with mouse

4
4.5

5
5.5

6
6.5

7
7.5

8

2

2.5

3

3.5

4

4.5
1

2

3

4

5

6

7
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Changing Plots Visually

Create line

Create Arrow

Add textSelect Object

Zoom out

Zoom in

Computers are 
useless. They can 

only give you 

answers…

Computers are 
useless. They can 

only give you 

answers…
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Changing Plots Visually
Add titles

Add labels on axis

Change tick labels

Add grids to axis

Change color of line

Change thickness/ 
Linestyle

etc
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Changing Plots Visually (Example)

Right click

A

B

C

Change color and 
width of a line
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Changing Plots Visually (Example)

The result …

Other Styles:

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3
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Changing Figure Properties with Code

Real men do it command-line… --Anonymous

GUI’s are easy, but sooner or later we realize that 
coding is faster

>> a = cumsum(randn(365,1)); >> a = cumsum(randn(365,1)); % random walk of 365 values% random walk of 365 values

If this represents a year’s 
worth of measurements of an 
imaginary quantity, we will 
change:

•• xx--axis annotation to monthsaxis annotation to months

•• Axis labelsAxis labels

•• Put title in the figurePut title in the figure

•• Include some Include some greekgreek letters letters 
in the title in the title just for funjust for fun
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Changing Figure Properties with Code

Real men do it command-line… --Anonymous

Axis annotation to months
>> axis tight; >> axis tight; % irrelevant but useful...% irrelevant but useful...
>> xx = [15:30:365];>> xx = [15:30:365];
>> set(gca, >> set(gca, ‘‘xtickxtick’’,xx) ,xx) The result …
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Changing Figure Properties with Code

Real men do it command-line… --Anonymous

Axis annotation to months
>> set(gca,>> set(gca,’’xticklabelxticklabel’’,[,[‘‘JanJan’’;; ......

‘‘FebFeb’’;;‘‘MarMar’’])])
The result …
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Changing Figure Properties with Code

Real men do it command-line… --Anonymous

Axis labels and title

>> xlabel(>> xlabel(‘‘Month of 2005Month of 2005’’))

>> ylabel(>> ylabel(‘‘Imaginary QuantityImaginary Quantity’’))

>> title(>> title(‘‘My measurements (My measurements (\\epsilon/epsilon/\\pi)pi)’’))

Other latex examples:

\alpha, \beta, e^{-\alpha} etc

Tutorial | Time-Series with Matlab

Saving Figures

.fig can be later 
opened through 

Matlab

You can always put-off for tomorrow, what you can do today. -Anonymous

Matlab allows to save the figures (.fig) for later 
processing
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Exporting Figures

Export to:
emf, eps, jpg, etc
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Exporting figures (code)

% extract to color % extract to color epseps
print print --depscdepsc myImage.epsmyImage.eps; ; % from command% from command--lineline
print(gcf,print(gcf,’’--depscdepsc’’,,’’myImagemyImage’’) ) % using variable as name% using variable as name

Matlab code:

You can also achieve the same result with Matlab code
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Visualizing Data - 2D Bars

time = [100 120 80 70];time = [100 120 80 70]; % our data% our data
h = h = bar(timebar(time); ); % get handle% get handle
cmapcmap = [1 0 0; 0 1 0; 0 0 1; .5 0 1]; = [1 0 0; 0 1 0; 0 0 1; .5 0 1]; % colors % colors 
colormap(cmapcolormap(cmap); ); % create % create colormapcolormap

cdatacdata = [1 2 3 4]; = [1 2 3 4]; % assign colors% assign colors
set(h,'CDataMapping','direct','CData',cdataset(h,'CDataMapping','direct','CData',cdata););

1
2
3
4

colormap

bars
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Visualizing Data - 3D Bars

data = [ 10 8 7; 9 6 5; 8 6 4; 6 5 4; 6 3 2; 3 2 1];data = [ 10 8 7; 9 6 5; 8 6 4; 6 5 4; 6 3 2; 3 2 1];
bar3([1 2 3  5 6 7], data);bar3([1 2 3  5 6 7], data);

c = c = colormap(graycolormap(gray); ); % get colors of % get colors of colormapcolormap
c = c(20:55,:);c = c(20:55,:); % get some colors% get some colors
colormap(ccolormap(c);); % new % new colormapcolormap

1
2

3

1
2

3

5
6

7

0

2

4

6

8

10 10    8     7
9     6     5
8     6     4
6     5     4
6     3     2
3     2     1

data
0         0         0

0.0198    0.0124    0.0079
0.0397    0.0248    0.0158
0.0595    0.0372    0.0237
0.0794    0.0496    0.0316
0.0992    0.0620    0.0395

. . .
1.0000    0.7440    0.4738
1.0000    0.7564    0.4817
1.0000    0.7688    0.4896
1.0000    0.7812    0.4975

64

colormap

3

Tutorial | Time-Series with Matlab

Visualizing Data - Surfaces

data = [1:10]; data = [1:10]; 
data = repmat(data,10,1); data = repmat(data,10,1); % create data% create data
surface(data,'FaceColor',[1 1 1], 'surface(data,'FaceColor',[1 1 1], 'EdgecolorEdgecolor', [0 0 1]);', [0 0 1]); % plot data% plot data
view(3); grid on;view(3); grid on; % change viewpoint and put axis lines% change viewpoint and put axis lines

0
2

4
6

8
10

0

2
4

6
8

10
1

2

3

4

5

6

7

8

9

10

data

1
1

10

2 10

109
1

3 …

The value at position 
x-y of the array 
indicates the height of 
the surface
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Creating .m files 

Standard text files
– Script: A series of Matlab commands (no input/output arguments)

– Functions: Programs that accept input and return output

Right click
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Creating .m files 

Double click

M editor
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Creating .m files 
The following script will create:
– An array with 10 random walk vectors

– Will save them under text files: 1.dat, …, 10.dat

cumsum, num2str, save

1

2

3

4

5

1

3

6

10

15

A cumsum(A)

…and execute by typing the 
name on the Matlab

command line

Write this in the 
M editor…

1000 10 20 30 40 50 60 70 80 90
-5

0

5

10

a = cumsum(randn(100,10));a = cumsum(randn(100,10)); % 10 random walk data of length 100% 10 random walk data of length 100
for i=1:size(a,2),for i=1:size(a,2), % number of columns% number of columns

data = a(:,i)data = a(:,i);;
fname = [num2str(i) fname = [num2str(i) ‘‘.dat.dat’’];]; % a string is a vector of characters!% a string is a vector of characters!
save(fname, save(fname, ’’datadata’’,,’’--ASCIIASCII’’);); % save each column in a text file% save each column in a text file

endend

Sample Script

A random walk time-series

myScript.m
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Functions in .m scripts

function dataN = zNorm(data)function dataN = zNorm(data)
% ZNORM zNormalization of vector% ZNORM zNormalization of vector
% subtract mean and divide by std% subtract mean and divide by std

if (if (narginnargin<1),<1), % check parameters% check parameters
error(error(‘‘NotNot enough argumentsenough arguments’’););

endend
data = data data = data –– mean(datamean(data);); % subtract mean% subtract mean
data = data/data = data/std(datastd(data);); % divide by std% divide by std
dataNdataN = data;= data;

When we need to:
– Organize our code

– Frequently change parameters in our scripts

See also:varargin, varargout

keyword output argument function name

input argument

Help Text
(help function_name)

Function Body

function [a,b] = myFunc(data, x, y)function [a,b] = myFunc(data, x, y) % pass & return more arguments% pass & return more arguments
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Cell Arrays
Cells that hold other Matlab arrays
– Let’s read the files of a directory
>> f = dir(>> f = dir(‘‘*.dat*.dat’’)) % read file contents% read file contents
f = f = 
15x1 15x1 structstruct array with fields:array with fields:

namename
datedate
bytesbytes
isdirisdir

for i=1:length(f),for i=1:length(f),
a{i} = load(f(i).name);a{i} = load(f(i).name);
N = length(a{i});N = length(a{i});
plot3([1:N], a{i}(:,1), a{i}(:,2), ...plot3([1:N], a{i}(:,1), a{i}(:,2), ...

‘‘rr--’’, , ‘‘LinewidthLinewidth’’, 1.5);, 1.5);
grid on;grid on;
pause;pause;
cla;cla;

endend

1

2

3

4

5

Struct Array
name
date
bytes
isdir

f(1).name

500

1000
1500

500

1000
0

100

200

300

400

500

600
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Reading/Writing Files 

fid = fopen('fischer.txt', 'wt');fid = fopen('fischer.txt', 'wt');

for i=1:length(species),for i=1:length(species),
fprintf(fid, '%6.4f %6.4f %6.4f %6.4f %sfprintf(fid, '%6.4f %6.4f %6.4f %6.4f %s\\n', meas(i,:), species{i});n', meas(i,:), species{i});

endend
fclose(fid);fclose(fid);

Load/Save are faster than C style I/O operations
– But fscanf, fprintf can be useful for file formatting 

or reading non-Matlab files

Output file: Elements are accessed column-wise (again…)
x = 0:.1:1; y = [x; exp(x)];x = 0:.1:1; y = [x; exp(x)];
fid = fopen('exp.txt','w');fid = fopen('exp.txt','w');
fprintf(fid,'%6.2f  %12.8ffprintf(fid,'%6.2f  %12.8f\\n',y);n',y);
fclose(fid);fclose(fid);

0          0.1          0.2                   0.3             0.0          0.1          0.2                   0.3             0.4             0.5             0.6             0.7         4             0.5             0.6             0.7         
1       1.1052       1.2214       1.3499       1.4918       1.641       1.1052       1.2214       1.3499       1.4918       1.6487       1.8221       2.013887       1.8221       2.0138
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Flow Control/Loops

if (else/elseif) , switch
– Check logical conditions

while
– Execute statements infinite number of times

for
– Execute statements a fixed number of times

break, continue

return
– Return execution to the invoking function

Life is pleasant. Death is peaceful. It’s the transition that’s troublesome. –Isaac Asimov
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For-Loop or vectorization? Pre-allocate arrays that 
store output results
– No need for Matlab to 

resize everytime

Functions are faster than 
scripts
– Compiled into pseudo-

code

Load/Save faster than 
Matlab I/O functions

After v. 6.5 of Matlab there 
is for-loop vectorization
(interpreter)

Vectorizations help, but 
not so obvious how to 
achieve many times

clear all;clear all;
tic;tic;
for i=1:50000for i=1:50000

a(ia(i) = ) = sin(isin(i););
endend
toctoc

clear all;clear all;
a = zeros(1,50000);a = zeros(1,50000);
tic;tic;
for i=1:50000for i=1:50000

a(ia(i) = ) = sin(isin(i););
endend
toctoc

clear all;clear all;
tic;tic;
i = [1:50000];i = [1:50000];
a = a = sin(isin(i););
toctoc;;

elapsed_time =

5.0070

elapsed_time =

0.1400

elapsed_time =

0.0200

tic, toc, clear all

Time not important…only life important. –The Fifth Element
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Matlab Profiler

Time not important…only life important. –The Fifth Element

Find which portions of code take up 
most of the execution time
– Identify bottlenecks

– Vectorize offending code
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Hints &Tips

There is always an easier (and faster) way
– Typically there is a specialized function for what you want to 

achieve

Learn vectorization techniques, by ‘peaking’ at the 
actual Matlab files:
– edit [fname], eg

– edit mean

– edit princomp

Matlab Help contains many 
vectorization examples
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Debugging
Not as frequently required as in C/C++
– Set breakpoints, step, step in, check variables values

Set breakpoints

Beware of bugs in the above code; I have only proved it correct, not tried it 

-- R. Knuth
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Debugging
Full control over variables and execution path
– F10: step, F11: step in (visit functions, as well)

A

B

C

F10

Either this man is 
dead or my watch 

has stopped. 

Either this man is 
dead or my watch 

has stopped. 
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Advanced Features – 3D modeling/Volume Rendering
Very easy volume manipulation and rendering
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Advanced Features – Making Animations (Example)
Create animation by changing the camera viewpoint

azimuth = [50:100 99:azimuth = [50:100 99:--1:50]; 1:50]; % azimuth range of values% azimuth range of values
for k = 1:length(azimuth),for k = 1:length(azimuth),

plot3(1:length(a), a(:,1), a(:,2), 'r', 'Linewidth',2);plot3(1:length(a), a(:,1), a(:,2), 'r', 'Linewidth',2);
grid on;grid on;
view(azimuth(k),30); view(azimuth(k),30); % change new% change new
M(kM(k) = ) = getframegetframe; ; % save the frame% save the frame

endend

movie(M,20); movie(M,20); % play movie 20 times% play movie 20 times

See also:movie2avi
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Several Examples in Help
– Directory listing

– Address book reader

– GUI with multiple axis

Advanced Features – GUI’s
Built-in Development Environment
– Buttons, figures, Menus, sliders, etc
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Advanced Features – Using Java
Matlab is shipped with Java Virtual 
Machine (JVM)

Access Java API (eg I/O or networking)

Import Java classes and construct objects

Pass data between Java objects and 
Matlab variables
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Advanced Features – Using Java (Example)
Stock Quote Query
– Connect to Yahoo server

– http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?
objectId=4069&objectType=file

disp('Contactingdisp('Contacting YAHOO server using ...');YAHOO server using ...');
disp(['urldisp(['url = = java.net.URLjava.net.URL(' (' urlStringurlString ')']);')']);

end;end;
urlurl = = java.net.URL(urlStringjava.net.URL(urlString););

trytry
stream = stream = openStream(urlopenStream(url););
ireaderireader = = java.io.InputStreamReader(streamjava.io.InputStreamReader(stream););
breaderbreader = = java.io.BufferedReader(ireaderjava.io.BufferedReader(ireader););
connect_query_dataconnect_query_data= 1; %connect made;= 1; %connect made;

catchcatch
connect_query_dataconnect_query_data= = --1;  %could not connect 1;  %could not connect 

case;case;
disp(['URLdisp(['URL: ' : ' urlStringurlString]);]);
error(['Coulderror(['Could not connect to server. It may not connect to server. It may 

be unavailable. Try again later.']);be unavailable. Try again later.']);
stockdatastockdata={};={};
return;return;

endend
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Matlab Toolboxes
You can buy many specialized toolboxes from Mathworks
– Image Processing, Statistics, Bio-Informatics, etc

There are many equivalent free toolboxes too:
– SVM toolbox

• http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/

– Wavelets 
• http://www.math.rutgers.edu/~ojanen/wavekit/

– Speech Processing
• http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

– Bayesian Networks
• http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
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In case I get stuck…
help [command] (on the command line)
eg. help fft

Menu: help -> matlab help
– Excellent introduction on various topics

Matlab webinars
– http://www.mathworks.com/company/events/archived_webinars.html?fp

Google groups
– comp.soft-sys.matlab
– You can find *anything* here
– Someone else had the same 

problem before you!

I’ve had a wonderful 
evening. But this 

wasn’t it…

I’ve had a wonderful 
evening. But this 

wasn’t it…
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PART B: Mathematical notionsPART B: Mathematical notions

Eight percent of 
success is showing 

up.

Eight percent of 
success is showing 

up.
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Overview of Part B
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)
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What is a time-series

Definition: A sequence of measurements over timeDefinition: A sequence of measurements over time

Medicine
Stock Market
Meteorology
Geology
Astronomy
Chemistry
Biometrics
Robotics

ECG

Sunspot

Earthquake

64.0   
62.8
62.0
66.0
62.0
32.0
86.4
. . . 

21.6
45.2
43.2
53.0
43.2   
42.8   
43.2   
36.4   
16.9   
10.0

…
time
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Applications
Images

50 100 150 200 250
0

200

400

600

50 100 150 200 250
0

200

400

50 100 150 200 250
0

200

400

600

800

Image

Color Histogram

Time-Series

Acer platanoides

Salix fragilis

Motion captureShapes

…more to come
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Time Series

time

x1

x2

x3

x4

x5

x6

va
lu

e
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Time Series

Sequence of numeric values
– Finite: 

– N-dimensional vectors/points

– Infinite: 

– Infinite-dimensional vectors

time

va
lu

e

3

8

4

1

9

6

x = (3, 8, 4, 1, 9, 6)
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Mean

Definition:

From now on, we will generally assume zero mean —
mean normalization:
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Variance

Definition:

or, if zero mean, then

From now on, we will generally assume unit variance 
— variance normalization:



13

Tutorial | Time-Series with Matlab

Mean and variance

mean μ

variance σ
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Why and when to normalize

Intuitively, the notion of “shape” is generally
independent of
– Average level (mean)

– Magnitude (variance)

Unless otherwise specified, we normalize to zero 
mean and unit variance
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Variance “=” Length

Variance of zero-mean series:

Length of N-dimensional vector (L2-norm):

So that:

x1

x2

||x
||
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Covariance and correlation

Definition

or, if zero mean and unit variance, then
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Correlation and similarity

How “strong” is the linear relationship

between xt and yt ?
For normalized series,

-2 -1 0 1 2
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C
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ρ = -0.23 ρ = 0.99slope

residual
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Correlation “=” Angle

Correlation of normalized series:

Cosine law:

So that:
x

y
x.y

θ
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Correlation and distance

For normalized series,

i.e., correlation and squared Euclidean distance are 
linearly related.

||x-y||

y
x.y

θ

x
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Ergodicity
Example

Assume I eat chicken at the same restaurant every day 
and

Question: How often is the food good?
– Answer one:

– Answer two:

Answers are equal ⇒ ergodic
– “If the chicken is usually good, then my guests today can 

safely order other things.”
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Ergodicity
Example

Ergodicity is a common and fundamental 
assumption, but sometimes can be wrong:

“Total number of murders this year is 5% of the 
population”
“If I live 100 years, then I will commit about 5 
murders, and if I live 60 years, I will commit about 3 
murders”

… non-ergodic!
Such ergodicity assumptions on population 
ensembles is commonly called “racism.”
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Stationarity
Example

Is the chicken quality consistent?
– Last week:

– Two weeks ago:

– Last month:

– Last year:

Answers are equal ⇒ stationary
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Autocorrelation

Definition:

Is well-defined if and only if the series is (weakly) 
stationary

Depends only on lag ℓ, not time t
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Time-domain “coordinates”

=
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2x5 6x6 1x8

Time-domain “coordinates”

=

-0.5 4 1.5 -2

3.5

-0.5

4

1.5

-2

2

6

3.5

1

+ + +

++++

x1 £ e1 x2 £ e2 x3 £ e3 x4 £ e4

£ e5 £ e6 x7 £ e7 £ e8
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Orthonormal basis

Set of N vectors, { e1, e2, …, eN }
– Normal: ||ei|| = 1, for all 1 ≤ i ≤ N

– Orthogonal: ei¢ej = 0, for i ≠ j

Describe a Cartesian coordinate system
– Preserve length (aka. “Parseval theorem”)

– Preserve angles (inner-product, correlations)
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Orthonormal basis

Note that the coefficients xi w.r.t. the basis   { e1, …, eN
} are the corresponding “similarities” of x to each 
basis vector/series:

-0.5

4

1.5

-2

2

6

3.5

1 =

x

-0.5 4+ +  …

e1 e2

x2
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Orthonormal bases

The time-domain basis is a trivial tautology:
– Each coefficient is simply the value at one time instant

What other bases may be of interest? Coefficients may 
correspond to:
– Frequency (Fourier)

– Time/scale (wavelets)

– Features extracted from series collection (PCA)
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Frequency domain “coordinates”
Preview

=

5.6 -2.2 0 2.8

4.9 -3 0 0.05

+ + +
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Time series geometry
Summary

Basic concepts:
– Series / vector

– Mean: “average level”

– Variance: “magnitude/length”

– Correlation: “similarity”, “distance”, “angle”

– Basis: “Cartesian coordinate system”
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Time series geometry
Preview — Applications

The quest for the right basis…

Compression / pattern extraction
– Filtering

– Similarity / distance

– Indexing

– Clustering

– Forecasting

– Periodicity estimation

– Correlation
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Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)
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Frequency

One cycle every 20 time units (period)
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Frequency and time

Why is the period 20?
It’s not 8, because its “similarity” (projection) to a 
period-8 series (of the same length) is zero.

period  = 8

.

=  0
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Frequency and time

Why is the cycle 20?
It’s not 10, because its “similarity” (projection) to a 
period-10 series (of the same length) is zero.

period  = 10

.

=  0
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Frequency and time

Why is the cycle 20?
It’s not 40, because its “similarity” (projection) to a 
period-40 series (of the same length) is zero.

period  = 40

.

=  0

…and so on
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Frequency
Fourier transform - Intuition

To find the period, we compared the time series with 
sinusoids of many different periods

Therefore, a good “description” (or basis) would 
consist of all these sinusoids

This is precisely the idea behind the discrete Fourier 
transform
– The coefficients capture the similarity (in terms of amplitude 

and phase) of the series with sinusoids of different periods
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Frequency
Fourier transform - Intuition

Technical details:
– We have to ensure we get an orthonormal basis

– Real form: sines and cosines at N/2 different frequencies

– Complex form: exponentials at N different frequencies
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Fourier transform
Real form

For odd-length series,

The pair of bases at frequency fk are

plus the zero-frequency (mean) component
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Fourier transform
Real form — Amplitude and phase 

Observe that, for any fk, we can write

where

are the amplitude and phase, respectively.
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Fourier transform
Real form — Amplitude and phase

It is often easier to think in terms of amplitude rk and 
phase θk – e.g.,

0 10 20 30 40 50 60 70 80
-1

-0.5

0

0.5

1

5
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Fourier transform
Complex form

The equations become easier to handle if we allow 
the series and the Fourier coefficients Xk to take 
complex values:

Matlab note: fft omits the              scaling factor and 
is not unitary—however, ifft includes an         
scaling factor, so always ifft(fft(x)) == x.
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Fourier transform
Example
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Other frequency-based transforms

Discrete Cosine Transform (DCT)
– Matlab: dct / idct

Modified Discrete Cosine Transform (MDCT)
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Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)
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Frequency and time

What is the cycle now?
No single cycle, because the series isn’t exactly similar 
with any series of the same length.

period  = 20

period  = 10

.

.
≠ 0

≠ 0

e.g.,

etc…
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Frequency and time

Fourier is successful for summarization of series with a 
few, stable periodic components

However, content is “smeared” across frequencies 
when there are
– Frequency shifts or jumps, e.g.,

– Discontinuities (jumps) in time, e.g.,
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Frequency and time

If there are discontinuities in time/frequency or 
frequency shifts, then we should seek an alternate 
“description” or basis

Main idea: Localize bases in time
– Short-time Fourier transform (STFT)

– Discrete wavelet transform (DWT)
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Frequency and time
Intuition

What if we examined, e.g., eight values at a time?
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Frequency and time
Intuition

What if we examined, e.g., eight values at a time?
Can only compare with periods up to eight.
– Results may be different for each group (window)
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Frequency and time
Intuition

Can “adapt” to localized phenomena

Fixed window: short-window Fourier (STFT)
– How to choose window size?

Variable windows: wavelets
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Wavelets
Intuition

Main idea
– Use small windows for small periods

• Remove high-frequency component, then
– Use larger windows for larger periods

• Twice as large
– Repeat recursively

Technical details
– Need to ensure we get an orthonormal basis
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Wavelets
Intuition

Time

Fr
eq
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nc

y
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e 
(fr
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Time
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Wavelets
Intuition — Tiling time and frequency
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Time

Fourier, DCT, … STFT Wavelets
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Wavelet transform
Pyramid algorithm

High
pass

Low
pass
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Wavelet transform
Pyramid algorithm

High
pass

Low
pass
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Wavelet transform
Pyramid algorithm

High
pass

Low
pass
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Wavelet transform
Pyramid algorithm

High
pass

Low
pass

High
pass

Low
pass

High
pass

Low
pass

x ≡ w0

w1

w2

w3

v3

v1

v2
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Wavelet transforms
General form

A high-pass / low-pass filter pair
– Example: pairwise difference / average (Haar)

– In general: Quadrature Mirror Filter (QMF) pair
• Orthogonal spans, which cover the entire space

– Additional requirements to ensure orthonormality of overall 
transform…

Use to recursively analyze into top / bottom half of 
frequency band
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Wavelet transforms
Other filters — examples

Haar (Daubechies-1)

Daubechies-2

Daubechies-3

Daubechies-4

Wavelet filter, or
Mother filter
(high-pass)

Scaling filter, or
Father filter
(low-pass)

Better frequency isolation
W

orse tim
e localization
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Wavelet coefficients (GBP, Haar)
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Wavelets
Example
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Multi-resolution analysis (GBP, Haar)

Wavelets
Example
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Multi-resolution analysis (GBP, Haar)

Wavelets
Example
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Analysis levels are orthogonal,
Di¢Dj = 0, for i ≠ j
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Wavelets
Matlab

Wavelet GUI: wavemenu

Single level: dwt / idwt

Multiple level: wavedec / waverec
– wmaxlev

Wavelet bases: wavefun
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Other wavelets
Only scratching the surface…
Wavelet packets
– All possible tilings (binary)
– Best-basis transform

Overcomplete wavelet transform (ODWT), aka. 
maximum-overlap wavelets (MODWT), aka. shift-
invariant wavelets

Further reading:
1. Donald B. Percival, Andrew T. Walden, Wavelet Methods for Time Series Analysis, 
Cambridge Univ. Press, 2006.
2. Gilbert Strang, Truong Nguyen, Wavelets and Filter Banks, Wellesley College, 1996.
3. Tao Li, Qi Li, Shenghuo Zhu, Mitsunori Ogihara, A Survey of Wavelet Applications in 
Data Mining, SIGKDD Explorations, 4(2), 2002.
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More on wavelets

Signal representation and compressibility
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More wavelets

Keeping the highest coefficients minimizes total error 
(L2-distance)

Other coefficient selection/thresholding schemes for 
different error metrics (e.g., maximum per-instant 
error, or L1-dist.)
– Typically use Haar bases

Further reading:
1. Minos Garofalakis, Amit Kumar, Wavelet Synopses for General Error Metrics, ACM 
TODS, 30(4), 2005.
2.Panagiotis Karras, Nikos Mamoulis, One-pass Wavelet Synopses for Maximum-Error 
Metrics, VLDB 2005.
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Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)
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Wavelets
Incremental estimation
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Wavelets
Incremental estimation
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Wavelets
Incremental estimation
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Wavelets
Incremental estimation
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Wavelets
Incremental estimation

Tutorial | Time-Series with Matlab

Wavelets
Incremental estimation

post-order traversal
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Wavelets
Incremental estimation

Forward transform :
– Post-order traversal of wavelet coefficient tree

– O(1) time (amortized)

– O(logN) buffer space (total)

Inverse transform:
– Pre-order traversal of wavelet coefficient tree

– Same complexity

constant factor:
filter length
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Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)
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Time series collections
Overview

Fourier and wavelets are the most prevalent and 
successful “descriptions” of time series.

Next, we will consider collections of M time series, 
each of length N.
– What is the series that is “most similar” to all series in the 

collection?

– What is the second “most similar”, and so on…
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Time series collections

Some notation:

i-th series, x(i)

values at time t, xt
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Principal Component Analysis
Example
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Coefficients of each time series 
w.r.t. basis { u1, u2, u3, u4 } : 

“Best” basis : { u1, u2, u3, u4 }
x(2) = 49.1u1 + 8.1u2 + 7.8u3 + 3.6u4 + ε1

(μ  ≠ 0)
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Principal component analysis

-30 -20 -10 0 10 20 30 40 50 60

-20

-10

0

10

20

30

40

50

υi,1

υ i,2

First two principal components

-2
0
2

FR
F

-2
0
2

B
E

F

-2
0
2

D
E

M

-2
0
2

N
LG

-2
0
2

E
S

P

-2
0
2

G
B

P

-2
0
2

C
AD

-2
0
2

JP
Y

AUD

SEK

NZL
CHF

Tutorial | Time-Series with Matlab

Principal Component Analysis
Matrix notation — Singular Value Decomposition (SVD) 

X = UΣVT

x(1) x(2) x(M) υ1 υ2 υ3 υM
u1 u2 uk= .

time series basis for
time series

X U
ΣVT

coefficients w.r.t.
basis in U
(columns)
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Principal Component Analysis
Matrix notation — Singular Value Decomposition (SVD)

X = UΣVT

u1 u2 ukx(1) x(2) x(M) = . υ1 υ2 υ3 υN

v’1

v’2

v’k

X U
ΣVT

time series basis for
time series

coefficients w.r.t.
basis in U
(columns)

basis for
measurements

(rows)
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Principal Component Analysis
Matrix notation — Singular Value Decomposition (SVD)

X = UΣVT

u1 u2 ukx(1) x(2) x(M) = .

v1

v2

vk

.

σ1

σ2

σk

X U
Σ VT

basis for
measurements

(rows)time series basis for
time series

scaling factors

Tutorial | Time-Series with Matlab

Principal component analysis
Properties — Singular Value Decomposition (SVD)

V are the eigenvectors of the covariance matrix XTX, 
since

U are the eigenvectors of the Gram (inner-product) 
matrix XXT, since 

Further reading:
1. Ian T. Jolliffe, Principal Component Analysis (2nd ed), Springer, 2002.
2. Gilbert Strang, Linear Algebra and Its Applications (4th ed), Brooks Cole, 2005.
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Kernels and KPCA
What are kernels?
– Usual definition of inner product w.r.t.

vector coordinates is x¢y = ∑i xiyi

– However, other definitions that preserve

the fundamental properties are possible

Why kernels?
– We no longer have explicit “coordinates”

• Objects do not even need to be numeric
– But we can still talk about distances and angles

– Many algorithms rely just on these two concepts

Further reading:
1. Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels: Support Vector 
Machines, Regularization, Optimization and Beyond, MIT Press, 2001.

Exchange rates

AUD

SEK

NZL
CHF

CAD
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JPY

FRF
BEFDEM
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Multidimensional scaling (MDS)

Kernels are still “Euclidean” in some sense
– We still have a Hilbert (inner-product) space, even though it 

may not be the space of the original data

For arbitrary similarities, we can still find the eigen-
decomposition of the similarity matrix
– Multidimensional scaling (MDS)

– Maps arbitrary metric data into a

low-dimensional space Exchange rates

AUD

SEK

NZL
CHF

CAD
GBP

ESP

NLG

JPY

FRF
BEFDEM
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Principal components
Matlab

pcacov

princomp

[U, S, V] = svd(X)

[U, S, V] = svds(X, k)
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PCA on sliding windows

Empirical orthogonal functions (EOF), aka. Singular 
Spectrum Analysis (SSA)

If the series is stationary, then it can be shown that 
– The eigenvectors of its autocovariance matrix are the 

Fourier bases

– The principal components are the Fourier coefficients

Further reading:
1. M. Ghil, et al., Advanced Spectral Methods for Climatic Time Series, Rev. Geophys., 
40(1), 2002.
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Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)
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Principal components
Incremental estimation

PCA via SVD on X 2 �N£M — recap:

– Singular values Σ 2 � k£k (diagonal)
• Energy / reconstruction accuracy

– Left singular vectors U 2 � N£k

• Basis for time series
• Eigenvectors of Gram matrix XXT

– Right singular vectors V 2 �M£k

• Basis for measurements’ space
• Eigenvectors of covariance matrix XTX



26

Tutorial | Time-Series with Matlab

Principal components
Incremental estimation

PCA via SVD on X 2 �N£M — recap:

– Singular values Σ 2 � k£k (diagonal)
• Energy / reconstruction accuracy

– Left singular vectors U 2 � N£k

• Basis for time series
• Eigenvectors of Gram matrix XXT

– Right singular vectors V 2 �M£k

• Basis for measurements’ space
• Eigenvectors of covariance matrix XTX

u1 u2 ukx(1) x(2) x(M) = .
v1

v2

vk

.
σ1

σ2

σk

X U
Σ VT
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Principal components
Incremental estimation — Example 
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Principal components
Incremental estimation — Example

First series

Second series

First three values
Other values
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)
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20oC 30oC

Principal components
Incremental estimation — Example

20oC

30oC

Series x(1)
First three values
Other values

Correlations:

Let’s take a closer look at the 
first three measurement-
pairs…

S
er

ie
s 

x(2
)
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20oC 30oC

Principal components
Incremental estimation — Example

20oC

30oC

S
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x(2
)

Series x(1)
First three values
Other values

First three lie (almost) on a 
line in the   space of 
measurement-pairs…

O(M) numbers for 
the slope, and

One number for 
each measurement-
pair (offset on line = 
PC)

of
fs
et

= p
rin

cip
al 

co
m

po
ne

nt
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Principal components
Incremental estimation — Example

20oC 30oC

20oC

30oC

S
er

ie
s 

x(2
)

Series x(1)
First three values
Other values

Other pairs also follow the 
same pattern: they lie 
(approximately) on this line
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Principal components
Incremental estimation — Example

error

20oC 30oC

20oC

30oC
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)

Series x(1)

For each new point

Project onto current line

Estimate error

New value
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Principal components
Incremental estimation — Example (update)

error

20oC

30oC

20oC 30oC

S
er

ie
s 

x(2
)

Series x(1)

For each new point

Project onto current line

Estimate error

Rotate line in the 
direction of the error and 
in proportion to its 
magnitude

O(M) time

New value
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Principal components
Incremental estimation — Example (update)

20oC
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Series x(1)

For each new point

Project onto current line

Estimate error

Rotate line in the 
direction of the error and 
in proportion to its 
magnitude
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Principal components
Incremental estimation — Example

The “line” is the first principal component (PC) 
direction

This line is optimal: it minimizes the sum of 
squared projection errors
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Principal components
Incremental estimation — Update equations

For each new point xt and for j = 1, …, k : 

yj :=   vj
Txt (proj. onto vj)

σj
2 ← λσj + yj

2 (energy ∝ j-th eigenval.)

ej :=   x – yjwj (error)

vj ← vj + (1/σj
2) yjej (update estimate)

xt ← xt – yjvj (repeat with remainder)

y1

v1

xt
e1

v1 updated
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Principal components
Incremental estimation — Complexity 

O(Mk) space (total) and time (per tuple), i.e.,

Independent of # points

Linear w.r.t. # streams (M)

Linear w.r.t. # principal components (k)
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Principal components
Incremental estimation — Applications

Incremental PCs (measurement space)
– Incremental tracking of correlations

– Forecasting / imputation

– Change detection

Further reading:
1. Sudipto Guha, Dimitrios Gunopulos, Nick Koudas, Correlating synchronous and 
asynchronous data streams, KDD 2003.
2. Spiros Papadimitriou, Jimeng Sun, Christos Faloutsos, Streaming Pattern Discovery 
in Multiple Time-Series, VLDB 2005.
3. Matthew Brand, Fast Online SVD Revisions for Lightweight Recommender Systems, 
SDM 2003.
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Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)
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Piecewise constant (APCA)
So far our “windows” were pre-determined
– DFT: Entire series
– STFT: Single, fixed window
– DWT: Geometric progression of windows

Within each window we sought fairly complex 
patterns (sinusoids, wavelets, etc.)

Next, we will allow any window size, but constrain the 
“pattern” within each window to the simplest 
possible (mean)
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Piecewise constant
Example
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Piecewise constant (APCA)

Divide series into k segments with endpoints

– Constant length: PAA

– Variable length: APCA

Represent all points within one segment with their 
average mj, 1 ≤ j ≤ k, thus minimizing

Further reading:
1. Kaushik Chakrabarti, Eamonn Keogh, Sharad Mehrotra, Michael Pazzani, Locally 
Adaptive Dimensionality Reduction for Indexing Large Time Series Databases, TODS, 
27(2), 2002.

Single-level Haar smooths,
if tj+1-tj = 2ℓ , for all 1 ≤ j ≤ k
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Piecewise constant
Example
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Piecewise constant
Example
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Piecewise constant
Example
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k/h-segmentation

Again, divide the series into k segments (variable 
length)

For each segment choose one of h quantization 
levels to represent all points

– Now, mj can take only h ≤ k possible values

APCA = k/k-segmentation (h = k)

Further reading:
1. Aristides Gionis, Heikki Mannila, Finding Recurrent Sources in Sequences, Recomb
2003.
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Symbolic aggregate approximation (SAX)

Quantization of values

Segmentation of time based on these quantization 
levels

More in next part…
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Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)
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K-means / Vector quantization (VQ)

APCA considers one time series and
– Groups time instants

– Approximates them via their (scalar) mean

Vector Quantization / K-means applies to a collection 
of M time series (of length N)
– Groups time series

– Approximates them via their (vector) mean
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K-means

m1

m2

Tutorial | Time-Series with Matlab

K-means

Partitions the time series x(1), …, x(M) into    k
groups, Ij, for 1 ≤ j ≤ k .

All time series in the j-th group, 1 ≤ j ≤ k, are 
represented by their centroid, mj .

Objective is to choose mj so as to minimize the 
overall squared distortion,

1-D on values + 
contiguity requirement:

APCA
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K-means

Objective implies that, given Ij, for 1 ≤ j ≤ k,

i.e., mj is the vector mean of all points in cluster j.
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K-means

m1

m2
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K-means

1. Start with arbitrary cluster assignment.
2. Compute centroids.
3. Re-assign to clusters based on new centroids.
4. Repeat from (2), until no improvement.

Finds local optimum of D. 

Matlab: [idx, M] = kmeans(X’, k)
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K-means
Example
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K-means in other coordinates

An orthonormal transform (e.g., DFT, DWT, PCA) 
preserves distances.

K-means can be applied in any of these “coordinate 
systems.”

Can transform data to speed up distance 
computations (if N large)
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K-means and PCA

Further reading:
1. Hongyuan Zha, Xiaofeng He, Chris H.Q. Ding, Ming Gu, Horst D. Simon, Spectral 
Relaxation for K-means Clustering, NIPS 2001.
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Overview
1. Introduction and geometric intuition
2. Coordinates and transforms

Fourier transform (DFT)
Wavelet transform (DWT)
Incremental DWT
Principal components (PCA)
Incremental PCA

3. Quantized representations
Piecewise quantized / symbolic
Vector quantization (VQ) / K-means

4. Non-Euclidean distances
Dynamic time warping (DTW)
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Dynamic time warping (DTW)

So far we have been discussing shapes via various 
kinds of “features” or “descriptions” (bases)

However, the series were always fixed

Dynamic time warping:
– Allows local deformations (stretch/shrink)

– Can thus also handle series of different lengths
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Dynamic time warping (DTW)
Euclidean (L2) distance is

or, recursively,

Dynamic time warping distance is

where x1:i is the subsequence (x1, …, xi)
shrink x / stretch y

stretch x / shrink y
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Dynamic time warping (DTW)
Each cell c = (i,j) is a pair of 
indices whose 
corresponding values will 
be compared,     (xi –yj)2, 
and included in the sum 
for the distance
Euclidean path:
– i = j always
– Ignores off-diagonal cells

x[1:i]

y[
1:

j]
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(i, j)

Dynamic time warping (DTW)

DTW allows any path
Examine all paths:

Standard dynamic programming 
to fill in table—top-right cell 
contains final resultx[1:i]

y[
1:

j]

(i, j)
(i-1, j)

(i-1, j-1) (i, j-1)

shrink x / stretch y

stretch x
/ shrink y
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Dynamic time-warping
Fast estimation

Standard dynamic programming: O(N2)

Envelope-based technique
– Introduced by [Keogh 2000 & 2002]

– Multi-scale, wavelet-like technique and formalism by 
[Salvador et al. 2004] and, independently, by [Sakurai et al. 
2005]

Further reading:
1. Eamonn J. Keogh, Exact Indexing of Dynamic Time Warping, VLDB 2002.
2. Stan Salvador, Philip Chan, FastDTW: Toward Accurate Dynamic Time Warping in 
Linear Time and Space, TDM 2004.
3. Yasushi Sakurai, Masatoshi Yoshikawa, Christos Faloutsos, FTW: Fast Similarity 
Under the Time Warping Distance, PODS 2005.
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Dynamic time warping
Fast estimation — Summary

Create lower-bounding 
distance on coarser 
granularity, either at
– Single scale

– Multiple scales

Use to prune search space

x[1:i]

y[
1:

j]
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Non-Euclidean metrics

More in part 3
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PART C: Similarity Search and ApplicationsPART C: Similarity Search and Applications
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Timeline of part C

–– IntroductionIntroduction

–– TimeTime--Series RepresentationsSeries Representations

–– Distance MeasuresDistance Measures

–– Lower BoundingLower Bounding

–– Clustering/Classification/VisualizationClustering/Classification/Visualization

–– ApplicationsApplications



33

Tutorial | Time-Series with Matlab

Applications (Image Matching)

Many types of data can be 
converted to time-series
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Image

Color Histogram

Time-Series
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Applications (Shapes)

Recognize type of leaf based on its shape

Acer platanoidesUlmus carpinifolia Salix fragilis Tilia Quercus robur

Convert perimeter into a sequence of values

Special thanks to A. Ratanamahatana & 
E. Keogh for the leaf video.
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Applications (Motion Capture)

Motion-Capture (MOCAP) Data (Movies, Games)
– Track position of several joints over time

– 3*17 joints = 51 parameters per frame

MOCAP data…
…my precious…
MOCAP data…
…my precious…
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Applications (Video)

Video-tracking / Surveillance
– Visual tracking of body features (2D time-series)

– Sign Language recognition (3D time-series)
Video Tracking of body feature 
over time (Athens1, Athens2)
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Time-Series and Matlab
Time-series can be represented as vectors or arrays

– Fast vector manipulation
• Most linear operations (eg euclidean distance, correlation) can 

be trivially vectorized
– Easy visualization

– Many built-in functions

– Specialized Toolboxes
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••PART II: Time Series MatchingPART II: Time Series Matching
IntroductionIntroduction

Becoming sufficiently 
familiar with something 

is a substitute for
understanding it.

Becoming sufficiently 
familiar with something 

is a substitute for
understanding it.



34

Tutorial | Time-Series with Matlab

Basic Data-Mining problem
Today’s databases are becoming too large. Search is difficult. 

How can we overcome this obstacle?

Basic structure of data-mining solution:
– Represent data in a new format

– Search few data in the new representation

– Examine even fewer original data

– Provide guarantees about the search results

– Provide some type of data/result visualization
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Basic Time-Series Matching Problem

Database with time-series:
– Medical sequences

– Images, etc

Sequence Length:100-1000pts
DB Size: 1 TByte

Database with time-series:
– Medical sequences

– Images, etc

Sequence Length:100-1000pts
DB Size: 1 TByte

query

D = 7.3

D = 10.2

D = 11.8

D = 17

D = 22

Distance

Objective: Compare the query with 
all sequences in DB and return 
the k most similar sequences to 
the query.

Linear Scan:
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What other problems can we solve?
Clustering: “Place time-series into ‘similar’ groups”

Classification: “To which group is a time-series most ‘similar’ to?”

query
?

?
?
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Hierarchical Clustering

Very generic & powerful tool

Provides visual data grouping

Z = linkage(D);
H = dendrogram(Z);

Pairwise
distances

D1,1

D2,1

DM,N

1. Merge objects with 
smallest distance

2. Reevaluate distances

3. Repeat process 
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Partitional Clustering

K-Means Algorithm:

1. Initialize k clusters (k specified 
by user) randomly.

2. Repeat until convergence
1. Assign each object to the 

nearest cluster center.

2. Re-estimate cluster centers.

Faster than hierarchical clustering

Typically provides suboptimal solutions (local minima)

Not good performance for high dimensions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

See: kmeans
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K-Means Demo
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K-Means Clustering for Time-Series

So how is kMeans applied for Time-Series that are high-dimensional?

Perform kMeans on a compressed dimensionality

Original 
sequences

Compressed 
sequences

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Clustering 
space
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Classification
Typically classification can be made easier if we have clustered the objects

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Class A

Class B

Project query in the 
new space and find 
its closest cluster

So, query Q is more 
similar to class B 

Q
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Nearest Neighbor Classification

H
ai

r L
en

gt
h

H
ai

r L
en

gt
h

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

Hobbits
Elfs

HeightHeight

We need not perform clustering before classification. We can classify an 
object based on the class majority of its nearest neighbors/matches.
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Example 

What do we need?What do we need?
1. Define Similarity 

2. Search fast 
– Dimensionality Reduction

(compress data)
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••PART II: Time Series MatchingPART II: Time Series Matching
Similarity/Distance functionsSimilarity/Distance functions

All models are wrong, 
but some are useful…
All models are wrong, 
but some are useful…
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Notion of Similarity I
Solution to any time-series problem, boils down to a proper 
definition of *similarity*

Similarity is always subjective.
(i.e. it depends on the application)
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Notion of Similarity II
Similarity depends on the features we consider

(i.e. how we will describe or compress the sequences)
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Metric and Non-metric Distance Functions
Distance functions

Metric Non-Metric

Euclidean Distance

Correlation
Time Warping

LCSS

Positivity: d(x,y) ≥0 and d(x,y)=0, if x=y

Symmetry: d(x,y) = d(y,x)

Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)

Positivity: d(x,y) ≥0 and d(x,y)=0, if x=y

Symmetry: d(x,y) = d(y,x)

Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)

Properties

If any of these is not 
obeyed then the distance 
is a non-metric

If any of these is not 
obeyed then the distance 
is a non-metric
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Triangle Inequality

Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)

x y

z
Metric distance 
functions can exploit 
the triangle inequality 
to speed-up search 

Intuitively, if:
- x is similar to y and, 
- y is similar to z, then,
- x is similar to z too.
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Triangle Inequality (Importance)

Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)

A

B

C

Q

A B C

A 0 20 110

B 20 0 90

C 110 90 0

Assume: d(Q,bestMatch) = 20

and   d(Q,B) =150

Then, since d(A,B)=20

d(Q,A) ≥ d(Q,B) – d(B,A) 

d(Q,A) ≥ 150 – 20 = 130

So we don’t have to retrieve A from disk
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Non-Metric Distance Functions

• Matching flexibility

• Robustness to outliers

• Stretching in time/space

• Support for different sizes/lengths

• Matching flexibility

• Robustness to outliers

• Stretching in time/space

• Support for different sizes/lengths

• Speeding-up search can be 
difficult
• Speeding-up search can be 
difficult

Bat 
similar to 
batman

Batman 
similar 
to man

Man 
similar to 

bat??

Tutorial | Time-Series with Matlab

Euclidean Distance

∑
=

−=
n

i
ibiaL

1

2
2 ])[][(

L2 = sqrt(sum((aL2 = sqrt(sum((a--b).^2)); b).^2)); % return Euclidean distance% return Euclidean distance

Most widely used distance measure 

Definition:

0 20 40 60 80 100
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Euclidean Distance (Vectorization)

Question: If I want to compare many sequences to each other do I have to 
use a for-loop?

Answer: No, one can use the following equation to perform matrix 
computations only…

||A-B|| = sqrt ( ||A||2 + ||B||2 - 2*A.B )

aaaa==sum(asum(a.*a); bb=.*a); bb=sum(bsum(b.*b); .*b); abab=a'*b; =a'*b; 
d = sqrt(repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) d = sqrt(repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) -- 2*2*abab););

A: DxM matrix

B: DxN matrix

Result is MxN matrix

O
f l

en
gt

h 
D

O
f l

en
gt

h 
D

M sequencesM sequences

…A =

result

D1,1

D2,1

DM,N
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Data Preprocessing (Baseline Removal)

a = a a = a –– mean(amean(a););

average value of A

average value of B

A

B
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Data Preprocessing (Rescaling)

a = a ./ a = a ./ std(astd(a););
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Dynamic Time-Warping (Motivation)

Euclidean distance or warping cannot compensate for small distortions in 
time axis.

Solution: Allow for compression & decompression in time

A

B

C

According to Euclidean distance 
B is more similar to A than to C
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Dynamic Time-Warping

First used in speech recognition 
for recognizing words spoken at 
different speeds

Same idea can work equally well for 
generic time-series data

---Maat--llaabb-------------------

----Mat-lab--------------------------
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Euclidean distance
T1 = [1, 1, 2, 2]

d = 1
T2 = [1, 2, 2, 2]

Euclidean distance
T1 = [1, 1, 2, 2]

d = 1d = 1
T2 = [1, 2, 2, 2]

Dynamic Time-Warping (how does it work?)

The intuition is that we copy an element multiple times so as to achieve a 
better matching

Warping distance
T1 = [1, 1, 2, 2]

d = 0
T2 = [1, 2, 2, 2]

Warping distance
T1 = [1, 1, 2, 2]

d = 0d = 0
T2 = [1, 2, 2, 2]

One-to-one linear alignment

One-to-many non-linear alignment
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Dynamic Time-Warping (implementation)

It is implemented using dynamic programming. Create an array that stores 
all solutions for all possible subsequences.

A

B

c(i,j)  = D(Ai,Bj) + 
min{ c(i-1,j-1) , c(i-1,j ) , c(i,j-1) }

c(i,j)  = D(Ai,Bj) + 
min{ c(i-1,j-1) , c(i-1,j ) , c(i,j-1) }

Recursive equation
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Dynamic Time-Warping (Examples)

So does it work better than Euclidean? Well yes! After all it is more costly..

1

4

10

2

6

5

7

8

9

3

11

15

19

12

14

16

13

17

20

18

Dynamic Time Warping 

1

4

8

12

5

17

20

10

19

11

15

2

6

9

3

14

13

7

16

18

Euclidean Distance 

MIT arrhythmia database
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Dynamic Time-Warping (Can we speed it up?)

Complexity is O(n2). We can reduce it to O(δn) simply by restricting the 
warping path.

A

B
We now only fill only a small 
portion of the array

δ

δ

Minimum 
Bounding 
Envelope 

(MBE)
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Dynamic Time-Warping (restricted warping)

The restriction of the warping path helps:

A. Speed-up execution

B. Avoid extreme (degenerate) matchings

C. Improve clustering/classification 
accuracy

Classification Accuracy

Camera Mouse

Australian Sign Language

Warping Length10% warping is adequate

Camera-Mouse dataset
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Longest Common Subsequence (LCSS)

ignore majority 
of noise

match

match

With Time Warping extreme values (outliers) can destroy the distance 
estimates. The LCSS model can offer more resilience to noise and impose 
spatial constraints too.

δ

ε

Matching within δδ time and εε in space
Everything that is outside the bounding 
envelope can never be matched
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Longest Common Subsequence (LCSS)

ignore majority 
of noise

match

match

Advantages of LCSS:

A. Outlying values not matched

B. Distance/Similarity distorted less

C. Constraints in time & space

Disadvantages of DTW:

A. All points are matched

B. Outliers can distort distance

C. One-to-many mapping

LCSS is more resilient to noise than DTW.
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Longest Common Subsequence (Implementation)

Similar dynamic programming solution as DTW, but now we measure 
similarity not distance.

Can also be expressed as distance
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Distance Measure Comparison

31%8.3LCSS
15%9.3DTW
11%2.1EuclideanASL+noise
46%8.2LCSS
44%9.1DTW
33%2.2EuclideanASL

100%210LCSS
80%237DTW
20%34EuclideanCamera-Mouse

AccuracyTime (sec)MethodDataset

LCSS offers enhanced robustness under noisy conditions
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Distance Measure Comparison (Overview)

Noise 
Robustness

O(n*δ)LCSS
O(n*δ)DTW
O(n)Euclidean

One-to-one MatchingElastic MatchingComplexityMethod
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••PART II: Time Series MatchingPART II: Time Series Matching
Lower BoundingLower Bounding
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Basic Time-Series Problem Revisited

query

Objective: Instead of comparing the query to the 
original sequences (Linear Scan/LS) , let’s compare 
the query to simplified versions of the DB time-
series.

This DB can typically 
fit in memory

This DB can typically 
fit in memory
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Compression – Dimensionality Reduction

Question: When searching the original space it is guaranteed that we 
will find the best match. Does this hold (or under which circumstances) 
in the new compressed space?

query

Project all sequences into a new space, and 
search this space instead (eg project time-
series from 100-D space to 2-D space)

Fe
at

ur
e 

1

Feature 2

One can also organize the low-dimensional 
points into a hierarchical ‘index’ structure. In 
this tutorial we will not go over indexing 
techniques.

A

B

C
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Concept of Lower Bounding
You can guarantee similar results to Linear Scan in the original
dimensionality, as long as you provide a Lower Bounding (LB) function
(in low dim) to the original distance (high dim.) 
GEMINI, GEneric Multimedia INdexIng

0 1 2 3 4 5

Α C B D E F

False alarm (not a problem) 

Projection onto X-axis

0 1 2 3 4 5

D FEB C

False dismissal (bad!)

Projection on some other axis

0 1 2 3 4 5
0

1

2

3

4

5

Α
Β

C

D

E
F

“Find everything within range of 1 from A”

DLB (a,b) <= Dtrue(A,B)DLB (a,b) <= Dtrue(A,B)

– So, for projection from high dim. (N) to low dim. (n): A a, B b etc
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Generic Search using Lower Bounding

query

simplified
query

simplified
DB

original
DB

Answer
Superset

Verify 
against 
original 

DB

Final 
Answer 

set
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Lower Bounding Example

querysequences

Tutorial | Time-Series with Matlab

querysequences

Lower Bounding Example
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sequences Lower Bounds

4.6399

37.9032

19.5174

72.1846

67.1436

78.0920

70.9273

63.7253

1.4121

Lower Bounding Example
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sequences Lower Bounds

4.6399

37.9032

19.5174

72.1846

67.1436

78.0920

70.9273

63.7253

1.4121

True Distance

46.7790

108.8856

113.5873

104.5062

119.4087

120.0066

111.6011

119.0635

17.2540 BestSoFar

Lower Bounding Example
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Lower Bounding the Euclidean distance

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 1001200 20 40 60 80 100 120 0 20 40 60 80 100120

DFT DWT SVD APCA PAA PLA

There are many dimensionality reduction (compression ) techniques for time-series 
data. The following ones can be used to lower bound the Euclidean distance.

Figure by Eamonn Keogh, ‘Time-Series Tutorial’
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Fourier Decomposition

DFT:

IDFT:

“Every signal can 
be represented as 
a superposition of 
sines and cosines”

(…alas nobody 
believes me…)

“Every signal can 
be represented as 
a superposition of 
sines and cosines”

(…alas nobody 
believes me…)

Decompose a time-series into sum of sine waves
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Fourier Decomposition

Decompose a time-series into sum of sine waves

fafa = = fft(afft(a); ); % Fourier decomposition% Fourier decomposition
fa(5:end) = 0; fa(5:end) = 0; % keep first 5 coefficients (low frequencies)% keep first 5 coefficients (low frequencies)
reconstrreconstr = = real(ifft(fareal(ifft(fa)); )); % reconstruct signal% reconstruct signal

DFT:

IDFT:

-0.4446

-0.9864

-0.3254

-0.6938

-0.1086

-0.3470

0.5849

1.5927

-0.9430

-0.3037

-0.7805

-0.1953

-0.3037

0.2381

2.8389

-0.7046

-0.5529

-0.6721

0.1189

0.2706

-0.0003

1.3976

-0.4987

-0.2387

-0.7588

x(n)

-0.3633          

-0.6280 + 0.2709i

-0.4929 + 0.0399i

-1.0143 + 0.9520i

0.7200 - 1.0571i

-0.0411 + 0.1674i

-0.5120 - 0.3572i

0.9860 + 0.8043i

-0.3680 - 0.1296i

-0.0517 - 0.0830i

-0.9158 + 0.4481i

1.1212 - 0.6795i

0.2667 + 0.1100i

0.2667 - 0.1100i

1.1212 + 0.6795i

-0.9158 - 0.4481i

-0.0517 + 0.0830i

-0.3680 + 0.1296i

0.9860 - 0.8043i

-0.5120 + 0.3572i

-0.0411 - 0.1674i

0.7200 + 1.0571i

-1.0143 - 0.9520i

-0.4929 - 0.0399i

-0.6280 - 0.2709i

X(f)

Life is complex, it has both real and imaginary parts.
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Fourier Decomposition
How much space we gain by compressing random walk data?

1 coeff > 60% of energy

10 coeff > 90% of energy

50 100 150 200 250

-5

0

5

Reconstruction using 1coefficients
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Fourier Decomposition
How much space we gain by compressing random walk data?

1 coeff > 60% of energy

10 coeff > 90% of energy

50 100 150 200 250

-5

0

5

Reconstruction using 2coefficients
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Fourier Decomposition
How much space we gain by compressing random walk data?

1 coeff > 60% of energy

10 coeff > 90% of energy

50 100 150 200 250

-5

0

5

Reconstruction using 7coefficients
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Fourier Decomposition
How much space we gain by compressing random walk data?

1 coeff > 60% of energy

10 coeff > 90% of energy

50 100 150 200 250

-5

0

5

Reconstruction using 20coefficients
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20 40 60 80 100 120
0

500

1000

1500

Coefficients

Error

20 40 60 80 100 120

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Coefficients

Energy Percentage

Fourier Decomposition
How much space we gain by compressing random walk data?

1 coeff > 60% of energy

10 coeff > 90% of energy
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Fourier Decomposition
Which coefficients are important?

– We can measure the ‘energy’ of each coefficient

– Energy = Real(X(fk))2 + Imag(X(fk))2

Most of data-mining research 
uses first k coefficients:

Good for random walk 
signals (eg stock market)

Easy to ‘index’

Not good for general signals

fafa = = fft(afft(a); ); % Fourier decomposition% Fourier decomposition
N = N = length(alength(a);); % how many?% how many?
fafa = fa(1:ceil(N/2)); = fa(1:ceil(N/2)); % keep first half only% keep first half only
magmag = 2*abs(fa).^2;= 2*abs(fa).^2; % calculate energy% calculate energy
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Fourier Decomposition
Which coefficients are important?

– We can measure the ‘energy’ of each coefficient

– Energy = Real(X(fk))2 + Imag(X(fk))2

Usage of the coefficients with 
highest energy:

Good for all types of signals

Believed to be difficult to 
index

CAN be indexed using 
metric trees
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Code for Reconstructed Sequence
a = load('randomWalk.dat');a = load('randomWalk.dat');
a = (aa = (a--mean(a))/std(a);         mean(a))/std(a);         % z% z--normalizationnormalization

fa = fft(a);fa = fft(a);

maxInd = ceil(length(a)/2);     maxInd = ceil(length(a)/2);     % until the middle% until the middle
N = length(a);                  N = length(a);                  

energy = zeros(maxIndenergy = zeros(maxInd--1, 1);1, 1);
E = sum(a.^2);                  E = sum(a.^2);                  % energy of a% energy of a

for ind=2:maxInd,for ind=2:maxInd,

fa_N = fa;                  fa_N = fa;                  % copy fourier% copy fourier
fa_N(ind+1:Nfa_N(ind+1:N--ind+1) = 0;    ind+1) = 0;    % zero out unused% zero out unused
r = real(ifft(fa_N));       r = real(ifft(fa_N));       % reconstruction% reconstruction

plot(r, 'r','LineWidth',2); hold on;plot(r, 'r','LineWidth',2); hold on;
plot(a,'k');plot(a,'k');
title(['Reconstruction using ' num2str(indtitle(['Reconstruction using ' num2str(ind--1) 'coefficients']);1) 'coefficients']);
set(gca,'plotboxaspectratio', [3 1 1]);set(gca,'plotboxaspectratio', [3 1 1]);
axis tightaxis tight
pause;pause; % wait for key% wait for key
cla;cla; % clear axis% clear axis

endend

0          

-0.6280 + 0.2709i

-0.4929 + 0.0399i

-1.0143 + 0.9520i

0.7200 - 1.0571i

-0.0411 + 0.1674i

-0.5120 - 0.3572i

0.9860 + 0.8043i

-0.3680 - 0.1296i

-0.0517 - 0.0830i

-0.9158 + 0.4481i

1.1212 - 0.6795i

0.2667 + 0.1100i

0.2667 - 0.1100i

1.1212 + 0.6795i

-0.9158 - 0.4481i

-0.0517 + 0.0830i

-0.3680 + 0.1296i

0.9860 - 0.8043i

-0.5120 + 0.3572i

-0.0411 - 0.1674i

0.7200 + 1.0571i

-1.0143 - 0.9520i

-0.4929 - 0.0399i

-0.6280 - 0.2709i

X(f)

keepkeep

IgnoreIgnore

keepkeep
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Code for Plotting the Error
a = load('randomWalk.dat');a = load('randomWalk.dat');
a = (aa = (a--mean(a))/std(a);         mean(a))/std(a);         % z% z--normalizationnormalization
fa = fft(a);fa = fft(a);
maxInd = ceil(length(a)/2);     maxInd = ceil(length(a)/2);     % until the middle% until the middle
N = length(a);                  N = length(a);                  
energy = zeros(maxIndenergy = zeros(maxInd--1, 1);1, 1);
E = sum(a.^2);                  E = sum(a.^2);                  % energy of a% energy of a

for ind=2:maxInd,for ind=2:maxInd,
fa_N = fa;                  fa_N = fa;                  % copy fourier% copy fourier
fa_N(ind+1:Nfa_N(ind+1:N--ind+1) = 0;    ind+1) = 0;    % zero out unused% zero out unused
r = real(ifft(fa_N));       r = real(ifft(fa_N));       % reconstruction% reconstruction

energy(indenergy(ind--1) = sum(r.^2);  1) = sum(r.^2);  % energy of reconstruction% energy of reconstruction
error(inderror(ind--1) = sum(abs(r1) = sum(abs(r--a).^2); a).^2); % error% error

endend

E = ones(maxIndE = ones(maxInd--1, 1)*E;        1, 1)*E;        
error = E error = E -- energy;energy;
ratio = energy ./ E;ratio = energy ./ E;

subplot(1,2,1);                 subplot(1,2,1);                 % left plot% left plot
plot([1:maxIndplot([1:maxInd--1], error, 'r', 'LineWidth',1.5); 1], error, 'r', 'LineWidth',1.5); 
subplot(1,2,2);                 subplot(1,2,2);                 % right plot% right plot
plot([1:maxIndplot([1:maxInd--1], ratio, 'b', 'LineWidth',1.5);1], ratio, 'b', 'LineWidth',1.5);

This is the same
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Lower Bounding using Fourier coefficients
Parseval’s Theorem states that energy in the frequency domain equals the 
energy in the time domain:

Euclidean distanceor, that

If we just keep some of the coefficients, their sum of squares always 
underestimates (ie lower bounds) the Euclidean distance:
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Lower Bounding using Fourier coefficients -Example

x = cumsum(randn(100,1));x = cumsum(randn(100,1));
y = cumsum(randn(100,1));y = cumsum(randn(100,1));
euclid_Timeeuclid_Time = sqrt(sum((x= sqrt(sum((x--y).^2));y).^2));

fxfx = = fft(x)/sqrt(length(xfft(x)/sqrt(length(x)); )); 
fyfy = = fft(y)/sqrt(length(xfft(y)/sqrt(length(x));));
euclid_Freqeuclid_Freq = = sqrt(sum(abs(fxsqrt(sum(abs(fx -- fy).^2));fy).^2));

x

y

Note the normalization

120.9051

120.9051

Keeping 10 coefficients 
the distance is: 
115.5556 < 120.9051
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Fourier Decomposition

O(nlogn) complexity

Tried and tested

Hardware implementations

Many applications:
– compression

– smoothing 

– periodicity detection

O(nlogn) complexity

Tried and tested

Hardware implementations

Many applications:
– compression

– smoothing 

– periodicity detection

Not good approximation for 
bursty signals 

Not good approximation for 
signals with flat and busy 
sections
(requires many coefficients)

Not good approximation for 
bursty signals 

Not good approximation for 
signals with flat and busy 
sections
(requires many coefficients)
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Wavelets – Why exist?
Similar concept with Fourier decomposition

Fourier coefficients represent global contributions, 
wavelets are localized

Fourier is good for smooth, random walk data, 
but not for bursty data or flat data
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Wavelets (Haar) - Intuition
Wavelet coefficients, still represent an inner product 
(projection) of the signal with some basis functions. 

These functions have lengths that are powers of two (full 
sequence length, half, quarter etc)

See also:wavemenu

Haar coefficients: {c, d00, d10, d11,…}

D
c+d00

c-d00

etc

An arithmetic example

X = [9,7,3,5]

Haar = [6,2,1,-1]

c = 6 = (9+7+3+5)/4

c + d00 = 6+2 = 8 = (9+7)/2

c - d00 = 6-2 = 4 = (3+5)/2

etc
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Wavelets in Matlab

Specialized Matlab interface 
for wavelets

See also:wavemenu
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Code for Haar Wavelets
a = load('randomWalk.dat');a = load('randomWalk.dat');
a = (aa = (a--mean(a))/std(a);         mean(a))/std(a);         % z% z--normalizationnormalization
maxlevels = wmaxlev(length(a),'haar');maxlevels = wmaxlev(length(a),'haar');
[Ca, La] = wavedec(a,maxlevels,'haar');[Ca, La] = wavedec(a,maxlevels,'haar');

% Plot coefficients and MRA% Plot coefficients and MRA
for level = 1:maxlevelsfor level = 1:maxlevels

cla;cla;
subplot(2,1,1);subplot(2,1,1);
plot(detcoef(Ca,La,level)); axis tight;plot(detcoef(Ca,La,level)); axis tight;
title(sprintf('Wavelet coefficients title(sprintf('Wavelet coefficients –– Level %d',level));Level %d',level));
subplot(2,1,2);subplot(2,1,2);
plot(wrcoef('d',Ca,La,'haar',level)); axis tight;plot(wrcoef('d',Ca,La,'haar',level)); axis tight;
title(sprintf('MRA title(sprintf('MRA –– Level %d',level));Level %d',level));
pause;pause;

endend

% Top% Top--20 coefficient reconstruction20 coefficient reconstruction
[Ca_sorted, Ca_sortind] = sort(Ca);[Ca_sorted, Ca_sortind] = sort(Ca);
Ca_top20 = Ca; Ca_top20(Ca_sortind(1:endCa_top20 = Ca; Ca_top20(Ca_sortind(1:end--19)) = 0;19)) = 0;
a_top20 = waverec(Ca_top20,La,'haar');a_top20 = waverec(Ca_top20,La,'haar');
figure; hold on;figure; hold on;
plot(a, 'b'); plot(a_top20, 'r');plot(a, 'b'); plot(a_top20, 'r');
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PAA (Piecewise Aggregate Approximation)

Represent time-series as a sequence of segments

Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250

-2

-1

0

1

2

Reconstruction using 1coefficients
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PAA (Piecewise Aggregate Approximation)

Represent time-series as a sequence of segments

Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250

-2

-1

0

1

2

Reconstruction using 2coefficients
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PAA (Piecewise Aggregate Approximation)

Represent time-series as a sequence of segments

Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250

-2

-1

0

1

2

Reconstruction using 4coefficients
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PAA (Piecewise Aggregate Approximation)

Represent time-series as a sequence of segments

Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250

-2

-1

0

1

2

Reconstruction using 8coefficients
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PAA (Piecewise Aggregate Approximation)

Represent time-series as a sequence of segments

Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250

-2

-1

0

1

2

Reconstruction using 16coefficients
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PAA (Piecewise Aggregate Approximation)

Represent time-series as a sequence of segments

Essentially a projection of the Haar coefficients in time

also featured as Piecewise Constant Approximation

50 100 150 200 250

-2

-1

0

1

2

Reconstruction using 32coefficients
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PAA Matlab Code
function data = paa(s, numCoeff)function data = paa(s, numCoeff)
% PAA(s, numcoeff) % PAA(s, numcoeff) 
% s: sequence vector (Nx1 or Nx1)% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)% data: PAA sequence (Nx1)

N = length(s);          N = length(s);          % length of sequence% length of sequence
segLen = N/numCoeff;    segLen = N/numCoeff;    % assume it's integer% assume it's integer

sN = reshape(s, segLen, numCoeff);  sN = reshape(s, segLen, numCoeff);  % break in segments% break in segments
avg = mean(sN);                     avg = mean(sN);                     % average segments% average segments
data = repmat(avg, segLen, 1);      data = repmat(avg, segLen, 1);      % expand segments% expand segments
data = data(:);                     data = data(:);                     % make column% make column

1 2 3 4 5 6 7 8s numCoeff 4
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PAA Matlab Code
function data = paa(s, numCoeff)function data = paa(s, numCoeff)
% PAA(s, numcoeff) % PAA(s, numcoeff) 
% s: sequence vector (Nx1 or Nx1)% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)% data: PAA sequence (Nx1)

N = length(s);          N = length(s);          % length of sequence% length of sequence
segLen = N/numCoeff;    segLen = N/numCoeff;    % assume it's integer% assume it's integer

sN = reshape(s, segLen, numCoeff);  sN = reshape(s, segLen, numCoeff);  % break in segments% break in segments
avg = mean(sN);                     avg = mean(sN);                     % average segments% average segments
data = repmat(avg, segLen, 1);      data = repmat(avg, segLen, 1);      % expand segments% expand segments
data = data(:);                     data = data(:);                     % make column% make column

1 2 3 4 5 6 7 8s numCoeff 4

N=8
segLen = 2
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PAA Matlab Code
function data = paa(s, numCoeff)function data = paa(s, numCoeff)
% PAA(s, numcoeff) % PAA(s, numcoeff) 
% s: sequence vector (Nx1 or Nx1)% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)% data: PAA sequence (Nx1)

N = length(s);          N = length(s);          % length of sequence% length of sequence
segLen = N/numCoeff;    segLen = N/numCoeff;    % assume it's integer% assume it's integer

sN = reshape(s, segLen, numCoeff);  sN = reshape(s, segLen, numCoeff);  % break in segments% break in segments
avg = mean(sN);                     avg = mean(sN);                     % average segments% average segments
data = repmat(avg, segLen, 1);      data = repmat(avg, segLen, 1);      % expand segments% expand segments
data = data(:);                     data = data(:);                     % make column% make column

1 2 3 4 5 6 7 8s numCoeff 4

N=8
segLen = 2

2 4

sN 1

2

3

4

5

6

7

8
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PAA Matlab Code
function data = paa(s, numCoeff)function data = paa(s, numCoeff)
% PAA(s, numcoeff) % PAA(s, numcoeff) 
% s: sequence vector (Nx1 or Nx1)% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)% data: PAA sequence (Nx1)

N = length(s);          N = length(s);          % length of sequence% length of sequence
segLen = N/numCoeff;    segLen = N/numCoeff;    % assume it's integer% assume it's integer

sN = reshape(s, segLen, numCoeff);  sN = reshape(s, segLen, numCoeff);  % break in segments% break in segments
avg = mean(sN);                     avg = mean(sN);                     % average segments% average segments
data = repmat(avg, segLen, 1);      data = repmat(avg, segLen, 1);      % expand segments% expand segments
data = data(:);                     data = data(:);                     % make column% make column

1 2 3 4 5 6 7 8s numCoeff 4

N=8
segLen = 2

sN 1

2

3

4

5

6

7

8

avg 1.5 3.5 5.5 7.5
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PAA Matlab Code
function data = paa(s, numCoeff)function data = paa(s, numCoeff)
% PAA(s, numcoeff) % PAA(s, numcoeff) 
% s: sequence vector (1xN)% s: sequence vector (1xN)
% numCoeff: number of PAA segments% numCoeff: number of PAA segments
% data: PAA sequence (1xN)% data: PAA sequence (1xN)

N = length(s);          N = length(s);          % length of sequence% length of sequence
segLen = N/numCoeff;    segLen = N/numCoeff;    % assume it's integer% assume it's integer

sN = reshape(s, segLen, numCoeff);  sN = reshape(s, segLen, numCoeff);  % break in segments% break in segments
avg = mean(sN);                     avg = mean(sN);                     % average segments% average segments
data = repmat(avg, segLen, 1);      data = repmat(avg, segLen, 1);      % expand segments% expand segments
data = data(:)data = data(:)’’;                    ;                    % make row% make row

1 2 3 4 5 6 7 8s numCoeff 4

N=8
segLen = 2

sN 1

2

3

4

5

6

7

8

avg 1.5 3.5 5.5 7.5

1.5 3.5 5.5 7.5

1.5 3.5 5.5 7.5

2

data
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PAA Matlab Code
function data = paa(s, numCoeff)function data = paa(s, numCoeff)
% PAA(s, numcoeff) % PAA(s, numcoeff) 
% s: sequence vector (1xN)% s: sequence vector (1xN)
% numCoeff: number of PAA segments% numCoeff: number of PAA segments
% data: PAA sequence (1xN)% data: PAA sequence (1xN)

N = length(s);          N = length(s);          % length of sequence% length of sequence
segLen = N/numCoeff;    segLen = N/numCoeff;    % assume it's integer% assume it's integer

sN = reshape(s, segLen, numCoeff);  sN = reshape(s, segLen, numCoeff);  % break in segments% break in segments
avg = mean(sN);                     avg = mean(sN);                     % average segments% average segments
data = repmat(avg, segLen, 1);      data = repmat(avg, segLen, 1);      % expand segments% expand segments
data = data(:)data = data(:)’’;                    ;                    % make row% make row

1 2 3 4 5 6 7 8s numCoeff 4

N=8
segLen = 2

sN 1

2

3

4

5

6

7

8

avg 1.5 3.5 5.5 7.5

1.5 3.5 5.5 7.5

1.5 3.5 5.5 7.5
data

data 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5
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APCA (Adaptive Piecewise Constant Approximation)

Not all haar/PAA coefficients 
are equally important

Intuition: Keep ones with the 
highest energy

Segments of variable length

APCA is good for bursty 
signals

PAA requires 1 number per 
segment, APCA requires
2: [value, length]

PAAPAA

APCAAPCA

Segments of Segments of 
equal sizeequal size

Segments of Segments of 
variable sizevariable size

E.g. 10 bits for a 
sequence of 1024 points
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Wavelet Decomposition

O(n) complexity

Hierarchical structure

Progressive transmission

Better localization

Good for bursty signals

Many applications:
– compression 

– periodicity detection

O(n) complexity

Hierarchical structure

Progressive transmission

Better localization

Good for bursty signals

Many applications:
– compression 

– periodicity detection

Most data-mining research 
still utilizes Haar wavelets 
because of their simplicity.

Most data-mining research 
still utilizes Haar wavelets 
because of their simplicity.
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Piecewise Linear Approximation (PLA)

You can find a bottom-up implementation here:
– http://www.cs.ucr.edu/~eamonn/TSDMA/time_series_toolbox/

Approximate a sequence 
with multiple linear 
segments

First such algorithms 
appeared in cartography
for map approximation

Many implementations
– Optimal

– Greedy Bottom-Up

– Greedy Top-down

– Genetic, etc
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Piecewise Linear Approximation (PLA)
Approximate a sequence 
with multiple linear 
segments

First such algorithms 
appeared in cartography
for map approximation
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Piecewise Linear Approximation (PLA)
Approximate a sequence 
with multiple linear 
segments

First such algorithms 
appeared in cartography
for map approximation
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Piecewise Linear Approximation (PLA)
Approximate a sequence 
with multiple linear 
segments

First such algorithms 
appeared in cartography
for map approximation
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Piecewise Linear Approximation (PLA)
Approximate a sequence 
with multiple linear 
segments

First such algorithms 
appeared in cartography
for map approximation

Tutorial | Time-Series with Matlab

Piecewise Linear Approximation (PLA)
Approximate a sequence 
with multiple linear 
segments

First such algorithms 
appeared in cartography
for map approximation
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Piecewise Linear Approximation (PLA)

O(nlogn) complexity for 
“bottom up” algorithm

Incremental computation 
possible

Provable error bounds

Applications for:
– Image / signal 

simplification 

– Trend detection

O(nlogn) complexity for 
“bottom up” algorithm

Incremental computation 
possible

Provable error bounds

Applications for:
– Image / signal 

simplification 

– Trend detection

Visually not very smooth or 
pleasing.

Visually not very smooth or 
pleasing.
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Singular Value Decomposition (SVD)
SVD attempts to find the ‘optimal’ basis for describing a set 
of multidimensional points

Objective: Find the axis (‘directions’) that describe better the 
data variance 

x

y

We need 2 numbers (x,y) 
for every point

x

y
Now we can describe each 
point with 1 number, their 

projection on the line 

New axis and position of points
(after projection and rotation) 
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Singular Value Decomposition (SVD)
Each time-series is essentially a multidimensional point

Objective: Find the ‘eigenwaves’ (basis) whose linear 
combination describes best the sequences. Eigenwaves are 
data-dependent.

eigenwave 0

eigenwave 1

eigenwave 3

eigenwave 4

A linear combination of the 
eigenwaves can produce any 

sequence in the database 

AMxn = UMxr *Σ rxr * VT
nxr

M
 s

eq
ue

nc
es

M
 s

eq
ue

nc
es

each of length neach of length n

……

Factoring of data array into 3 
matrices 

[U,S,V] = [U,S,V] = svd(Asvd(A))
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Code for SVD / PCA
A = cumsum(randn(100,10));A = cumsum(randn(100,10));
% z% z--normalizationnormalization
A = (AA = (A--repmat(mean(A),size(A,1),1))./repmat(std(A),size(A,1),1);repmat(mean(A),size(A,1),1))./repmat(std(A),size(A,1),1);
[U,S,V] = svd(A,0);[U,S,V] = svd(A,0);

% Plot relative energy% Plot relative energy
figure; plot(cumsum(diag(S).^2)/norm(diag(S))^2);figure; plot(cumsum(diag(S).^2)/norm(diag(S))^2);
set(gca, 'YLim', [0 1]); pause;set(gca, 'YLim', [0 1]); pause;

% Top% Top--3 eigenvector reconstruction3 eigenvector reconstruction
A_top3 = U(:,1:3)*S(1:3,1:3)*V(:,1:3)';A_top3 = U(:,1:3)*S(1:3,1:3)*V(:,1:3)';

% Plot original and reconstruction% Plot original and reconstruction
figure;figure;
for i = 1:10for i = 1:10

cla;cla;
subplot(2,1,1);subplot(2,1,1);
plot(A(:,i));plot(A(:,i));
title('Original'); axis tight;title('Original'); axis tight;
subplot(2,1,2);subplot(2,1,2);
plot(A_top3(:,i));plot(A_top3(:,i));
title('Reconstruction'); axis tight;title('Reconstruction'); axis tight;
pause;pause;

endend
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Singular Value Decomposition

Optimal dimensionality 
reduction in Euclidean 
distance sense

SVD is a very powerful tool 
in many domains:
– Websearch (PageRank)

Optimal dimensionality 
reduction in Euclidean 
distance sense

SVD is a very powerful tool 
in many domains:
– Websearch (PageRank)

Cannot be applied for just 
one sequence. A set of 
sequences is required.

Addition of a sequence in 
database requires 
recomputation

Very costly to compute.
Time: min{ O(M2n), O(Mn2)}
Space: O(Mn) 
M sequences of length n

Cannot be applied for just 
one sequence. A set of 
sequences is required.

Addition of a sequence in 
database requires 
recomputation

Very costly to compute.
Time: min{ O(M2n), O(Mn2)}
Space: O(Mn) 
M sequences of length n
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Symbolic Approximation
Assign a different symbol based on range of values

Find ranges either from data histogram or uniformly

You can find an implementation here:
– http://www.ise.gmu.edu/~jessica/sax.htm

0

--

0 20 40 60 80 100 120

bb
b

a

c
c

c

a

baabccbc
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Symbolic Approximations

Linear complexity 

After ‘symbolization’ many 
tools from bioinformatics 
can be used
– Markov models

– Suffix-Trees, etc

Linear complexity 

After ‘symbolization’ many 
tools from bioinformatics 
can be used
– Markov models

– Suffix-Trees, etc

Number of regions 
(alphabet length) can affect 
the quality of result

Number of regions 
(alphabet length) can affect 
the quality of result
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Multidimensional Time-Series
Catching momentum lately

Applications for mobile trajectories, sensor 
networks, epidemiology, etc

Let’s see how to approximate 2D 
trajectories with 
Minimum Bounding Rectangles

Aristotle

Ari, are you sure the 

world is not 1D?

Ari, are you sure the 

world is not 1D?
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Multidimensional MBRs
Find Bounding rectangles that completely contain a trajectory 
given some optimization criteria (eg minimize volume)

On my income tax 1040 it says "Check this box
if you are blind." I wanted to put a check mark 
about three inches away. 
- Tom Lehrer
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Comparison of different Dim. Reduction Techniques
Tutorial | Time-Series with Matlab

So which dimensionality reduction is the best?

Absence of proof is no proof of absence.
- Michael Crichton

1993 2000 2001 2004 2005

Fourier is 

good…

Fourier is 

good…
PAA!PAA!

APCA is 
better 

than PAA!

APCA is 
better 

than PAA!

Chebyshev
is better 

than APCA!

Chebyshev
is better 

than APCA!

The 
future is 

symbolic!

The 
future is 

symbolic!
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Comparisons
Lets see how tight the lower bounds are for a variety on 65 datasets

Average Lower Bound

Median Lower Bound

A. No approach 
is better on all 
datasets

B. Best coeff. 
techniques 
can offer 
tighter 
bounds 

C. Choice of 
compression 
depends on 
application

Note: similar results also reported by Keogh in SIGKDD02
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••PART II: Time Series MatchingPART II: Time Series Matching
Lower Bounding the DTW and LCSSLower Bounding the DTW and LCSS
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Lower Bounding the Dynamic Time Warping
Recent approaches use the Minimum Bounding Envelope 
for bounding the DTW
– Create Minimum Bounding Envelope (MBE) of query Q

– Calculate distance between MBE of Q and any sequence A

– One can show that: D(MBE(QD(MBE(Q))δδ,A) < DTW(Q,A),A) < DTW(Q,A)

Q

A
MBE(Q)

δ

However, this representation 
is uncompressed. Both MBE 
and the DB sequence can be 
compressed using any of the 
previously mentioned 
techniques.

U

L

LB = sqrt(sum([[A > U].* [A-U]; [A < L].* [L-A]].^2));
One Matlab command!
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Lower Bounding the Dynamic Time Warping

LB by Keogh
approximate MBE and 
sequence using MBRs

LB = 13.84

LB by Zhu and Shasha
approximate MBE and 
sequence using PAA

LB = 25.41

Q A 

Q 

A 
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An even tighter lower bound can be achieved by ‘warping’ the MBE 
approximation against any other compressed signal.

LB_Warp = 29.05

Lower Bounding the Dynamic Time Warping

Lower Bounding approaches for DTW, 
will typically yield at least an order of 
magnitude speed improvement 
compared to the naïve approach.

Let’s compare the 3 LB approaches:
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Time Comparisons
We will use DTW (and the corresponding LBs) for recognition of hand-written 
digits/shapes.

Accuracy: Using DTW we can achieve recognition above 90%.

Running Time: runTime LB_Warp < runTime LB_Zhu < runTime LB-Keogh

Pruning Power: For some queries LB_Warp can examine up to 65 time 
fewer sequences
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Upper Bounding the LCSS
Since LCSS measures similarity and similarity is the inverse of distance, to 
speed up LCSS we need to upper bound it.

QueryIndexed Sequence

44 points                   +              6 points

Sim.=50/77 
= 0.64

LCSS(MBEQ,A) >= LCSS(Q,A)LCSS(MBEQ,A) >= LCSS(Q,A)
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LCSS Application – Image Handwriting 
Library of Congress has 54 million 
manuscripts (20TB of text)

Increasing interest for automatic 
transcribing

George Washington Manuscript

1. Extract words from document
2. Extract image features 
3. Annotate a subset of words
4. Classify remaining words

1. Extract words from document
2. Extract image features 
3. Annotate a subset of words
4. Classify remaining words

Word annotation:

Features:

- Black pixels / column
- Ink-paper transitions/ col , etc

50 100 150 200 250 300 350 400
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Utilized 2D time-series (2 features)

Returned 3-Nearest Neighbors of following words

Classification accuracy > 70%

LCSS Application – Image Handwriting 
Tutorial | Time-Series with Matlab

••PART II: Time Series AnalysisPART II: Time Series Analysis
Test Case and Structural Similarity MeasuresTest Case and Structural Similarity Measures
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Analyzing Time-Series Weblogs

“PKDD 2005”

“Porto”

“Priceline”

Weblog of user 
requests over 

time
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Weblog Data Representation
We canRecord aggregate information, eg, number of requests per day for each 
keyword

Capture trends and periodicities
Privacy preserving

Query: Spiderman

Jan Feb Mar Apr May Jun Jul Aug Sep Okt Nov Dec

R
eq

ue
st

s

May 2002. Spiderman 1 
was released in theaters

Google Zeitgeist
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Finding similar patterns in query logs
We can find useful patterns and correlation in the user demand 
patterns which can be useful for:

Search engine optimization
Recommendations
Advertisement pricing (e.g. keyword more expensive at the popular 
months)

Query: ps2

Query: xbox

Jan Feb Mar Apr May Jun Jul Aug Sep Okt Nov Dec

R
eq

ue
st

s

Game consoles are more 
popular closer to Christmas
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Finding similar patterns in query logs
We can find useful patterns and correlation in the user demand 
patterns which can be useful for:

Search engine optimization
Recommendations
Advertisement pricing (e.g. keyword more expensive at the popular 
months)

Query: elvis

Jan Feb Mar Apr May Jun Jul Aug Sep Okt Nov Dec

R
eq

ue
st

s

Burst on Aug. 16
th

Death Anniversary of Elvis
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Matching of Weblog data
Use Euclidean distance to match time-series. But which dimensionality 
reduction technique to use? 

Let’s look at the data:

Query “Bach”

Query “stock market”

1 year span

The data is smooth and highly 
periodic, so we can use Fourier 
decomposition.

Instead of using the first Fourier 
coefficients we can use the best ones 
instead. 

Let’s see how the approximation will 
look:

Tutorial | Time-Series with Matlab

First Fourier Coefficients vs Best Fourier Coefficients

Using the best coefficients, provides a 
very high quality approximation of the 
original time-series
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Matching results I

2000 2001 2002
0

LeTour

2000 2001 2002
0

Tour De France

2000 2001 2002

Query = “Lance Armstrong”
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2000 2001 2002

Query = “Christmas”

Knn4: Christmas coloring 
books

Knn8: Christmas baking

Knn12: Christmas clipart

Knn20: Santa Letters

Matching results II
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Finding Structural Matches
The Euclidean distance cannot distill all the potentially useful 
information in the weblog data.

Some data are periodic, while other are bursty. We will attempt to 
provide similarity measures that are based on periodicity and 
burstiness.

Query “Elvis”. Burst in demand on 
16th August. Death anniversary of 
Elvis Presley

Query “cinema”. Weakly periodicity. 
Peak of period every Friday.
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Periodic Matching

Frequency
Ignore Phase/

Keep important
components

)(,||)(||maxarg +xFxF
k

)(),( yFxF
)(,||)(||maxarg +yFyF

k

Calculate
Distance

||)()(||1
++ −= yFxFD

||)()(||2
++ ⋅= yFxFD

cinema

stock

easter

christmas

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

Periodogram
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Matching Results with Periodic Measure
Now we can discover more flexible matches. We observe a clear 
separation between seasonal and periodic sequences.
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Matching Results with Periodic Measure
Compute pairwise periodic distances and do a mapping of the 
sequences on 2D using Multi-dimensional scaling (MDS).



53

Tutorial | Time-Series with Matlab

50 100 150 200 250 300 350

Matching Based on Bursts
Another method of performing structural matching can be achieved 
using burst features of sequences.

Burst feature detection can be useful for:
Identification of important events
‘Query-by-burst’

2002: Harry Potter demand
Harry Potter 1 
(Movie)

Harry Potter 1 
(DVD)

Harry Potter 2 (November 15 2002)
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Burst Detection
Burst detection is similar to anomaly detection. 
Create distribution of values (eg gaussian model)
Any value that deviates from the observed distribution (eg more than 3 
std) can be considered as burst.

Valentine’s 
Day

Mother’s 
Day
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Query-by-burst
To perform ‘query-by-burst’ we can perform the following steps:

1. Find burst regions in given query
2. Represent query bursts as time segments
3. Find which sequences in DB have overlapping burst regions.
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Query-by-burst Results

Cheap gifts

ScarfsTropical Storm

www.nhc.noaa.govPentagon attack

Nostradamus prediction

Queries

Matches
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Structural Similarity Measures
Periodic similarity achieves high clustering/classification accuracy in 
ECG data
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DTW Periodic Measure

Tutorial | Time-Series with Matlab

Structural Similarity Measures
Periodic similarity is a very powerful visualization tool.

MotorCurrent: broken bars 1            

MotorCurrent: broken bars 2            

MotorCurrent: healthy 1                

MotorCurrent: healthy 2                

Koski ECG: slow 1                      

Koski ECG: slow 2                      

Koski ECG: fast 1                      

Koski ECG: fast 2

Video Surveillance: Ann, gun           

Video Surveillance: Ann, no gun        

Video Surveillance: Eamonn, gun        

Video Surveillance: Eamonn, no gun     

Random

Random

Power Demand: Jan-March (Italian)      

Power Demand: April-June (Italian)     

Power Demand: Jan-March (Dutch)        

Power Demand: April-June (Dutch)       

Great Lakes (Erie)                     

Great Lakes (Ontario)                  

Sunspots: 1749 to 1869                 

Sunspots: 1869 to 1990                       

Random Walk

Random Walk
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Structural Similarity Measures
Burst correlation can provide useful insights for understanding which 
sequences are related/connected. Applications for:
Gene Expression Data
Stock market data (identification of causal chains of events)

PRICELINE:
Stock value dropped

NICE SYSTEMS:
Stock value increased
(provider of air traffic
control systems)

Query: Which stocks exhibited trading bursts during 9/11 attacks?
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Conclusion
The traditional shape matching measures cannot address all time-
series matching problems and applications. 
Structural distance measures can provide more flexibility.

There are many other exciting time-series problems that haven’t been 
covered in this tutorial:

Anomaly Detection

Frequent pattern Discovery

Rule Discovery
etc

I don’t want to 
achieve immortality 
through my work…I 
want to achieve it 
through not dying.

I don’t want to 
achieve immortality 
through my work…I 
want to achieve it 
through not dying.


