
FlexTrack : A System for Querying Flexible

Patterns in Trajectory Databases

Marcos R. Vieira1, Petko Bakalov2, and Vassilis J. Tsotras1

1UC Riverside 2ESRI
{mvieira,tsotras}@cs.ucr.edu,pbakalov@esri.com

Abstract. We describe the FlexTrack system for querying trajectories
using flexible pattern queries. Such queries are composed of a sequence of
simple spatio-temporal predicates, e.g., range and nearest-neighbors, as
well as complex motion pattern predicates, e.g., predicates that contain
variables and constraints. Users can interactively select spatio-temporal
predicates to construct such pattern queries using a hierarchy of regions
that partition the spatial domain. Several different query processing algo-
rithms are currently implemented and available in the FlexTrack system.

1 Introduction

In this paper we describe FlexTrack , a system that allows users to query, in a
very intuitive way, trajectory databases using flexible patterns [1, 2]. A flexible
pattern query (or pattern query for short) is specified over a fixed set of areas
that partition the spatial domain and is defined as a combination of predicates
that allow the end user to focus on specific parts of the trajectories that are of
interest. For example, the pattern query “Find all trajectories that first were in
downtown LA, later passed by Santa Monica, and then were closest to LAX”
provides a mixture of range and Nearest-Neighbor (NN) predicates that have to
be satisfied in the specific order. Essentially, flexible patterns cover that part of
the query spectrum between the single predicate spatio-temporal queries, such as
the range predicate that covers certain time instances of the trajectory life (e.g.
“Find all trajectories that passed by area A at 11pm”), and similarity/clustering
based ones, such as extracting similar movement patterns and periodicities from
a trajectory archive that cover the whole lifespan of the trajectory (e.g. “Find
all trajectories that are similar to a given query trajectory according to some
similarity measure”).

In order to provide more expressive power, flexible pattern queries can also
include variables as predicates. An example of a query with a variable is “Find
all taxi cabs that visited the same city district twice in the last 1 hour”. Here
the area of interest is not known in advance but it is specified by its properties
(visited twice in the last 1 hour). We term these variable-enabled pattern queries
as “flexible” as they provide a powerful way to query trajectories. Both the
fixed and variable spatial predicates can express explicit temporal constraints
(e.g., “between 10am and 11am”) and/or implicit temporal ordering between

2

Fig. 1. Example of a set of regions defined using a hierarchy of 3 levels.

them (“anytime later”). Flexible predicate queries can also include “numerical”
constraints (NN and their variants) to provide “best fit” capabilities to the query
language. Using this general and powerful querying framework, the user can
“focus” the search only on the portions/events in a trajectory’s lifetime that are
of interest.

2 The Flexible Pattern Query Language

In this section we provide the definition of key elements in the FlexTrack system,
as well as the description of the query language syntax.

A trajectory Tid is defined as a list of locations collected for a specific moving
object over an ordered sequence of timestamps, and is stored as a sequence of
w pairs {(ls1, ts1),. . . (lsw, tsw)}, where lsi ∈ R

d is the object location recorded
at timestamp tsi (tsi−1 < tsi). In the FlexTrack system, the spatial domain is
partitioned by a leveled hierarchy, where at each level l the spatial domain is
divided by a fixed set Σl of non-overlapping regions, as shown in Figure 1. A
region in level l is formed by the union of regions in the previous level l − 1.
Regions correspond to areas of interest (e.g. school districts, airports) and form
the alphabet Σ =

⋃
l Σl = {A,B,C, ...}. Note the non-overlapping property

between regions at a given level (e.g., W”, X”, Y” in level 0), while regions from
different levels can overlap (e.g., regions W” in level 0 and F’ in level 1).

In the FlexTrack query language, a spatio-temporal predicate P is defined by
a triplet 〈op,R[, t]〉, where R corresponds to a predefined spatial region in Σ or a
variable in Γ (R ∈ {Σ∪Γ}), op describes the topological relationship (e.g. meet,
overlap, inside) that the trajectory and the spatial region must satisfy over the
(optional) time interval t (t := (tfrom : tto) | ts | tr). A predefined spatial region
is explicitly specified by the user in the query predicate (e.g. “the convention
center”). In contrast, a variable, e.g. “@x”, denotes an arbitrary region using
the symbols in Γ = {@a,@b,@c, ...}. Unless otherwise specified, a variable takes
a single value (instance) from a given level Σl (e.g. @a=C), where the level l is
specified in the query. Conceptually, variables work as placeholders for explicit
spatial regions and can become instantiated (bound to a specific region) during
the query evaluation.

Such spatio-temporal predicates P however cannot be used to specify distance
based constraints (e.g., “best-fit” type of queries, like NN, that find trajectories
which best match a specified pattern). This is because topological predicates
involved are binary in nature and thus cannot capture distance based properties
of the trajectories. To solve this problem we introduce the optional D part of a

3

pattern query Q which allows us to describe distance-based or other constraints
among the variables in S and the predefined regions (for more details, see [1]).

Having defined spatio-temporal predicates and the distance based constraints,
we can now define a pattern queryQ = (S [∪ D]) as a combination of a sequential
pattern S and (possibly) a set of constraints D, where a trajectory matches Q if
it satisfies both S and D parts. Here S := S.S | P | !P | P# | ?+ | ?∗ corresponds
to a sequence of spatio-temporal predicates, while D represents a collection of
distance functions (e.g. NN) and constraints (e.g. @x!=@y, @z={A,D,F}) that
may contain regions defined in S. The wild-card “?” is also considered a variable,
however it refers to any region without occurring multiple times within a S.

The use of the same set of variables in describing both the topological pred-
icates and the numerical conditions provides a very powerful language to query
trajectories. To describe a query in FlexTrack , the user can use fixed regions
for the parts of the trajectory where the behavior should satisfy known (strict)
requirements, and variables for those sections where the exact behavior is not
known but can be described by variables and the constraints between them.

3 Pattern Query Evaluation

We continue with a description of the system architecture, its major components
and evaluation algorithms.

In order to efficiently evaluate flexible pattern queries, the FlexTrack system
employs two lightweight index structures in the form of ordered lists that are
stored in addition to the raw trajectory data. There is one region-list (R-list)
per region and one trajectory-list (T-list) per trajectory. The R-list LI of a
given region I ∈ Σ acts as an inverted index that contains all trajectories that
passed by region I. Each entry in LI contains a trajectory identifier Tid, the
time interval (ts-entry:ts-exit] during which the trajectory was inside I, and a
pointer to the T-list of Tid. Entries in a R-list are ordered first by Tid and then
by ts-entry.

The only requirement for the region partitioning is that regions should be
non-overlapping. In practice, there may be a difference between the regions pre-
sented to the end user as Σ and what is used internally for space partitioning.
In the FlexTrack system we use a uniform grid to partition the space and we
overestimate the regions in Σ by approximating each one of them with the small-
est collection of grid cells that completely encloses the region. Because of the
overestimation, false positives may be generated from regions that do not com-
pletely fit the set of covering grid cells. They, however, can be removed with a
verification step using the original trajectory data.

In order to fast prune trajectories that do not satisfy S, the FlexTrack system
uses the T-list, where each trajectory is approximated by the sequence of regions
it visited in each level of the partitioning space. A record in the T-list of Tid con-
tains the region and the time interval (ts-entry:ts-exit] during which this region
was visited by Tid, ordered by ts-entry. In addition, entries in T-list maintain
pointers to the ts-entry part in the original trajectory data. Given those index

4

Fig. 2. The main interface of the FlexTrack System.

structures available, we propose four different strategies for evaluating flexible
pattern queries (for the details on how D is evaluated, see [1]):

1. Index Join Pattern (IJP): this method is based on a merge join opera-
tion performed over the R-lists for every fixed predicate in S. The IJP uses the
R-lists for pruning and the T-lists for the variable binding;

2. Dynamic Programming Pattern (DPP): this method performs a sub-
sequence matching between every predicate in S (including variables) and the
trajectory approximations stored as the T-lists. The DPP uses mainly the T-lists
for the subsequence matching and performs an intersection-based filtering with
the R-lists to find candidate trajectories based on the fixed predicates in S;

3. Extended-KMP (E-KMP): this method is similar to DPP, but uses
the Knuth-Morris-Pratt algorithm [3] to find subsequence matches between the
trajectory representations and the query pattern;

4. Extended-NFA (E-NFA): this is an NFA-based approach to deal with all
predicates of our proposed language. This method also performs an intersection-
based pruning on the R-lists to fast prune trajectories that do not satisfy the
fixed spatial predicates in S.

4 Demonstration

For our demonstration we will use the Trucks and Buses datasets that con-
tain moving object trajectories collected from the greater metropolitan area of
Athens, Greece (www.rtreeportal.org). The Trucks dataset contains 112,203
locations generated from 276 moving objects. The Buses dataset has 66,096
locations from 145 moving objects. For the purposes of the demonstration we
partition the spatial domain into regions using uniform grid with three levels.
The granularity at levels 0, 1 and 2 is, respectively, 100×100, 50×50 and 25×25.

The first step in the query evaluation is to load the trajectory dataset from
secondary storage. The next step is to create the index structures (R-list and T-

5

list) used by our evaluation algorithms. During this process the users can tune
several parameters (e.g. grid size, number of levels) for optimal performance.
Using the system main interface, shown in Figure 2, users can visualize the
trajectories in the spatial domain for a particular time interval. This property
allows users to inspect, navigating in space and time, which regions have high
concentration of trajectories. The system also has the property to “replay” the
movement of the trajectories timestamp-by-timestamp.

After the data is loaded and the index structures are created, the user can
create pattern queries using the Σ alphabet. The user can zoom in/out to select a
lower/higher level of interest in the hierarchy. This allows the user to form a query
with mixed size predicates where more detailed, lower level regions correspond
to areas of particular interest, and less detailed, higher level regions are used
otherwise. The user can also select variables or distance-based constraints at
any level of the hierarchy. In addition to that, the user can create predicates
that contain a set of regions or is defined by a maximum bounding rectangle
(i.e. range predicate).

After the user’s query Q is composed using the GUI it is then translated into
the system’s internal representation, as described in Section 2, and passed to the
query engine. The pattern query is then evaluated using one of the four query
evaluation algorithms available in the FlexTrack system (IJP, DPP, E-KMP or
E-NFA). The trajectories in the result set are then plotted on the visualization
canvas. Users can then zoom in/out and select parts of the trajectories by spec-
ifying the time interval of interest. The system also allows users to “replay” the
movement of all the trajectories in the result set. Upon request, the system can
provide textual description of trajectories using the regions in Σ.

5 Conclusion

This paper describes the FlexTrack system, which allows users to intuitively
query trajectory databases by specifying complex motion pattern queries. Using
the system GUI, users can easily construct those pattern queries that are further
translated into a regular expression-like representation, which is then evaluated
by the query evaluation module. Because of its expressive power, fast perfor-
mance and intuitive user interface, the system can be of great help for users that
work with large spatio-temporal archives.
Acknowledgements: This research was partially supported by NSF IIS grants
0705916, 0803410 and 0910859. Vieira’s work was funded by a CAPES/Fulbright
Ph.D fellowship.

References

1. Vieira, M.R., Bakalov, P., Tsotras, V.J.: Querying trajectories using flexible pat-
terns. In: EDBT. (2010) 406–417

2. Vieira, M.R., Mart́ınez, E.F., Bakalov, P., Mart́ınez, V.F., Tsotras, V.J.: Querying
spatio-temporal patterns in mobile phone-call databases. In: MDM. (2010) 239–248

3. Knuth, D., Morris, J., Pratt, V.: Fast pattern matching in strings. SIAM J. on
Computing (1977)

