
Boosting k-Nearest Neighbor Queries Estimating Suitable Query Radii

Marcos R. Vieira‡, Caetano Traina Jr.§, Agma J.M. Traina§, Adriano Arantes§, Christos Faloutsos†

‡Department of Computer Science, George Mason University, Fairfax, VA - USA

§Computer Science Department, University of Sao Paulo at Sao Carlos, SP - Brazil

†Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA - USA

email: mrvieira@gmu.edu, {caetano|agma|arantes}@icmc.usp.br, christos@cs.cmu.edu

Abstract

This paper proposes novel and effective techniques to
estimate a radius to answer k-nearest neighbor queries.
The first technique targets datasets where it is possible
to learn the distribution about the pairwise distances be-
tween the elements, generating a global estimation that
applies to the whole dataset. The second technique tar-
gets datasets where the first technique cannot be employed,
generating estimations that depend on where the query
center is located. The proposed k-NNF () algorithm com-
bines both techniques, achieving remarkable speedups. Ex-
periments performed on both real and synthetic datasets
have shown that the proposed algorithm can accelerate
k-NN queries more than 26 times compared with the in-
cremental algorithm and spends half of the total time com-
pared with the traditional k-NN() algorithms.

1 Introduction

Complex data, such as genomic sequences and spatial
and multimedia data, are searched mainly by similarity
criteria, which motivated the development of algorithms
to retrieve data based on similarity. Comparing two ele-
ments based on their similarity relies on a measurement,
often calculated by a distance function δ : S × S → R+,
which compares a pair of elements of the data domain S
and returns a numerical value that is smaller as the ele-
ments become more similar. A distance function is called
a metric when for any elements s1, s2, s3 ∈ S it satisfies
the following properties: δ(s1, s1) = 0 and δ(s1, s2) >
0, s1 6= s2 (non-negativeness); δ(s1, s2) = δ(s2, s1) (sym-
metry); δ(s1, s3) ≤ δ(s1, s2) + δ(s2, s3) (triangular in-
equality). Metrics are fundamental to create access meth-
ods to index a dataset S ⊂ S, the so-called Metric Access
Methods (MAM), which is true when S is a complex data
domain. A MAM, such as the M-tree [2] and the Slim-
tree [15], can accelerate similarity queries of complex data
by orders of magnitude.

There are basically two types of similarity queries,
both of which search a dataset S ⊂ S for elements si ∈ S
regarding their similarity to a query center sq ∈ S: the

Similarity Range Query (RQ) and the k-Nearest Neigh-
bor Query (kNNQ). The first retrieves every element in
the dataset nearer than a given radius rq to the query
center. A range query example on a dataset S of ge-
nomic sequences is: Q1: Choose the polypeptide chains
that are different from the chain p by at most 5 codons.
The second retrieves the k elements in the dataset near-
est to the query center. An example of a k-NN query
on S is: Q2: Choose the 10 polypeptide chains closer to
polypeptide chains p.

Due to the high computational cost to calculate dis-
tances between pairs of elements in complex domains,
similarity queries often take advantage of index struc-
tures. Trees are the most common index structures for
metric domains, where each node typically stores a data
element called the representative, a subset of elements,
and a covering radius, so that no element stored in the
node or in any of its subtrees is farther from the represen-
tative than the covering radius. In non-leaf nodes, each
element stored is the representative of a node of the next
tree level. Index structures employ the triangular inequal-
ity property of metric domains to prune subtrees, using
a limiting radius: a node whose representative is farther
than the limiting radius added to its covering radius never
contributes to the answer. An algorithm Range(sq, rq)
executes range queries using rq as the limiting radius,
thus the pruning ability of the Range algorithms using
index structures is typically high. However, there is no a
priori limiting radius to perform a k-NN query.

A k-NN(sq, k) algorithm starts collecting a list L of
k elements, sorted by the distance δ(sq, si) of each ele-
ment si ∈ S to the query center sq. The limiting radius
dynamically keeps track of the largest distance from the
query center to the elements in L. Whenever a nearer
element is found, it is included in the list, removing the
farthest element and reducing the limiting radius accord-
ingly. The limiting radius must start with a value larger
than the maximum distance between any pair of elements
in the dataset (or simply with infinity). Until at least k
elements have been found, no pruning can be executed.
Moreover, while rL is larger than the final distance rk

of the true k-th element nearest to sq, the false answers

1

included in L cannot be discarded. If a proper limiting
radius can be set from the beginning, a significant reduc-
tion of distance calculations can be achieved. Therefore,
the problem posed is : “How to estimate a suitable radius
rk to execute a Range Query - RQ that returns the same
elements of a k-NNQ?”

This paper proposes two novel techniques to precisely
estimate the final limiting radius rf of a k-NN query,
taking advantage of the intrinsic dimensionality of the
dataset. The first technique targets datasets where the
global data distribution can be obtained by estimating
their intrinsic dimensionality, which is the large class
of self-similar datasets. The second technique targets
datasets where it is not possible to assume a global data
distribution, therefore local estimations are generated for
each query, depending on where the query center is lo-
cated. Based on those estimates, we developed a new
algorithm, called k-NNF (sq, k), which uses those esti-
mations to accelerate k-NN queries. In the experiments
performed, our technique decreased the number of dis-
tance calculations up to 37%, the number of disk accesses
up to 18%, bringing an overwhelming gain in time, as it
reduced the total time demanded by the query processing
up to 26 times.

The remainder of this paper is structured as follows:
Section 2 discusses the related works; Section 3 provides
a short description of the Correlation Fractal Dimension
concept, which is employed to estimate the intrinsic di-
mension of a dataset; Section 4 introduces the proposed
algorithms and the mathematical support used to define
the estimated radius rk and the k-NNF () algorithm; Sec-
tion 5 presents the experiments results; and Section 6
gives the conclusions of this paper.

2 Related Work

The development of algorithms to answer similarity
queries has motivated much research based on index
structures. A common approach is the “branch-and-
bound”where an indexing tree is traversed from the root,
and at each step a heuristic is used to determine which
branches can be pruned from the search and which one
must be traversed next. One of the most influential al-
gorithms in this category was proposed by Roussopoulos
et al. [10] to find the k-nearest neighbors in multidi-
mensional datasets stored in R-trees [4]. This algorithm
has also been used in MAM to perform similarity search-
ing following the“branch-and-bound”approach, which we
call here the “df” (depth-first) k-NN() algorithm. The
heuristic of this algorithm involves choosing in a node the
next subtree to be explored, which is the subtree closest
to the query object. Thus, one priority queue is used for
each node visited.

In [2], another algorithm is proposed that creates a
unique global list (i.e. it is employed only one priority

queue for the whole query) of nodes not yet traversed.
When a new subtree must be traversed, it proceeds from
the node closest to the sq, regardless of its level in the tree.
Using the globally closest node generates an algorithm
considered better than the df k-NN() algorithm, which
is called the “bf” (best-first) k-NN() algorithm.

Another approach uses incremental techniques to an-
swer similarity queries, such as the work of Hjaltason and
Samet [5], which retrieves the (k+1) nearest neighbor af-
ter the first k have been found. This algorithm employs
the triangular inequality property to delay the real dis-
tance calculations as much as possible, using a priority
queue to keep track of which objects or subtrees must be
analyzed next. The triangular inequality limits the min-
imum and the maximum distance allowable for each ele-
ment si to sq, using the distance from sq to a node repre-
sentative srep. A dynamic limiting radius can be derived
by composing the minima and maxima distances of sev-
eral nodes, even before performing the first real distance
calculation between the sq and a stored element. Metric
trees, such as the Slim-tree, store the distance from srep

to each subtree (or to the stored elements in leaf nodes).
This algorithm delays pruning subtrees and objects until
no improvement can be made to the minima and maxima
limits, making its priority queue management very costly.
The performance of the priority queue is highly affected
by the dataset intrinsic dimensionality, as we show in the
experiments in Section 5. We call this the “inc” k-NN()
algorithm, and together with the df and bf, this is one of
the k-NN() algorithms that we compare to our proposed
algorithm.

Previous works trying to estimate a limiting radius
for k-NN queries were presented in [12, 6, 9]. Their ap-
proaches are based on a probability density function to
estimate a limiting radius, using a histogram of distances
based on chosen pivots. The drawbacks are that it re-
quires a costly construction of a histogram of the dis-
tribution of distances between the dataset objects and a
set of pivots and it does not capture distinct distribu-
tions over different parts of the data space. Moreover,
the histogram must be updated if the dataset is modi-
fied, as well as the number of pivots. Also, the pivots
to be used in this approach need to be carefully chosen.
Our approach differs from the previous works because it
does not need sampling as the others do; it only uses
the intrinsic dimensionality of the dataset. Moreover, by
using the intrinsic dimensionality of the dataset instead
of the number of attributes (even in spatial datasets),
our approach avoids the problem of object dispersion in
high-dimensional spaces [7], allowing it to deal with the
varying density of elements in each query region.

2

3 Background

Uniformity and independence assumptions have long
been discredited to model data distributions [1]. Real
data overwhelmingly disobey these assumptions because
they typically are skewed and have subtle dependencies
between attributes, leading the majority of estimates and
cost models to deliver inaccurate, pessimistic figures [8].

On the other side, some experimental evidence has
shown that the distribution of distances between pairs
of elements, in the majority of real datasets, presents
a “fractal behavior” or self-similarity; the properties of
parts of the dataset in a usable range of scales being sim-
ilar to the properties of the whole dataset. In self-similar
datasets the distribution of distances between elements
follows power laws [11, 3] as follows: Given a set of N
objects in a dataset with a distance function δ(), the av-
erage number k of neighbors within a given distance r is
proportional to r raised to D, where D is the correlation
fractal dimension of the dataset [3]. Thus, the pair-count
PC(r) of pairs of elements within distance r follows the
power law:

PC(r) = Kp · rD , (1)

where Kp is a proportionality constant.
Whenever a metric between pairs of elements is defined

for a dataset, a graph depicting Equation 1 can be drawn,
even when the dataset is not in a dimensional domain.
For the majority of real datasets, this graph, called the
Distance Plot, is plotted in log-log scales results in an
almost straight line for a significant range of distances.
The slope of the line in the Distance Plot is the exponent
D in Equation 1, so it is called the Distance Exponent
[14].

The results are independent of the base of the loga-
rithm used (in this paper we use the natural logarithm
loge(x)). It is interesting to note that D closely approxi-
mates the correlation fractal dimension of a dataset, and
therefore its intrinsic dimensionality [11]. Hence, D can
be seen as a measurement of the distribution of distances
between elements, even for non-spatial datasets.

Figure 1 shows the distance plot of a dataset whose
elements are the geographical coordinates 1 of streets and
roads in Montgomery County, MD, USA (MGCounty).
As can be seen, the plots are linear for the most requested
range sizes (typically we are not interested in radius much
smaller or larger than the typical distances involved in the
dataset).

The Distance Exponent D of any dataset can be cal-
culated as the slope of the line that best fits the resulting
curve in the Distance Plot, as in Figure 1. Therefore,
Equation 1 can be expressed as

log(PC(r)) = D · log(r) + Kd, Kd = log(Kp) . (2)

D has many interesting properties derived from the
Correlation Fractal Dimension. The main property is

1This dataset is in the US Census Bureau Tiger format.

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12
Log(r)

Fractal Dimension of MGCounty

D=1.82

Figure 1. Distance Plot of the MGCounty.
thatD is invariant to the size of the dataset, provided that
a reasonable number of elements exists [3]. Therefore,
the slopes of the lines corresponding to distinct datasets
S from the same data domain S are always the same, re-
gardless of the S cardinality. This property enables us to
know D of a dataset even if the dataset had been updated.

4 How to estimate a suitable initial ra-
dius for k-NN queries

In this section we present the main contributions of
this paper. Our goal is to take advantage of the intrin-
sic dimension of a dataset S to speed up k-NN(sq, k)
queries estimating a final radius rf , therefore the major-
ity of the elements unlikely to pertain to the answer set
are pruned right away, even before k elements have been
inserted in L. The improved algorithm, which we call
k-NNF (sq, k), performs three steps: (1) Estimates the
final radius rf , using a global estimate for rk, (2) Per-
forms a radius-limited k -NN() algorithm using rf , (3)
Refines the search procedure, using a local estimate for
rf , if the required number of objects k was not retrieved.

The main ideas here are: (a) use the fractal dimen-
sion to estimate the ideal radius rf ; (b) over-estimating
rf in a systematic way; and (c) react when the esti-
mate rq is lower than the real final radius. The first
and third steps require calculating respectively a global
and a local estimate for the final radius rf . In the
next subsections we present techniques to calculate them.
The second step can be performed by a new algorithm
kAndRange(sq, k, r), defined as follows:

Definition 1 – k-Nearest and Range Query: Given
an element sq ∈ S, a quantity k and a distance r ∈ R+, a
“k-Nearest and Range algorithm”kAndRange(sq, k, r) re-
trieves at most k elements si ∈ S | δ(sq, si) ≤ r, such that
for every non-retrieved element sj , δ(sq, sj) ≥ δ(sq, si) for
any retrieved element si.

The algorithm kAndRange(sq, k, r) can be imple-
mented by modifying an existing k-NN(sq, k) algorithm
changing the dynamic query radius initialization from in-
finity to rf (obtained in the first step). The resulting
algorithm answers a composite query, equivalent to the
intersection of a Range(sq, r) and a k-NN(sq, k) using
the same sq. That is, considering the dataset S, the fol-
lowing queries are better expressed in relational algebra,

3

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12

Log(r)

Fractal Dimension of MGCounty

= =

Figure 2. How to use the Distance Plot to obtain
the global estimate rf = GEst(k).

as:

σ(
Range(sq,rq)∧k−NN(sq,k)

)S ⇔

σRange(sq,rq)S ∩ σk−NN(sq,k)S ⇔
σkAndRange(sq,k,rq)S .

For example, this algorithm alone could answer queries
such as: Q3: Select the 10 nearest restaurants not far-
ther than a mile from here – kAndRange(here, 10, 1mile).
Notice that the algorithm will recover less than 10 restau-
rants if the range given is not sufficiently large.

4.1 Calculating a global estimate for the fi-
nal query radius

The first step of the proposed k-NNF (sq, k) algorithm
requires a method to estimate the final radius rf of the k-
NN query, so it can be used to call kAndRange(sq, k, rf).
It supposes that the elements in the dataset follow a
mapped distribution regarding the distances between the
elements (see Equation 1). Therefore, the resulting esti-
mate is global for the whole dataset, independent of where
the query is centered. The global estimate is defined as
follows:

Definition 2 – Global Estimate GEst(k): Given the
number of neighbors k to be retrieved, GEst(k) returns
the estimated distance rf of the equivalent range query
that return k elements, based on the assumption that the
dataset follows a self-similar distribution.

Figure 2 illustrates the main idea to obtain GEst(k)
using the Distance Plot of the dataset. To perform the
estimate, an adequate line with slope D, depicted as ‘Line
1’, must be chosen to convert the number of elements k
into the corresponding estimated radius rf .

The GEst(k) method assumes that, as long as the gen-
eral characteristics of the dataset regarding its distance
distribution are preserved when the dataset is updated
(i.e. the updates are performed randomly), the distance
exponent remains the same. This means that the line
best fitting the slope of the Distance Plot can go up or
down as elements are inserted or deleted, but its slope

is preserved. However, besides knowing the slope, one
must define a particular line for the current dataset, us-
ing a known point in the graph. We propose using the
total number of objects N currently in the dataset and
the diameter R of the dataset. This pair of values defines
a point in the graph, which we call ‘Point 0’. The line
of slope D including ‘Point 0’ estimates how to convert
from “number of elements” to “radius”. The number N
is easily obtained (it is the number of elements in the
dataset), and the diameter R can be estimated from the
indexing structure, as the diameter of the root node of
the indexing tree.

‘Point 0’ can be calculated through Equation 2. How-
ever, the equation uses the number of pairs PC(r) within
a distance r, and we are interested in the number of ele-
ments k involved. Therefore we must convert ‘numbers of
elements’ into ‘numbers of pairs’ within a distance. The
number of pairs in a subset of k elements (counting each
pair only once) is Pairs(k) = k(k − 1)/2. Thus, given
a dataset with cardinality N , the number of pairs sepa-
rated by distances less than the diameter of the dataset
is PC(R) = Pairs(N) = N(N − 1)/2, and a line specific
to the dataset when a query is issued can be found con-
sidering ‘Point 0’ to be 〈log(R), log(Pairs(N))〉 on the
Distance Plot of the dataset. Using this line, the number
of elements k that form pairs at a distance less or equal
r can be estimated using PC(r) = Pairs(k).

‘Line 0’ in Figure 2 is the one originally employed to
calculate the intrinsic dimension D of the dataset (the
line that best fits the Distance Plot). It approximates
the average number of points (in log scale) over the full
range of distances that occur in the dataset. Notice that
real datasets usually have fewer distances with values near
the diameter of the dataset, therefore the number of the
largest distances increases at a slower pace than those of
medium or small distances. This tendency explains why
there is a typical flattening of pair-counting plots at large
radius of real datasets, as shown in Figure 1.

Now let us consider ‘Line 1’ passing at ‘Point 0’=
〈log(R), log(Pairs(N))〉 (see Figure 2). As it represents
the relationship between the radii and the number of el-
ement pairs within each radius in the whole dataset, it is
adequate to estimate the final radius rf of a k-NN query.
The constant Kd from Equation 2 applied over ‘Line 1’
can be calculated as:

Kd = log(Pairs(N))−D · log(R)
= log (N(N − 1)/2)−D · log(R) . (3)

Notice that Equation 2 calculates the number of pairs
in a set of k elements within a given distance. If we want
to know the number of distances between a subset of k
elements contained in S and the set of all N elements
stored in the dataset S, then Equation 2 turns into:

Pairs(k) = N(k − 1)/2 . (4)

4

Combining Equation 3 with 4 and 2 we obtain:

log(rf) = [log(PC(r))−Kd]/D
= [log (N(k − 1)/2)−log (N(N − 1)/2)+D·log(R)]/D ⇒

rf = R · exp ([log (k − 1)− log (N − 1)]/D) (5)

Equation 5 shows how to calculate the global estimate
for the final radius rf = GEst(k) of a k-nearest neighbor
query.

The final radius rf estimated by GEst(k) is an approx-
imation, as the exact radius of a query also depends on
the local density of elements around the sq. Therefore,
if the query is centered where the density of elements is
similar to or higher than the average density of the whole
dataset, then calling kAndRange(sq, k, rf) in Step 2 of
algorithm k-NNF (sq, k) using rf estimated by GEst(k)
answers the k-NN query with a much better performance
than the traditional k-NN(sq, k) algorithms.

However, if rf is under-estimated, then the
kAndRange(sq, k, rf) algorithm will return fewer ele-
ments than required (that is, a quantity k′ < k of ele-
ments), and another call to the kAndRange() algorithm
with a larger radius is required. As calling this algorithm
a second time reduces the overall performance gain, it
would help to slightly augment the estimate rf to reduce
the odds of having to call the kAndRange() algorithm
more than once. In fact, an augment is already embodied
in Equation 5, when we estimate the size of the dataset
by looking at the indexing structure: as the covering ra-
dius of the nodes of metric trees needs to guarantee that
every element stored at each subtree is covered by that
radius, they are always equal to or larger than the mini-
mum required radius.

4.2 Calculating a local estimate for the final
query radius

The third step of the proposed k-NNF (sq, k) algo-
rithm is executed when rf reveals to be under-estimated,
despite the inflated diameter obtained from the root node
of the metric tree. In this case, another search is required
with a larger value r′f > rf . Calculating r′f must take
into account the local density of elements around the sq,
hence a local estimate LEst(), defined as follows, must
be performed.

Definition 3 – Local Estimate LEst(): Knowing that
the local data distribution around the sq retrieves k′ ele-
ments with a radius rf , then LEst(k, k′, rf) returns the
local estimate r′f required to retrieve the required number
of neighbors k.

To develop the LEst() algorithm, we take advantage
of the Distance Plot again. We know that the first call
to algorithm kAndRange() using the estimated radius
rf = GEst(k) returned an insufficient quantity k′ of ele-
ments. Therefore, that first call was in fact a probe of the

 0

 5

 15

 20

 0 2 4 6 8 12

Log(r)

Fractal Dimension of MGCounty

= = =

Figure 3. How to use the Distance Plot to obtain
the local estimate rf = LEst(k, k′, rf).

space around the sq, and the value k′ can be used to esti-
mate the local density of the dataset around the sq. Let us
reproduce Figure 2 in Figure 3, marking the point given
by 〈log(rf), log(Pairs(k′))〉 as ‘Point 1’. This point cor-
responds to the actual amount of elements k′ within dis-
tance rf around the sq. Now, let us draw another line
with the same slope D containing this point, and call it
‘Line 2’. ‘Line 2’ reflects the local density of the region
where the query is centered, consequently it is useful to
calculate the local estimate. The radius r′f can be esti-
mated by using equation 5, now using ‘Line 2’ and ‘Point
1’. This leads to:

r′f = rf · exp ([log (k − 1)− log (k′ − 1)]/D) (6)

Equation 6 shows how to calculate the local estimate for
the final radius r′f = LEst(k, k′, rf) of a k-NN query
considering the local density of elements around the sq.

Once the local estimate r′f has been calculated, an-
other incursion in the dataset must be performed to re-
trieve the additional k− k′ elements. This operation can
be performed by another algorithm, defined as follows:

Definition 4 – kRingRange: Given an element
sq ∈ S, the inner radius rf , the outer radius r′f and the
maximum number of elements k− k′ still to be retrieved,
the kRingRange(sq, k−k′, rf , r′f) algorithm searches the
dataset to find at most k−k′ elements si in the ring cen-
tered at sq, so that rf < δ(sq, si) ≤ r′f .

The kRingRange() algorithm is basically a
kAndRange() algorithm modified to prune not only
elements and nodes that are outside the ball limited by
the outer radius r′f , but also the nodes and elements that
are inside the ball defined by the inner radius rf . The
radius r′f can be reduced whenever the required number
of objects are found.

The first call to LEst() and to the kRingRange() al-
gorithm retrieves k′′ elements, where k′ ≤ k′′ ≤ k. It is
not expected to have k′′ < k, but it can. In this case, the
point

〈
log(r′f), log(Pairs(k′′))

〉
can be used to estimate

another radius r′′f . This new estimate must then be used

5

in another call to the kRingRange() algorithm, repeating
this last step until the desired number of elements k are
retrieved.

The k-NNF () algorithm, shown as Algorithm 1, uses
kAndRange(), kRingRange(), GEst() and LEst() to
perform the same duty of a usual k-NN() algorithm,
receiving the same parameters and producing the same
results, but with a better performance, as we show in the
next section.

Algorithm 1 k -NNF (sq, k)
Output: The list L of k pairs 〈OId, δ(ski , sq)〉.
1: Obtain N as the number of elements in the dataset
2: Obtain R as the diameter of the dataset indexed
3: Clear list L
4: Set rf = GEst(k)
5: Execute KAndRange(sq , k, rf), store the answer in L, and set

k′ as the number of retrieved elements
6: while k′ ≤ k do
7: Set r′f = LEst(k, k′, rf)

8: Execute kRingRange(sq , rf , r′f , k− k′), store the answer in

L, and set k′ to the number of elements in L
9: set rf=r′f

10: Return L

5 Experimental Results

To evaluate the effectiveness of the presented ap-
proach, we worked on a variety of synthetic and real
datasets, experimenting with a variety of metrics, includ-
ing vectorial and non-vectorial ones. As it is not pos-
sible to discuss all of them here, we selected three real
and one synthetic datasets that represent and summarize
the behavior of the proposed technique. The experimen-
tal results show that the estimates given by GEst() and
LEst() are accurate, leading to the building of an efficient
k-NNF () algorithm.

The datasets are described as follows. The Corel-
Histo is a dataset of color histograms extracted
from 68,040 images from the Corel Image Collection
(http://kdd.ics.uci.edu). This is a real world dataset,
where each element is a 32-dimensional vector (we con-
sider it as a high-dimensional dataset). The MetricHisto
is a real world dataset consisting of 40,000 metric his-
tograms of medical gray-level images. It does not have
a predefined embedded dimension, since the number of
buckets (instead of bins in traditional histograms) varies
from one image to another. Its elements are com-
pared using the MHD() metric function [13]. The MG-
County consists of a 2-dimensional coordinates dataset
with 27,282 road intersections in Montgomery County,
MD, Figure 4(a). The Sierpinsky is a synthetic dataset
with 531,441 points of a Sierpinsky triangle, Figure 4(b).
These are points from a perfect fractal, whose behavior
is predictable, so it is useful to corroborate the correct-
ness of the theoretical assumptions made in this work.

Figure 4. The two-dimensional vector datasets
used in the experiments: (a) MGCounty and (b)
Sierpinsky triangle.

Table 1. Summary of the datasets.
Dataset D #Attrib. # Objs Metric

CorelHisto 4.97 32 68,040 Manhattan
MetricHisto 6.72 – 40,000 MHD()
MGCounty 1.82 2 27,282 Euclidean
Sierpinsky 1.56 2 531,441 Euclidean
SieDVar 1.56 (up to 256) 531,441 Euclidean

We also used several variations of the Sierpinsky dataset,
adding up to 254 new attributes (SieDVar), calculated
by polynomial expressions of the first two, to evaluate
the behavior of the algorithms for datasets with varying
embedded dimensionality and the same intrinsic dimen-
sionality. Only 10% of each dataset were used to calculate
its D, as it is close to the one obtained using the whole
dataset. Table 1 summarizes the main features of the
datasets, including their intrinsic dimension D, number of
attributes (for the spatial datasets), number of elements,
and the metric employed.

All algorithms were implemented in C++ using
the GNU gcc compiler. The kRingRange() and
kAndRange() algorithms were implemented following the
approach given by the bf k-NN() algorithm. We imple-
mented the inc k-NN() algorithm following the descrip-
tion and the best parameters given in [5]. The experi-
ments were performed on an Intel Pentium IV 1.6GHz
machine with 128 MB of RAM memory, using the Linux
operating system.

Each measured point in a plot corresponds to 500 k-
NN queries asking for the same number of neighbors at
different query centers. The 500 query centers were sam-
pled from the respective datasets, where half of them
were removed from the dataset. Therefore 250 queries
ask for neighbors from centers stored in the dataset, and
250 queries ask for neighbors from centers that are not
in the dataset, but that correspond to centers likely to
be used in real queries. The size of each disk page of the
Slim-tree was 16KB for the CorelHisto, 4KB for the MG-
County and the MetricHisto, and 1KB for the Sierpinsky
datasets. We used the default configuration parameters
to build each Slim-tree. Tests performed with different
page sizes obtained similar results.

5.1 Performance improvement

This section discusses the results of experiments com-
paring the proposed k-NNF () algorithm with the most

6

representatives of the three existing classes (as explained
in Section 2): the df k-NN(), the bf k-NN() and the inc
k-NN() algorithms. Moreover, if the distance rk from
the query center to the farthest element in the final list
of k nearest neighbors could be known in advance, then
a Range() limited by rk could be used in place of the
k-NN() algorithm because the processing of Range() is
more efficient. Therefore, we also compared the k-NN()
algorithms to the standard Range() algorithm, using the
limiting radius rk previously discovered by one of the
k-NN() algorithms. This later test provides a theoret-
ical lower bound of the best possible algorithm to find
the nearest neighbors. All five algorithms were imple-
mented using the Slim-tree as the indexing method. In
this experiment, the number of neighbors in the k-NN
queries varies from 5 to 100 in steps of 5 elements.

For each dataset, we measured the average number
of distance calculations, the average number of disk ac-
cesses and the average total time (in seconds) required by
each algorithm to perform each set of 500 k-NN queries.
The number of distance calculations is important because
comparing complex elements can be very costly. The re-
ported number of disk accesses were obtained counting
the number of requests generated by the algorithm, there-
fore issues regarding uses of cache memory were not taken
into account. The objective of these measurements is to
provide clues about the amount of data required by the
algorithm, as the same index structure is used for every
algorithm. However, the most important measurement
is the total time, as it reports the global complexity of
the algorithm. Thus, reducing the processing time is the
ultimate objective of improving the performance of any
algorithm.

Figure 5 shows the results of experiments on the four
datasets. The first column shows the results from the
CorelHisto dataset, the second from the MetricHisto, the
third from the MGCounty, and the fourth column from
the Sierpinsky dataset. The first row corresponds to the
average number of disk accesses required to answer each
query for the number of neighbors corresponding to the
abscissas, the second row gives the average number of dis-
tance calculations, and the third row presents the average
total time for 500 queries at each point in the plots.

Figure 5 shows that, as expected, no k-NN() algo-
rithm can perform better than the Range() algorithm,
as it is the theoretical lower bound. It also shows that
the average number of disk accesses and distance calcula-
tions required by the inc k-NN() algorithm follows very
closely those required by the theoretical best algorithm
(the Range() one), as both plots are practically coinci-
dental for every dataset. However, the inc k-NN() algo-
rithm achieves these results at the expenses of a heavy
internal processing required to maintain the minima and
maxima distances for the elements retrieved from the in-
dex structure. This processing turns the inc k-NN() al-

Table 2. Total time (s) for k=10 and k=100.
Dataset df k-NN() bf k-NN() k-NNF () Range() inc k-NN()

k=10 k=10 k=10 k=10 k=10
CorelHisto 3.87 3.23 3.11 3.10 64.81
MetricHisto 16.89 15.97 15.03 14.98 206.25
MGCounty 0.48 0.47 0.34 0.28 7.13

k=100 k=100 k=100 k=100 k=100
CorelHisto 9.78 9.03 7.19 5.69 137.87
MetricHisto 23.72 21.22 19.32 18.74 297.59
MGCounty 3.89 3.78 3.31 1.48 21.32

Table 3. AvgOper for all queues (k=20 and k=40).
Dataset df k-NN() bf k-NN() k-NNF () inc k-NN()

k=20 k=40 k=20 k=40 k=20 k=40 k=20 k=40

CorelHisto 173 183 173 183 110 117 2,601 2,856
MetricHisto 394 454 383 431 361 401 2,997 3,354
MGCounty 144 145 144 145 21 24 996 1,210
Sierpinsky 178 185 178 185 95 104 1,304 1,482

gorithm the slowest for every dataset, as shown in the
third row of Figure 5.

To better compare the other algorithms regarding
time, Table 2 reproduces the values for k=10 and k=100
of the third row of Figure 5 for the first three datasets.
The measurements show that the inc k-NN() algorithm
is up to 26 times slower than the others for the real
world datasets (i.e., the CorelHisto, MetricHisto and MG-
County datasets). Therefore, the inc k-NN() algorithm
is valuable regarding the theoretical aspects of reducing
the number of disk accesses and distance calculations, but
it is impractical, as what really matters is the total time.

Figure 5 shows that, whereas the average number of
disk accesses and distance calculations required by ev-
ery algorithm present a sub-linear behavior for increas-
ing number of neighbors, the average total time presents
a slightly super-linear behavior. This is due to the in-
creasing complexity to maintain the internal structures
of the algorithms. In fact, the k-NN() algorithms use a
priority queue whose management has super-linear com-
plexity regarding the number of elements managed. On
the other side, the complexity of the proposed k-NNF ()
algorithm is much smaller, reducing the processing time
accordingly. Table 3 shows the total number of queue
operations (add/remove elements to/from it) (AvgOper)
averaged for 500 queries, for the four k-NN() algorithms,
using k = 20 and k = 40. As we see, the queue cost for the
k-NNF () algorithm is smaller than any other, contribut-
ing to making it the fast algorithm among the k-NN() al-
gorithms. Three aspects from this table enforce our finds:
(1) the larger the embedded dimension of the dataset, the
worse the performance of the inc k-NN() algorithm; (2)
the cost of the k-NNF () queue is much smaller than the
cost of the inc k-NN() queue (up to 50 times smaller
for the AvgOper); and (3) the k-NNF () algorithm has
smaller queue cost regarding any other algorithm.

Comparing the df and the bf k-NN() algorithms in
Table 2 and in the first and second rows of Figure 5,
we can see that the bf k-NN() is slightly better than
the df k-NN(). However, comparing the df and the bf
k-NN() with the proposed k-NNF (), it can be seen that
the k-NNF () algorithm significantly reduces the three

7

Figure 5. Comparing the proposed k-NNF () with the other algorithms to answer 500 queries.

parameters measured (disk, distance, and time), for ev-
ery dataset. The k-NNF () algorithm decreases up to
37% (MGCounty and Sierpinsky - df k-NN) the need for
distance calculations, decreases up to 18% the number of
disk accesses (CorelHisto and Sierpinsky - df k-NN) and
it spends half of total time than the traditional k-NN()
algorithms (Sierpinsky). Comparing the k-NNF () al-
gorithm with the inc k-NN() algorithm (the best the-
oretical algorithm), it is up to 26 times faster than the
later algorithm (MGCounty). The k-NNF () algorithm
achieves its best performance for the metric dataset Met-
ricHisto, mainly considering that the Range() algorithm
is a lower bound for improvements. As can be seen in
Table 2, it can answer k-NN queries, spending at most
5% more time than the Range() algorithm, whereas its
closest competitor requires at least 17% more time.

The Range() algorithm is the fastest because its inter-
nal structure does not require a priority queue to order by
distance all subtrees to be visited, nor does it require the
adjustment of the dynamic radius. As the k-NNF () al-
gorithm is based on the kAndRange() algorithm, it does
need a priority queue, but it remains smaller than the
others as a limiting query radius is available from the
beginning. Excluding the Range() algorithm which re-
quires a previous knowledge of the maximum radius, the
proposed k-NNF () algorithm is always the fastest one
for every dataset evaluated.

5.2 Internal behavior of the k-NNF () algo-
rithm

In this section we present measurements about the
internal behavior of the k-NNF () algorithm, showing
statistics about the estimates GEst() and LEst(). Fig-
ure 6 shows the Distance Plot of the MGCounty dataset
superimposed with the final radius rf from the query cen-
ter to its k-th nearest neighbor for the various values of
k employed to generate the third column of plots from
Figure 5 (with k varying from 5 to 100 in steps of 5 ele-
ments). Each point shown as a ‘�’ represents the point
〈ln(rf), ln(Pairs(k))〉 in the log-log scale of the graph,
which is used as parameters of the kAndRange() algo-
rithms. It is clearly seen that the set of points are over
a line passing close to 〈ln(R), ln(Pairs(N))〉 (’Point 0’ in
Figure 3), the rightmost point of the Distance Plot used
to obtain the fractal dimension of the dataset. There-
fore, these points represent the global estimate GEst(k)
for each number of neighbors k asked in the queries.

Figure 6 also shows the average distance of rf and the
minimum/maximum radii for each value of k, measured
from the set of 500 queries. As can be seen, the aver-
ages are roughly over the Distance Plot curve, confirming
that it gives a suitable estimation of the final distance rk.
Moreover, it also shows that a sample of the dataset, such
as the centers of the 500 queries, can be used to estimate

8

Figure 6. Global estimations for the distances
from the query centers to their k-th NN and the
average and minimum/maximum of the real dis-
tances measured, for the MGCounty dataset.

the intrinsic dimension D of the dataset, as shown in the
Figure 6. It also shows that the increase in the estima-
tion of rf (provided by the flattening of the curve and
the super-estimation of the dataset radius) is enough to
lead the number of required callings to kRingRange() to
a very small value, as the estimated values of rf are al-
ways close to the maximum value rk. Therefore, Figure 6
confirms that the global estimations GEst() is accurate.

An thought-provoking point to check is determining
when the kRingRange() algorithm needs to be called,
that is, when a local estimation LEst() is required. To
verify this point, we measured the number of times that
kRingRange() is called at each set of 500 queries using
the same number k of required elements (step 8 of Algo-
rithm 1). It turned out that the kRingRange() algorithm
was never called a second time. In fact, the algorithm is
seldom called. Only for k = 100 the kRingRange() was
called 5 out of 500 queries for the CorelHisto dataset,
but was never called for the other datasets, showing that
the GEst() estimation is accurate. The fact that the
kRingRange() algorithm was never called twice confirms
that the local estimation LEst() is also very accurate.

5.3 Scalability and Dimensionality

In this section we present results of experiments
performed to evaluate the behavior of the proposed
k-NNF () algorithm when varying the dataset size. To
perform these experiments, we shuffled each dataset ran-
domly and divided it in 10 parts of equal size. We created
the index structure by inserting the first part and mea-
sured the first point of the plots. Thereafter the next
part was inserted and the second point was taken, and
so on, until having the measurements for the complete
dataset. As before, each point in the plots corresponds
to the average total time of 500 queries with different
query centers. We performed experiments asking for 10,
20, 30, and 40 nearest neighbors (500 queries for each

Figure 7. Scalability tests for k-NNF ().

value of k). Figure 7 presents the plots for the average
total time to answer 500 queries for the MetricHisto (a)
and Sierpinsky (b) dataset. As can be seen, the results
reveal an essentially linear behavior for every measured
parameter. Figure 7(b) presents the plots for the Sierpin-
sky dataset. As can be seen, the results reveal sub-linear
behavior. The plots for average number of disk accesses
and distance calculations follow a similar pattern (not
shown here). The experiments with other datasets re-
vealed that the general behavior is at least linear for high
dimensional and non-dimensional (pure metric) datasets
and is sub-linear for the low dimensional datasets.

We also performed experiments to evaluate the behav-
ior of the proposed k-NNF () algorithm when varying
the embedded dimension. To evaluate these experiments,
we generated several versions of the SieDVar dataset,
increasing the embedded dimension and keeping its in-
trinsic dimension constant. The extra dimensions were
generated as linear combinations of the previous dimen-
sions to increase the embedded dimension while keeping
the fractal dimension unchanged. We created one index
structure for each version, having the same height, node
occupation and other parameters, keeping the same prop-
erties for every structure of each dataset, aiming at per-
forming a fair comparison. As before, each point in the
plots correspond to the average total time of 500 queries
with different query centers, asking for 10 nearest neigh-
bors. Figure 8 presents the plots for the various versions
of the SieDVar dataset, varying the embedded dimension
from 2 (original dataset) to 256. As can be seen, the re-
sults reveal that our proposed technique works very well
for datasets with high embedded dimensionality. On the
other hand, the inc k-NN() algorithm degenerates very
fast when increasing the embedded dimensionality. From
this experiment, we can conclude that as the dimension-
ality grows, the performance of the inc k-NN() algorithm
deteriorates. On the other hand, the k-NNF () algorithm
maintains its good performance when the dimensionality
of the dataset increases, maintaining its position as the
best of all algorithms.

6 Conclusions

This paper aims to develop techniques to explore the
intrinsic dimensionality of a dataset, measured by its cor-
relation fractal dimension, to estimate the final radius of

9

Figure 8. The embedded dimensionality test.

a k-nearest neighbor query to accelerate the query pro-
cessing. Its main contributions are the following: (1)
Two methods to estimate the final radius were proposed
and implemented. The first one assumes the elements
in the dataset following a known distribution (given by
D obtained from the Distance Plot) regarding the dis-
tances between the elements and generates a global es-
timate GEst(). The second method takes into account
the local density of elements around the query center,
and generates a local estimate LEst(); (2) Using the
two estimates provided by GEst() and LEst(), the paper
presents the new k-NNF () algorithm, which improves
processing k-NN queries over both spatial and metric
datasets; (3) The two methods are independent of the
underlying MAM employed; (4) The experiments com-
pared the proposed k-NNF () algorithm with the three
most representative existing ones from their correspond-
ing classes: the df k-NN(), the bf k-NN() and the inc
k-NN() algorithms. We also compared k-NNF () to the
standard range query, using the previously-known limit-
ing radius rf . This later test provides a theoretical lower
bound of the best possible algorithm to find the nearest
neighbors. The experiments were performed on both real
and synthetic datasets.

Although our approach requires more distance calcu-
lations and disk accesses than the best incremental algo-
rithm, it requires very few calculations to estimate the
final radius and few extra operations besides the element
comparisons to perform the search procedure, as it re-
quires smaller queues than the others to manage its sub-
trees. Therefore, the proposed k-NNF () algorithm was
the fastest for every dataset evaluated and required al-
most no extra memory to achieve such performance. The
experiments conducted to evaluate the algorithms showed
that the k-NNF () algorithm can reduce at least one order
of magnitude the time demanded to answer a query and
is up to 26 times faster than the inc k-NN() algorithm.
Considering the non-incremental algorithms, our propose
algorithm requires up to 37% less distance calculations,
up to 18% less disk accesses, and spends half of the to-
tal time of its closest competitor. Besides presenting a

real improvement in answering k-NN queries, the pro-
posed algorithm is simple to implement, consumes very
little additional memory and requires less computational
power than the competing algorithms in the literature.

As additional research problems, we are interested in
using the global and local estimates to improve cluster-
ing and classification algorithms, and also interested in
employing the results of traditional k-NN and other sim-
ilarity queries to calculate the intrinsic dimensionality D
of a dataset.

Acknowledgement

This work has been supported by CNPq (Brazilian Na-
tional Council for Research Supporting) and FAPESP
(São Paulo State Research Foundation) grants, and a
CAPES (Brazilian Federal Agency for Post-Graduate Ed-
ucation)/Fulbright Ph.D. fellowship for the first author.

References

[1] S. Christodoulakis. Implications of certain assumptions
in database performance evaluation. TODS, 1984.

[2] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An effi-
cient access method for similarity search in metric spaces.
In VLDB, 1997.

[3] C. Faloutsos, B. Seeger, A. J. M. Traina, and
C. Traina Jr. Spatial join selectivity using power laws.
In SIGMOD, 2000.

[4] A. Guttman. R-tree: A dynamic index structure for spa-
tial searching. In SIGMOD, 1984.

[5] G. R. Hjaltason and H. Samet. Index-driven similarity
search in metric spaces. TODS, 2003.

[6] L. Jin, N. Koudas, and C. Li. Nnh: Improving perfor-
mance of nearest-neighbor searches using histograms. In
EDBT, 2004.

[7] N. Katayama and S. Satoh. Distinctiveness-sensitive
nearest-neighbor search for efficient similarity retrieval
of multimedia information. In ICDE, 2001.

[8] F. Korn, B. Pagel, and C. Faloutsos. On the dimension-
ality curse and the self-similarity blessing. TKDE, 2001.

[9] C. A. Lang and A. K. Singh. Accelerating high-
dimensional nearest neighbor queries. In SSDBM, 2002.

[10] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In SIGMOD, 1995.

[11] M. Schroeder. Fractals, Chaos, Power Laws. 1991.
[12] M. Tasan and Z. M. Özsoyoglu. Improvements in

distance-based indexing. In SSDBM, 2004.
[13] A. J. M. Traina, C. Traina Jr., J. Bueno, F. Chino, and

P. M. Marques. Efficient content-based image retrieval
through metric histograms. WWWJ, 2003.

[14] C. Traina Jr., A. J. M. Traina, and C. Faloutsos. Distance
exponent: a new concept for selectivity estimation in
metric trees. In ICDE, 2000.

[15] C. Traina Jr., A. J. M. Traina, C. Faloutsos, and
B. Seeger. Fast indexing and visualization of metric
datasets using slim-trees. TKDE, 2002.

10

