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Abstract— The recent adoption of ubiquitous computing tech-
nologies (e.g. GPS, WLAN networks) has enabled capturing
large amounts of spatio-temporal data about human motion.
The digital footprints computed from these datasets provide
complementary information for the study of social and human
dynamics, with applications ranging from urban planning to
transportation and epidemiology. A common problem for all
these applications is the detection of dense areas, i.e. areas where
individuals concentrate within a specific geographical region and
time period. Nevertheless, the techniques used so far face an
important limitation: they tend to identify as dense areas regions
that do not respect the natural tessellation of the underlying
space. In this paper, we propose a novel technique, called DAD-
MST, to detect dense areas based on the Maximum Spanning Tree
(MST) algorithm applied over the communication antennas of a
cell phone infrastructure. We evaluate and validate our approach
with a real dataset containing the Call Detail Records (CDR) of
over one million individuals, and apply the methodology to study
social dynamics in an urban environment.

I. INTRODUCTION

While the mobility of animals has already been quantita-
tively studied, e.g. marine predators [1], our understanding of
individual human mobility is somewhat limited, mostly due to
the lack of large scale quantitative mobility data. However, the
recent adoption of ubiquitous computing technologies by very
large portions of the population (e.g. GPS devices, ubiquitous
cellular networks) has enabled the capture of large scale
quantitative data about human motion [2], [3], [4]. Some of the
areas that directly benefit from this new source of information
are urban computing and smart cities [5], [6]. These areas
focus on improving the quality of life of an urban environment
by understanding the city dynamics through the data provided
by ubiquitous technologies.

A city is an inherently self-organized human-driven organi-
zation where individuals and their behavior play an important
role in defining the pulse and the dynamics of the city. This
implies that in order to efficiently model human mobility,
individual information is necessary in order to reflect that
location is, at least in part, each individuals decision [6].
The datasets captured by ubiquitous computing technologies
inherently reflect individual information relating to mobility
and social dynamics. This fact represents a huge improvement
when compared to how mobility data has been typically col-
lected: using questionnaires and surveys, and in more advanced
studies, using proxies such as bills, public transport, etc [7].

1Work done while author was an intern at Telefónica Research, Madrid.

Some of the applications of smart cities and the study of
social dynamics include traffic forecasting [8], modeling of
the spread of biological viruses [9], urban and transportation
design [8] and location-based services [10]. A challenging and
interesting problem related to social and human dynamics is
of identifying areas of high density of individuals and their
evolution over time. This information is of paramount impor-
tance for, among many others, urban and transport planners,
emergency relief and public health officials, as it provides key
insights on where and when there are areas of high density
of individuals in an urban environment. Urban planners can
use this information to improve the public transport system
by identifying dense areas that are not well covered by the
current infrastructure, and determine at which specific times
the service is more needed. On the other hand, public health
officials can use the information to identify the geographical
areas in which epidemics can spread faster and, thus, prioritize
preventive and relief plans accordingly.

The problem of dense area detection was initially presented
in the data mining community as the identification of the set(s)
of regions, from spatio-temporal data, that satisfy a minimum
density value. This problem was initially solved for spatial
and multidimensional domains [11], and later for spatio-
temporal domain [12], [13], [14]. In the former proposals, no
time dimension is considered, while in the later ones only
moving objects, typically represented by GPS sensors that
continuously report their locations, are considered. Common
to all of the above methods is that a fixed-size non-overlapping
grid or circle employed to aggregate the values over the
spatial dimensions are considered. Therefore, these methods
“constrain” the shape of the detected areas and, generally,
identify dense areas that are a superset/subset of the desirable
dense areas. Ideally, we seek a technique that is able to detect
dense areas whose shape is as similar as possible to the
underlying dense geographical areas.

In this paper we propose the Dense Area Discovery
(DAD-MST) algorithm to automatically detect dense areas
in cell phone networks. Our approach, unlike the previous
approaches, is not based on fixed-size grids, but on the
natural tessellation of the spatial domain, thus overcoming
the limitations of all the previous approaches. The DAD-MST
is especially suited to work with human mobility data from
cell phones. Nevertheless, the type of information used by the
DAD-MST is not only available to telecommunication com-
panies but also to an increasingly large number of companies



(a) Original Tessellation (b) Desired dense area (c) Grid dense area

Fig. 1. (a) the original tessellation for an urban area, where each polygon defines the coverage of a cell phone tower; (b) the ideal dense area (highlighted)
based on the tessellation of the data; (c) common techniques based on fixed-size grids fails on the identification of dense area.

that provide location-based services and mobile services which
also collect (or are able to collect) human mobility data using
the cell phone network infrastructure. Moreover, although
the DAD-MST algorithm has been designed considering the
infrastructure of a wireless phone network, it can also be
applied to any problem where the data is represented in a
domain that has a natural tessellation (e.g. zip codes). We
evaluate the proposed algorithm with a very large, real-world
Call Detail Record (CDR) dataset, and then validate it with a
study of the social dynamics in a urban environment.

Note that the focus of this paper is on the detection and
study of dense areas, not hotspots [15]. Hotspots, as defined
by scan statistics, are the largest discrepancy areas in which
an independent variable has statistically different count values
from the rest of the geographical areas [16]. Conversely,
dense areas are defined as the (global or local) maxima of
the distribution of the function under study [17]. Thus, the
information provided by both approaches is different, while
hotspots can be used to identify events, dense areas identify
regions in space with a minimum critical mass of individuals.

The remainder of this paper is organized as follows: Section
II discusses the related work; Section III formally defines the
problem of discovering dense areas; Section IV describes the
proposed approach and its evaluation and validation appear in
Section V; A case study of the dynamics of a city from a
dense area perspective is described in Section VI; and Section
VII concludes the paper.

II. RELATED WORK

In the GIS, Urban Planning, Transportation and Virus
Spreading communities there has been (for a long time) a
variety of models to study human and city dynamics. Tradi-
tional approaches divide the geographical region under study
in zones which exchange population among themselves. Each
zone is characterized by a vector of socio-economic indicators
[5], typically collected and generated using surveys. Also, this
information can be completed with proxy sources for human
mobility such as transport infrastructures, air connections, etc
[7], [9]. These approaches provide information about human
behavior in a geographical environment but they are very
difficult to update and limit the results to a moment in

time [18]. In any case, these models substitute humans with
derivatives of their activities, ignoring the self-driven nature
of human mobility. The use of data originating in pervasive
infrastructures captures each individual mobility and is ideal to
represent the self-driven nature of the problem, complementing
traditional approaches. In [18], [19], the authors discuss initial
guidelines on how mobile phone data can be relevant for urban
planning and transportation communities.

Previous works on the identification of dense areas, not
necessarily for the study of social dynamics, have been car-
ried out following three main approaches: (1) density-based
clustering techniques; (2) detecting dense fixed-size grids in
spatio-temporal data; and (3) spatial-based techniques to detect
local maxima areas.

Clustering algorithms for spatial, multidimensional and
spatio-temporal data have been the focus of a variety of
studies (e.g. [20], [21], [22], [23]). Common to all of the
above methods is that clusters with high numbers of objects
in a specific geographical area are associated, using spatial
properties of the data, to denser regions. Furthermore, all
of these methods require choosing some number of clusters
or making underlying distributional assumptions of the data,
which is not always easy to estimate.

There are a variety of solutions for detecting dense areas
in spatial [11] and spatio-temporal [12], [13], [14] domains.
The STING method [11] is a fixed-size grid-based approach to
generate hierarchical statistical information from spatial data.
Hadjieleftheriou et al. [14] present another method based on
fixed-size grids where the main goal is to detect areas with
a number of trajectories higher than a predefined threshold.
Algorithms using a fixed-size window are proposed in [12],
[13] to scan the spatial domain in order to find fixed-size dense
regions. All of these approaches are specifically designed to
work for trajectory data where the exact location and speed
direction of a trajectory are used in order to aggregate values
in each grid for the spatial domain. Unfortunately, these
methods cannot be applied to our domain since in the majority
of mobile phone databases mobile users are not continuous
tracked. Furthermore, all the works described here detect dense
areas of fixed-size above a threshold using a predefined grid.

Some solutions to detect dense areas are based on the iden-



tification of local maxima, typically using techniques inherited
from computer vision (e.g. mean-shift [16], [15]). Mean shift
is a non-parametric feature-space analysis technique that iden-
tifies the modes of a density function given a discrete dataset
sampled from that function. As in previous approaches, the
geographical space under study is divided into a grid, hence
ignoring other original (natural) tessellations. Crandall et al.
[17] use mean-shift to identify geographical landmarks from
geo-tagged images.

In summary, previous works, among other limitations, typ-
ically identifies dense areas by overlaying a fixed grid on the
geographical region, which might not correspond to the real
shape of the underlying dense area. Although this problem
can be tackled to some extent with the creation of a grid
with enough granularity to linearly approximate the natural
tessellation of the area under study, the exponential increase
in complexity makes this solution computationally unfeasible.

III. PRELIMINARIES

In order to study the social dynamics of a geographical area,
we propose a new technique to identify dense areas and study
their evolution over time using the ubiquitous infrastructure
provided by a cell phone network. Cell phone networks are
built using a set of cell towers, also called Base Transceiver
Stations (BTS), that are in charge of communicating cell
phones with the network. Each BTS has a latitude and a
longitude, indicating its location, and gives cellular coverage to
an area called a cell. We assume that the cell of each BTS is a
2-dimensional non-overlapping polygon, and we use a Voronoi
tessellation to define its coverage area. Neighboring towers can
thus be identified using the Delaunay triangulation. Ideally, an
algorithm to detect dense areas in this context should respect
the tessellation produced by the Voronoi.

An example of the problems that arise when using the tradi-
tional techniques presented in the previous section is illustrated
in Figure 1: Figure 1(a) depicts the natural tessellation of a
city given by cell towers, with each polygon representing its
coverage; Figure 1(b) highlights the desired dense area (in
this case an area of high mobile-phone activity) based on the
original tessellation; and Figure 1(c) represents the dense area
identified by a state-of-the-art grid technique (with cell size
similar to the size of the cells in the tessellation). Note that in
the latter case, the dense area found by the algorithm includes
geographical regions with low density of activity (e.g. parks)
due to the grid structure employed. Moreover, due to the nature
of the grid structure, a larger area than what it is in reality is
returned by the grid-based algorithms.

Call Detailed Record (CDR) databases are populated when-
ever a mobile phone makes/receives a phone call or uses a
service (e.g. SMS, MMS). Hence, there is an entry in the CDR
database for each phone call/SMS/MMS sent/received, with its
associated timestamp and the BTS that handled it, which gives
an indication of the geographical location of the mobile phone
at a given moment in time. Note that no information about the
position of a user within a cell is known.

We characterize the information handled by each BTS of
two types: activities and users. The activities, A(δt)i, at btsi

correspond to the number of different calls that were handled
by btsi during the time period δt. Likewise, U (δt)i measures
the number of unique individuals whose calls where handled
by btsi during the time period δt.

In order to study the social dynamics of a region using
cell phone networks, we propose the DAD-MST algorithm
to automatically discover dense areas of activities or unique
users in a specific geographical region and during a determined
period of time δt such that: (1) it respects the original
tessellation of the space defined by the cell phone network;
(2) it does not need as input the number of dense areas (e.g.
the number of clusters) to be identified; and (3) it guarantees
that all dense areas are identified, covering up to a maximum
percentage λ of the total region under consideration. In our
scenario, the geographical region corresponds to the total area
where the dense spots are to be identified, and we carry out
our analysis at three levels: urban, regional and national.

IV. DISCOVERING DENSE AREAS FROM CDR DATA

Given an initial set of BTS={bts1,bts2, ...,btsn} that gives
coverage to a geographical region R characterized by its
Voronoi tessellation R = {V1 ∪ V2 ∪ ... ∪ Vn}, we seek to
discover the optimal disjoint subsets of BTS that cover areas
within R where either the number of activities or unique users
reaches a maximum in a specific time period δt. An exhaustive
exploration of all possible disjoint subsets of BTS becomes
a daunting task as the number of BTS increases. Thus, we
propose a greedy algorithm based on the Maximum Spanning
Tree (MST) algorithm [24] that selects, at each step, the best
subsets of BTS. In order to smooth noisy data, the minimum
number of BTS that define a dense area is set to 2.

The algorithm computes the dense areas in a geographical
region R given two parameters: coverage λ and granularity
ξ. The coverage λ corresponds to the maximum percentage
of the geographical area R that can be covered by the dense
areas identified by the algorithm. Typical values for λ are in
the range 0.05 to 0.5 (5% and 50%, respectively). Smaller λ
values may risk not identifying dense areas, and larger values
are considered not relevant as the areas identified would cover
most of the region R under study.

The granularity ξ represents the maximum distance between
two BTS in order to consider them to be part of the same dense
area and to be joined to form a potential subset. Hence, the
parameter ξ sets the spatial granularity at which dense areas
are identified (e.g. urban, regional or national levels) and it
is similar to the scale of observation parameters employed in
the mean-shift approach in [17]. When seeking an adequate
value for ξ, the distribution of BTS is a key factor. In urban
areas this distribution is typically very dense and homogeneous
such that each cell covers similar extension of areas. However,
in sparsely populated areas (e.g. rural area), the distribution
of BTS is scarce. For example, the average distance between
two neighboring urban BTS is around 1km, while in rural
environments this value may increase up to 11km. Therefore,
suitable values for ξ could be 1km, 10km and 100km to detect
dense areas in urban, regional, and national level, respectively.



The proposed Dense Area Discovery via MST algorithm
(DAD-MST) consists of three phases (explained below): (A)
Graph Construction; (B) Computation of Dense Areas; and (C)
Post-processing. It receives as inputs: the geographical region
R, the time period δt for which the dense areas need to be
computed, the set of BTS in the region R, the coverage λ and
the granularity ξ. It generates as outputs the subsets of BTS
that correspond to the dense areas in region R with coverage
λ and granularity ξ.

A. Graph Construction
First, a graph G=(V ,E) is built using Delaunay triangula-

tion, where each vertex vi ∈ V corresponds to btsi ∈ BTS in
the geographical region R, and each edge ei,j ∈ E represents
the connection between btsi and btsj . The Delaunay trian-
gulation is implemented following the Divide and Conquer
approach [25], with an approximate complexity of O(V logV ).
Next, all the edges in E with a distance between the two
connecting BTS larger than ξ are eliminated from the graph,
in order to ensure the desired spatial granularity given by ξ.
The distance between two BTS is computed by translating
their geographical coordinates into Cartesian coordinates and
then computing their Euclidean distance.

After that, a weight wi,j is associated to each edge ei,j ∈
E that has not been eliminated. The weight represents the
average density of the area covered by btsi and btsj during
the time period δt. The density is given by two types: the total
activity (A(δt)i+A(δt)j) or the total number of (unique) users
(U (δt)i+U (δt)j) observed at btsi and btsj during δt, divided by
the geographical area (in km2) covered by btsi and btsj . Both
values are computed from the CDR database using a query
system (see subsection CDR Query System). The details of
the algorithm are presented in Algorithm 1.

Algorithm 1 GraphConstruction(type,BTS,ξ,δt)
1: G(V,E)← Delaunay(bts1, ...,btsn)
2: for each edge ei,j ∈ E do
3: if distance(btsi,btsj) > ξ then
4: E ← E \ ei,j

5: else
6: wi,j ← QueryDB(type,btsi,btsj ,δt)

B. Computation of Dense Areas
A variation of the Maximum Spanning Tree algorithm is

used to detect dense areas given by G(V ,E) and the associated
weights W (see Algorithm 2). The edges in E are first sorted
by decreasing weight W . At each step the edge ei,j ∈ E
with the highest weight wi,j is removed from E and added
to the list L of edges that represent dense areas if and only if
the edge connects vertices that belong to two different subsets
(trees) of BTS. In Algorithm 2, MakeSet creates a potential
tree for each vertex, FindSet identifies the tree in which a
vertex is included in L, and Union joins two trees. A detailed
description of MakeSet, FindSet and Union is given in the
formal definition of the MST algorithm [24].

This process selects, in a greedy manner, the subsets of
vertices (BTS) that are associated to high values of either

activities or unique users. Edges are added to L until the total
geographic area covered by the BTS that are connected by the
edges in L is equal or larger than λ ∗ |R|, where λ is the
coverage and |R| is the size of the area under study. Note
that the coverage of btsi is approximated by the area of its
associated Voronoi cell Voronoi(btsi), such that the algorithm
computes the tree until

∑
Voronoi(btsi) ∀i ∈ unique btsi of

|L| > λ ∗ |R|. Additionally, every time an edge ei,j is added
to L, the edges in E where either i or j are one of the vertices,
are re-weighted in order to avoid double counting of activities
or unique users. Once the stopping condition is satisfied, the
list L contains all the edges (and associated pairs of BTS) that
correspond to the dense areas in the graph. The complexity of
ComputeDenseAreas is O(ElogE).

Algorithm 2 ComputeDenseAreas(G(V,E),R,λ)
1: sort E by decreasing weight W
2: L← ∅
3: for each vi ∈ V do
4: MakeSet(vi)
5: while

∑
Voronoi(btsi) ∀i ∈ unique btsi of |L| < λ ∗ |R| do

6: ei,j ← E.top()
7: E ← E \ ei,j

8: if FindSet(i) 6= FindSet(j) then
9: L← L

⋃
ei,j

10: Union(i, j)
11: re-weight ∀ei′,j′ ∈ E affected by ei,j

12: sort E by decreasing weight W

C. Post-processing

The post-processing phase computes all the connected com-
ponents from the final list L in order to visualize the dense
areas on a map. Each subset of connected edges in L represents
a subset of BTS associated to a dense area. Specifically, we use
the Shiloach-Vishkin [26] algorithm to compute the connected
components of the graph (with a complexity of O(ElogV )).
Once the connected edges are obtained, the final density of
activities or unique users associated to each dense area are
computed as the sum of the weights of all of its edges divided
by the geographical area (in km2) covered by all the BTS in
the dense area. Finally, a color is assigned to each dense area
(subset of BTS based on its level of activities or users: warm
(red, orange, ...) and cold (blue, grey, ...) colors are used to
represent areas with high and low, respectively, dense levels.

D. CDR Query System

The most computationally expensive part of the proposed
algorithm is the calculation of the weights W associated to
the edges E. Since processing a very large CDR database
containing several millions of records for a specific period of
time δt can be computationally expensive (especially when
long periods of time are considered), in this work we make
use of a spatio-temporal query system designed specifically
for CDR databases [4] that guarantees a timely retrieval of
information associated to any BTS. Basically, for each btsi,
two index structures are built: one B+-tree to organize entries
by the temporal attribute timestamp; and one inverted-index



where entries are ordered by (phoneid,timestamp). This index-
based structure allows us to compute the weights of the edges
by querying the system with the time period δt, the btsi and
btsj , and the type of query (activities/users) under study.

V. EXPERIMENTAL EVALUATION

We collected cell phone data in the form of CDR from a
single carrier of a state with an approximate area of 80,000
km2. The state contains two large metropolitan areas (of
approximately 4,000,000 and 400,000 residents respectively)
and other smaller urban areas. Here we use a sample of this
dataset containing the calls of over one million anonymized
unique customers over a period of four months, with around
50 million CDR entries collected with 5,000 BTS towers2.

A. Quantitative Evaluation

First, we experimentally analyze the effect that ξ (granu-
larity) and λ (coverage) have in the number of dense areas
identified and by extension in the granularity of the social
dynamics modelled. For that purpose, we consider two dif-
ferent settings for the geographical region R: urban, Ru,
defined by a rectangle (Ru=30km*35km) that covers the main
metropolitan area (4, 000, 000 residents); and regional, Rr,
defined by a rectangle (Rr=400km*200km) that approximately
covers all the geographical area of the state. Regarding the
temporal range δt, we consider “weekdays” and “weekends”
separately and within each type of day, we identify four time
slots: “mornings” (6am–10am), “afternoons” (10am–2pm),
“evenings” (2pm–6pm) and “nights” (6pm–10pm). Note that
we present here results for δt=“weekdays in the morning” and
for the type of query number of users due to space constraints,
but we obtained similar results with the other temporal ranges
and the number of activities.

Figure 2 (top) shows the number of dense areas (Y axis)
obtained by the DAD-MST algorithm with different values of
coverage λ from 5% to 50% (X axis) for the urban geograph-
ical region Ru=30km*35km. Each line in the plot represents a
different value for ξ: 1km (urban), 10km (regional) and 100km
(national). Considering ξ=1km, we observe that as λ increases,
the number of dense areas identified by the algorithm increases
linearly. The algorithm successfully identifies different dense
areas due to the fact that ξ=1km does not allow for many BTS
connected by Delaunay to be merged together as the area of
coverage increases. However, we observe that for larger values
of ξ, the increase in coverage results in a reduction in the
number of dense areas. This is due to the fact that larger ξs
merge dense areas together as the coverage area is increased.
In fact, we observe that for ξ=10km and ξ=100km, when the
area of coverage is larger than 10%, only one dense area is
identified as all of the edge subsets are joined. In sum, this
analysis highlights the importance of selecting an appropriate
value for ξ that will adequately identify areas within the region
under study. In the case of an urban environment, the value
of ξ=1km successfully achieves this result.

2Company policy does not allow us to reveal the geographical origin of the
data.

Fig. 2. Total number of dense areas identified (Y axis) for values of λ (X
axis) ranging from 5% to 50% and for ξ=1, 10, 100km. R represents an urban
(top) and a regional (bottom - with Y in log scale) area.

Figure 2 (bottom) shows a similar analysis for a regional
geographical area Rr=400km*200km (Y axis in log scale).
In this case, ξ=1km generates a large number of dense areas
of small size as the coverage area λ increases. In fact, we
are capturing the dense areas within the neighborhoods of
metropolitan areas located in the region under study. Higher
values of ξ allow us to merge and thus reduce the number
of dense areas identified as λ increases. We observe that
ξ=10km stabilizes after identifying approximately 200 dense
areas, which correspond to small suburban areas (generally
near metropolitan areas) and/or big neighborhoods within
metropolitan areas. Finally, for ξ=100km, we observe that
values of λ higher that 20% only allow for the detection of
two dense areas that correspond to the two big metropolitan
areas in the region.

Hence, a value of ξ=100km yields the identification of big
metropolitan areas whereas ξ=10km leads to detecting small
suburban areas within the region under study. From a com-
putational efficiency perspective, the scale of the experiment
deeply affect the computation time. At an urban scale Ru, a
reduced number of BTS is analyzed (around 500), yielding a
processing time of less than 30 seconds per evaluation tuple
(λ, ξ). At a regional scale Rr, the number of BTS is one order
of magnitude larger (around 5,000). Hence, the processing
time is of the order of 30 minutes per evaluation tuple. All
experiments were run on a Dual Intel Xeon E5540 2.53GHz
running Linux 2.6.22 with 32GBytes memory.

B. Qualitative Validation

In order to assess the quality of the areas identified by the
proposed algorithm, Figure 3 shows some landmarks of the
city under study, having as a reference the subway system.



Fig. 3. General description of the city under study with the subway system
as the main reference landmark.

The two subway lines in the city (represented by dotted-
black lines), run East-West (L1) and North-South (L2) with
one central station in common. For reference purposes the
central station is denoted by C, with stops north of C denoted
as N1 to N7, stops south of C denoted S1 to S11 and
stops east of C denoted E1 to E9. The downtown area is
geographically located around C, E1, E2, E3 and E4. Near
C we find university buildings, government offices and parks.
The vicinities of E1 and E2 form the commercial part of the
city with markets, commercial streets and hotels. E3 and E4
have more university buildings and night life area. The rest of
L1 services mainly residential areas. Regarding L2, around S3
to S11 there are mainly residential neighborhoods with light
industrial areas. N2 to N7 serve residential areas with some
commercial and entertainment places. The map also indicates
other places such as a Stadium complex (S) and the city Zoo
(Z), the main zoo of the country. For the areas not commented,
as a general rule, there is a mixture of residential areas (with
different densities) and light industrial areas, with the north
and north-west having more affluent areas than the south.

Figures 4 and 5 depict the graphical representation of the
dense areas detected at an urban level (Ru=30km*35km,
ξ=1km, λ=15%) during mornings, afternoons, evenings and
nights in term of number of users for weekdays and weekends
respectively. R covers the city and its metropolitan area as to
reflect the social dynamics between the metropolitan belt and
the city. The area presented in the figures is a smaller rectangle
of 20km*15km centered in the city in order to appreciate
downtown dense areas. Note that the same color in different
time frameworks does not imply the same density, just the
same relative importance.

The dense areas identified by DAD-MST align well with
the two subway lines, highlighting the intricate relationship be-
tween public transportation and city dynamics. This alignment

is also an indirect validation of our algorithm, as it is expected
that people will concentrate around the areas served by the
public transport system. Finally, we repeated the analysis for
the variable number of activities with similar results.

VI. CITY DYNAMICS

The combination of Figures 4 and 5 shows the evolution
of dense areas during weekdays and weekends and thus an
indication of how people live and move in the city. It has to
be noted that the dynamics reflected by the evolution of dense
areas does not necessarily imply flocks of individuals [27]
moving from one area to another, just density of individuals
changing over time. The top five dense areas presented in each
map of Figures 4 and 5 have been numbered from 1 to 5 (being
dense area #1 the one with the highest density) to facilitate
the reading of the relevance3. If one number is not present is
because it is not located in the area of 20km*15km showed in
the Figures 4 and 5 but is present somewhere in R, i.e. in those
cases the dense areas are located outside the city somewhere
in the metropolitan belt.

Following the temporal sequence of the evolution of dense
areas during weekdays (see Figure 4) it can be observed that
downtown is covered by a big dense area in the morning,
focussing on the university, the commercial and the govern-
mental district. Also in the morning, the second and fifth dense
areas are located in residential zones and dense areas #3 and
#4 are outside the city. This indicates that in those hours
although downtown is the top dense area, the metropolitan
belt of the city also has important density of individuals. In
the afternoon, the top dense area that appeared in the morning
disappears, and a new dense area, ranked #2, located around
E1 to E4 and focussing on the commercial area appears. Also
in the afternoon, 3 out of the top 5 dense areas identified are
in the metropolitan belt. Note that because of the nature of
the data, we are strictly representing the number of people
that have used their cell phone in that period of time. It can
be the case that once people get to the working place or to
the university in downtown, cell phones are not used with
the same frequency. This would motivate the disappearance
of the dense area in the government and university districts.
On weekday evenings and nights the activity is concentrated
in downtown, with the top dense area around the commercial
and business districts and aligning with the subway lines. Both
in the evening and at night there is a shift, when compared to
mornings and afternoons, in the localization of the top dense
areas from the metropolitan belt to downtown. To represent
that shift, in the evening 4 out of the 5 top dense areas are in
the city, while at night the 3 top ones are in the city.

Following the temporal sequence of the evolution of dense
areas during weekends (see Figure 5) it can be observed that
in the morning and in the afternoon the top dense area (#1)
is outside the city. In both cases there are dense areas in
the commercial and business districts in downtown, although
they are not in the top 3. Two dense areas appear north of
downtown, which include the stadium complex (marked with

3We have ranked the dense areas because the color scheme used in our
graphic interface does not translate into interpretable grey levels.



(a) weekday morning (b) weekday afternoon

(c) weekday evening (d) weekday night

Fig. 4. Area of 20km*15km of the city under study and the dense areas detected by DAD-MST in the morning, afternoon, evening and night during weekdays
with ξ=1km and λ=.15. The black line with black dots represents the subway system and the corresponding stations.

(a) weekend morning (b) weekend afternoon

(c) weekend evening (d) weekend night

Fig. 5. Area of 20km*15km of the city under study and the dense areas detected by DAD-MST in the the morning, afternoon, evening and night during
weekends with ξ=1km and λ=.15.The black line with black dots represents the subway system and the corresponding stations.



S) and the zoo (marked with Z) respectively. Both dense areas
are present in the four range hours during weekends (note
that both complexes cover a small geographical area of the
dense areas identified). During the evenings and at night the
top dense area is in downtown around the subway stops E1 to
E4, i.e. in the commercial and nigh life area. Both evening and
nights during weekends have the same dense areas, indicating
that there is no change in the dynamics of the city. As it
happened during weekdays, in the evening and at night there
is a shift in the top dense areas from the metropolitan belt to
the city.

Both during weekdays and weekends residential areas are
identified south of downtown. The identification of dense areas
in residential neighborhoods is tightly related to the density
of housing, where lower income neighborhoods tend to have
a higher density than more affluent neighborhoods. This is
probably one of the reasons why residential dense areas are
identified mainly in the south and none in the north.

A direct application of these knowledge regarding the social
dynamics of the city is to help in the decision process of
the design of the public transport infrastructure. In general,
as mentioned in the previous section, there is an alignment
between the subway lines (especially N1-N11 and E1 to E7)
and the dense areas, indicating that the main dense areas are
covered. The dense areas of the south-west are not directly
covered by S1-S11, although they are in the vicinity. Note
that our algorithm has also identified dense areas in the south-
east corner of the city, where there is no subway service right
now. From an urban planning perspective, this information
could be used to propose line extensions to public transport
officials. Also it is relevant that dense areas are very relevant
in the metropolitan belt, and typically in the top 5 most
important ones, so enough means of communication (buses,
trains, etc.) have to communicate those areas with the city,
specially between afternoon and evening when dense areas
shift from the metropolitan belt to the city.

VII. CONCLUSION AND FUTURE WORK

Ubiquitous computing infrastructures are opening new doors
for the study of social dynamics, specially in the field of urban
computing. The application of these new techniques can be
used as a complement to traditional approaches in areas such
as urban planning and transportation design. The identification
of dense areas is a topic that is key to a variety of social
dynamic studies, and as such has received attention from a
variety of research fields. Nevertheless, the techniques used so
far suffer from limitations – particularly when using large scale
human activity data sets, such as mobile phone-call records –
including poor spatial resolution due to the use of grids. In this
paper, we have proposed the DAD-MST algorithm to identify
dense areas from Call Detail Records that is able to process
large scale datasets and respects the original tessellation of
the space. The The DAD-MST algorithm has been tested and
validated using a real CDR dataset of almost 50 million entries
for over 1 million unique users over a four-month period. The
dense areas identified have been qualitatively validated using
the subway system of the city under study. The dynamics of

the dense areas identified revealed the use that the citizens
make of their city, indicating differences between different
hour ranges and weekdays and weekends. We consider that
although the results presented can only be applied to the city
under study, the framework can be generalized to study social
dynamics not only at an urban level, but also at a regional
and national levels using the proper parameters of the DAD-
MST algorithm. As future work we plan to combine our
technique with data originating from other urban sensors, such
as traffic, and analyze the applicability of our work for the
recommendation of urban planning decisions.
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