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Abstract

Metric Access Methods (MAM) are employed
to accelerate the processing of similarity queries,
such as the range and thek-nearest neighbor
queries. Current methods, such as the Slim-
tree and the M-tree, improve the query perfor-
mance minimizing the number of disk accesses,
keeping a constant height of the structures stored
on disks (height-balanced trees). However, the
overlapping between their nodes has a very high
influence on their performance. This paper
presents a new dynamic MAM called theDBM-
tree(Density-Based Metric tree), which can min-
imize the overlap between high-density nodes
by relaxing the height-balancing of the structure.
Thus, the height of the tree is larger in denser
regions, in order to keep a tradeoff between
breadth-searching and depth-searching. An un-
derpinning for cost estimation on tree structures
is their height, so we show a non-height depend-
able cost model that can be applied for DBM-
tree. Moreover, an optimization algorithm called
Shrinkis also presented, which improves the per-
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formance of an already builtDBM-treeby reor-
ganizing the elements among their nodes. Ex-
periments performed over both synthetic and real
world datasets showed that theDBM-tree is, in
average, 50% faster than traditional MAM and
reduces the number of distance calculations by
up to 72% and disk accesses by up to 66%. Af-
ter performing theShrinkalgorithm, the perfor-
mance improves up to 40% regarding the number
of disk accesses for range andk-nearest neigh-
bor queries. In addition, theDBM-treescales up
well, exhibiting linear performance with growing
number of elements in the database.

Keywords: Metric Access Method, Metric
Tree, Indexing, Similarity Queries.

1 Introduction

The volume of data managed by the Database
Management Systems (DBMS) is continually in-
creasing. Moreover, new complex data types,
such as multimedia data (image, audio, video
and long text), geo-referenced information, time
series, fingerprints, genomic data and protein
sequences, among others, have been added to
DBMS.

The main technique employed to accelerate
data retrieval in DBMS is indexing the data using
Access Methods (AM). The data domains used
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by traditional databases, i.e. numbers and short
character strings, have the total ordering prop-
erty. Every AM used in traditional DBMS to an-
swer both equality (= and 6=) and relational or-
dering predicates (≤, <, ≥ and>), such as the
B-trees, are based on this property.

Unfortunately, the majority of complex data
domains do not have the total ordering property.
The lack of this property precludes the use of tra-
ditional AM to index complex data. Neverthe-
less, these data domains allow the definition of
similarity relations among pairs of objects. Sim-
ilarity queries are more natural for these data do-
mains. For a given reference object, also called
the query center object, a similarity query returns
all objects that meet a given similarity criteria.
Traditional AM rely on the total ordering rela-
tionship only, and are not able to handle these
complex data properly, neither to answer simi-
larity queries over such data. These restrictions
led to the development of a new class of AM, the
Metric Access Methods (MAM), which are well-
suited to answer similarity queries over complex
data types.

A MAM such as the Slim-tree [15, 14] and
the M-tree [9] were developed to answer similar-
ity queries based on the similarity relationships
among pairs of objects. The similarity (or dis-
similarity) relationships are usually represented
by distance functions computed over the pairs of
objects of the data domain. The data domain and
distance function defines a metric space or metric
domain.

Formally, a metric space is a pair <S, d() >,
whereS is the data domain andd() is a distance
function that complies with the following three
properties:

1. symmetry: d(s1, s2) = d(s2, s1);
2. non-negativity: 0 < d(s1, s2) < ∞ if

s1 6= s2 andd(s1, s1) = 0; and
3. triangular inequality : d(s1, s2) ≤

d(s1, s3) + d(s3, s2),

∀s1, s2, s3 ∈ S. A metric datasetS ⊂ S is a set
of objectssi ∈ S currently stored in a database.

Vectorial data with aLp distance function, such
as Euclidean distance (L2), are special cases of
metric spaces. The two main types of similarity
queries are:

• Range query -Rq: given a query cen-
ter object sq ∈ S and a maximum
query distancerq, the queryRq(sq, rq)
retrieves every objectsi ∈ S, such that
d(si, sq) ≤ rq. An example is: “Select
the proteins that are similar to the pro-
tein P by up to 5 purine bases”, which
is represented asRq(P, 5);

• k-Nearest Neighbor query - kNNq:
given a query center objectsq ∈ S
and an integer valuek ≥ 1, the query
kNNq(sq, k) retrieves thek objects in
S that have the smallest distance from
the query objectsq, according to the dis-
tance functiond(). An example is: “Se-
lect the 3 protein most similar to the
proteinP ”, wherek=3, which is repre-
sented askNNq(P, 3).

This paper presents a new dynamic MAM
called DBM-tree (Density-Based Metric tree),
which can minimize the overlap of nodes stor-
ing objects in high-density regions relaxing the
height-balance of the structure. Therefore, the
height of a DBM-tree is larger in higher-density
regions, in order to keep a compromise between
the number of disk accesses required to breadth-
search various subtrees and to depth-searching
one subtree. As the experiments will show, the
DBM-tree presents better performance to answer
similarity queries than the rigidly balanced trees.
This article also presents an algorithm to opti-
mize DBM-trees, calledShrink, which improves
the performance of these structures reorganizing
the elements among the tree nodes.

The experiments performed over synthetic and
real datasets show that the DBM-tree outper-
forms the traditional MAM, such as the Slim-tree
and the M-tree. The DBM-tree is, in average,
50% faster than these traditional balanced MAM,



reducing up to 66% the number of disk accesses
and up to 72% the number of distance calcula-
tions required to answer similarity queries. The
Shrinkalgorithm, helps to achieve improvements
of up to 40% in number of disk accesses to
answer range andk-nearest neighbor queries.
Moreover, the DBM-tree is scalable, exhibiting
linear behavior in the total processing time, the
number of disk accesses and the number of dis-
tance calculations regarding the number of in-
dexed elements.

A preliminary version of this paper was pre-
sented at SBBD 2004 [20]. Here, we show a new
split algorithm for the DBM-tree. Additionally,
this paper shows an accurate cost function for the
DBM-tree using only information easily deriv-
able from the tree, thus providing a cost func-
tion that does not depend upon a constant tree-
height. A cost function is fundamental to enable
the DBM-tree to be employed in real DBMS. Ev-
ery tree-based AM used in existing DBMS uses
the height of the tree as the main parameter to
optimize a query plan. As the DBM-tree does
not have a reference height, every existing the-
ory about query plan optimizations are knocked
out when using a DBM-tree. Therefore, the cost
function presented in this paper is a fundamental
requirement to enable using DBM-trees in a real
DBMS.

The remainder of this paper is structured as
follows: Section 2 presents the basic concepts
and Section 3 summarizes the related works. The
new metric access method DBM-tree is presented
in Section 4. Section 5 describes the experiments
performed and the results obtained. Finally, Sec-
tion 6 gives the conclusions of this paper and sug-
gests future works.

2 Basic Concepts

Access Methods(AM) are used by DBMS
to improve performance on retrieval operations.
The use of meaningful properties from the ob-
jects indexed is fundamental to achieve the im-

provements. Using properties of the data do-
main, it is possible to discard large subsets of data
without comparing every stored object with the
query object. For example, consider the case of
numeric data, where the total ordering property
holds: this property allows dividing the stored
numbers in two sets: those that are larger and
those that are smaller than or equal to the query
reference number. Hence, the fastest way to
perform the search is maintaining the numbers
sorted. Thus, when a search for a given number
is required, comparing this number with a stored
one enables discarding further comparisons with
the part of the data where the number cannot be
in.

An important class of AM are the hierarchical
structures (trees), which enables recursive pro-
cesses to index and search the data. In a tree, the
objects are divided in blocks called nodes. When
a search is needed, the query object is compared
with one or more objects in the root node, deter-
mining which subtrees need to be traversed, re-
cursively repeating this process for each subtree
that is able to store answers.

Notice that whenever the total ordering prop-
erty applies, only a subtree at each tree level can
hold the answer. If the data domain has only a
partial ordering property, then it is possible that
more than one subtree need to be analyzed in
each level. As numeric domains possess the total
ordering property, the trees indexing numbers re-
quires the access of only one node in each level
of the structure. On the other hand, trees stor-
ing spatial coordinates, which have only a partial
ordering property, require searches in more than
one subtree in each level of the structure. This
effect is known as covering, or overlapping be-
tween subtrees, and occurs for example in R-trees
[12].

Hierarchical structures can be classified as
(height-)balanced or unbalanced. In the balanced
structures, the height of every subtree is the same,
or at most changes by a fixed amount.

The nodes of an AM used in a DBMS are



stored in disk using fixed size registers. Storing
the nodes in disk is essential to warrant data per-
sistence and to allow handling any number of ob-
jects. However, as disk accesses are slow, it is
important to keep the number of disk accesses
required to answer queries small. Traditional
DBMS build indexes only on data holding the to-
tal ordering property, so if a tree grows deeper,
more disk accesses are required to traverse it.
Therefore it is important to keep every tree the
shallowest possible. When a tree is allowed to
grow unbalanced, it is possible that it degener-
ates completely, making it useless. Therefore,
only balanced trees have been widely used in tra-
ditional DBMS.

A metric tree divides a dataset into regions
and chooses objects called representatives or cen-
ters to represent each region. Each node stores
the representatives, the objects in the covered re-
gion, and their distances to the representatives.
As the stored objects can be representatives in
other nodes, this enables the structure to be orga-
nized hierarchically, resulting in a tree. When a
query is performed, the query object is first com-
pared with the representatives of the root node.
The triangular inequality is then used to prune
subtrees, avoiding distance calculations between
the query object and objects or subtrees in the
pruned subtrees. Distance calculations between
complex objects can have a high computational
cost. Therefore, to achieve good performance in
metric access methods, it is vital to minimize also
the number of distance calculations in query op-
erations.

Metric access methods exhibits the node over-
lapping effect, so the number of disk accesses
depends both on the height of the tree and on
the amount of overlapping. In this case, it is
not worthwhile reducing the number of levels at
the expense of increasing the overlapping. In-
deed, reducing the number of subtrees that can-
not be pruned at each node access can be more
important than keep the tree balanced. As more
node accesses also requires more distance calcu-

lations, increasing the pruning ability of a MAM
becomes even more important. However, no pub-
lished access method took this fact into account
so far.

The DBM-tree presented in this paper is a dy-
namic MAM that relax the usual rule that im-
poses a rigid height-balancing policy, therefore
trading a controlled amount of unbalancing at
denser regions of the dataset for a reduced over-
lap between subtrees. As our experiments show,
this tradeoff allows an overall increase in perfor-
mance when answering similarity queries.

3 Related Works

Plenty of Spatial Access Methods (SAM) were
proposed for multidimensional data. A compre-
hensive survey showing the evolution of SAM
and their main concepts can be found in [11].
However, the majority of them cannot index
data in metric domains, and suffer from the di-
mensionality curse, being efficient to index only
low-dimensional datasets. An unbalanced R-
tree called CUR-tree (Cost-Based Unbalanced R-
tree) was proposed in [16] to optimize query exe-
cutions. It uses promotion and demotion to move
data objects and subtrees around the tree taking
into account a given query distribution and a cost
model for their execution. The tree is shallower
where the most frequent queries are posed, but
it needs to be reorganized every time a query is
executed. This technique works only in SAM,
making it infeasible to MAM. Considering cost
models, a great deal of work were also published
regarding SAM [17]. However they rely on data
distribution in the space and other spatial proper-
ties, what turns them infeasible for MAM.

The techniques of recursive partitioning of
data in metric domains proposed by Burkhard
and Keller [5] were the starting point for the de-
velopment of MAM. The first technique divides
the dataset choosing one representative for each
subset, grouping the remaining elements accord-
ing to their distances to the representatives. The



second technique divides the original set in a
fixed number of subsets, selecting one represen-
tative for each subset. Each representative and
the biggest distance from the representative to all
elements in the subset are stored in the structure
to improve nearest-neighbor queries.

The MAM proposed by Uhlmann [19] and the
VP-tree (Vantage-Point tree) [21] are examples
based on the first technique, where the vantage
points are the representatives proposed by [5].
Aiming to reduce the number of distance calcu-
lations to answer similarity queries in the VP-
tree, Baeza-Yates et al. [1] proposed to use the
same representative for every node in the same
level. The MVP-tree (Multi-Vantage-Point tree)
[2, 3] is an extension of the VP-tree, allowing
to selectM representatives for each node in the
tree. Using many representatives the MVP-tree
requires lesser distance calculations to answer
similarity queries than the VP-tree. The GH-tree
(Generalized Hyper-plane tree) [19] is another
method that recursively partitions the dataset in
two groups, selecting two representatives and as-
sociating the remaining objects to the nearest rep-
resentative.

The GNAT (Geometric Near-Neighbor Access
tree) [4] can be viewed as a refinement of the sec-
ond technique presented in [5]. It stores the dis-
tances between pairs of representatives, and the
biggest distance between each stored object to
each representative. The tree uses these data to
prune distance calculations using the triangular
inequality.

All MAM for metric datasets discussed so far
are static, in the sense that the data structure is
built at once using the full dataset, and new in-
sertions are not allowed afterward. Furthermore,
they only attempt to reduce the number of dis-
tance calculations, paying no attention on disk
accesses. The M-tree [9] was the first MAM to
overcome this deficiency. The M-tree is a height-
balanced tree based on the second technique of
[5], with the data elements stored in leaf nodes.
A cost model based only in the distance distribu-

tions of the dataset and information of the M-tree
nodes is provided in [8]. The Slim-Tree [15] is an
evolution from the M-Tree, embodying the first
published method to reduce the amount of node
overlapping, called theSlim-Down.

The use of multiple representatives called,
“omni-foci”, was proposed in [10] to generate a
coordinate system of the objects in the dataset.
The coordinates can be indexed using any SAM,
ISAM (Indexed Sequential Access Method), or
even sequential scanning, generating a family of
MAM called the “Omni-family”. Two good sur-
veys on MAM can be found in [7] and [13].

The MAM described so far build height-
balanced trees aiming to minimize the tree height
at the expense of little flexibility to reduce node
overlap. The DBM-tree proposed in this paper
is the first MAM which keep a tradeoff between
breadth-searching and depth-searching to allows
trading height-balancing with overlap reduction,
to achieve better overall search performance.

4 The MAM DBM-tree

The DBM-tree is a dynamic MAM that grows
bottom-up. The objects of the dataset are
grouped into fixed size disk pages, each page
corresponding to a tree node. An object can be
stored at any level of the tree. Its main intent is
to organize the objects in a hierarchical structure
using a representative object as the center of each
minimum bounding region that covers the objects
in a subtree. An object can be stored in a node if
the covering radius of the representative covers
it.

Unlike the Slim-tree and the M-tree, there is
only one type of node in the DBM-tree. There
are no distinctions between leaf and index nodes.
Each node has a capacity to hold up toC entries,
and it stores a fieldCeff to count how many en-
tries si are effectively stored in that node. An
entry can be either a single object or a subtree. A
node can have subtree entries, single object en-
tries, or both. Single objects cannot be covered



by any of the subtrees stored in the same node.
Each node has one of its entries elected to be a
representative. If a subtree is elected, the rep-
resentative is the center of the root node of the
subtree. The representative of a node is copied
to its immediate parent node, unless it is already
the root node. Entries storing subtrees have: one
representative objectsi that is the representative
of thei-th subtree, the distance between the node
representative and the representative of the sub-
treed(srep, si), the linkPtri pointing to the node
storing that subtree and the covering radius of the
subtreeRi. Entries storing single objects have:
the single objectsj, the identifier of this object
OIdj and the distance between the object repre-
sentative and the objectd(srep, sj). This structure
can be represented as:
Node[Ceff , array [1..Ceff ] of |< si, d(srep, si),

Ptri, Ri > or < sj, OIdj, d(srep, sj)>|]
In this structure, the entrysi whosed(srep, si) =
0 holds the representative objectsrep.

4.1 Building the DBM-tree

The DBM-tree is a dynamic structure, allow-
ing to insert new objects at any time after its cre-
ation. When the DBM-tree is asked to insert a
new object, it searches the structure for one node
qualified to store it. A qualifying node is one with
at least one subtree that covers the new object.
The Insert() algorithm is shown as Algorithm
1. It starts searching in the root node and pro-
ceeds searching recursively for a node that qual-
ifies to store the new object. The insertion of the
new object can occur at any level of the struc-
ture. In each node, theInsert() algorithm uses
the ChooseSubtree() algorithm (line 1), which
returns the subtree that better qualifies to have
the new object stored. If there is no subtree that
qualifies, the new object is inserted in the current
node (line 9). The DBM-tree provides two poli-
cies for theChooseSubtree() algorithm:

• Minimum distance that covers the
new object (minDist): among the sub-
trees that cover the new object, choose

Algorithm 1 Insert()
Input: Ptrt: pointer to the subtree where the new object

sn will be inserted.

sn: the object to be inserted.

Output: Insert objectsn in thePtrt subtree.

1: ChooseSubtree(Ptrt, sn)
2: if There is a subtree that qualifiesthen
3: Insert(Ptri, sn)
4: if There is a promotionthen
5: Update the new representatives and their informa-

tion.

6: Insert the object set not covered for node split in

the current node.

7: for Each entrysi now covered by the updatedo
8: Demote entrysi.

9: else ifThere is space in current nodePtrt to insertsn

then Insert the new objectsn in nodePtrt.

10: elseSplitNode(Ptrt, sn)

the one that has the smallest distance be-
tween the representative and the new ob-
ject. If there is not an entry that qualifies
to insert the new object, it is inserted in
the current node;

• Minimum growing distance
(minGDist): similar to minDist but
if there is no subtree that covers the
new object, it is chosen the one whose
representative is the closest to the new
object, increasing the covering radius
accordingly. Therefore, the radius of
one subtree is increased only when no
other subtree covers the new object.

The policy chosen by theChooseSubtree()
algorithm has a high impact on the resulting
tree. TheminDistpolicy tends to build trees with
smaller covering radii, but the trees can grow
higher than the trees built with theminGDistpol-
icy. TheminGDistpolicy tends to produce shal-
lower trees than those produced with theminDist
policy, but with higher overlap between the sub-
trees.

If the node chosen by theInsert() algorithm
has no free space to store the new object, then all



the existing entries together with the new object
taken as a single object must be redistributed be-
tween one or two nodes, depending on the redis-
tribution option set in theSplitNode() algorithm
(line 10). TheSplitNode() algorithm deletes the
nodePtrt and remove its representative from its
parent node. Its former entries are then redis-
tributed between one or two new nodes, and the
representatives of the new nodes together with
the set of entries of the former nodePtrt not cov-
ered by the new nodes are promoted and inserted
in the parent node (line 6). Notice that the set of
entries of the former node that are not covered by
any new node can be empty. The DBM-tree has
three options to choose the representatives of the
new nodes in theSplitNode() algorithm:

• Minimum of the largest radii (min-
Max): this option distributes the entries
into at most two nodes, allowing a pos-
sibly null set of entries not covered by
these two nodes. To select the represen-
tatives of each new node, each pair of
entries is considered as candidate. For
each pair, this option tries to insert each
remaining entry into the node having the
representative closest to it. The chosen
representatives will be those generating
the pair of radii whose largest radius is
the smallest among all possible pairs.
The computational complexity of the al-
gorithm executing this option isO(C3),
whereC is the number of entries to be
distribute between the nodes;

• Minimum radii sum (minSum): this
option is similar to theminMax, but the
two representatives selected is the pair
with the smallest sum of the two cover-
ing radii;

• 2-Clusters: this option tries to build at
most two groups. These groups were
built choosing objects that minimizes
the distances inside each group, orga-
nizing them as a minimal spanning tree.
This option is detailed as Algorithm 2.

The first step of this algorithm is the
creation ofC groups, each one of only
one entry. The second step is join-
ing each group with its nearest group.
This step finishes when only 2 groups
remain (line 2). The next step checks
if there is a group with only one ob-
ject then it will be inserted in the up-
per level (line 4). A representative ob-
ject is chosen (line 5) for each remain-
ing group, and nodes are created to store
their objects (line 6). The representa-
tives and all their information are pro-
moted to the next upper level. Figure 1
illustrates this approach applied to a bi-
dimensional vector space. The node to
be split is presented in Figure 1(a). After
building theC groups (Figure 1(b)), the
groups are joined to form 2 groups (Fig-
ure 1(c)). Figure 1(d) presets the two
resulting nodes after the split by the2-
Clustersapproach.

The minimum node occupation is set when the
structure is created, and this value must be be-
tween one object and at most half of the node
capacityC. If the ChooseSubTree policy is set
to minGDist then all theC entries must be dis-
tributed between the two new nodes created by
the SplitNode() algorithm. After defining the
representative of each new node, the remaining
entries are inserted in the node with the closest
representative. After distributing every entry, if
one of the two nodes stores only the representa-
tive, then this node is destroyed and its sole entry
is inserted in its parent node as a single object.
Based on the experiments and in the literature
[9], splits leading to an unequal number of en-
tries in the nodes can be better than splits with
equal number of entries in each node, because it
tends to minimize overlap between nodes.

If the ChooseSubTree policy is set tominDist
and the minimum occupation is set to a value
lower than half of the node capacity, then each
node is first filled with this minimum number



of entries. After this, the remaining entries will
be inserted into the node only if its covering ra-
dius does not increase the overlapping regions
between the two. The rest of the entries, that
were not inserted into the two nodes, are inserted
in the parent node.

Algorithm 2 2-Clusters()
Input: C entries to be redistributed in nodes.

Output: A representative set (RepSet) and a entry set to

be inserted in the upper level (PromoSet).

1: Build C groups.

2: Try to join, one by one, theC groups, until only 2

groups remain.

3: for each group that have unique entries.do
4: Insert the unique entries inPromoSet.

5: Choose each representative object for each group.

6: Create the nodes for the remaining groups.

7: Insert inRepsSetthe generated representatives.

Splittings promote the representative to the
parent node, which in turn can cause other split-
tings. After the split propagation in Algorithm 1
(promotion - line 4) or the update of the represen-
tative radii (line 5), it can occur that former un-
covered single object entries are now covered by
the updated subtree. In this case each of these en-
tries is removed from the current node and rein-
serted into the subtree that covers it (demotion in
lines 7 and 8).

4.2 Similarity Queries in the DBM-tree

The DBM-tree can answer the two main types
of similarity queries: Range query (Rq) andk-
Nearest Neighbor query (kNNq). Their algo-
rithms are similar to those of the Slim-tree and
the M-tree.

The Rq() algorithm for the DBM-tree is de-
scribed as Algorithm 3. It receives as input pa-
rameters a tree nodePtrt, the query centersq

and the query radiusrq. All entries in Ptrt

are checked against the search condition (line 2).
The triangular inequality allows pruning subtrees
and single objects that do not pertain to the re-

gion defined by the query. The entries that cannot
be pruned in this way have their distance to the
query object (line 3) calculated. Each entry cov-
ered by the query (line 4) is now processed. If it
is a subtree, it will be recursively analyzed by the
Rq algorithm (line 5). If the entry is an object,
then it is added to the answer set (line 6). The
end of the process returns the answer set includ-
ing every object that satisfies the query criteria.

Algorithm 3 Rq()
Input: Ptrt tree to be perform the search, the query object

sq and the query radiusrq.

Output: Answer setAnswerSet with all objects satisfy-

ing the query conditions.

1: for Eachsi ∈ Ptrt do
2: if |d(srep, sq)− d(srep, si)| ≤ rq + Ri then
3: Calculatedist = d(si, sq)
4: if dist ≤ rq + Ri then
5: if si is a subtreethen Rq(Ptri, sq, rq)
6: elseAnswerSet.Add(si).

The kNNq() algorithm, described as Algo-
rithm 4, is similar toRq(), but it requires a dy-
namic radiusrk to perform the pruning. In the be-
ginning of the process, this radius is set to a value
that covers all the indexed objects (line 1). It is
adjusted when the answer set is first filled withk
objects, or when the answer set is changed there-
after (line 12). Another difference is that there is
a priority queue to hold the not yet checked sub-
trees from the nodes. Entries are checked pro-
cessing the single objects first (line 4 to 12) and
then the subtrees (line 13 to 18). Among the sub-
trees, those closer to the query object that inter-
sect the query region are checked first (line 3).
When an object closer than thek already found
is located (line 8), it substitutes the previous far-
thest one (line 11) and the dynamic radius is ad-
justed (diminished) to tight further pruning (line
12).
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Figure 1: Exemplifying a node split using the2-Clusters() algorithm: (a) before the split, (b) form-
ing C groups with unique nodes, (c) 2 final groups, and (d) the final nodes created with the chosen
representatives.

4.3 TheShrink() optimization Algorithm

A special algorithm to optimize loaded DBM-
trees was created, calledShrink(). This algo-
rithm aims at shrinking the nodes by exchanging
entries between nodes to reduce the amount of
overlapping between subtrees. Reducing over-
lap improves the structure, which results in a
decreased number of distance calculations, total
processing time and number of disk accesses re-
quired to answer bothRq and kNNq queries.
During the exchanging of entries between nodes,
some nodes can retain just one entry, so they are
promoted and the empty node is deleted from the
structure, further improving the performance of
the search operations.

The Shrink() algorithm can be called at any
time during the evolution of a tree, as for exam-
ple, after the insertion of many new objects. This
algorithm is described as Algorithm 5.

The algorithm is applied in every node of a
DBM-tree. The input parameter is the pointer
Ptrt to the subtree to be optimized, and the re-
sult is the optimized subtree. The stop condition
(line 1) holds in two cases: when there is no en-
try exchange in the previous iteration or when the
number of exchanges already done is larger than
3 times the number of entries in the node. This
latter condition assures that no cyclic exchanges

can lead to a dead loop. It was experimentally
verified that a larger number of exchanges does
not improve the results. For each entrysa in node
Ptrt (line 2), the farthest entry from the node rep-
resentative is set asi (line 3). Then search an-
other entrysb in Ptrt that can store the entryi
(line 5). If such a node exists, removei from sa

and reinsert it in nodesb (line 6). If the exchange
makes nodesa empty, it is deleted, as well as its
entry in nodePtrt (line 7). If this does not gen-
erate an empty node, it is only needed to update
the reduced covering radius of entrysa in node
Ptrt (line 8). This process is recursively applied
over all nodes of the tree (line 9 and 10). After
every entry inPtrt has been verified, the nodes
holding only one entry are deleted and its single
entry replaces the node inPtrt (line 11).

4.4 A Cost Model for DBM-tree

Cost models for search operations in trees usu-
ally rely on the tree height. Such cost models
does not apply for the DBM-tree. However, an
AM requires a cost model in order to be used in
a DBMS. Therefore, we developed a cost model
for the DBM-tree, based on statistics of each tree
node. The proposed approach does not rely on
the data distribution, but rather on the distance
distribution among objects. The cost model de-
veloped assumes that the expected probability



Algorithm 4 kNNq()()
Input: root nodePtrroot, the query objectsq and number

of objectsk.

Output: Answer set with all objects satisfying the query

conditions.

1: rk = ∞
2: PriorityQueue.Add(Ptrroot, 0)
3: while ((Node = PriorityQueue.F irst()) <= rk)

do
4: for eachsi ∈ Node do
5: if si is a single objectthen
6: if |d(srep, sq)− d(srep, si)| ≤ rk then
7: Calculatedist = d(si, sq)
8: if dist ≤ rk then
9: AnswerSet.Add(si).

10: if AnswerSet.Elements() ≥ k then
11: AnswerSet.Cut(k).
12: rk = AnswerSet.MaxDistance().
13: for eachsi ∈ Node do
14: if si is a subtreethen
15: if |d(srep, sq)− d(srep, si)| ≤ rk + Ri then
16: Calculatedist = d(si, sq)
17: if dist ≤ rk + Ri then
18: PriorityQueue.Add(si, dist).

P () of a nodePtrt to be accessed is equal to
the probability of the node radiusRPtrt plus the
query radiusrq be greater or equal to the dis-
tance of the node representativesrep of Ptrt to
the query objectsq. The probability ofPtrt to be
accessed can therefore be expressed as:

P (Ptrt) = P (RPtrt + rq ≥ d(srep, sq)) (1)

We assume that every object has a distribution
of distances to the other objects in the dataset, in
average, similar to the distribution of the other
objects. Thus, Formula (1) can be approximated
by a normalized histogramHist() of the dis-
tance distribution instead of computing the dis-
tance of the query object to the node representa-
tive. Therefore

P (Ptrt) ≈ Hist(RPtrt + rq) (2)

Algorithm 5 Shrink()
Input: Ptrt tree to optimize.

Output: Ptrt tree optimized.

1: while The number of exchanges does not exceed 3

times the number of entries inPtrt node or no ex-

changes occurred the previous iterationdo
2: for Each subtree entrysa in nodePtrt do
3: Set entryi from sa as the farthest from thesa

representative.

4: for Each entrysb distinct fromsa in Ptrt do
5: if The entryi of sa is covered by nodesb and

this node has enough space to storei then
6: Remove the entryi from sa and reinsert it

in sb.

7: if node sa is empty then delete nodesa and

delete the entrysa from Ptrt.

8: elseUpdate the radius of entrysa in Ptrt.

9: for Eachsa subtree in nodePtrt do
10: Shrink(sa).
11: if nodesa has only one entrythen Delete nodesa

and update the entrysa in Ptrt.

whereHist() is an equi-width histogram of the
distances among pairs of objects of the dataset.

The histogram can be computed calculating
the average number of distances falling at the
range defined at each histogram bin, for every ob-
ject in the dataset, or only for a small unbiased
sample of the dataset. Thereafter, to calculate the
expected number of disk accesses (DA) for any
Rq, it is sufficient to sum the above probabilities
over allN nodes of a DBM-tree, as:

DA(Rq(sq, rq)) =
N∑

i=1

Hist(RPtri
+ rq) (3)

The cost to keep the histogram is low and re-
quires a small amount of main memory to main-
tain the histogram. Moreover, if it is calculated
over a fixed size sample of the database, it is lin-
ear on the database size, making it scalable for
the database size.



5 Experimental Evaluation of the DBM-tree

The performance evaluation of the DBM-tree
was done with a large assortment of real and syn-
thetic datasets, with varying properties that af-
fects the behavior of a MAM. Among these prop-
erties are the embedded dimensionality of the
dataset, the dataset size and the distribution of the
data in the metric space. Table 1 presents some il-
lustrative datasets used to evaluate the DBM-tree
performance. The dataset name is indicated with
its total number of objects (# Objs.), the embed-
ding dimensionality of the dataset (E), the page
size in KBytes (Pg), and the composition and
source description of each dataset. The multi-
dimensional datasets uses the Euclidean distance
L2, and theMedHisto dataset uses the metric-
histogramMhisto distance [18].

The DBM-tree was compared with Slim-tree
and M-tree, that are the most known and used dy-
namics MAM. The Slim-tree and the M-tree were
configured using their best recommended setup.
They are: minDist for the ChooseSubtre() al-
gorithm,minMax for the split algorithm and the
minimal occupation set to 25% of node capacity.
The results for the Slim-tree were measured after
the execution of theSlim−Down() optimization
algorithm.

We tested the DBM-tree considering four dis-
tinct configurations, to evaluate its available op-
tions. The tested configurations are the follow-
ing:

• DBM-MM: minDist for the
ChooseSubtree() algorithm, min-
Max for theSplitNode() algorithm and
minimal occupation set to 30% of node
capacity;

• DBM-MS: equal to DBM-MM, ex-
cept using the optionminSumfor the
SplitNode() algorithm;

• DBM-GMM: minGDist for
ChooseSubtree(), minMax for
SplitNode();

• DBM-2CL: minGDist for

ChooseSubtree(), 2-Clusters for
SplitNode().

All measurements were performed after the exe-
cution of theShrink() algorithm.

The computer used for the experiments
was an Intel Pentium III 800MHz proces-
sor with 512 MB of RAM and 80 GB of
disk space, running the Linux operating sys-
tem. The DBM-tree, the Slim-tree and the M-
tree MAM were implemented using the C++
language into the Arboretum MAM library
(www.gbdi.icmc.usp.br/arboretum), all with the
same code optimization, to obtain a fair compar-
ison.

From each dataset it was extracted 500 objects
to be used as query centers. They were cho-
sen randomly from the dataset, and half of them
(250) were removed from the dataset before cre-
ating the trees. The other half were copied to
the query set, but maintained in the set of objects
inserted in the trees. Hence, half of the query
set belongs to the indexed dataset by the MAM
and the other half does not, allowing to evalu-
ate queries with centers indexed or not. How-
ever, as the query centers are in fact objects of
the original dataset, the set of queries closely fol-
lows the queries expected to be posed by a real
application. Each dataset was used to build one
tree of each type, creating a total of thirty trees.
Each tree was built inserting one object at a time,
counting the average number of distance calcu-
lations, the average number of disk accesses and
measuring the total building time (in seconds). In
the graphs showing results from the query eval-
uations, each point corresponds to performing
500 queries with the same parameters but vary-
ing query centers. The numberk for thekNNq
queries varied from 2 to 20 for each measure-
ment, and the radius varied from 0.01% to 10%
of the largest distance between pairs of objects in
the dataset, because they are the most meaningful
range of radii asked when performing similarity
queries. TheRq graphics are inlog scale for the
radius abscissa, to emphasize the most relevant



Table 1: Description of the synthetic and real-world datasets used in the experiments.
Name # Objs. E Pg Description

Cities 5,507 2 1 Geographical coordinates of the Brazilian cities (www.ibge.gov.br).

ColorHisto 68,040 32 8 Color image histograms from the KDD repository of the University of

California at Irvine (http://kdd.ics.uci.edu). The metric returns the distance

between two objects in a 32-d Euclidean space.

MedHisto 4,247 - 4 Metric histograms of medical gray-level images. This dataset is adimensional

and was generated at GBDI-ICMC-USP. For more details on this

dataset and the metric used see [18].

Synt16D 10,000 16 8 Synthetic clustered datasets consisting of 16-dimensional vectors normally-distributed

(with σ=0.1) in 10 clusters over the unit hypercube. The process to generate this

dataset is described in [9].

Synt256D 20,000 256 128 Similar toSynt16D, but it is with 20 clusters (withσ=0.001) in a 256-d hypercube.

part of the graph.

5.1 Evaluating the tree building process

The building time and the maximum height
were measured for every tree. The building time
of the 6 trees were similar for each dataset. It
is interesting to compare the maximum height of
the various DBM-tree options and the balanced
trees, so they are summarized in Table 2.

The maximum height for theDBM-MM and
theDBM-MStrees were bigger than the balanced
trees in every dataset. The biggest difference was
in the ColorHisto, with achieved a height of 10
levels as compared to only 4 levels for the Slim-
tree and the M-tree. However, as the other experi-
ments show, this higher height does not increases
the number of disk accesses. In fact, those DBM-
trees did, in average, less disk accesses than the
Slim-tree and M-tree, as is shown in the next sub-
section.

It is worth to note that, although theDBM-
GMM trees do not force the height-balance, the
maximum height in these trees were equal or very
close to those of the Slim-tree and the M-tree.
This fact is an interesting result that corroborates
our claim that the height-balance is not as impor-
tant for MAM as it is for the overlap-free struc-
tures.

The data distribution in the levels of a DBM-

tree is shown using theCities dataset. This vi-
sualization was generated using theMAMView
system [6]. TheMAMView system is a tool
to visualize similarity queries and MAM behav-
ior, making it possible to explore metric trees.
This is possible because this dataset is in a bi-
dimensional Euclidean space. Figure 2 shows the
indexed objects in theDBM-MM with each color
representing objects at different levels. Darker
colors indicate objects in deeper levels. Figure
2(a) shows the objects and the covering radius of
each node, and Figure 2(b) shows only the ob-
jects. The figure shows that the depth of the tree
is larger in higher density regions and that objects
are stored in every level of the structure, as is ex-
pected. This figure shows visually that the depth
of the tree is smaller in low density regions. It
also shows that the number of objects in the deep-
est levels is small, even in high-density regions.

5.2 Performance of query execution

We present the results obtained comparing the
DBM-tree with the best setup of the Slim-tree
and the M-tree. In this paper we present the re-
sults from four meaningful datasets (ColorHisto,
MedHisto, Synt16Dand Synt256D), which are
or high-dimensional or non-dimensional (metric)
datasets, and gives a fair sample of what hap-
pened. The main motivation in these experiments



Table 2: Maximum height of the tree for each dataset tested.
Name Cities ColorHisto MedHisto Synt16D Synt256D

M-tree 4 4 4 3 3

Slim-tree 4 4 4 3 3

DBM-MM 7 10 9 6 7

DBM-MS 7 10 11 6 6

DBM-GMM 4 4 5 3 3

DBM-2CL 4 4 5 3 4

Figure 2: Visualization of theDBM-MM structure for theCitiesdataset. (a) with the covering radius of
the nodes; and (b) only the objects. It is possible to verify that the structure is deeper (darker objects) in
high-density regions, and shallower (lighter objects) in low-density regions.

is evaluating the DBM-tree performance with its
best competitors with respect to the 2 main simi-
larity query types: rangeRq andk-nearest neigh-
borskNNq.

Figure 4 shows the measurements to answer
Rq andkNNq on these 4 datasets. The graphs
on the first column (Figures 4(a), (d), (g) and
(j)) show the average number of distance calcu-
lations. It is possible to note in the graphs that
every DBM-tree executed in average a smaller
number of distance calculations than Slim-tree
and M-tree. Among all, theDBM-MSpresented
the best result for almost every dataset. No
DBM-tree executed more distance calculations
than the Slim-tree or the M-tree, for any dataset.

The graphs also show that the DBM-tree reduces
the average number of distance calculations up
to 67% for Rq (graph (g)) and up to 37% for
kNNq (graph (j)), when compared to the Slim-
tree. When compared to the M-tree, the DBM-
tree reduced up to 72% forRq (graph (g)) and up
to 41% forkNNq (graph (j)).

The graphs of the second column (Figures
4(b), (e), (h) and (k)) show the average number of
disk accesses for bothRq andkNNq queries. In
every measurement the DBM-trees clearly out-
performed the Slim-tree and the M-tree, with
respect to the number of disk accesses. The
graphs show that the DBM-tree reduces the av-
erage number of disk accesses up to 43% forRq



Figure 3: Visualization of theSlim-treestructure for theCitiesdataset. (a) with the covering radius of the
nodes; and (b) only the objects. It is possible to verify that the structure has the same level in high-density
regions and in low-density regions (level 4).

(graph (h)) and up to 53% forkNNq (graph (k)),
when compared to the Slim-tree. It is important
to note that the Slim-tree is the MAM that in gen-
eral requires the lowest number of disk accesses
between every previous published MAM. These
measurements were taken after the execution of
theSlim − Down() algorithm of the Slim-tree.
When compared to the M-tree, the gain is even
larger, increasing to up to 54% forRq (graph (h))
and up to 66% forkNNq (graph (k)).

The results are better when the dimensional-
ity and the number of clusters of the datasets in-
crease (as shown for theSynt16DandSynt256D
datasets). The main reason is that traditional
MAM produces high overlapping areas with
these datasets due both to the high dimension and
the need to fit the objects in the inter-cluster re-
gions together with the objects in the clusters.
The DBM-tree achieves a very good performance
in high dimensional datasets and in datasets with
non-uniform distribution (a common situation in
real world datasets).

An important observation is that the immediate
result of reducing the overlap between nodes is a

reduced number of distance calculations. How-
ever, the number of disk accesses in a MAM is
also related to the overlapping between subtrees.
An immediate consequence of this fact is that de-
creasing the overlap reduces both the number of
distance calculations and of disk accesses, to an-
swer both types of similarity queries. These two
benefits sums up to reduce the total processing
time of queries.

The graphs of the third column (Figures 4(c),
(f), (i) and (l)) show the total processing time
(in seconds). As the four DBM-trees performed
lesser distance calculations and disk accesses
than both Slim-tree and M-tree, they are naturally
faster to answer bothRq andkNNq. The impor-
tance of comparing query time is that it reflects
the total complexity of the algorithms besides the
number of distance calculations and the number
of disk accesses. The graphs show that the DBM-
tree is up to 44% faster to answerRq andkNNq
(graphs (i) and (l)) than Slim-tree. When com-
pared to the M-tree, the reducion in total query
time is even larger, with the DBM-tree being up
to 50% faster forRq andkNNq queries (graphs



Figure 4: Comparison of the average number of distance calculations (first column), average number of
disk accesses (second column) and total processing time in seconds (third column) of DBM-tree, Slim-
tree and M-tree, forRq andkNNq queries for theColorHisto((a), (b) and (c) -Rq), MedHisto((d), (e)
and (f) -kNNq), Synt16D((g), (h) and (i) -Rq) andSynt256D((j), (k) and (l) -kNNq) datasets.



(i) and (l)).

5.3 Experiments regarding theShrink() Algo-
rithm

The experiments to evaluate the improvement
achieved by theShrink() algorithm were per-
formed on the four DBM-trees over all datasets
shown in Table 1. As the results of all the datasets
were similar, in Figure 5 we show only the results
for the number of disk accesses with theCol-
orHisto (Figures 5(a) forRq and (b) forkNNq)
and Synt256Ddataset (Figures 5(c) forRq and
(d) for kNNq).

Figure 5 compares the query performance be-
fore and after the execution of theShrink() al-
gorithm for DBM-MM, DBM-MS, DBM-GMM
and DBM-2CL for both Rq and kNNq. Ev-
ery graph shows that theShrink() algorithm
improves the final trees. The most expressive
result occurs in theDBM-GMM indexing the
Synt256D, which achieved up to 40% lesser disk
accesses forkNNq andRq as compared with the
same structure not optimized.

5.4 Cost of Disk Accesses in the DBM-tree

This experiment evaluates the cost model to
estimate the number of disk accesses of query
operations. Only 10% of the dataset objects
were employed to build the histogramsHist, as
a larger number of objects slightly improves the
estimation.

Figure 6 shows the predicted values obtained
from the formula 3, and the real measurements
obtained executing the query on the tree. Here
we show only experiments for theDBM-MM on
MedHistoFigure 6(a),DBM-MSonSynt16DFig-
ure 6(b),DBM-GMM on ColorHistoFigure 6(c)
andDBM-2CLon Synt256Ddataset Figure 6(d),
as the others are similar. The real measurements
are the average of 500 queries as before, and the
error bars indicate the standard deviation of each
measure. It can be seen that the proposed formula
is very accurate, showing errors within 1% of the

real measurement for theDBM-GMM, and within
20% for theDBM-MS. The estimations is always
within the range of the standard deviation.

5.5 Scalability of the DBM-tree

This experiment evaluated the behavior of the
DBM-tree with respect to the number of elements
stored in the dataset. For the experiment, we gen-
erated 20 datasets similar to theSynt16D, each
one with 50,000 elements. We inserted all 20
datasets in the same tree, totaling 1,000,000 el-
ements. After inserting each dataset we run the
Shrink() algorithm and asked the same sets of
500 similarity queries for each point in the graph,
as before. The behavior was equivalent for differ-
ent values ofk and radius, thus we present only
the results fork=15 and radius=0.1%.

Figure 7 presents the behavior of the four
DBM-tree considering the average number of
distance calculations forkNNq (a) and forRq
(b), the average number of disk accesses for
kNNq (c) and forRq (d), and the total process-
ing time forkNNq (e) and forRq (f). As it can
be seen, the DBM-trees exhibit linear behavior as
the number of indexed elements, what makes the
method adequate to index very large datasets, in
any of its configurations.

6 Conclusions and Future Works

This paper presents a new dynamic MAM
called DBM-tree (Density-Based Metric tree)
that, in a controlled way, relax the height-
balancing requirement of access methods, trad-
ing a controlled amount of unbalancing at denser
regions of the dataset for a reduced overlap be-
tween subtrees. This is the first dynamic MAM
that makes possible to reduce the overlap be-
tween nodes relaxing the rigid balancing of the
structure. The height of the tree is higher
in denser regions, in order to keep a tradeoff
between breadth-searching and depth-searching.
The options to define how to construct a tree



Figure 5: Average number of disk accesses to performRq andkNNq queries in the DBM-tree before
and after the execution of theShrink() algorithm: (a)Rq on ColorHisto, (b) kNNq on ColorHisto, (c)
Rq onSynt256D, (d) kNNq onSynt256D.

and the optimization possibilities in DBM-tree
are larger than in rigid balanced trees, because
it is possible to adjust the tree according to the
data distributions at different regions of the data
space. Therefore, this paper also presented a new
optimization algorithm, calledShrink, which im-
proves the performance in trees reorganizing the
elements among their nodes.

The experiments performed over synthetic and
real datasets showed that theDBM-tree outper-
forms the main balanced structures existing so
far: the Slim-tree and the M-tree. In average,
it is up to 50% faster than the traditional MAM
and reduces the number of required distance cal-
culations in up to 72% when answering similar-
ity queries. The DBM-tree spends fewer disk ac-
cesses than the the Slim-tree, that until now was

the most efficient MAM with respect to disk ac-
cess. The DBM-tree requires up to 66% fewer
disk accesses than the balanced trees. After ap-
plying theShrink() algorithm, the performance
achieves improvements up to 40% for range and
k-nearest neighbor queries considering disk ac-
cesses. It was also shown that the DBM-tree
scales up very well with respect to the number
of indexed elements, presenting linear behavior,
which makes it well-suited to very large datasets.

Among the future works, we intend to develop
a bulk-loading algorithm for the DBM-tree. As
the construction possibilities of the DBM-tree
is larger than those of the balanced structures,
a bulk-loading algorithm can employ strategies
that can achieve better performance than is pos-
sible in other trees. Other future work is to de-



Figure 6: Comparation of the real and the estimated number of disk accesses forRq in the (a)MedHisto
dataset using aDBM-MM tree, (b)Synt16Dusing aDBM-MS, (c) ColorHistousing aDBM-GMM and
(d) Synt256Dusing aDBM-2CL.

velop an object-deletion algorithm that can really
remove objects from the tree. All existing rigidly
balanced MAM such as the Slim-tree and the M-
tree, cannot effectively delete objects being used
as representatives, so they are just marked as
removed, without releasing the space occupied.
Moreover, they remain being used in the com-
parisons required in the search operations. The
organizational structure of the DBM-tree enables
the effective deletion of objects, making it a com-
pletely dynamic MAM.
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