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ABSTRACT
With the recent advancements and wide usage of location de-
tection devices, large quantities of data are collected by GPS
and cellular technologies in the form of trajectories. While
most previous work on trajectory-based queries has concen-
trated on traditional range, nearest-neighbor and similarity
queries, there is an increasing interest in queries that capture
the“aggregate” behavior of trajectories as groups. Consider,
for example, finding groups of moving objects that move“to-
gether”, i.e. within a predefined distance to each other, for
a certain continuous period of time. Such queries typically
arise in surveillance applications, e.g. identify groups of sus-
picious people, convoys of vehicles, flocks of animals, etc.
In this paper we first show that the on-line flock discov-
ery problem is polynomial and then propose a framework
and several strategies to discover such patterns in streaming
spatio-temporal data. Experiments with real and synthetic
trajectorial datasets show that the proposed algorithms are
efficient and scalable.

Categories and Subject Descriptors
H.2 [DATABASE MANAGEMENT]: Database appli-
cations—Data mining; Spatial databases and GIS

Keywords
moving objects, spatio-temporal patterns

1. INTRODUCTION
Recent advances in the area of location-detection devices

(RFID, GPS, etc.) and their widespread use have enabled
the creation of complex tracking and situational awareness
systems which continuously monitor the position of moving
objects of interest. Examples include AccuTracking [1], trac-
NET24 [12], Path Intelligence’s FootPath [23], InSTEDD’s
GeoChat [9] and many others. This abundance of infor-
mation, generated by those systems, motivates the need to
develop efficient techniques for answering interesting queries
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about the past behavior of the moving objects like discover-
ing similarity patterns among the object trajectories.

The existing methods for querying trajectories are mainly
focused on answering simple single predicate range [25] or
nearest neighbor queries [28]. Examples include queries like
“find all moving objects that were in area A at 10 a.m. (in
the past)”or “find the car which drove as close as possible to
the location B during the time interval (10am:1pm)”. Re-
cently, a new group of similarity search querying methods
have emerged [6][20][29]. The result of a similarity search
query is a trajectory closest to the query trajectory accord-
ing to some metric distance (e.g. Euclidean, Dynamic Time
Warping, etc.). There are also work on spatio-temporal joins
(e.g. [2][3]). Common to all the above methods is that the
query answer is validated per trajectory. That is, a trajec-
tory is reported to the user if its individual behavior satisfies
the query predicate(s). In other words, all the above queries
focus on the behavior of a trajectory as a single object and
thus cannot be used to discover group patterns between the
trajectories.

Figure 1: A flock pattern example: {T1, T2, T3}

Recently there has been increased interest in querying pat-
terns capturing “collaborative” or “group” behavior between
moving objects. This includes queries like moving clusters
[16, 14], convoy queries [15] and flocks patterns [5, 4, 10].
Such queries discover groups of moving objects that have a
“strong” relationship in the space for a given time duration.
The difference between all those patterns is the way they de-
fine the relationship between the moving objects and their
duration in time. In this paper we consider the discovery of
flock patterns among the moving objects, i.e., the problem of
identifying all groups of trajectories that stay “together” for
the duration of a given time interval. We consider moving
objects to be“close” together if there exists a disk with given
radius that covers all moving objects in the pattern (see Fig-



ure 1). A trajectory satisfies the above pattern as long as
“enough” other trajectories are contained inside the disk for
the specified time interval; that is, the answer is based not
only on a given trajectory’s behavior but also on the ones
near it. Such patterns are useful in security and monitoring
applications, for example to potentially identify suspicious
behavior within large number of people (“Identify all groups
of five or more people that were always within a disk of 100
feet in the last 30 minutes”) or to study patterns of animal
behavior [7, 30, 24] (e.g. migration of sharks, whales, birds,
etc.).

The example in Figure 1 shows a flock pattern containing
3 trajectories {T1, T2, T3} that are within a query defined
disk for 3 consecutive time instances. Note that the loca-
tion of the disk can freely “move” in the 2-dimensional space
in order to accommodate all three moving objects and its
center does not need to coincide with any moving object lo-
cation for a given time instance. This makes the discovery
of flock patterns difficult because there is an infinite number
of possible placements of the disk at any time instance. It
is that difficulty that makes the existing methods for flock
pattern discovery [5, 4, 10] suffer from severe limitations.
Such methods either find approximate solutions, or can be
applied only for a single time instance of the problem (i.e.
the solution does not support the minimum time duration
in the query). To the best of our knowledge, our work is
the first one to present exact solutions for reporting flock
patterns in polynomial time. It is also the first one that
does so for on-line environments. Our work is also differ-
ent than clustering-based approaches (since clusters are not
restricted to a specific shape); flocks are also different than
convoy discovery [15]. More details of the previous methods
are discussed in Section 2.

We start by providing a complexity analysis for the on-line
flock problem. Our analysis reveals that polynomial time
solution can be found through identifying a discrete number
of locations to place the center of the flock disk inside the
spatial universe. The number of such possible locations is
polynomial in the total number of moving objects. Based
on this analysis we propose several evaluation algorithms
that can be used to find flock patterns in polynomial time.
The first algorithm is based on time-joins, i.e., merging the
results from one time instance to another. The other four
algorithms use the filter-and-refinement paradigm with the
purpose of reducing the total number of candidates and thus
the overall computation cost of the algorithm. We evaluate
our solutions using several real and synthetic moving object
datasets.

The rest of the paper is organized as follows: Section 2
highlights related work while Section 3 formally defines the
on-line flock pattern and provides a complexity analysis on
the problem. Section 4 describes the proposed algorithms
for flock pattern discovery. Section 5 presents the perfor-
mance evaluation of our proposed algorithms and Section 6
concludes the paper.

2. RELATED WORK
Related work can be classified to (i) research on cluster-

ing moving objects, (ii) work on discovering convoys among
trajectories and (iii) previous work on flock discovery. Vari-
ous clustering algorithms have been proposed for static spa-
tial datasets, with different strategies ranging from parti-
tioning (e.g. k-medoids [22]), to hierarchical (e.g. BIRCH

[31] and CURE [11]) and density-based (e.g. DBSCAN [8]).
The DBSCAN algorithm works for arbitrary-shaped clusters
based on the notion of density reachability. This method uti-
lizes two parameters (maximum distance eps and minimum
number of points minPts) to identify dense areas. It starts
with an arbitrary starting point that has not been visited.
Point that has more than minPts within eps distance is con-
sidered to be in a dense area and flagged as such. All points
inside such dense area are processed recursively the same
way. Otherwise, those points are considered not “reachable”
from a dense area and are labeled as outliers.

Clustering for moving objects was examined in [16], where
the DBSCAN algorithm is performed for every time instance
of the dataset. Then clusters that have been found for two
consecutive time instances t − 1 and t are joined. The clus-
ters can be joined only if the number of common objects
among them are above the predefined parameter θ. A clus-
ter is reported if no other new cluster can be joined to it.
This process is applied each time for all time instances in
the dataset. Other works on clustering moving objects also
include [14, 27, 21, 19, 18]. In [14] techniques were pro-
posed to incrementally update clusters of moving objects
based on the cluster centers. The object movements were
used to predict the cluster evolution over time. The MONIC
framework [27] deals with transitions in moving clusters, e.g.
disappearance and splitting. [21] presented the microcluster-
ing technique that groups moving objects that are not only
close to each other at a specific time instance, but are also
expected to move together in the “near” future. Recently,
[18, 19] proposed to segment trajectories into line segments.
Then line segments are grouped together to build the clus-
ters. However, time is not consider in [18, 19], which makes
some line segments to be clustered together even though
they are not “close” when time is considered. Nevertheless,
such approaches for clustering moving objects cannot solve
the flock pattern query since: (1) they use different criteria
when joining the moving object clusters for two consecutive
time instances; (2) they employ clustering algorithms, and
therefore no strong relationship among all elements are en-
forced; (3) moving clustering does not require the same set
of moving objects to stay in a cluster all the time for the
specified minimum duration.

Figure 2: Clustering vs. flock patterns

Related to discovering collaborative behavior between tra-
jectories is the work of finding convoy patterns in trajectory
archives [15]. A convoy query is defined as a “dense” cluster
of trajectories that stay “together” at least for a predefined
continuous time. This type of query has four parameters:
eps and minPts (the same used by the DBSCAN algorithm),
θ′ (threshold used to join clusters), and δ′ (minimum dura-
tion time). Convoy patterns are closely related to moving



clustering since both use clustering algorithms as the base
of their algorithms. The main difference between these two
methods is on the criteria for how clusters are joined between
two consecutive timestamps. However, neither of them can
solve the flock pattern query since clusters do not assume
any shape restriction. For example, in Figure 2(a) convoy
query returns trajectories {T1, T2, T3} for θ = 3 and for 3
time instances, while in Figure 2(b) it does not return noth-
ing. For the moving cluster, if θ = 1 then moving clusters
return nothing in both Figure 2(a) and (b). On the other
hand, if θ = 1/2 then it returns {T1, T2, T3} in Figure 2(a)
and {T1, T3, T4} in Figure 2(b), but the last one is not a
convoy query. Both examples return results based on the
density of the objects, but for the flock pattern it would re-
turn nothing in either examples. The reason is that in both
examples the objects belong to dense areas but they do not
have “strong” interaction among them.

Flock pattern query was first introduced in [5, 4, 17], with-
out the notion of minimum lasting time. Later [10] intro-
duced the minimum duration as a parameter of the pattern.
Unlike the convoy patterns in a flock the cluster has a prede-
fined shape – a disk with radius r. A set of moving objects
is considered a flock if there is a disk with radius r which
covers all of them and there are at least some predefined
number of objects in the disk. It is shown in [10] that the
discovery of the “longest” duration flock pattern is an NP-
hard problem. As a result, [10] presents only approximation
algorithms. To the best of our knowledge our paper is the
first which proposes a polynomial time solution to the flock
problem with a “predefined” time duration. Moreover our
algorithms can be applied in a streaming environment for
on-line discovery of the flock patterns.

3. PRELIMINARIES
We assume that object Oid is uniquely identified by iden-

tifier id. Its movement is represented by a trajectory Tid

which is defined as an ordered sequence of n multidimen-
sional points Tid = {p(t1),p(t2), . . ., p(tn)}. Here ti is a
timestamp and p(ti) is the location of object Oid in the two
dimensional space R

2 as recorded at timestamp ti (ti ∈ N,
ti−1 < ti, and 0 < i ≤ n). For simplicity when we discuss
the current time instance, ti is omitted, and we just use pid

to denote the object location.
Given two object locations pti

a and pti
b in a specific time in-

stance ti from trajectories Ta and Tb respectively, d(pti
a , pti

b )
denotes the L2 Euclidean distance between pa and pb. Even
though here in this paper we only use the L2 distance, our
methods can be generalized to other metrics as well. A flock
pattern query F lock(µ, ǫ, δ) is defined as follows:

Definition 1. Given are a set of trajectories T , a min-
imum number of trajectories µ > 1 (µ ∈ N), a maximum
distance ǫ > 0 defined over the distance function d, and
a minimum time duration δ > 1 (δ ∈ N). A flock pattern
F lock(µ, ǫ, δ) reports all maximal size collections F of trajec-
tories where: for each fk in F, the number of trajectories in
fk is greater or equal than µ (|fk| ≥ µ) and there exist δ con-

secutive time instances such that for every ti ∈ [f t1
k ..f t1+δ

k ],

there is a disk with center cti
k and radius ǫ/2 covering all

points in f ti
k . That is: ∀fk ∈ F ,∀ti ∈ [f t1

k ..f t1+δ
k ], ∀Tj ∈

fk : |f ti
k | ≥ µ, d(pti

j , cti
k ) ≤ ǫ/2

The cti
k is called the center of the flock fk at time ti.

Figure 3: Flock pattern example

In the above definition, a flock pattern can be viewed as a
“tube” shape formed by the centers c and expanded with
diameter ǫ, and having length δ (consecutive time instants)
such that there are at least µ trajectories which stay inside
the tube all the time, as shown in Figure 3. For F lock(µ =
3, ǫ, δ = 3), the flocks F reported are f1 = {T1, T2, T3} (from
time instance t1 to t3 and disks c1

1, c2
1, and c3

1) and f2 =
{T4, T5, T6} from (from time instance t2 to t4 and disks c2

2,
c3
2, and c4

2).
Having this formal definition we proceed with the com-

plexity analysis of the flock pattern. The major challenge in
this type of queries is the fact that the center of the flock
pattern cti

k may not belong to any of the trajectories. Hence
we cannot iterate over the discrete number of trajectory lo-
cations stored in the database and check if each one of them
is a center of a flock or not. Since any point in the spatial
domain can be a center of a flock there is an infinite number
of possible locations to test.

Nevertheless, we show using the following theorem 1 that
there is a limited and discrete number of locations where we
can look for flocks among the infinite number of options.

Theorem 1. If for a given time instance ti there exists
a point in the space cti

k such that:

∀Tj ∈ f, d(pti
j , cti

k ) ≤ ǫ/2

then there exists another point in the space c′ti
k such that

∀Tj ∈ f, d(pti
j , c′ti

k ) ≤ ǫ/2

and there are at least trajectories Ta ∈ f and Tb ∈ f such
that

∀Tj ∈ {Ta, Tb}, d(pti
j , c′ti

k ) = ǫ/2

Theorem 1 states that if there is a disk cti
k with diameter

ǫ that covers all trajectories in the flock f at time instance
ti then there exists another disk with the same diameter
but with different center c′ti

k that also covers all trajectories
covered by the first one and has at least two common points
on its circumference. Theorem 1 can be easily proved by
construction.

Proof Sketch. Assume that we have a disk with diame-
ter ǫ and center ck that covers all trajectories in the flock at
given time instance ti as shown in Figure 4(a). Assume for
simplicity that there is no trajectory point on the circumfer-
ence of the disk defined by ck and ǫ, i.e. ∀Tj ∈ f, d(Tj , ck) <
ǫ/2. We can find another disk with the same properties but
with different center by using a combination of translation



Figure 4: Finding disks to cover set of points

and rotation of the disk with center ck. As a first step of the
construction the center of the disk ck is moved along the x
axis until the first of the trajectory points inside lies on the
circumference of the disk. For example in Figure 4(b) the
first point which falls on the circumference after the hori-
zontal move of the disk center is p1. The new center of the
disk is point c′k. All points in the flock are covered by the
new disk with center c′k and diameter ǫ. Otherwise, there
would be a contradiction to the assumption that p1 is the
first point on the circumference. The next step of the con-
struction rotates the new disk using as pivot the first point
on the circumference (p1). The disk is rotated until another
point falls on its circumference. In the example of Figure
4(c) the disk is rotated until point p2 is on the circumfer-
ence of disk c′′k . All points in the flock are still covered by
the new disk with center c′′k and diameter ǫ (otherwise there
will be a contradiction to the assumption that p2 is the first
one to be on the circumference of the disk during the rota-
tion process). The new disk c′′k has at least two points on
its circumference (points p1 and p2) 2

Figure 5: Disks for {p1, p2}, d(p1, p2) ≤ ǫ

Theorem 1 has great impact on the search for flock pat-
terns because it limits the number of locations inside the
spatial domain where to look for flocks. For a database of
|T | trajectories there are |T |2 possible pairs of point combi-
nations at any given time instance. For each such pair there
are exactly two disks with radius ǫ/2 that have those points
on their circumference (Figure 5). We test those disks to
find if they have the required minimum number of µ trajec-
tories inside. For each time instance of the time-interval δ
we have to perform 2|T |2 tests for flock pattern. The total
number of possible flock patterns that need to be tested is
2|T |2δ . In order to solve the problem, the algorithm has
to not only consider each such sequence of disks (a possi-
ble flock pattern), but also to identify the trajectories that
match it. The check if the trajectory stays within the se-
quence of disks can be done in O(δ) time. For the whole
database it takes O(|T |δ) time, and the total running time

of the algorithm will be O(|T |(2δ)|T |δ) = O(δ|T |(2δ)+1). As
a result, the flock problem with fixed time duration has poly-
nomial time complexity O(δ|T |(2δ)+1).

4. REPORTING FLOCK PATTERNS
In this section we describe a grid-based structure and some

optimizations in order to efficiently compute flock disks and

Figure 6: A grid-based index example.

report flocks. We also describe five on-line algorithms to
process spatio-temporal data in an incremental fashion.

The grid-based structure employed for all proposed algo-
rithms is based on grid cells with edges of ǫ distance. Each
trajectory location pti

id reported for a specific time instance
ti is inserted in a specific grid cell. The cell is determined by
its components’ location latitude and longitude. Thus, each
location is inserted in only one cell. The total number of cells
in the index is thus affected by the trajectory distribution
in the each specific time instance ti and the ǫ. The smaller
the value of ǫ, the larger number of grid cells are needed.
In our implementation, grid cells that are empty, i.e. there
is no trajectory location in them, are not allocated. Other
structures, e.g. k-d-trees, could be employed for organizing
all trajectory locations in each cell grid. However, since for
small ǫ the number of locations within each cell is relatively
small, and given its access simplicity we used a list for each
cell. The organization of this index is shown in Figure 6.

Once the grid structure is built for ti, disks can be pro-
cessed using the Algorithm 1. For each grid cell gx,y, only
the 9 adjacent grid cells, including itself, are analyzed. Al-
gorithm 1 first process every point in gx,y and every point
in [gx−1,y−1...gx+1,y+1] in order to find pair of points pr, ps

whose distances satisfy: d(pr, ps) ≤ ǫ. Because all cells in
the grid index have ǫ distance, there is no need to analyze
points further away of the range [gx−1,y−1...gx+1,y+1] cells
for points in a particular cell gx,y. Pairs that have not been
processed yet and are within ǫ to each other are further used
to compute the two disks c1 and c2. In case that the pairs
are exactly at distance d(pr, ps) = ǫ, c1 and c2 have the same
center and only one has to be further processed.

It should be noted that not all points in [gx−1,y−1...gx+1,y+1]
have to be “paired” with each point in gx,y: only those
that have distance d(pr, ps) ≤ ǫ (as illustrated in Figure 6).
Another optimization involves the points that have to be
checked whether they are inside each disk computed in the
previous step. Figure 7 illustrates these situations. For each
point pr ∈ gx,y (point p1 in Figure 7(a)), a range query with
radius ǫ is performed over all 9 grids [gx−1,y−1...gx+1,y+1] to
find points that can be “paired”with pr, that is d(pr, ps) ≤ ǫ
holds. The result of such range search with more or equal
points than µ (|H| ≥ µ) is stored in the list H that is used to
check for each disk computed. For those valid pairs, at most
2 disks are generated. For each of them, points in the list H
are checked if they are inside the disk (Figure 7(b)). Disks
that have less than µ points are further discarded and only
the ones that |ck| ≥ µ holds are kept. In Figure 7(c) disk c1

is discarded and c2 is considered a valid disk. Because we
are interested only in maximal instances of flock patterns, a



Algorithm 1: Computing disks in grid-based index

input : set of points T [ti] for timestamp ti

output: sets of maximal disks C
C ← ∅
Index.Build(T [ti], ǫ)
for each non-empty cell gx,y ∈ Index do

Pr ← gx,y

Ps ← [gx−1,y−1 ... gx+1,y+1]
if |Ps| ≥ µ then

for each pr ∈ Pr do
H ← Range(pr , ǫ), |H| ≥ µ, d(pr , ps) ≤ ǫ, ps ∈ Ps

for each pj ∈ H do

if {pr , pj} not yet computed then
compute disks {c1, c2} defined by {pr , pj}
and diameter ǫ
for each disk ck ∈ {c1, c2} do

c← ck ∩ H
if |c| ≥ µ then C.Add(c)

end

end

end

end

end

end

valid disk is further checked whether another disk has a su-
perset of instances that the current disk has just computed.
In this particular case, disks that have subset of instances
are discarded and only those ones stored in C that have the
maximal instances are returned by Algorithm 1.

Figure 7: Steps on finding flocks for time t

The process that Algorithm 1 employs to keep only the
maximal disks is based on the center of the disk and the
total number of common elements that each disk has. Disks
are checked only with the ones that are “close” to each other,
that is, disk c1 is checked with c2 only if d(c1, c2) ≤ ǫ. If
d(c1, c2) > ǫ, we can safely state that they do not have any
elements in common. To efficient process the operations de-
scribed above, we store disks in C using a k-d-tree where
the center of each disk along with its radius ǫ/2 are stored.
When checking for a particular entry c1, we only need to
check entries in the k-d-tree that “intersect” with the new
one. Only those disks that cannot be pruned are further ver-
ified to check their contents. Because we store entries that
belong to each disk in a binary tree, we can efficiently check
if one disk has supersets/subsets elements than the other
disk. Therefore, we only need to count common elements
in both disks by scanning each entry in each disk once. If
the cardinality of common elements are |c1 ∩ c2| = |c1| then
c1 is subset of c2 disk, or they have all common elements
when |c1| = |c2|. Therefore, c1 can be discarded and only
c2 is kept in C. When |c1 ∩ c2| = |c2|, c2 can be discarded.
Otherwise we can safely say that one is not maximal than
the other disk and we have to keep both c1 and c2 in C.

In the following subsection we describe the basic flock
pattern evaluation algorithm which combines the candidate
disks generated for each time instance into flock patterns.
Later in this section we describe four variations of the ba-

sic algorithm which use different filtering heuristics in order
to reduce the number of candidate disks which have to be
analyzed.

4.1 The Basic Flock Evaluation Algorithm
In the basic flock pattern evaluation algorithm BFE, we

generate the candidate disks for every time instance ti, start-
ing with the first one t1 and moving one time instance at a
time. Every candidate disk generated in given time instance
ti is analyzed and joined with potential flocks generated in
the previous time instance ti−1. Only those potential flocks
that are successfully augmented with disk in the current time
instance are kept for further processing in the next time in-
stance. This method reports flock patterns as soon as they
satisfy the temporal constraint δ (e.g. we have at least δ
candidate disks successfully joined in a flock).

As it was mentioned in previous section, we use a grid-
based index to find disks for the current time instance ti.
For the first time instance t1, all disks returned by the grid-
based index are stored as potential flocks (we can view a
candidate disk as a partial flock with length 1) in the list of
candidate flocks for this time instance Fti . In the following
time instances all disks returned by the grid-based index are
stored in their candidate flock lists Fti and then “joined”
with the candidate flocks from the previous time instance
Fti−1 . The “join” condition used for this operation is |c ∩
f | ≥ µ, i.e. the total number of common elements between
the candidate flock and the disk has to be greater or equal
to µ in order to be joined. If the condition is satisfied then
we move the join result into the list of candidate flocks for
the current time instance ti. A flock is found if there are
at least δ join operations applied over the candidate flock,
i.e. u.tend − u.tstart = δ. In this case, the flock pattern is
immediately reported to the user and its u.tstart attribute
is updated and reinserted in Fti to be further joined with
other disks in the following time instance.

It should be noted that Fti only maintains potential flocks
starting at some previous time instance tstart > ti − δ and
ending in the current time instance tend = ti. Entries that
cannot be joined in the next time instance are discarded and
not transferred into the list of candidate flocks for the next
time instance.

Algorithm 2: BFE : Basic Flock Evaluation

input : parameters µ, ǫ and δ
output: flocks patterns
Ft0 ← ∅
for each new time instance ti do

Fti ← ∅, C ← Index.Disks(T [ti])
for each c ∈ C do

for each f ∈ Fti−1 do

if |c ∩ f | ≥ µ then
u← c ∩ f
u.tstart ← f.tstart

u.tend ← ti

if (u.tend − u.tstart) = δ then
report flock pattern u from u.tstart to
u.tend

update u.tstart

end

Fti ← Fti ∪ u
end

end

Fti ← Fti ∪ c
end

end



One advantage of the BFE Algorithm is that for each time
instance being processed, the algorithm stores only the tra-
jectory ids in Fti . There is no need to keep the actual loca-
tions of moving objects in Fti since they do not participate
in the join condition. Another advantage is that trajectory
locations for each time instance are processed only once,
that is, there is no need to buffer trajectory data for a time
window with length δ like our other algorithms explained
later in this section.

4.2 Filtering Heuristics
The number of candidate disks in a given time instance

can be quite large and the cost to join those candidate disks
in a flock pattern can be quite expensive. In order to im-
prove the performance of the BFE algorithm we propose a
set of four different heuristics used to limit the number of
generated candidate disks. These heuristics are described
next.

4.2.1 Top Down Evaluation
The first heuristic is a “Top Down Evaluation” (TDE). It

differs from the basic algorithm in the fact that the construc-
tion of the flocks is not done in a bottom-up approach (by
extending flock patterns one candidate disk at a time until
they become at least δ time instances long) but in a top-down
fashion. Here we compare the candidate disks for time in-
stances which are δ time instances apart. This is based on
the assumption that the difference between the candidate
disks in two consecutive time instances will be small (thus
resulting in a large number of short flocks which still have
to be kept as candidates until it becomes clear that they
do not have the required length), while the differences be-
tween candidate disks from time instances which are δ time
instances apart will be significant (and will result in smaller
set of candidate flocks).

This heuristic buffers trajectory locations for time win-
dow w which has length δ time instances. It also performs

Algorithm 3: TDE : Top Down Evaluation

for each new time instance ti do
let L be trajectories in windows size |w| = δ (ti−δ...ti)
F ← ∅, U ← ∅
C1 ← Index.Disks(L[1]), Cw ← Index.Disks(L[w])
for each c1 ∈ C1 do

for each cw ∈ Cw do

if |c1 ∩ cw| ≥ µ then U ← U ∪ {c1 ∩ cw}
end

end

for each u ∈ U do

L′ ← u, F1 ← u1

for t← 2 to |w| − 1 do

Ft ← ∅, Ct ← Index.Disks(L′ [t])
for each c ∈ Ct do

for each f ∈ Ft−1 do

if |c ∩ f | ≥ µ then Ft ← Ft ∪ {c ∩ f}
end

end

if |Ft| = 0 then break

end

for each f ∈ Fw−1 do

for each cw ∈ Cw do
if |f ∩ cw| ≥ µ then F ← F ∪ {f ∩ cw}

end

end

end

report flocks F
end

a different strategy on joining the candidate disks in this
time window w. First the algorithm calculates the candidate
disks C1 for the first time instance ti−δ+1 in the window w.
Then, disks for the last time instance ti in w are calculated
and joined with the ones in C1. The candidate flocks for
time window w generated as a result of this step are then
verified using the basic flock pattern evaluation algorithm.

4.2.2 The Pipe Filter Evaluation
Our second heuristic, the Pipe Filtering Evaluation (PFE ),

also employs the filter-and-refine paradigm. It first filters all
trajectories that have at least µ objects within distance ǫ of
them for a duration of at least δ time instances. Then in
a refinement step performed over the trajectories returned
by the filtering step we search for flock patterns using the
basic flock pattern evaluation algorithm. Figure 8 illus-
trates a pipe for trajectory T2 with radius ǫ. Trajectories
{T1, T2, T3, T4} are in the pipe for all δ times stamps and
are further processed in the refinement step.

Figure 8: Pipe filtering δ for T2 and radius ǫ.

The Pipe Filtering algorithm, first builds a grid-based in-
dex for the first time instance ti−δ in the w window. Then,
for each trajectory location Tj in ti−δ a range search is is-
sued. The purpose of this range query is to examine how
many other object locations are within distance ǫ from the
trajectory being processed. If the cardinality of the result
set is greater or equal than the threshold µ, then we con-
tinue with the same check for time instances ti−δ+1 to ti. If
the total number of trajectories inside the “pipe” for given
trajectory Tj is |U| ≥ µ, then the set of trajectories qualifies
and it is stored in the list of candidates M, to be further
processed in the refinement step of the algorithm.

The refinement step employs the basic flock pattern eval-
uation algorithm. The difference however is that now it
process only the trajectory locations returned as a result
of the filtering step M instead of using the whole trajec-
tory database. This approach is beneficial in cases where a
large number of trajectories will be pruned by the pipe filter-
ing step and the computationally expensive candidate disk
generation and flock construction will be performed over a
limited subset of trajectories m ∈ M.

4.2.3 The Continuous Refinement Evaluation
As the name implies, the Continuous Refinement Evalua-

tion (CRE) heuristic continuously refines the set of trajecto-
ries which can participate in a flock pattern. This approach
uses the candidate disk generation step for time instance ti

as a filtering step for time instance ti+1. Only trajectories
that are associated with the candidate disk in time ti are
analyzed in ti+1. This approach can be used in cases where
the selectivity of the candidate disks is high, e.g. there exists



Algorithm 4: PFE : Pipe Filter Evaluation

for each new time instance ti do
let L be trajectories in windows size |w| = δ, (ti−δ...ti)
F ← ∅
for each Tj ∈ L do

L′ ← Index.Range(Tj , ǫ)
if |L′| ≥ µ then
U ← ∅
for each Tk ∈ L

′ do

if ∀ti ∈ w, p
ti
k
∈ Tk, p

ti
j ∈ Tj , d(p

ti
k

, p
ti
j ) ≤ ǫ

then U ← U ∪ Tk

end

if |U| ≥ µ then M←M∪ U
end

end

for each m ∈ M do

F1 ← Index.Disks(m1)
for t← 2 to |w| do

Ft ← ∅, C ← Index.Disks(mt)
for each c ∈ C do

for each f ∈ Ft−1 do

if |c ∩ f | ≥ µ then Ft ← Ft ∪ {c ∩ f}
end

end

if |Ft| = 0 then break

end

F ← F ∪ Ft

end

report flocks F
end

a relatively small number of candidate disks and the number
of trajectories in them is low.

In its first step, the CRE algorithm finds disks C1 using
locations L[1] for time instance ti−δ. Then, for each disk
c1 ∈ C1, all trajectories associated with it are further pro-
cessed from time instance ti−δ+1 to ti.

At the first time instance, disks C1 for time instance ti−δ

are stored in F1 (potential flocks of length 1). Then, each
instance of c1 is further processed to compute disks and is
“merge-joined” with the previous ones stored in Ft. If Ft

has no potential flock at time t, then the processing of c1

can be discarded. After this second step, flock patterns are
reported from time ti−δ to ti.

Algorithm 5: CRE : Continuous Refinement Evaluation

for each new time instance ti do
let L be trajectories in windows size |w| = δ, (ti−δ...ti)

F ← ∅, C1 ← Index.Disks(L[1])
for each c1 ∈ C1 do

let L′ be the trajectories in c1 with length w
F1 ← c1

for t← 2 to |w| do

Ft ← ∅, Ct ← Index.Disks(L′ [t])
for each c ∈ Ct

do

for each f ∈ Ft−1 do

if |c ∩ f | ≥ µ then Ft ← Ft ∪ {c ∩ f}
end

end

if |Ft| = 0 then break

end

F ← F ∪ Ft

end

report flocks F
end

4.2.4 The Cluster Filtering Evaluation
The last proposed heuristic, Cluster Filtering Evaluation

(CFE ), has two phases: (1) the first phase applies the

Algorithm 6: CFE : Clustering Filtering Evaluation

Iti ← ∅
for each new time instance ti do
U ← ∅, L ← T [ti]
Q ← DBSCAN(L, µ, ǫ)
for each q ∈ Q do

for each f ∈ Iti−1 do

if |q ∩ f | ≥ µ then
u← {q ∩ f}
u.tstart ← f.tstart

u.tend ← t
if (u.tend − u.tstart) = δ then

F1 ← Index.Disks(u1)
for t← 1 to |w| do

Ft ← ∅, C ← Index.Disks(mt)
for each c ∈ C do

for each f ∈ Ft−1 do
if |c ∩ f | ≥ µ then

Ft ← Ft ∪ {c ∩ f}
end

end

if |Ft| = 0 then break

end

F ← F ∪ Ft

update u.tstart

end

U ← U ∪ u
end

end

U ← U ∪ q
end

Iti ← U
end

DBSCAN clustering algorithm with parameters eps=ǫ and
minPts=µ for each time instance ti; (2) clusters reported
for a given time instance ti by the DBSCAN algorithm are
further joined with clusters found in the previous time in-
stance ti−1. The join criteria is that the clusters should have
at least µ trajectories in common, and then only the resulted
intersection of trajectories are maintained. If a cluster u can
be augmented in this way for δ consecutive time instances
(u.tend − u.tstart = δ), then it is saved as a candidate which
has to be verified in the second phase, using the basic flock
pattern evaluation algorithm.

Figure 9: CFE steps to find flock patterns

Figure 9 illustrates the steps performed by the CFE algo-
rithm. In Figure 9(a), the DBSCAN is applied to a specific
object location p1 with parameters eps=ǫ and minPts=µ.
Then, in Figure 9(b), shows the propagation of the DB-
SCAN algorithm over p1’s neighbors. Object locations that
do not belong to any cluster are discarded. The final two
clusters reported by the DBSCAN algorithm in Figure 9(c)
({p2, p5, p6} and {p1, p4, p9}) are then further processed in
the refinement step of the CFE Algorithm.

5. EXPERIMENTAL RESULTS
In order to evaluate the performance of the proposed meth-

ods, we run several sets of experiments with various trajecto-
rial datasets and using different flock pattern parameters. In
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Figure 10: Total time (s) when varying (a) µ, (b) δ and (c) ǫ for the Trucks dataset
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Figure 11: Total time (s) when varying (a) µ, (b) δ and (c) ǫ for the Cars dataset

particular we show the results for four real datasets – Trucks,
Buses, Cars and Caribous – and one synthetic dataset – SG.
The first two real datasets Trucks and Buses [26] contain
112,203 and 66,096 moving object locations generated from
276 and 145 moving trucks and buses, respectively, collected
in the great metropolitan area of Athens, Greece. The third
dataset Cars [13] contains 134,263 object locations collected
from 183 private cars moving in Copenhagen, Denmark. The
last real trajectorial dataset Caribous [24] is generated from
the analysis of the migration movements of 43 caribous in
northwestern states of Canada. The size of the dataset is
15,796 object locations.

Because the real datasets that we could find in public
domain are relatively small, in order to test the scalabil-
ity of our methods we use synthetic dataset SG as well.
This dataset is generated by simulating the movement of
50,000 vehicles on road network of Singapore. Those moving
objects have different velocities and their starting locations
were randomly placed in the road network. The size of the
synthetic dataset is 2,548,084 moving object locations.

In our experiments we use several values for the flock pa-
rameters µ, ǫ and δ. The ranges of values for each dataset
are shown in Table 1, where in bold we show the default
values for each parameter. Those default values are used
when the value of the parameter is not explicitly specified
for a given experimental set. The total number of patterns
discovered for the minimum and maximum value of each
parameter, taken from Table 1, are shown in Table 2.

Figures 10-14 show the results when varying parameters
µ (first column), ǫ (second column) and δ (third column)
respectively, for the different datasets. All plots show the
total time in seconds, needed to process the whole dataset,
including building the grid index. As it can be seen, when
increasing µ, decreasing ǫ, or decreasing δ, the total time
needed to discover the flock patterns for all methods de-
creases. This is expected since the flock queries becomes

Table 1: Parameters values for each dataset

Dataset
µ [default] ǫ [default] δ [default]
min #traj. max dist. min time

Trucks 4, 6,...,20 [5] 0.8, 0.9,...,1.5 [1.2] 4, 6,...,20 [10]
Cars 4, 6,...,20 [5] 0.8, 0.9,...,1.5 [1.2] 4, 6,...,20 [10]

Caribous 2, 3,...,10 [5] 0.1, 0.2,...,0.8 [1.6] 4, 6,...,20 [10]
Buses 4, 6,...,20 [5] 0.4, 0.5,...,1.1 [1.2] 4, 6,...,20 [10]
SG 4, 6,...,20 [5] 2.2, 2.6,...,5.0 [3.4] 4, 6,...,20 [10]

more selective and we have to maintain fewer candidate tra-
jectories during the query evaluation.

For the Trucks and Cars datasets, the TDE and CRE
methods have significantly better performance compared to
the other methods. The gap between those methods and the
rest increases when the selectivity of the queries becomes
low (for small µ and big ǫ). This is due to the large number
of partial intermediate results which have to be maintained
by the other three methods (BFE, PFE and CFE ) and the
increase of the total time needed to process those partial
results. Similar behavior can be observed for large values of
the flock duration δ, but only for the PFE and CFE meth-
ods. This is due to the fact that these two methods keep
the trajectory history in a time window w before computing
the disks for each timestamp. Similar behaviors are found
for the Buses dataset.

For the Caribous dataset the BFE algorithm has the best
performance, closely followed by the TDE and CRE. Our
analysis shows that the BFE algorithm performed well in
this dataset because the data characteristics. The data in
this dataset seems to be very well correlated, e.g. all 43
caribous have similar migration patterns and stay close to-
gether, well grouped in herds during their movement. Be-
cause of this other methods are not able to prune a lot of
trajectories in their filtering phases. The fact that the data
in the Caribous dataset is well clustered in terms of flocks
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Figure 12: Total time (s) when varying (a) µ, (b) δ and (c) ǫ for the Caribous dataset
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Figure 13: Total time (s) when varying (a) µ, (b) δ and (c) ǫ for the Buses dataset
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Figure 14: Total time (s) when varying (a) µ, (b) δ and (c) ǫ for the SG dataset

can also be observed by the total number of flocks discov-
ered for this dataset (see Table 2). The number of discovered
flocks is quite large for a dataset with only 15,796 moving
object locations.

In the next group of experiments we use the synthetic
dataset SG. As it can be seen from the plots the PFE algo-
rithm is by far the best algorithm for this particular dataset.
The main reason for this behavior is that even though the
total number of potential flocks for each timestamp can be
quite big (see Table 3 for details), this approach performs
more holistic filtering compared to the other solutions. This
heuristic is checking the minimum occupancy criteria (the
number of trajectories closer than the threshold ǫ to a given

Table 2: Number of flock patterns discovered

Dataset
µ - min #traj. ǫ - max dist. δ - min time
min max min max min max

Trucks 309 14,935 3,741 15,608 2,045 23,222
Cars 62 18,451 3,218 23,440 3,149 24,211

Caribous 124 9,480 5,292 6,915 3,364 4,598
Buses 0 2,988 16 1,021 55 1,730
SG 0 1,304 53 741 112 385

trajectory should be more than µ) for the whole duration of
the flock pattern δ. The other four methods try to join can-
didate disks for two consecutive timestamps, without having
holistic view of the trajectories. Therefore, the first filtering
phase of the PFE has a higher pruning capability compared
to the other methods for the SG dataset. We should note
that in the real datasets, trajectories follow similar patterns,
while in the SG dataset objects follow random patterns and
though they might be close together in one time instance,
they tend not to follow similar patterns for several consecu-
tive timestamps.

As it can be seen from the plots, for most of the datasets
the CFE algorithm has the worst performance among all
methods. This is due to the fact that the filtering step in this
approach employs clustering which can be very expensive for
large datasets. This approach however works significantly
better when the datasets are relatively small and the moving
objects in those datasets have similar moving patterns (see
the results for the Caribous dataset). In scenarios like those,
the cost for clustering is not that high which explains the
improved performance.

In our next set of experiments, we measure the minimum
and the maximum number of disks computed for each time



instance using our grid-based index. The results can be
depicted in Table 3. As it can be seen even for big values
of the parameters µ, ǫ and δ, the maximum number of disks
computed per timestamp is relatively small compared with
the number of trajectories. This shows the efficiency of our
grid-based index structure.

Table 3: Min/Max Number of disks per time

Dataset
µ - min #traj. ǫ - max dist. δ - min time
min max min max min max

Trucks 505 1,257 812 1,547 1,237 1,237
Cars 72 294 142 387 279 279

Caribous 393 235 587 342 309 309
Buses 7 236 27 183 105 105
SG 1,343 12,894 1,232 2,916 10,934 10,934

6. CONCLUSIONS
Recently there has been increased interest in queries that

capture the collaborative behavior of spatio-temporal data
(e.g. convoys, flocks, etc.). In particular, a flock contains
a group of at least µ moving objects all of them “enclosed”
by a disk of diameter ǫ for at least δ consecutive time peri-
ods. Discovering flock patterns on line is useful for several
applications ranging from tracking suspicious activities to
migrations of animals. Previous related works either can-
not apply on finding flock patterns, work only for archived
datasets and/or find approximate results. We first show that
flock discovery under a fixed time duration can be solved
in polynomial time. We then present a framework that
uses a lightweight grid-based structure in order to efficiently
and incrementally process the trajectory locations. Using
this framework we provide various on-line flock discovery
algorithms. Experiments on real and synthetic trajectorial
datasets show that our methods can efficiently report flock
patterns even for large datasets and for different variations
of the flock parameters (µ, ǫ and δ). As future work we
will examine cost models to enable the user pick the most
efficient algorithm based on the data distribution.
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