
MALCOLM A. MUMME 
P.O. Box 85062 

Tucson, AZ, 85754-4004 
(951) 808-5580 

http://www.cs.ucr.edu/~mummem/ 
mamumme@acm.org 

 
SUMMARY of QUALIFICATIONS 

 
• Software engineer since 1980 with experience in simulations, embedded real-time 

systems, microcoding, DSP, processor design, systems programming, theory. 
• Many programming languages, applications and operating systems (see SKILLS).  
• Committed to high technical standards.  
• Likes math, physics, parallel processing, skiing, skating, sailing, kayaking.  
• Can work autonomously, independently or in teams. Self-motivated.  

 
EDUCATION 

 
University of California at Riverside, Riverside, California (UCR) 

PhD in Computer Science (specialized in formal methods/verification) (Expected) 2020 
Master of Science degree in Computer Science (MSCS) December 2008 
Bachelor of Science degree in Computer Science (BSCS) June 2004 
University of California at Riverside (UCR) 90 quarter units, GPA 3.461 
Pasadena City College transferred 50+ semester units 

 
OTHER EDUCATION 

 
Many continuing education classes including: 1980-1993 

• Transistor Electronics: JFETs, MOSFETs, BJTs, opamps, linear circuit 
analysis &c. 

• VLSI design: (Mead-Conway book): Stick diagrams, nMOS, cMOS, layout; 
RISC 

• Fault Tolerant Systems Design: Arithmetic codes, TMR, nMR, D-algorithm 
&c. 

• AI 
• Expert Systems 
• C++ version 2 
• Hatley-Pirbhai OOD 
• CMI/IPT 

Frequent attendance at various IEEE and ACM conferences such as:  1984-2006 
• ICPP (International Conference on Parallel Processing) 
• IEEE Compcon, Wescon, Southcon 
• ACM LFP (Lisp and Functional Programming), FPCA (Functional 

Programming and computer Architecture), OOPSLA (Object-Oriented 



 EDUCATION (continued)  Page 2 

Programming, Systems, Languages, and Applications), Siggraph (Special 
Interest Group in Computer Graphics) 

Continued reading of academic association publications:  1986-2005 
• Association for Computing Machinery (ACM) member.   

§ Sigplan (Special Interest Group in Programming Languages) notices 
§ Siggraph (Special Interest Group in Computer Graphics) 
§ Sigops (Special Interest Group in Operating Systems) Operating 

Systems Review 
§ Sigsam (Special Interest Group in Symbolic and Algebraic 

Manipulation) 
• American Association for the Advancement of Science (AAAS) member 

(until 2005).   
§ Science magazine (weekly) 

 
COMPUTER SKILLS 

 
 
• More at resume end 
• Advanced data 

structures/algorithms  

• Ada 
• Assembly 
• C / C++ / C++11 

• Haskell 
• Java 
• VHDL 

 
GRADUATE SCHOOL PROJECTS 

 
q [2007] Research for potential advisors during advisor search 
• Research in graph drawing. 

• Algorithms for drawing planar graphs on grids.   
• For the special case of onion graphs with at most 4 vertices per layer, I found 

a general solution that is optimal in grid space usage for a given number of 
vertices. (see http://www.cs.ucr.edu/~mummem/onion4/ ). 

• Research in automatic variable ordering for compact symbolic (decision diagram) 
representation of discrete models. 
• I devised and implemented a variable ordering heuristic that produces variable 

orderings very similar to the orders that were manually constructed by 
modelers. 

• Reconfigurable computing project   
• Sparse matrix multiplication.  
• Did high-level design for a super-scalar-like sparse matrix multiplier to 

implement in VHDL for single-FPGA on board implementation.  Potential 
advisor then told me not to use VHDL, but to use his C-language translator.  

• Wrote C implementation of a very simplified sparse matrix multiply algorithm. 
This was structured as pre-processing, followed by a sequence of on-FPGA 
and off-FPGA steps, followed by post processing, due to the tool limitation of 
only allowing processing of a single input stream of a single numeric type.  

• Found about 15 bugs in C-language VHDL translator.  
q [2008-2011] Research in symbolic methods (using decision diagrams) for 

bisimulation on discrete models (minimization of transition systems (automata)).   



 GRADUATE SCHOOL PROJECTS (continued) Page 3 

• [2008] MS Project.   
• Motivated by the desire to produce an improved symbolic lumping 

(minimization of stochastic automata) algorithm, my advisor assigned me the 
project of first producing an improved bisimulation algorithm. I devised and 
implemented two symbolic bisimulation algorithms and did a comparison.   

• The first algorithm (B) was designed to use a more compact representation of 
transition systems than state-of-the-art lumping algorithms.  

• The second algorithm (H) was designed to mimic a state-of-the-art lumping 
algorithm using a more compact representation of the transition relation only. 

• Algorithm B turned out to be the same as a well-known classical symbolic 
bisimulation algorithm, which was unknown to us because it apparently had 
never been adapted for the lumping problem.  It did not produce improved 
bisimulation run-times, although in some cases it had improved memory usage. 

• [2008-2009] PhD Qualifier Project.   
• I found a way to apply the saturation heuristic to the special case of the 

bisimulation problem where all transition relations are both visible and 
deterministic, producing a new symbolic bisimulation algorithm (SD). 

• The new algorithm SD delivers reasonable run-time and space performance 
compared with algorithm H when applied to automata with small 
minimizations, while delivering significantly better performance with large 
automata having large minimizations.   

•  [2009-2011] Current Incremental Research.   
• I refined my implementations of algorithm SD and of the fastest state-of-the-

art symbolic bisimulation algorithm (W), and compared performance using 
various models.   

• I found a generalization SN of algorithm SD, which handles the more general 
case of the bisimulation problem where some transition relations are non-
deterministic.  This algorithm can also be generalized to handle the special 
case of weak bisimulation, where some transitions are invisible.  Implemented 
and characterized performance of algorithm SN, improving state-of-the-art in 
symbolic bisimulation algorithms for asynchronous labeled transition systems.   

• We are currently preparing a modernized decision diagram manipulation 
library with improved performance and functionality.  I expect to also make 
substantial API improvements, which will allow a wider variety of researchers 
to participate in the design and implementation of symbolic algorithms. Never 
Happened! Sad! 

• I expect to generalize algorithm SN to apply to the symbolic lumping problem.  
Never Happened! Sad! 

• Published paper [1] on algorithm SD.  
• Wrote invited paper [2] on algorithms SD and SN.  

q [2012-2013] Research in programming language design for first PhD proposal.   
•  [2012] Designed formal specification language to support metaprogramming with 

higher-level logic programming.   
•  [2012] Designed new type system for Ephemeral programming language to 

overcome previous limitations.   



 GRADUATE SCHOOL PROJECTS (continued) Page 4 

•  [2012] Wrote 83-page research proposal.   
•  [2013] Finished detailed proof that f x x = x implies (in a certain theory of 

equivalence of lambda-terms) either f=(λx. λy. x) or f=(λx. λy. y), i.e. f ∈Boolean.   
•  [2013] Showed that Simon Payton-Jones’s “free theorems” method provides basic 

axioms about simple types, as duals of the above kind of result.   
• For Booleans, Boolean = t → (t → t) implies ∀f∈Boolean: f x x = x 
• For Naturals, Natural = (t → t) → (t →t) implies ∀n∈Natural: n+1 = 1+n 

•  [2013] Presented dissertation proposal to committee 
•  [2013] Changed topic after proposal not approved 

q  [2012-2020] Research in symbolic methods (improving advanced data structures) for 
final PhD proposal.   
• [2012] Invented (Generalized Decision) Diagram ((GD)D), prototype to support 

expected effort to improve decision diagram manipulation library.  
•  [2013-2014] Changed topic to symbolic methods.  

• Invented (Generalized Decision) Diagrams ((GD)Ds).   
• Proved canonicity for (GD)Ds.   
• Wrote 68-page dissertation proposal, which was approved after my committee 

changed the task list to:   
1. Write and submitted short paper on (GD)Ds 
2. Implement (GD)Ds 
3. Test performance of (GD)D implementation for algorithm SN 
4. Write dissertation describing results from tasks 2 and 3 

• Immediately wrote and submitted short paper on (GD)Ds, as required by 
committee. It which was not accepted due to lack of results. 

•  [2015] Research on Variable-Labeled Decision Diagrams (VLDDs). VLDDs are 
defined very similarly to (GD)Ds, but the definition is simpler in part.  
•  Implemented VLDDs by writing 10000+ lines C++ code in 5 months. 
•  Implemented algorithm SN on VLDDs and on MDDs. 
•  Compared VLDDs with MDDs by performance on algorithm SN.   

•  [2015-2017] Wrote 517-page dissertation 
•  Proved canonicity for VLDDs 
•  Proved VLDDs and (GD)Ds are the same.  

• [2017-2018] Occasional dissertation updates.  
• [2017-2020] Waiting for advisor to finish reading dissertation.  
• [2018-2020] Proceeding with activities in ‘Future Work’ section of dissertation.  

 
 

TEACHING EXPERIENCE 
 

q [2017-2018] Adjunct instructor at California Baptist University, Computer Software 
and Data Systems Department.   

• [2017 Fall] CSC522: Software Development Methodology.   
• Official Course Description:  This course gives detailed coverage to significant 

software development methodologies including traditional plan driven 
methods, lean methodologies and a particular emphasis on agile methods. 



 TEACHING EXPERIENCE (continued) Page 5 

Comparison and discussion of traditional and newer lightweight methods will 
be made throughout the course. The course may include one or more projects 
to gain experience practicing software development methods. (3 units; Fall) 

• [2018 Spring] CSC524: Web Application Development.   
• Official Course Description:  The design and development of data driven web 

applications. The integration and exploitation of HTML, JavaScript, server-
side programming languages and database technology. (3 units; Spring) 

•  [2018 Spring] CSC526: Software Systems Design.   
• Official Course Description:  An in-depth look at software design. Study of 

design patterns, frameworks, and architectures. Survey of current middleware 
architectures. Component based design. Measurement theory and appropriate 
use of metrics in design. Designing for qualities such as performance, safety, 
security, reusability, reliability, etc. Measuring internal qualities and 
complexity of software. Evaluation and evolution of designs. Basics of 
software evolution, reengineering, and reverse engineering. Prerequisite: 
CSC527 (3 units; Spring) 

•  [2018 Spring] EGR326: Software Design and Architecture.   
• Official Course Description:  An in-depth look at software design. Study of 

design patterns, frameworks, and architectures. Survey of current middleware 
architectures. Component based design. Measurement theory and appropriate 
use of metrics in design. Designing for qualities such as performance, safety, 
security, reusability, reliability, etc. Measuring internal qualities and 
complexity of software. Evaluation and evolution of designs. Basics of 
software evolution, reengineering, and reverse engineering. Prerequisite: EGR 
327. (3 units; Spring) 

•  [2018 Spring] EGR424: Web Applications Development.   
• Official Course Description:  The design and development of data driven web 

applications. The integration and exploitation of HTML, JavaScript, server-
side programming languages and database technology. Prerequisite: EGR 325. 
(3 units; Spring) 

•  [2018 Spring] EGR506: Engineering Research and Development Methods.   
• Official Course Description:  This course is an introduction to research and 

development in the fields of engineering. Methods for properly researching a 
topic, collecting and processing data, drawing conclusions and presenting 
results are discussed. Special attention is paid to the process of technical 
development as opposed to research. Co-requisite: EGR501 (3 units; 
Spring/Summer) 

q  [2016-2017] Tutor at Sylvan Learning Systems of Riverside 
• Tutoring K-12 students in Reading, Math, and AP subjects.  

q  [2005-2014] Assistant teaching at University of California at Riverside 
•  [2014] Taught lab for CS008: Introduction to computing. 
•  [2013] Taught lab for CS010: Intro to programming.  
•  [2013] Graded for CS246: Advanced Verification Techniques in Software 

Engineering.  
•  [2011] Taught lab for CS012: Intro to Programming II.  



 TEACHING EXPERIENCE (continued) Page 6 

•  [2011] Taught lab for CS008.  
•  [2010] Taught lab for CS061: Machine Organization and assembly language 

programming.  
•  [2010] Taught lab for CS008.  
•  [2010] Taught lab for CS181: Principles of Programming Languages.  
•  [2009] Taught lab for CS180: Introduction to Software Engineering.  
•  [2007] Taught lab for CS179E: Senior Project in Computer Science: Compilers.  
•  [2006] Taught lab for CS152: Compiler Design.  
•  [2006] Taught lab for CS008.  
•  [2005] Taught lab for CS008.  

 
 

PERSONAL PROJECTS 
 

q [1979-] Research in computer graphics and parallel processing algorithms.   
q [1983-] Research in programming language design and formal specification for 

parallel processing.   
• [1983-] Project for the design of a general-purpose programming language 

supporting formal specification and parallel processing (among other things). 
• [1983-1985] I studied lambda calculus, graph theory, set theory, and class 

theory, and did a fair amount of research in lambda calculus, for the purpose of 
providing simple and powerful foundations for the programming language. 

• [1986-1988] I decided to use a set theoretic foundation, and, in 1988, decided it 
was time to start implementing something. 

• [1988-1988] I then started the process of obtaining approval (from employer 
Hughes Aircraft) to proceed independently with this research on my own time, 
with the product remaining my own property. 

• [1989-1989] After some waiting and reflection, I decided to instead use a pure 
class theoretic foundation (TGF Classes!). 

• [1988-1997] I held back on development, while waiting for IP waivers. I spent 
some of that time on computer graphics algorithms for affine fractal rendering. 

• [1998-1998] I finally obtained the desired approval in 1998 (shortly after 
acquisition by Raytheon Systems). 

• [1998-1999] After a “plant site closure” layoff in late 1998, I held back 
development another year, due to layoff package agreements. 

• [1999-2007] After starting school again in 1999, development has been mostly 
on hold except for an attempt in 2012 to do this as my PhD research. 

• [2008] Research is finally resuming, due to my advisor allowing me to do this as 
my main project, allowing me to start it before being advanced to PhD 
candidacy.  Never Happened! Sad! 

•  [2003] Simple low level programming language design for parallel processing, for 
details see the links listed below: “CS179e Project in compilers” on my web page ( 
http://www.cs.ucr.edu/~mummem/index2004.html ).   
• The Ephemeral language is intended to be a low-level ISA-independent 

topology-independent target language for parallel processing compilers. 



 PERSONAL PROJECTS (continued) Page 7 

• It is also intended to be operable on machines with unusually simple processors 
that are incapable of supporting operating systems as we know them. 

• By supporting the programming of massively parallel aggregations of 
extremely simple machines, it should be able to support wafer-scale parallel 
processors (when such things become available). 

• During this project, I was able to run some toy problems, but it turned out that 
the type system was insufficient to support serious programming. Fortunately, 
I have found a reasonably workable fix, which I hope to implement soon. 

q [1988] Combinator-reduction based macro expander on Apple ][e in Pascal  
• I implemented this in compiled Kyan™ pascal.  The small size of the machine 

required dividing this program into about 10 passes. 
• Tokenizing/ include file processing 
• Token sorting/numbering 
• Parsing 
• Usage analysis 
• Serialized combinator tree production 
• List space construction and initialization with combinator tree 
• Combinator reduction in list space 
• Result serialization from list space 
• Unique token generation 
• De-tokenization/output file generation 
• Or, error message generation 

• In the 3 passes involving list space, the memory available for storing the 
combinator tree was so small that I had to implement a sort of virtual memory, with 
the combinator space stored in a file, and the memory used as a cache for the file. 

• I later ported this program to Turbo Pascal for PC DOS.   
q [1989] Wrote CGI code (ray tracing, radiosity) on Apple][e in assembly/Pascal.  
• Used compiled Kyan™ pascal and 6502 assembly language.   

q  [1990] Custom memory card to support macro expander on Apple ][e 
• The Apple ][e is an 8-bit machine with 16-bit addresses.  The resulting space 

crunch results in considerable “virtual memory” thrashing when running my macro 
expander. 

• The memory card I build provides convenient access to an additional 32K list cells, 
each of which is 8 bytes wide.  It all fits on a standard sized Apple ][ 
daughterboard, which fits in an I/O slot and is accessed through 16 bytes of 
memory mapped I/O.   

• The user program puts the desired cell number into the upper 2 bytes of the I/O 
space, and the circuitry provides read/write access to the cell through the lower 8 
bytes of the I/O space.   

• I wrote the memory test program for this card, which found a problem.  After 
changing one wire, everything worked perfectly.  This was good, since I had no 
logic analyzer available at the time.   

q [2002] Multi-user client-server flight simulator in Java 
• PowerPoint presentation accessible from html resume at my web page 



 PERSONAL PROJECTS (continued) Page 8 

• Host runs simulation server, which will accept multiple clients through TCP 
sockets 

• The simulation server runs a buffering thread for each client. 
• The simulation server simulates all objects and provides all inter-client 

communication.   
• Each user runs a client applet, which provides the GUI for that user and opens TCP 

connection to the server.   
• The client applet runs a buffering thread and a rendering thread.  The buffering 

thread accumulates simulation updates while the rendering thread creates a display 
of the pilot’s front window view and a radar display.  User controls activate 
callbacks which send messages to the server.   

q [2006] Blackboard tool for explaining special theory of relativity. 
• This is a (stand-alone) Java program designed to act as a chalkboard for explaining 

resolution of special relativity paradoxes. 
• The GUI contains 2 parts, (1) drawing area on which user can draw space-time 

diagrams (2) control area with sliders with which user can adjust the viewers 
reference frame, and buttons for selecting functions. 

• The GUI is implemented using the old AWT. 
• The operation is approximately according to MVC, with all state stored in a 

simple database. 
• I wrote this because I wanted a relatively easy to explain special relativity to my 

non-technical friends. 
• The program allows one to draw a space-time diagram of some situation. 
• The user can adjust the scale parameters of the drawing so that relativistic effects 

become significant. 
• The user can adjust the velocity of the viewer's reference frame, causing the 

program to perform the Lorenz transform graphically on the diagram. 
 

 
INDUSTRIAL EXPERIENCE 

 
Other See TEACHING EXPERIENCE and PROJECTS for years: 1999-present 

 
Software Engineer:Hughes Aircraft Company / Raytheon, El Segundo CA 1980-1998 
Performed all aspects of software development including concept evolution, system 
requirements, design, documentation, coding, test, integration, delivery, and maintenance.  
 

q Progressively given more complex technical duties and promoted to MTS 2.  
Tasks here are listed in reverse chronological order. 

q Improved real-time display simulator.   
• Coded simulated pilot cursor operation.  This is about simulating the 

pilot’s use of the controls to make the cursor go to a particular place on the 
screen.  This would be trivial, except that in this case, the controls must be 
manipulated by a program and must work with a variety of different 
systems.  The different systems provide different agility of cursor 
movement and dependence on the controls.  The control program must 



 INDUSTRIAL EXPERIENCE (continued) Page 9 

experiment with how to control the cursor on a particular system and learn 
to manipulate the cursor by observing it on a simulated display.   

• Made various proprietary simulated display improvements 
q Simplified H/W design for the target echo simulation processor (DTG).   
• My knowledge of digital logic design and the previous generation DTG 

allowed me to make suggestions that saved gate array space and 
complexity.  My knowledge of programmable processor design principles 
allowed me to oppose an improper flexibility limitation which would have 
made it nearly impossible to implement one of the important DTG functions 
of which I was unaware at the time.  At first, the design committee resisted 
and I looked like a fool because I knew of no specific case where the 
limitation would be fatal, but I eventually constructed an example of 
something the previous architecture could not handle well, and then the 
chief scientist recognized that it applied to the required DTG functionality.   

q Analyzed, debugged and patched legacy microcode.   
• Manually calculating vector lengths from bits displayed on a logic analyzer 

is not convenient, but it works for debugging simulator microcode. 
q Translated legacy microcode to C code using a tool I implemented.   
• When you have to debug something with 128-bit wide instructions and 

about 20 fields and about 7 functional units, a disassembler just isn’t 
enough.  It actually took about a month to get this working well enough, 
since there were various timing dependencies among the various functional 
units, and some things were partially pipelined (and 7 functional units 
means a lot of opcode and operand tables).   

q Optimized and coded radar clutter profile simulation algorithm. 
• A radar clutter profile is a function that indicates clutter magnitude at any 

given distance.  As perceived by the radar, the effective clutter magnitude 
is also influenced by clutter distance itself.  For a variety of performance 
and cost reasons, a simple direct calculation of clutter is not used in clutter 
simulation.  Instead it is necessary to determine a partially processed 
version of radar clutter to be inserted into the simulation at an appropriate 
point.  Although this can increase coding complexity, this can improve 
performance.  The details are proprietary, but I did manage to make an 
improvement while recoding the algorithm.   

q Recoded major parts of a Systolic Cellular Array Processor (SCAP) 
instruction level (IL) simulator according to SCAP design changes.   
• The Hughes SCAP underwent some interesting design changes on its way 

to physical realization.  I was called to take over this simulator after the 
original engineer made a career optimization.  The SCAP is a fairly 
complex processor with many proprietary parts.  Its GUI is similarly 
complex, with an amusingly large number of window panes.  I made 
various changes to the simulator and its X-windows GUI corresponding to 
the SCAP design changes.  These included changes to the control pipeline, 
IEEE arithmetic exception handling and various proprietary things.   

• I also went through the entire program and explicitly distinguished the 
simulated machine state from the rest of the program state.  I then used 



 INDUSTRIAL EXPERIENCE (continued) Page 10 

this information to implement a state save-and-restore function, which 
allowed simulations to be suspended and restarted conveniently.  It was 
not convenient to extract this information after the simulator was already 
written, but having a working save-and-restore function greatly simplified 
my design of the test suite, which I also wrote.   

• I went on to propose a project, which would allow state save-and-restore 
function to be implemented in a scan-chain compatible fashion, allowing a 
simulation state to be saved and then loaded to an actual processor (and in 
reverse).  This would allow actual processors to be used as simulation 
accelerators, and simulators to be used to inspect actual processor states.  
You can guess whether or not this plan was ever approved.   

q Inspected SCAP array chip logic diagrams and discovered numerous errors, 
allowing the designer to correct them before extensive logic simulation began; 
implemented new parts of IL simulator from corrected logic diagrams. 
• I want to point out here that my analysis and inspection skills are not 

limited to program code, but also extend to digital logic design blueprints.  
The SCAP details are proprietary.   

• I converted the corrected logic diagrams into Haskell formulas and wrote a 
special Haskell function set to convert these to C code.  I then integrated 
the generated C code into the existing simulator.  C++ probably would 
have sufficed instead of Haskell, but it was not conveniently available to 
me at the time. 

q Integrated and tested real-time interrupt driven embedded C and assembly 
code I designed and coded, in time for contractual acceptance testing and 
delivery. 
• This was an instrumentation/monitoring package implemented in a 

Multibus box in C and 80286 assembly without an OS.  I primarily 
designed and coded the part of this package that is required to periodically 
send data on a dual 1553B bus to a collection process on another system. 

• I made a design to meet the requirements that worked in an asynchronous 
buffer-management style and then converted the design to operate (with 
more limitations) in the “cyclic executive” style with double buffering.   

• I wrote the code that generated I/O command lists to be processed by the 
1553B bus interface processor.  I also wrote the interrupt handler which 
handles 1553B bus interface interrupts.  This code deals with bus failures 
and controls switching between the two redundant 1553B buses.   

• I (and the rest of the team) integrated, debugged, tested and certified this 
and other code in accordance with contractual schedules. 

q Designed algorithms and performed coding and timing studies for signal and 
image processing algorithm cores for each of several proposed high-
performance processors of various proprietary designs.   

q Implemented mission reliability calculations, screen design, and database 
access for fault-tolerant systems mission reliability tool on HP3000 and VAX. 
• The VAX part of this involved VAX FORTRAN coding, VAX FMS for 

user input of parts descriptions, reliability data, redundancy descriptions 
&c., and VAX RMS for data base access. 



 INDUSTRIAL EXPERIENCE (continued) Page 11 

• The primary effort here was the conversion of reliability databases among 
various formats between various machines.   

• Designed various efficient probability calculations (secondary effort).   
q Delivered second version of Data Flow Analyzer (DFA) to special programs 

after designing, coding and debugging the data-flow-analysis code and 
debugging the integrated DFA. 
o Background on the DFA: 

• The DFA helps DSP application coders deal with the complexity of 
allocating resources (registers and memory) on the Hughes 
Programmable Signal Processor (PSP).  The PSP was a proprietary 
high-performance custom computer used in embedded avionic DSP 
applications. The PSP had a very complex design with hundreds of 
special signal processing instructions, several banks of various kinds 
of memory, several explicit pipeline stages, several ways of moving 
data from one kind of memory to another.  Due to the difficulty of 
constructing a usable compiler to efficiently target such a machine, the 
PSP was hand-coded in assembly language. Programmers had to 
choose the location of each variable, manually reorder instructions to 
properly use various proprietary processor resources, and synchronize 
their code with the asynchronous I/O subsystem.  One of the 
difficulties with PSP programming is that systems are provided with 
just enough resources for the computation. Sometimes the memories 
were just barely sufficient to hold necessary data as long as they were 
used carefully.  It was difficult to use them well, since there were 
various constraints relating various instruction parameters to various 
memories, constraints between instructions in various pipeline stages, 
constraints requiring certain variables to be placed in memories 
corresponding to certain other variables etc. 

• Using the DFA improved the programming practice through input 
language improvements and by providing useful services, such as: 
allocation of memory and register locations for storing variables 
(scalar and vector), analysis of code to automatically identify resource 
hazards caused by instruction ordering errors, as well as generation of 
some control opcodes and I/O control opcodes.   

• The DFA input language allows a better coding style to be used 
without compromising code performance. It improved upon plain 
assembly coding by providing language features such as “block-
structured” control constructs (i.e. if-then-else, do-while, etc.), nested 
blocks for control of variable scopes, and code pre-processing.  

• The PSP application programmer leaves the most difficult variable 
allocation decisions open, by means of special syntax.  The DFA then 
attempts to determine if these remaining allocations can be chosen in a 
way that also meets the special PSP constraints and satisfies the 
storage requirements of the program.  Data flow analysis often finds 
that the actual scope of a variable is much smaller than its syntactical 
scope, reducing constraints on where it may be stored.  Many times, 



 INDUSTRIAL EXPERIENCE (continued) Page 12 

the results of data flow analysis provide the flexibility necessary to 
allow a feasible allocation to be found for all program variables.  

• The module I wrote (Data flow analysis) supported automated allocation 
of memory and register locations by determining the exact scope of 
variables and determining aggressive but correct space-sharing constraints 
between pairs of variables. My data flow analysis code performed what 
was then the “state of the art” in flow analysis.  Now we just call it set-use 
analysis with some proprietary augmentations (data flow analysis also 
modeled the interaction of the program with the asynchronous I/O 
subsystem).   

• I have done maintenance and debugging in all modules of the DFA. 
q Debugged, modified, maintained and customized incremental assembler (SG) 

software on an HP1000 and provided CM and user support and education. 
o Background on SG: Radar application programs were written in assembly 

language for a custom proprietary radar application processor. SG 
originated when it took many mainframe hours to assemble and load the 
complete radar application program, so that small changes were easier to 
test by hand-assembling the code into an object patch. The heavily-used 
manual patching process was tedious and error-prone, resulting in 
unwanted surprises when the patches were integrated into the source code.  
SG virtually eliminates these surprises by preparing patches in a way that 
simulates a source code update. SG accepted a list of source code updates, 
as well as special files generated in the previous full build by the full 
assembler.  SG’s output is a set of object code patches, including branches 
to special spare patching areas, new code, branches back, as well as 
branches around “deleted” code.  Using SG, small changes to the radar 
application program could be loaded and tested in only a few minutes 
(until too many changes accumulated). 

• I became responsible for maintaining this program shortly after it was first 
delivered.  It was mostly written in HP1000 assembly language.  As there 
were still a few adjustments to be made, I quickly became skilled at 
deciphering the intent of assembly code and debugging assembly code.  I 
made the following enhancements over time: 
• Proper handling of multiple patching areas with various overlay rules. 
• Enlargement of the symbol table capacity, which required virtualizing 

it to use “extended memory area”, while it was previously accessed 
from register pointers.   

• Proper handling of multiple module/file updates from multiple source 
code updates.  This required a fair amount of update file pre-
processing and checking, as well as the addition of many command 
line options and some utility programs. 

• Handling intermediate level updates, where enough changes had 
accumulated to prevent practical direct usage of the patch assembler, 
but not enough updates to justify going back to the mainframe for a 
full source code re-assembly.  This involved having the incremental 
assembler accumulate information, which it used to update the special 



 INDUSTRIAL EXPERIENCE (continued) Page 13 

files received from the assembler.  Additional updates would be made 
to a special revision of the object code, which was already partially 
patched.  The idea was to create the illusion that an actual source code 
update and re-assembly had occurred, so that the incremental 
assembler only had to process newer updates.  This program was 
apparently a little too successful.  Fortunately, after about a decade, the 
mainframe build process came to take only a few minutes.  At that 
point the patch assembler was only needed in remote locations where 
radar application program changes had to be tested without convenient 
mainframe access. 

q Maintained “real-time” Special Test Equipment control program (STE) 
o Background on STE: 

• The STE controlled the debugging device attached to embedded radar 
processors.  The device could set breakpoints and watchpoints, snoop 
memory accesses, modify memory, load programs etc. 

• The STE also came to be the primary controller for various other 
devices and simulated devices as the overall radar systems and their 
test environments had become more complex after the mid 1970s.   

• The STE ran on an HP1000 RTE system and had several tens of 
medium sized Fortran modules maintained by about five programmers.   

o My tasks were: 
• Implementing (possibly nested) file input for STE commands, instead 

of input from only the user input device (like implementing a “source” 
command for a shell, but not in Unix).  Bonus: Simple looping.   

• Enhancing capabilities of various commands per user requests.   
• Implementing commands to control yet another simulated device:   

• Implementing a new STE command with various options, and 
manually modifying the command parser tables.   

• Implementing a low level “driver” to access the I/O card that was 
connected to the simulated device.   

• Implementing the in-between code.   
• Test and integration with the device simulator.   

• Attending various reviews and analyzing code.   
• Repairing various commands according to user requests.  

 
PATENTS 

 
q Processor architectures with patents: (see: 

http://patft.uspto.gov/netahtml/PTO/srchnum.htm ) 
q #5,379,444 “simplified synchronous mesh processor and array”  

( http://www.google.com/patents/US5379444 ) 
• This processor design is nearly the most extreme example of a minimal SIMD 

processor design.  Here, I’ll just describe the preferred variant of the design.  There 
are four main parts to the design: 
• 1 The control processor: a “standard” SISD processor sends commands to all 

other parts. 



 PATENTS (continued) Page 14 

• 2 The main processor cell array: a 2D (rectangular) array of very simple 
processor cells.  Each processor cell receives a single bit input from each 
neighbor cell on the x axis and on the y axis, for a total of 4 single bit inputs.  
All cells in the array also receive the same opcode from the control processor.  
Each processor also receives an x-enable signal and a y-enable signal from parts 
3 and 4 respectively.  The processor cells internals are described later.   

• 3 An x-enable generator, generates a vector of signals “along the x axis”, to be 
distributed to the processor cells. 

• 4 A y-enable generator, similar to the x-enable generator, but on the other axis. 
• Part 2, the main processor cell array, is where most of the data processing takes 

place.  Consider each processor cell to be associated with a pair of natural numbers 
n,m.  The single bit inputs to this processor cell are from its four nearest neighbors: 
n-1,m and n+1,m and n,m-1 and finally n,m+1.  At the boundaries of the array, 
some inputs may be absent, or may be connected to system inputs.   

• Each processor cell in the array contains (exactly) one single bit of storage.  This is 
the most unique feature of this processor design and produces most of the 
simplicity.  The content of the single bit of storage is output from each cell and is 
provided as the input to its four nearest neighbors.  The array is synchronous, and, 
on each clock cycle, a new value for the bit may be computed by the cell from the 
neighbor’s inputs and from the “old” value of the bit.  This computation depends on 
the opcode received from the control processor and is conditioned on the x-enable 
and y-enable signals both being ones.   

• In parts 3 and 4, each signal in the vector of generated signals is associated with a 
natural number on the relevant axis.  For example, each signal supplied by the x-
enable generator is associated with a natural number n, while each signal from the 
y-enable generator is associated with a natural number m.  In this case, x-enable n 
and y-enable m are the enable signals provided to processor cell n,m.  This is 
necessary in such a simple design, to provide a rectangular array of enable signals 
to the processor cells.  The internal design of the enable signal generators is not 
specified in the patent but is assumed to be sufficiently versatile to provide any 
needed patterns.   

• Given that each cell has only 4 data inputs and the “current” value of its bit with 
which to compute results, the set of possible instruction sets for the cell is relatively 
small compared with most other processors.  The most powerful possible 
instruction set would be as follows: 
• A 32-bit opcode provided by the main processor would designate a 5-input 

binary function.  This can be implemented easily as a 32-1 mux, with the 5 data 
inputs serving as the selector control inputs of the mux, and the opcode 
connected to the 32 data input positions of the mux.  Although simple and 
powerful, this design has two main problems: 
• 1: size: The relatively large size of a 32-1 mux compared to the size of the 

flip-flop that implements the stored bit means that the processor cell will be 
mostly occupied by the one large mux.  The data storage density of the array 
will be extremely small.   

• 2: size: A 32-bit wide instruction path must be present throughout the array.  
This means that the array chip would be occupied mostly by instruction 



 PATENTS (continued) Page 15 

wiring, leading to a surprisingly low processor density, further lowering the 
data storage density.  The cells’ logic would be farther from neighbors, 
increasing the length of data paths and decreasing speed. 

• For these reasons, the following design is preferred:   
• A 6-bit opcode provided by the main processor would be divided into two fields, 
• The 2-bit selector field will be used to select one of the four inputs from 

nearest neighbor cells.  This is easily implemented with a 4-1 mux.   
• The 4-bit function field will designate a binary function of 2 inputs, one of 

which will be the “current” bit, and the second of which will be the selected 
bit from one of the four nearest neighbors.  This also is easily implemented 
with a 4-1 mux.   

• Although not as powerful, the preferred design seems to work well for 
providing a reasonable processor density, while still being sufficiently 
powerful.  Convenient algorithms exist to implement multi-bit arithmetic on 
groups of cells at reasonable speed. 

• The primary advantage of this type of array is that the simplicity of the cells allows 
one to have a great many of them in a small space.  The nearest neighbor data 
connection scheme assures that all data lines/wires will be short (too bad about the 
opcode/enable lines).  The multitude of cells almost completely makes up for the 
minimal data/cell ratio.  The short wires and simple logic allows the clock to be 
very fast, compensating for the fact that even “primitive” arithmetic operations 
must be programmed explicitly. 

• At the time of the invention, a major disadvantage was the necessity of using a 
great many cells on a single chip to obtain the necessary advantages.  Custom logic 
at that time would only permit an array of about 1K-2K cells on a chip.  This was 
enough to do Winnograd-style 31-point FFT’s at better than average rates but could 
not handle larger amounts of data.  Fortunately, with Moore’s law, and the passage 
of time, a single custom chip should now be able to accommodate [many more 
than] 32K-64K processor cells per chip.  This design would be very hard to 
compete against.  Presently, the primary disadvantage of this design is that the long 
control lines, which must be driven with very high-power buffers, given the high 
clock rate desired, would potentially require a very large power and cooling budget.   

q #5,815,728 “processor array” ( http://www.google.com/patents/US5815728 ) 
• This is a pin reduction scheme for 2D mesh connected processors that have the 

property that the x-axis inter-processor connections are never used at the same time 
as the y-axis connections.  The main idea is to not allocate processor cells to chips 
in the usual rectilinear manner (a rectangular group of processors placed on each 
chip).  Instead, an almost diamond shaped region of processors from the array is 
placed on each chip.  The proposed shapes have the property that the perimeter 
comprises regions that alternately cut through x-axis connections and y-axis 
connections, so that the x and y axis connections are paired adjacently along the 
perimeter.  Each pair of connections can be implemented with only a single 
physical pin/pad, by using multiplexers.  This can significantly reduce the number 
of required pins/chip for such processors.  The patent (online, see above) has 
various diagrams that clarify the improvement.

 



Malcolm A. Mumme PAPERS Page 16 

 
PAPERS 

 
[1] A fully symbolic bisimulation algorithm. In: Delzanno, G., Potapov, I. (editors)  

Proceedings of the Fifth International Workshop on Reachability Problems, pages 
218–230. Springer-Verlag 

[2] An efficient fully symbolic bisimulation algorithm for nondeterministic systems. In: 
International Journal of Foundations of Computer Science, Volume 24, Issue 2, pages 
263-282.

 
ADDITIONAL COMPUTER SKILLS

 
• Ada 
• Advanced data 

structures and 
algorithms (decision 
diagrams) 

• Apple Final Cut Pro / 
Compressor / DVD 
Studio Pro / DVD 
scripting / iMovie / 
iDVD / Quicktime Pro 
/ Hypercard / MacDraw 
/ MacPaint 

• Assembly for: AMD 
29116 / DEC Alpha / 

HP 3000, 1000, 21MX 
/ Intel x86, 8080 / 
WDC 658xx, 6502 

• Basic 
• C / C++ / C++11 
• C shell csh scripting 
• DEC RSTS 
• DEC VMS usage 
• Forth 
• FORTRAN 
• Haskell 
• Hughes SCAP 
• Java 
• Linux 

• Macromedia Flash 5 
Animation and 
Actionscript scripting 

• Microsoft Word / Excel 
/ PowerPoint / Access / 
Windows usage 

• NCR GAPP 
• Oracle SQL 
• Pascal and UCSD 
• UIMX Motif X11 
• UNIX / Linux 
• VHDL 
• Z formal specification 

 
Ordered by approximate currency (most recent first): 

1. C / C++ / C++11 
2. Advanced data 

structures and 
algorithms (decision 
diagrams) 

3. ML (class only) 
4. UNIX / Linux 
5. Quicktime Pro / 

iMovie 
6. Final Cut Pro / 

Compressor / DVD 
Studio Pro / DVD 
scripting 

7. Microsoft Word / 
Excel / PowerPoint / 
Access / Windows 
usage 

8. Java 

9. iMovie / iDVD 
10. VHDL 
11. Perl (class only) 
12. MAYA (class only) 
13. Oracle SQL (class 

only) 
14. Macromedia Flash 5 

Animation and 
Actionscript scripting 

15. Basic 
16. Before year 2000: 
17. UIMX Motif X11 
18. Ada 
19. DEC VMS usage 
20. DEC Alpha 
21. AMD 29116 
22. C shell csh scripting 
23. Apple MacDraw 

24. Apple HyperCard 
25. Apple MacPaint 
26. Pascal and UCSD 
27. HP 1000 & 21MX 
28. FORTRAN  
29. WDC 658xx and 

AMD 6502 
30. Forth 
31. Hughes SCAP 
32. Z Formal 

Specification 
33. Haskell 
34. IBM MVS usage 
35. Intel x86 and 8080 
36. NCR GAPP 
37. HP 3000 and MPE 
38. DEC RSTS 


