(Generalized Decision) Diagrams supersede existing
decision diagrams and are closed over {U,N,\, x}

Malcolm Mumme

Abstract

Symbolic model checking tasks, such as state space exploration, bisimulation, lumping, relational composition, and
property checking, often employ decision diagrams (DDs) to encode large models, and algorithm libraries, such
as TeDDy, to build and analyze them. A variety of DD types have evolved for various situations. Fully-reduced
DDs are excellent for encoding state-space tuple-sets, while the extreme compactness of Fully-Identity-reduced DD
(FIDD) encoding is preferred for interleaved transition relations. Other forms, such as Binary Decision Diagrams
(BDDs), Extensible Multi-way DDs (EMDDs), and various kinds of Edge- Valued Multi-way DDs (EVMDDs) are
each preferred in other special circumstances. Many DD types, such as EMDDs and BDDs have domains closed
under set theoretic operations, such as union, intersection, complement, and Cartesian products, while others, such
as FIDDs are not, complicating their use. Different DD types encode partially-overlapping domains, impeding
translation between different DD types. The type of DD employed must be manually chosen, and in complex
model checking situations, compact encoding requires hybrids of the above DD types, often necessitating library
extension. A single DD type, with a domain covering extant DD domains while also being closed under set
theoretic operations and having the compactness advantages of existing DD types, would be preferred.

(Generalized Decision) Diagrams (GDDs), appear to have such advantages. I recently proved that normalized
(canonical) GDDs encode all finite- Bundle-wise constant functions, which includes the tuple-set domains of all the
above DD types and is closed under set-theoretic operations. Additionally, GDDs appear to have the compactness
advantages of each of these encodings for those cases where the previous encoding had an advantage. Due to the
heuristic nature of DD methods, however, the actual efficiency of GDDs in practical model checking tasks cannot
be guaranteed by theoretical analysis. Compactness advantantages of GDDs are also not guaranteed to outweigh
the additional complexity of GDD algorithms in practice. Thus, the use of GDDs as an improvement to practical
model checking systems cannot be recommended until their performance and compactness advantages are verified
by experimental analysis involving comparison with existing DD types.

I propose to measure performance and compactness differences between the use of GDDs and other DD
encodings in various model checking tasks. This includes (1) preparing an algorithm library, TeDDy, supporting
GDDs, with a modernized API and efficient use of common multicore processors through library-level parallelism,
and (2) applying TeDDy GDDs to several model checking tasks, including saturation-based state-space exploration,
my existing fully-symbolic bisimulation algorithm, and a novel bisimulation technique described below.

I additionally propose to extend my existing model checking research in the following three directions: (1) I will
explore using ‘uncertain’ transition relations to augment a transition system so as to effectively improve the overall
locality of transition relations, to improve my saturation-based weak bisimulation algorithm, (2) I will study a
new fully-symbolic lumping algorithm that uses the saturation heuristic, in a manner similar to our fully-symbolic
weak bisimulation algorithm, and (3) I will study a new parallel saturation technique, having additional novel
structural recursion that is organized according to both processor locality and model locality.

I hope to experimentally show that GDDs outperform other symbolic encodings in nearly all practical cases.
Thus, this research hopes to provide a basis for recommending the use of GDDs in practical model checking.

1 Introduction 2
1 Introduction

DDs compactly encode large sets and relations used in model checking and functions used in stochastic
model checking. This research aims to show that (Generalized Decision) Diagrams (GDDs) provide a
superior replacement for many extant DD types as used in model checking.

I briefly summarize the state of the practice with respect to sequential DD programming and parallel
DD programming, describing potential advances with my approach.

1.1 Decision Diagrams

As originally described, a binary decision diagram (BDD) is a directed graph or shared binary tree used to
encode a function of multiple (K) binary variables (a K-tuple of booleans), where the range is also boolean
[6](§7.37). In the worst case, a BDD is a binary decision tree and occupies space proportional to the size of
the table of the function encoded. In some practical cases, many subtrees of a decision tree are identical,
so the BDD encoding occupies considerably less space. A binary decision tree is a constant-depth binary
tree with the depth being the number of variables input to the encoded function, and the leaves being
boolean range values. We do not consider reduced DDs, which do not have constant depth, until Section
2.1.3. The level of a node is the distance from the node to a leaf. Each level of the tree corresponds to
one of the input variables, according to the variable ordering. Each node of the tree has 2 outgoing edges,
labeled 0, and 1, corresponding to the values of the input variable associated with the level of that node.

An encoded function f4 (of type: BX — B) is evaluated for its tuple X (€ B¥) of K boolean arguments
Xq,..., Xk using its decision tree or BDD encoding A as follows:

1. let b refer to the root of A
2. for each i € K, ... 1, in decreasing order

if X is true let b refer to the node from b reached by following the edge labeled 1,
otherwise let b refer to the node from b reached by following the edge labeled 0.

3. b now refers to a leaf which is the result of the function.

When illustrating decision diagrams, the edge labels are usually indicated in the body of the node from
which their corresponding edges proceed.

Fig. 1 shows both encodings of the function f(X) = (X3® X5)V X1, illustrating that the BDD encoding
is more compact (requires fewer nodes).

These illustrations also provide a hint that decision trees resemble finite automata accepting languages
consisting of a set of finite strings of fixed length, and the leaves correspond to terminal nodes and are
additionally labeled with range values. Decision diagrams then correspond to minimized automata.

Decision diagrams are thus a form of compressed representation of their encoded functions, and thus
may not always be more compact than an explicit representation. To efficiently detect sharable sub-trees,
it helps for an encoding to be canonical. A canonical encoding is one that has at most a single encoding
for a given encoded function, so that there are no two encodings for the same function. With a canonical
encoding, no function is ever encoded redundantly. With many simple forms of decision diagram, canonicity
is easy to prove. Many complex forms of decision diagram have been proposed, which in many cases are
not canonical. GDD encoding was proven canonical [36](§7.48), and so supports efficient sub-tree sharing.

The performance of algorithms on decision diagrams benefits from the structure and compactness of
their encoding. New trees/nodes are constructed by the unique(...) function, which receives as input an
ordered collection of nodes for use as the child nodes of the newly constructed node. If an existing node

1 Introduction 3

X33 Xgi 0 1

XZZ XQZ 0 1 0 1

X X 0|1 01
) Decision tree encoding (b.) BDD encoding

Fig. 1: Encodings of f(X) = (X3® X5) V X,

already has the same child nodes in the same order, the existing node is returned instead, invisibly imple-
menting sharing among sub-trees. Fundamental algorithms on decision diagrams are typically recursive
tree-style traversals that depend for efficiency on memoization of function calls. For illustration, I will give
a BDD algorithm for union of two sets. Sets are represented as encoded characteristic functions, so the
characteristic function f,, of the result a U b of the union of a and b represented as their characteristic
functions f, and f;, respectively, is fap() = fo(x)V fo(z), that is, simply the vector ‘or’ operation on the
individual components of the encodings of f, and f,. The BDD union algorithm is simply an adaptation
of this definition applied to a tree-like encoding of such an array.
This BDD algorithm for union of two sets (a and b of K-tuples) is given here:

memoized Function union(a,b, K) : BDD x BDD x N — BDD is:

if (K =0) then: a,beB
union(a,b, K) =a Vb
else (K > 0)
Variable children is Array[B] of BDD An array of 2 BDDs
Variable ¢ : BDD
For all X € B Loop over possible values of X.
Let a’, b = child Xk of a, child Xg of b
Assign children|[X k| < union(a’, b, K — 1) recursive subdivision for part Xy

Assign ¢ < unique(children)
union(a,b, K) =

1 Introduction 4

Complement of sets represented by their encoded characteristic functions uses the formula fz(X) =
—fs(X), and can be easily implemented in BDD libraries as an operation which (modulo canonicity) copies
a BDD, and when reaching the leaves, substitutes ‘1’ for ‘0’, and ‘0’ for ‘1’.

Thus BDD-encoded sets are closed under union and complement, and obviously all other set operations,
such as conjunction, disjoint union etc., as well as cartesian products.

Many additional refinements are employed in practical versions of the above algorithm.

It has been found that in encoding transition relations of asynchronous state transition systems, it is
preferable to interleave the variables of the ‘from’ state with variables of the ‘to” state, often resulting in
considerable space savings for the encoding. Usually, such encodings are additionally greatly simplified
by the use of Fl-reduced diagrams (FIDDs) (Section 2.1.5), so much so that use of FIDD encoding is a
practical necessity in many model checking problems. Unlike many other types of decision diagram, FIDD
encodings are not closed over union and complement, and additionally do not have strong theoretical
support in the literature. Nevertheless, model checking frequently requires operations to combine FIDD
encodings with each other and with other DD encodings, causing unnecessary complexity and confusion
for algorithm libraries attempting to support such encodings, and for users of such libraries.

This proposal introduces GDDs, which unify both the compactness advantages and the theoretical
advantages of all these DD types. In particular, GDDs are closed over the set operations, yet also have
the space saving advantages of FIDDs and encode all sets encoded by FIDDs and the other DD types we
discuss. This discovery and the recent proof of the theoretical properties of GDDs enables the current
proposal for comparing the practical advantages of GDDs with those of prior DD encodings.

Parallel processing has been employed with some success for the processing of DDs used in model
checking. Parallel processing has allowed model checking of larger models than possible with sequential
processing, but has not produced wished-for massive scalable parallel speed-ups for model checking. By
efficiently using multicore processors, TeDDy supports future efforts in attaining usable parallel speed-ups.

1.2 Structure and overview of this Proposal

In Section 2 (Background), Section 2.1 includes greater detail about some of the great variety of decision
diagram types that have been studied since the origin of BDDs, as well as discussion of algorithms and
applications of decision diagrams relevant to this proposal, while Section 2.2 discusses the evolution of
library metaprogramming, Sections 2.3-2.4 briefly explain saturation, bisimulation, and lumping, which
are model checking techniques I have studied and propose to continue exploring as a basis for comparing
GDDs with other DD types, Sections 2.5-2.6 discuss use of parallelism in DD algorithm libraries and in
model checking algorithms, and Section 2.7 briefly discusses the space overhead associated with use of
DD encodings. Section 3 (ProposedContributions) explains the proposed work in detail, specifically: In
Section 3.1, GDDs, my novel form of decision diagram, are defined, their semantics and consistency rules
are explained in Sections 3.1.1-3.1.2, canonicity for GDDs is formally defined in Section 3.1.3, which also
references the proof of canonicity, closure properties are discussed in Section 3.1.4, which also references
the relevant proof that GDDs encodings cover the previously discussed encodings, a few apparently sim-
ple improvements are discussed in Sections 3.1.5-3.1.7 which have the cumulative effect of providing to
GDDs the compactness advantages of all previously discussed encodings, and the GDD Union algorithm
is referenced in Section 3.1.8. In Section 3.2 my proposal for DD library API modernization is illustrated,
and Section 3.3 proposes to use GDD algorithms in model checking techniques such as bisimulation and
saturation. Section 4 potentially proposes additional explorations contingent on available time, while Sec-
tion 5 (Future work) briefly outlines obvious future extensions of the currently proposed work. Section 6
(Schedule) provides a detailed schedule.

2 Background)

Xgi 0 1 2 X3C 0 1

—_
N}
N}

Xy 0 1 2 0 1 2 0 1 2 Xy

Xli

—_
[\]
[\V]

X]Z 0

(a.) Without null pointer elimination (b.) With null pointer elimination
Fig. 2: MDDs encoding the function f(X) = (X3 < Xy < X7) given X3, Xo, X3 € {0,...,2}

2 Background

2.1 Multi-Way Decision Diagrams

Multi-way decision diagrams (MDDs) generalise BDDs by expansion of the types of the members of the
tuple domain, so that the domain is D X ...x Dy, where, foreach k € 1,..., K, D, is any chosen finite set,
assumed to be {0,..., Max;} (where each Maz;, € N), without loss of generality, for a suitable selection
of Maxk, ..., Max;.

Thus MDDs encode all functions of type {0,..., Mazk} x ... x{0,..., Mazx,} — B.

Like BDDs, MDDs are directed graphs resulting from sharing nodes in a tree, where the tree is similar
to an automata for accepting a language of strings of fixed length. An MDD is identical to a BDD
when Max, = 1 for all k € K...1. When Max, > 1 for some k, nodes at level k have Max; + 1
outgoing edges, each labeled with a distinct member of {0,..., Max,}. As with BDDs, drawings of
MDDs show edge labels in the body of the node from which the edge proceeds. Inasmuch as tuples of
any finite type can be encoded as boolean tuples, it is of course possible to encode functions of type
{0,..., Maxgk} x ... x {0,..., Max;} — B as BDDs instead of MDDs, however there are many cases
where it is less natural to do so, and where the MDD encoding of such functions is more efficient to use.

Fig. 2.a shows an MDD encoding the function f(X) = (X3 < Xy < X)) where X, X5, X3 € {0,...,2}.
A commonly used improvement, called null pointer elimination to MDDs removes all edges that always
lead to the ‘0’ leaf, as well as nodes having only such edges. Fig. 2.b illustrates the memory savings
resulting from null pointer elimination applied to an MDD for the same function.

Actual high-performance MDD algorithm libraries employ many additional encoding devices to further
reduce memory usage.

Here I give an algorithm for evaluation of an MDD-encoded function (with null pointer elimination):

2 Background 6

Xo: 0 1

Xll

(a.) Directed graph with weighted edges (b.) EV+MDD encoding of distance from (0, 0)

Fig. 3: EV4+MDD encodes distance in directed graph

An encoded function f4 (of type: {0,..., Maxg} x...x{0,..., Mazx,} — B) is evaluated for its tuple
X (€ N¥) of K arguments X, ..., X using its MDD encoding A as follows:

1. let b refer to the root of A
2. for each i € K,...,1, in decreasing order

if b has an outgoing edge labeled with the value of X;, let b refer to the node from b reached by
following the edge labeled with the value of X;.

otherwise the value of the function is false, hence terminate early.

3. b now refers to a leaf which is the result of the function.

2.1.1 Edge-valued Multi-Way Decision Diagrams

The possible range of encoded functions may be extended beyond the booleans B to a larger range R
by simply employing additional values in R for leaf nodes. Such MDDs are called Multi- Terminal Multi-
way Decision Diagrams, or MTMDDs. MTMDDs are most efficient in certain cases where the range is
relatively small compared to the domain. In many other cases, Edge-Valued Multi-way Decision Diagrams
(EVMDDs) are more compact by many orders of magnitude, and allow the use of ranges that are not
explicitly known a-priori.

Each edge, including the root incoming edge, of an EVMDD stores an operation, encoded as an edge
value. To evaluate the encoded function, an ‘accumulator’ variable is initialized with a default value, and
modified by each operator encountered during traversal of the EVMDD, leaving the function result in the

‘accumulator’ variable. No specific value is associated with leaves, so only one leaf exists, conventionally
labeled €.

2 Background 7

An EV4+MDD is an EVMDD where the default value is 0, and the operation stored at each edge is the
addition of the edge value which is in N, while an EV*MDD has a default value of 1, and the operation is
multiplication by the edge value. EV*MDDs have been used to compactly encode transition probabilities in
Markov process graphs [52](§7.56). EV4+MDDs have been used to compactly encode distance information
for transition graphs [12](§7.50). Fig. 3 shows (a.) a transition graph, and (b.) an EV4+MDD encoding of
the distance (from a specific node) for all the nodes in the graph. Note that the edge value for each edge is
customarily displayed in a black box at the top of the corresponding drawn edge. Canonicity of EVMDDs
is more complex than the case for MDDs, and will not be explained here.

To clarify, the algorithm for evaluation of EV+MDD-encoded functions is given here:

An encoded function f4 (of type: {0,..., Mazxk} x ... x{0,..., Max;} — NU{oo}) is evaluated for
its tuple X (€ NX) of K arguments X1,..., Xx using its EV4+MDD encoding A as follows:

1. let b refer to the edge leading to the root of A
2. let v be the edge value of the edge b

3. initialize r < v

4. for each 7 € K, ..., 1, in decreasing order

if the target of b has an outgoing edge labeled with the value of X;, let b refer to the edge labeled
with the value of X;.
otherwise the value of the function is oo, hence terminate early.

let v be the edge value of the edge b

calculate r + r + v

5. Now r is the result of the function.

2.1.2 Extensible Multi-Way Decision Diagrams

Eztensible mult-way decision diagrams (EMDDs) provide encoded functions with limited access to infinite
domains. MDDs with K levels encode certain functions of type: N — R (for some range R).

The encoding is different from plain MDD encoding in that an EMDD node may have any finite number
of outgoing edges, and they are (uniquely) labeled with naturals, except there is always one outgoing edge
labeled as “*’. The algorithm for evaluating an encoded function f4 (of type: N¥ — R) on its argument
X (C N¥) using its EMDD encoding A is altered to the following:

1. let b refer to the root of A
2. for each i € K,...,1, in decreasing order

let b refer to the node reached from an edge labeled with the value of Xy (if such an edge from
b exists)

ok

let b refer to the node reached from the edge labeled “*’ (otherwise)

3. b now refers to a leaf which is the result of the function.

2 Background 8

The specific EMDD encodings supported by extant algorithm libraries may impose some additional
restrictions on the collection of labels of edges going out from a node. TeDDy requires that the natural
labels be in a contiguous range starting from 0, and, to enforce canonicity, the edge having the largest
natural label must not lead to the same node as the edge labeled *’.

Note that without the contiguity restriction, enforcing canonicity would require that from a given node,
the edge labeled ‘“*’ must not lead to the same node as any other edge from the given node.

The ‘unique’ function is more complex than in the BDD case, as it must discard certain redundant
children to enforce canonicity.

The EMDD encoding allows some infinite sets (along with all finite sets) of natural tuples to be
represented via their encoded characteristic functions. The complement of such sets may be taken using
the same algorithm as for BDD-encoded sets, however the union algorithm for EMDD-encoded sets is more
complex, and is given here:

memoized Function union(a,b, K): EMDD x EMDD x N — EMDD is:

if (K =0) then: (leaf case where a,b € R)
union(a,b, K) =a Vb
else (K > 0)
Let s be the set of all labels of edges from a or from b
Variable children is Map[s] to EM DD (A mapping of edge labels to EMDDs)
Variable ¢ : EM DD
For all Xk € s (Loop over possible values of Xg (or “*7))
Let a/, b’ = child Xk of a, child X of b (use child ‘*’ when child Xk does not exist)
Assign children[X | < union(a’, b/, K — 1) recursive subdivision for part Xg

Assign ¢ < unique(children)
union(a,b, K) = ¢

Of course, practical versions of the above algorithm employ a great many additional refinements.

EMDDs (and EVMDDs, MDDs, and BDDs) can all be used in combination with the following reduc-
tions, which, in many important cases, can produce many orders of magnitude of additional improvement
in storage space and computation time. Until now, all the types of DD we have seen have edges only
between adjacent levels. Thus the level of a node can easily be determined by subtracting 1 from the level
of its predecessor. Reductions assign meaning to diagrams where an edge may skip one or more levels, by
leading from a node at some level k, to a node at some level j < k — 1. In these cases, an explicit level
number may be stored with each node, so that its level number may be easily determined in the presence
of edges that skip levels. Within algorithms, a level() function mapping nodes to N is employed to give
the level of any node.

2.1.3 Fully-Reduced Multi-Way Decision Diagrams

Fully-Reduced MDDs utilize implicit knowledge of the domain when assigning meaning to diagrams where
level(s) are skipped. An edge e from a node A at level k + 1 which skips level k& and leads to a node
C at some level j < k is a shorthand for the case where the edge e instead leads to a node B at level
k, and where node B has |Dy| children, each uniquely labeled with a member of Dy, and each leading
to C' (When Dy = N, the shorthand is slightly different). Hence, the output of the encoded function is
independent of Xj,. Thus, Fully-Reduced MDDs provide a compact way to encode a function that, on

2 Background 9

mn

Xs:

Xy

Fig. 4: Fully-Reduced EMDD encoding f(X) = (X4 A=X35) V(X < X))V (Xe > 2) over NxBxBxNxN

some path, ignores a member X, of its input tuple X, leading to considerable reduction of space when
functions frequently ignore many members of their input tuples. Fig. 4 shows a Fully-Reduced MDD with
null-pointer elimination that encodes f(X) = (X4A—-X35) V(X < X7)V(Xy > 2) over Nx B x B x N x N.

The algorithm for evaluating an encoded function f4 on its argument X using its Fully-Reduced MDD
(or Fully-Reduced EMDD) (and allowing null-pointer elimination) encoding A is additionally altered as
follows:

1. let b refer to the root of A (or the unique leaf of A, if all levels are skipped)
2. for each i € K, ... 1, in decreasing order

if i = level(b)
let b refer to the node reached from an edge labeled with the value of X; (if such an edge
from b exists)
otherwise:
let b refer to the node reached from the edge labeled “*’ (if such an edge from b exists)

otherwise the value of the function is false, hence terminate early.

3. b now refers to a leaf which is the result of the function.

Note that this algorithm is an extension of the corresponding algorithms for both EMDDs and for MDDs
with null-pointer elimination. As the complexity of the decision diagram types increases, the conditions
for the canonicity of a decision diagram become more complex. For the sake of brevity I will not discuss
the canonicity conditions for diagrams with reductions.

2 Background 10
2.1.4 Identity-Reduced Multi-Way Decision Diagrams

Identity-Reduced diagrams provide space reduction when encoding a function that sometimes depends on
whether or not some tuple member X} is equal to the preceding tuple member X, ;. In those times, such
a function returns false when X # X;.1. In this case, an edge that skips from node A at level k + 1 to
some node C' at level j < k indicates, for tuples that invoke this path, that the value of the function is
false if Xy 1 # Xj. Identity reduction is generally not used alone, but in combination with full reduction
as discussed next.

2.1.5 Fully-ldentity-Reduced Multi-Way Decision Diagrams

Fully-Identity- Reduced MDDs incorporate ‘full’ reduction at even levels and ‘identity’ reduction at odd
levels. A 2-level Fully-Identity-Reduced MDD, where both levels are skipped, and the edge leads to the
true node, compactly encodes the identity relation between X, and X, independently of the (necessarily
common) domain of X, and X;. This so-called identity pattern may be used to advantage in multiple
parts of a Fully-Identity-Reduced MDD. Doing so has been found to greatly reduce space requirements
for interleaved encodings of transition relations where the support of the transition relation omits many
variables. The support of a transition relation is the set of variables used in or changed by the transition
relation. Thus it has found application in practical model checking systems. These advantages must not
be ignored when considering encodings for such transition relations, and my novel structures retain these
advantages in certain variants.

The algorithm for evaluating an encoded function f4 on its argument X using its Fully-Identity-Reduced
MDD (or Fully-Identity-Reduced EMDD) (and allowing null-pointer elimination) encoding A is as follows:

1. let b refer to the root of A (or the unique leaf of A, if all levels are skipped)
2. for each even i € {K, K — 2,...,2}, in decreasing order

(process an even (Fully-Reduced) level):
if i = level(b) (the Fully-Reduced level is not skipped)
let b refer to the node reached from an edge labeled with the value of X; (if such an edge
from b exists)
otherwise:
let b refer to the node reached from the edge labeled “*’ (if such an edge from b exists)
otherwise the value of the function is false, hence terminate early.
(process the odd (Identity-Reduced) level just below):
if i — 1 = level(b) (the Identity-Reduced level is not skipped)
let b refer to the node reached from an edge labeled with the value of X;_; (if such an edge
from b exists)
otherwise:
let b refer to the node reached from the edge labeled “*’ (if such an edge from b exists)
otherwise the value of the function is false, hence terminate early
otherwise (the Identity-Reduced level is skipped)

if X; # X;_1, then the value of the function is false, hence terminate early

3. b now refers to a leaf which is the result of the function.

Fig. 5 illustrates the improvement gained using Fully-Identity-Reduction for encoding interleaved
relations having a support that is small compared to the total number of variables.

2 Background 11

Xt

Ys:

Xy

Yo:

Xi:

Yi:

(a.) Fully-Reduced (b.) Fully-Identity-Reduced
(Both with null-pointer elimination)

Fig. 5: Fully-Identity-Reduced MDDs encoding f(X) = ((Y3, Ya, Y1) = (X3, =X, X;)) over B2, Note that
all node levels in the Fully-Identity-Reduced encoding are in the support ({Xs, Y2}) of f

2.1.6 GDD Multi-Way Decision Diagrams

This novel data structure encodes all sets and functions encoded by the above mentioned styles of DD,
providing a unified framework in which to exploit all their advantages, and is the subject of Section 3.1.

2.2 C++ template metaprogramming and library interface improvement

Extant libraries that support the above-mentioned kinds of decision diagram are often somewhat cumber-
some to use for building model checkers, as compared with what one might hope for, given that usually
one merely needs to efficiently provide certain tuple-set-based operations.

Of special concern is the fact that, for the sake of efficiency, tuple-set operations must sometimes be
performed where different arguments are different kinds of DD. Until now, these situations have been
handled individually by manually defining a new function to correctly calculate the desired function given
the specific kinds of DDs used as input and desired as output. Thus, these libraries must be incrementally
extended by their users when new combinations of parameter types are necessary. This situation results
in a great may manually constructed functions, each of which must be tediously debugged, etc., as well as
in libraries where the API is bloated with many functions with similar purposes. This situation motivates
our novel invention of GDDs, which have the theoretical and practical advantages of all of the above kinds
of DD.

I propose to remedy the particular problem of having too many manually defined functions, through

2 Background 12
the use of GDDs and parametric variants thereof to describe the types of DDs and instantiate all associated
operations through template metaprogramming from a relatively small base of manually generated code.

I further propose to improve the API of GDD libraries through the use of C++ template metaprogram-
ming in a way that allows executable definitions to be modeled more closely on the higher-level pseudocode
on which they are based.

Procedural metaprogramming, or the generation of code at compile time by user code, has been used
in procedural languages ever since macro was added to the Lisp programming language, for the purpose
of generating efficient code for specialized ‘mini-language’ notations embedded within procedural language
code [34](§7.38). Later procedural languages, such as PL/1 and C also adopted the use of macros for code
generation, although those macro implementations were relatively text-oriented and could easily generate
unintended multiple definitions for a given name. The relative messiness of macros prompted the invention
of ‘hygienic’ macro-expansion for languages in the Lisp family [30](§7.39)[2](§7.40)[5](§7.41) , while Ada
and Java allow only generics, which have considerably less flexibility than macros, but are relatively safe
[29](§7.44)([23](§7.45). The C++ programming language uses templates and type-based specialization to
obtain many more of the benefits of macros in a relatively safe way [47](§7.42). The Scala programming
language was created with extended support for metaprogramming in the form of implicit parameters,
manifests, language feature virtualization, syntactic flexibility, and other features [39](§7.21)[35](§7.22).
Scala would be the preferred language for this research if not for concerns about efficiency, as Scala
apparently compiles to Java bytecode. It has however been shown that C+-+ template specialization can
be used to perform almost arbitrarily complex computation at compile time [44](§7.47). Thus C++ is in
principle capable of supporting the kind of notational improvements I would like to include although with
less syntactic convenience than what is possible with Lisp or Scala. The recent availability of compilers for
C++11 further simplifies the task of metaprogramming in C++ [48](§7.43)[45](§7.46). Hence, I believe a
C++11 GDD library interface using template metaprogramming, would fit well the needs of the proposed
model-checking research.

2.3 Saturation

The Saturation heuristic applies to fixed-point iteration problems where the solution is closed over many
(preferably simple) operators. These problems may be solved by repetitively applying the operators as
steps in any order, where applying any step does not diminish the progress due to later application of
another step. That is, some steps applied in a certain order will cause the problem to be solved, and extra
‘wrong’ steps that occur in the process do not prevent solution.

The Saturation heuristic is controlled by a given ordering of the possible steps, usually corresponding to
the approximate cost of a step. The heuristic simply applies inexpensive steps until they yield no change in
the problem state, after which a more expensive step is tried. That is, inexpensive steps have priority over
expensive steps. So, a step is applied only if application of all less expensive steps yields no change in the
problem state. Many useful refinements to Saturation in the symbolic context are described in [10](§7.1).

Saturation has been found to be very effective for exploration of (certain kinds of) finite state spaces,
when the state spaces are encoded symbolically (using DDs). Here, the problem state is encoded symboli-
cally as a set of discovered states, and the steps are applications of state transition relations, also encoded
symbolically. The SmArT tool is known for its use of Saturation to rapidly explore Petri Net state spaces
with over 10% states within seconds [11](§7.51).

Saturation has also been found effective for other model checking-related tasks, such as:

1. Calculating distance in large transition graphs [12](§7.50)

2 Background 13

2. Strongly Connected Components via Transitive Closure of transition relations in large transition
systems [55](8§7.53)

3. Bisimulation with many (over 10) equivalence classes [37](§7.2)[38](§7.3)

2.4 Fully-symbolic algorithms for bisimulation and lumping

The author has previously explored application of the saturation heuristic to symbolic bisimulation, with
some good results [37](§7.2)[38](§7.3). Significant progress in application of saturation to symbolic lumping
requires using the advantages of Fully-Identity-Reduced MDDs in combination with Edge-Valued MDDs
to model probabilistic transition relations, and partially motivates the current proposal. These efforts are
briefly described below.

2.4.1 Bisimulation with deterministic transitions

A bisimulation[40] relation relates extensionally equivalent states in a labeled transition system. Exact
extensional equivalence between states in given by the maximum bisimulation relation. The maximum
bisimulation relation[33], ~ C S x S between sets of states S of a transition system with transition
relations E (where V() € E : () C S x §), is defined as the largest equivalence relation B on S
satisfying:

V(3)eE :Vp,q)e BV €S:p3p =3¢ €S :q>d N {Y,¢)eB

In late 2008, I observed that when all transition relations were deterministic, as with individual transitions
in Petri Nets, we have: V() € E : V(p,q) € =~ : ((=)"4p), (=) (q)) € ~, thus, ~ is closed over
(3)7 x (3)7! for all () € E.

I also showed that =~ could be calculated by initializing a variable B to all pairs in S x S with different
enablements or colorings, then applying the transitive closure of (=)7! x (<3)~! to B, iterating over all
(%) € E according to the saturation heuristic.

The resulting 2011 paper [37](§7.2), showed good results for using the saturation heuristic to implement
the transitive closure in the above strategy, resulting in the fastest known bisimulation algorithm when
there are many resulting equivalence classes and the transition relations are deterministic.

2.4.2 Weak bisimulation

Weak bisimulation allows the possibility of ‘invisible’ transitions, which may occur without removing an
input symbol. The largest weak bisimulation may be calculated using ordinary bisimulation algorithms,
provided that the transition relations are preprocessed by appending the transitive closure of all invisible
transition relations to each visible transition relation.

This preprocessing typically results in a transition system with nondeterministic transition relations.
Nondeterministic transition relations may also arise with Petri Nets if multiple Petri Net transitions are
given the same label in the transition system. Thus it is quite desirable to be able to efficiently calculate
the largest bisimulation relation (~ C S x S) when some transitions are nondeterministic.

Closer analysis in 2009 showed that the definition of bisimulation can be reformulated as:

(~) is the largest relation B C .S x S on S satisfying:
V(%) € E:B=B\{({p,)|3p : (0= A=3¢ : ¢=¢ ANp'Bg))V (3¢ < (¢ A3 p=p' AdBY))}

2 Background 14
and that this formula was actually compatible with Saturation based solution. My 2013 paper [38](§7.3),
showed good results for using the resulting saturation-based algorithm on a variety of bisimulation prob-
lems. Important weaknesses were also identified, such as inefficiency in cases where some transition relations
have very large support, as is often the case with weak bisimulation.

2.4.3 Lumping

Lumping is analogous to bisimulation, except that it calculates extensional equivalence between states of
Markov systems rather than states of labeled transition systems. Lumping uses probabilistic transition
matrices @) of type S x S — R, instead of relations of type S x S — B. The lumping equivalence relation
may be defined as the largest equivalence relation B satisfying:

VQEE:¥(pg)eB:VreS: Y Q)=), Qla.q)

p'|p'Br q'|l¢’Br

There is some similarity between symbolic lumping algorithms and symbolic bisimulation algorithms
[54](87.54)[16](§7.49). We expect that the enhanced TeDDy library will provide the necessary flexibility
for attempting to solve the symbolic lumping problem, through adaption of our symbolic bisimulation
algorithms.

2.5 Parallel DD algorithms

Model checking is frequently a computationally demanding task, so that space and speed improvements
provided by symbolic methods do not suffice for all problems of interest. Parallel processing is another
avenue by which researchers attempt to expand the range of solvable problems. A variety of approaches,
for incorporating parallelism into symbolic model checking, have been explored. Most involve either of the
following approaches:

1. Algorithm-level parallelism, where a (possibly sequential) DD library is used on each processor by
an algorithm that employs some parallelism techniques to utilize multiple processors.

2. Library-level parallelism, where a (possibly sequential) algorithm invokes a parallelized DD library
so that requested DD operations will be executed by the library code using multiple processors.

The RooMY([31](§7.9)[32](§7.10) system illustrates an interesting hybrid of both techniques. Kunkle et
al implemented the RooMY system, which effectively utilizes the disks of multiple processors to carry out
very large computations. They appear to use some parallelism-like techniques for organizing computation
in a way that makes it less sensitive to the latency of lengthy disk accesses. By coherently grouping
disk accesses, and using large RAM buffers, the efficiency of disk access is greatly improved, especially
when compared to the use of disk as virtual memory for RAM-oriented algorithms. Kunkle et al then
implemented a BDD library on top of RooMY, and subsequently solved some problems that could not
previously be solved with RAM-based DD algorithm libraries.

This is typical of the existing results for model checking using parallel DD libraries. In most cases,
parallel implementations of a parallel algorithm obtain modest speedup compared with sequential imple-
mentations of the same algorithm, while comparison with carefully optimized sequential algorithms shows
no significant speedup. Also, in many cases, a parallel algorithm is able utilize the RAM (or disks) of
multiple machines to solve problems not solvable on a single processor.

There are roughly two strategies used to enable library level parallelism in parallel DD libraries, as
described in the following two sub-subsections.

2 Background 15
2.5.1 Distribution by level

Even in reduced decision diagrams, typically, the vast majority of edges lead from a node at one level to
a node at the next lower level. As algorithms on DDs typically involve traversing the DD graphs through
their edges, there is considerable temporal locality associated with connected nodes. In a distributed-
memory processor network, distribution by level attempts to exploit this property by locating connected
nodes on ‘nearby’ processors, meaning either the same processor, or processors sharing a physical direct
communication link or a shared memory. [46](§7.15) uses this technique. In some cases, this associates a
separate level of DD nodes with each processor. Although the matching of locality between the DD nodes
with the locality of communication in the processor network produces a desirable limit on communication
costs, the hoped-for speedups tend to not materialize. The algorithms for DD operations are usually
organized as depth-first or breadth-first traversals of the DD graphs. In the depth-first case, the algorithm
is intrinsically serial, so that no speedup is gained from using multiple processors. In the breadth-first case,
parallel traversal activities may be spawned for each child of a given node, however this distribution scheme
tends to place all of those child nodes in the same processor, again limiting opportunities for parallelism.

2.5.2 Distribution by function of state

These schemes place DD nodes among processors according to some function of their contents. In the
case of library-level parallelism the function may be a hash involving the addresses of the node’s children,
so that the quasi-random node distribution maximizes the chances for parallel operations on any given
collection of nodes. As most operations involve many nodes, this scheme is likely to produce much demand
on a distributed communication network. In algorithm-level parallelism, different parts of a (partitioned)
set may be stored as separate DDs and each DD placed by an algorithm-aware scheduler. This scheme may
help to reduce inter-processor communication, but may encode a set less compactly due to the partitioning
into multiple DDs.

2.6 Parallel symbolic state space exploration

Saturation provides the fastest exploration of finite states spaces currently available on sequential ma-
chines. Because Saturation is so efficient, uses recursive procedures and strenuously avoids unneces-
sary work, parallelization of Saturation has met with limited success. Ideas used to parallelize sat-
uration have resulted in improvements to sequential saturation, nullifying potential parallel speed-ups
[17](§7.13)[13](§7.14)[19](§7.17)[21](§7.18)[18](§7.19). So far, parallel saturation has provided access to
more memory than what is available to individual computers, enabling solution of larger problems, but
not providing hoped-for scalable parallel speed-up [13](§7.14)[19](§7.17)[21](§7.18)[18](§7.19).

Efforts by Grumberg et al, at Technion have obtained some useful speed-up using an approach similar
to distribution by function of state described above [28](§7.4)[26](5§7.5)[3](§7.6)[25](§7.7)[22](§7.8).

2.7 Space overhead of decision diagrams

Although the use of DDs to encode sets often saves space and time by many orders of magnitude, compared
to an element list encoding, it is a heuristic compression technique, and space saving is not guaranteed.
In the worst case, only minimal sharing occurs, so that a DD encoding of a set occupies more space than
the corresponding element list encoding. This is especially true in the case of very small tuple-sets of large
tuples.

As a simple example, consider the case of encoding the set {(1,0,1,1,0,1)}, as a BDD, and as an
element list. The set has only one element, so the element list has a single node, of unspecified complexity,

2 Background 16

although 6 bits should suffice to encode the element in this case. The (un-reduced) BDD encoding, however,
will have 6 levels (hence 64 nodes), each of which must store 2 pointers. Thus we can see that un-reduced
DDs have a space overhead proportional to the number variables in each tuple, for encoding tuple-sets.
This overhead is not onerous if one is using DDs to encode sets with very many element tuples each of
reasonable size. This overhead is excessive when encoding small sets of large tuples, and may account
for the general lack of interest in symbolic encodings outside the model checking and logic programming
community.

3 Proposed contributions 17

X53 0 * 0

*

X4Z *

\
m/ *

X;}Z X/l * *
/ Y \ \
X * * X, * X, *
v A/% v
Xi: Xy | * * 5 * 5 | x5] *

(a.) Quasi-reduced GDD encoding (b.) Fully-reduced GDD encoding
Fig. 6: f(X):N° 5B = (Xs=0A(Xs=XsAXo=X1))V (X5 #£O0A (Xa % Xo A Xy X1 A Xy % 5))

3 Proposed contributions

Here I give the details of the novelty of my contribution.

3.1 (Generalized Decision) Diagrams

(Generalized Decision) Diagrams (GDDs) generalize EMDDs by allowing variable names (as well as con-
stants) as edge labels. An (un-reduced) non-normalized GDD A is a finite directed edge-labeled tree of
constant depth (K'), encoding a function f4 from members (xx,zx_1,...,21) of the domain of natural
tuples of length K (N¥) to some finite range R, where each leaf node is a member of R, and each edge
label, from a node at distance k from a leaf, is either: (1) a (Natural) constant, (2) a variable name from
the set of variables {‘@’k, ..., ‘@1 }\{‘@k, ..., @1}, or (3) *’, and each edge from a given node is uniquely
labeled, and each node has one edge labeled with “*’. An (un-reduced) normalized GDD is a GDD that
also satisfies the rules listed in Section 3.1.3.

A quasi-reduced GDD (QGDD) is a directed acyclic graph that represents an un-reduced GDD, and

3 Proposed contributions 18
has the additional property that there are no redundant nodes, that is, identical nodes have been collapsed
to a common representation, so the resulting QGDD data structure contains no identical nodes. Fig. 6
shows sample GDD encodings.

Notation: Although we write x; to refer to the value of the kth element of tuple x, we write ‘z’y to
refer to the name (used as a label) of the kth element of tuple z, hence ‘z’j refers to the name ‘x3’ when
k = 3, but refers to a non-specific name when the value of k is not known. labels(A) is the set of labels
of edges from an node A, excluding ‘*’ . For a non-leaf GDD (or QGDD) node A, we write A? to mean
p € labels(A), and we write A[p| for the node reached by the edge labeled p. Thus two nodes A and B
are identical (written A = B) iff labels(A) = labels(B) N A[**’] = B[**] AVp € labels(A) : Alp] = Blp].
We write level(A) = k iff the distance from A to a leaf node is k. We also write A to mean the entire
tree at or below a GDD node A (or for all nodes reachable from an QGDD node A). We also write z
for member k of a tuple z. GDDZ is the class of GDD nodes B where level(B) = k, encoding functions
of K-tuples. With respect to a given level k < K, a K-tuple x € N¥ = (2g,... 1) comprises a prefix
T, = (Tre, ... 2p1) € NE7F and a suffix 2, = (zy,...21) € N* and we say z = x4z ;. We also impose a
total ordering, >, on edge labels excluding “*’, so that Vi,j € N: (i = j iff i > j) A (‘2; = @’; iff i > j)
N (Z — ‘I"j).

3.1.1 Decoding of GDDs

The meaning of a GDD A corresponds to the set of paths, from the root of A to leaves, whose edge labels
match corresponding elements of the argument x of the function f4 encoded by A.

I first define the helper function match to indicate which edges match a given argument. [write
match(A, p,z) to mean that the edge labeled p from node A matches tuple z. Informally, match(A, p, x)
holds when the member, 2;c,¢4) of 2 has the value p (when p € N), or the value of the variable, within x,
named by p, when p is a variable name.

I first define eval on labels other than “*’ to simplify the definition of match. eval of an edge label p
at level k also requires a tuple prefix (indicated as a subscript) used for evaluation of symbolic labels.

Chal

evalqp(‘x';) = (1)

eval4x(c) = ¢ (2)

match has type: Vk, K|k < K : GDDE x (NU{2'k,..., 2" Y\ {2k, ..., 0’1 }) x N = {true, false},
and is defined as follows:
match(A,p,z) = AT A (evalyy(p) = 1) (3)

Thus, match requires A to have an outgoing edge label p that evaluates to xy, in the context x1k.

The function fy4, of type N¥ — R U {AmbiguityError} , encoded by a GDD A, where level(A) = k,
is defined recursively as follows:

when k£ =0, (A is a leaf node)

falz) = A (4)
when k > 0 A match(A, p, z) for exactly one edge label p, (A has one edge label matching xy,)
fa(x) = fap)(2) (5)

when k > 0 A match(A, p,z) A match(A, q,x) A p # q for edge labels p, ¢, (multiple edges match xy)

fa(x) = Ambiguity Error (6)

3 Proposed contributions 19

otherwise (when match(A, p, z) for no edge label p), (A has no edges matching xy)

fa(@) = fape)(2) (7)

Thus, except when AmbiguityError is encountered, the value of f at a non-leaf node is the value of f
at one of its children, so that the value depends on the path, selected by members of the tuple, through
the tree from the root to a leaf. Note that the choice of this path depends only on conditions of the forms:
x), = c (for some constant ¢ present in the GDD) and z;, = z; (for an index i > k), and their complements.
Thus, for any given GDD, any two tuples which induce the same choices for such conditions will result in
the in the choice of the same path.

3.1.2 Ambiguity rules for GDDs

Ambiguity in GDDs may occur due to the possibility of encountering AmbiguityError, and also when
there are multiple ways to encode a label.
The first ambiguity rule avoids redundant label codes.

1. For each label p € labels(A) (so p # ‘*?), the entire tree under A[p| has no edges labeled ‘z’;, where
level(A) = k.

The label ‘z’j can occur only within the tree rooted at A[**’]. The label ‘@’j is never needed in any
tree rooted at A[p], since the same effect could be obtained using the label p.

Thus the ‘¥ label at level k acts as a kind of binder for ‘x’;, which may be thought of as a ‘bound’
variable at level k. We say ‘z’y is a ‘free’ variable wherever it occurs within A[**’].

The AmbiguityError of Equation 6 occurs when eval,4x(p) = evalyx(q) for two different non-*’ edge
labels, p and ¢, from A. This can occur in two ways:

(1) p = ¢, for some constant ¢ € N and z;, = ¢, while ¢ = ‘@’; for some K > j > k and x; = ¢, hence
xp = x;. Thus a constant-labeled edge and a variable-labeled edge might both match the same argument.
This ambiguity can be avoided by requiring ¢ # x; to hold of the argument = of f4

(2) p = ‘o’; for some K > i > k and x, = z;, while ¢ = ‘z’; for some K > j > k and z; = xj,
hence z;, = z; = ;. Thus two different variable-labeled edges might also both match the same argument.
Similarly to the first case, this ambiguity can be avoided by requiring x; # x; to hold of the argument x
of fa

The case where p and ¢ are both constant labels never produces ambiguity because of the requirement
that all edges from a given node have unique labels.

To ensure unambiguous definition of f, we associate, with each node A, a finite set C'4 of inequality
constraints, which will limit the domain of f4. The constraints in C4, where level(A) = k are of 2 forms:
(1) ¢ # x; for some constant integer ¢ and some j > k, and (2) x; # z; for some ¢ > k and some j > k .
We consider p # ¢ and g # p to be the same constraint, for any labels p and g,

C'4 is populated with exactly those constraints required by the following rules, which suffice to ensure
the function f4, encoded by GDD A, is well defined:

2. When level(A) =0, Cy = 0.
No constraints are required to ensure fy4 # AmbiguityError in this case.

—
3. For each node A, index j and label p where A7 A Ax’'; N (p # ‘@), we have (p # ;) € Ca.

Two different edge labels must not become equivalent within the context of a given input. Thus, we
constrain the input = so that Equation 6 will not immediately apply when applying fa.

3 Proposed contributions 20

Ty: Tio | * Tao | * 7 *

A B A B A B

(a.) Suppose x19 =7 (b.) Suppose x99 =7 (c.)
Fig. 7: These GDDs at level 4 behave identically when x1y = x99 = 7 holds in the prefix.

4. For any node A with level(A) = k, and any labels p, ¢, r, we have (A7 Vr = *) A (p £ q) €
Capp Ap # Tk Nq# ‘T = (p# q) € Ca.

Constraints not involving ‘z’y are propagated from Cyp to Cjy.

5. For any node A with level(A) = k, and any label p, we have (z), # p) € Capx) = AT.

Constraints (x # p) involving ‘z’;, are enforced at level k for A[**’] by requiring A to have a p-labeled
edge.

Note that, for GDDs B with level(B) = k, these rules introduce constraints into Cz that involve only
variables x; with ¢ > k, while such constraints are absorbed or transformed at level 7, eliminating any
constraints involving z; from Cp/ (where level(B’) = i), so that, when level(A) = K, C'4 = () always.

Thus, fa, where A is a ‘top level’ GDD with level(A) = K, is always defined over the entire K-
dimensional space of natural K-tuples, N¥_ while f5, where B is a ‘lower level’ GDD with level(B) = k <
K, is only defined for those members x of N¥ which satisfy the constraints in Cp.

This suffices, because the recursive decoding process never uses fp if the argument does not satisfy Cp.
This is shown in [36](§7.48) Section A.1.

Since Cp involves only variables x; with ¢ > k, where level(B) = k, satisfaction of Cg by a tuple z, is
actually a property of the prefix .

I will therefore write sat(B) to mean the set of prefixes that satisfy the inequality constraints Cp.
Thus, Tyjever(a) € sat(A) implies x satisfies the inequality constraints Cy. I will also write z € sat(A) to
mean the same thing.

An unambiguous GDD is a GDD that follows rules 1-5 above. Hereafter, all GDDs are unambiguous
except where clearly noted.

3.1.3 Canonicity of GDDs

We say an encoding method E, decoded by a function f, is canonical over a domain D iff for each d in D
there is only one encoding e in F such that d = f..

An additional rule involving equivalence of GDDs is needed to ensure canonicity of GDDs.

To prove canonicity, we must prove non-equivalence of non-identical GDDs. Certain prefixes, however,
make some non-identical GDDs behave equivalently, as shown in Fig. 7.

I will define a form of equivalence on GDDs that avoids problematic prefixes.

3 Proposed contributions 21

The problem arises when a variable in the prefix corresponding to a variable name in one of the GDDs
has the same value as a constant in one of the GDDs, or when two variables in the prefix corresponding
to variable names in one of the GDDs have the same value.

I avoid this problem by considering only tuples where ‘free’ variables are chosen to avoid such coinci-
dences. It suffices to use different large values for those variables, so these tuples (and prefixes) will be
called far-field tuples (and far-field prefizes).

Thus, when considering equivalence of the GDDs in Fig. 7.a and Fig. 7.b, we would only consider
prefixes where z19 # x99, and when considering equivalence of the GDDs in Fig. 7.b and Fig. 7.c, we
would only consider prefixes where x5y # 7.

Let us define, for a GDD A, the set of constants CO4 and the set of (indices of) free variables FVy
occurring in A.

Definition of CO and FV: When A € R is a leaf, CO4 = 0, and FV, = 0.

Otherwise, COa = Upciapers(ayupy (COap)) U{clc € NNlabels(A)},

And FVa = (U, crapers(a) FVap) U (FVape) \ {k}) U {i € N|'w’; € labels(A)}, where k = level(A)

I also define, for a set S of GDDs (all having the same level), the set of far-field prefixes far(S) for S.

far(S) = {{zg ... xp1) € NETF|Vi € FVg : Vj € FVg \ {i} : Ve € COs : z; # x; N x; # c}, where
COs = JegCO4, and FVg = 4cq F'Va, and k is the shared level for the GDDs in S.

As a special case, for a singleton {A}, we have:

far({A}) = {{zx ... 2p11) E NEFIVi € FVy :Vj € FVA\ {i} : Ve € CO4 : z; # xj A3y # ¢}, where
k = level(A).

Thus, in a far-field prefix for S, the value of each free variable never coincides with the value of any
constant occurring in S or any other free variable. Since, for any GDD A € S, C4 only has inequality
constraints involving constants in C'O4, and variables in F'Vy, they are automatically satisfied by any
prefix in far(S). Thus, far(S) C sat(A), for every unambiguous GDD A € S.

I also write z € far(S) when x4 € far(S), in which case I say tuple x is far-field for S.

I now define far-field equivalence as follows:

VA, B € GDDy k<K :

A = B iff: Vo € N8N far({A, B}) : fa(z) = fp(x).

For use in my canonicity rule, we need the following additional notation: I write A — p (for an unam-
biguous GDD A and an edge label p), to mean a GDD A’ where labels(A’) = labels(A)\ {p}, and for every
label ¢ in labels(A") U {*'}, A'[q] = Alg]. Thus A — p is a GDD node just like A except it is missing the
edge labeled p and the subtree A[p] under it. Note that A — p is unambiguious iff (‘zicvera) 7# p) & Capy-

The following canonicity rules define normalized GDDs:

1. Rules 1-5 in Section 3.1.2 are satisfied, ensuring unambiguous definition of f.

2. For any node A € GDDy, and any label p € labels(A), we have either (p # x;) € Cap= or

This rule forces normalized nodes to be ‘minimal’ in the sense that each outgoing edge, labeled
p # 7, should have its existence justified, either by a constraint (p #) in Cap+), which, by rule 5
requires the edge p to exist, or by the fact that A could not be effectively replaced by A — p.

In [36](§7.48) Sections A.2-A.3, I show (quasi-reduced) normalized GDDs, are canonical.
Henceforth all GDDs are assumed to be normalized (they follow these canonicity rules). When referring
to possibly un-normalized diagrams, the symbol UGDD will be used.

3 Proposed contributions 22
3.1.4 Adequacy of GDDs

Choosing the range R = {true, false} leads to encoding of boolean functions of tuples, which may be
taken as characteristic functions of tuple sets. Thus tuple sets and tuple relations may be encoded by
GDDs.

In [36](§7.48) Section A.4, I define Bundles, and the domain (Bundle Unions) over which GDD-encoded
functions apply, and show in [36](§7.48) Section A.5 that GDDs encode all Bundle-wise constant functions
over BundleUnions, and that tuple-sets represented by GDD-encoded characteristic functions are closed
over union, intersection, complement, and cartesian products.

GDDs encode all sets encoded by extensible QMDDs. This is fairly obvious, as QMDDs are similar to
a special case of QGDDs, where no edge labels are variable names. In this case, ambiguity rules 1-5 in
Section 3.1.2, (hence canonicity rule 1) are automatically satisfied with Cy =) for all nodes A. Canonicity
rule 2 remains unchanged.

GDDs also encode all sets encoded by FI MDDs, although this case is more complex. In lieu of a
proof, note that, as with GDDs, each path through a Fl-reduced MDD obviously corresponds to a Bundle
[36](§7.48), so that all characteristic functions of sets encoded by Fl-reduced MDDs are Bundle-wise
constant.

GDDs are closed over complement, union, intersection, cartesian product, and product with the full
set, due to the fact that they encode exactly all Bundle-wise constant functions.

3.1.5 Overhead improvement for symbolic methods

As noted in Section 2.7, there is overhead proportional to tuple size, when using unreduced decision
diagrams to encode tuple-sets. It is desirable to find some way to decrease this overhead so that it is never
onerous. A careful examination of the example in Section 2.7 shows that a constant-reduced encoding
(where the constant is 1) reduces the BDD encoding of {(1,0,1,1,0,1)} to 2 non-leaf nodes, when null-
pointer elimination is also used. Although such a reduction will typically produce a factor of 2 in space
usage, it is desirable to encode sets using a number of nodes linear in the size of the set, so that DD
encodings could, at least theoretically, compete with element list encodings.

The condition that makes a DD encoding (sometimes) occupy more nodes than the corresponding list
encoding, is that some DD nodes have only a single (non-leaf) child. If every DD node of a K-level DD
(encoding a set of K-tuples) had 2 children, the DD would have 2% — 1 nodes encoding a set of 2% K-
tuples, so that the overhead would be entirely reasonable. What is needed then, is a special encoding for a
sequence of nodes having only a single child. Understanding my proposed solution to this problem requires
noticing that, the explicit encoding is more compact only when many parts (or all) of the tuple may be
encoded compactly as a string of a few bits (up to about the size of a pointer).

My proposed solution (for MDDs) is to condense a sequence of nodes having only a single (non-trivial)
child into an additional annotation on an edge. Such an annotation contains a compact representation of
the sequence of tuple element values associated with that sequence of nodes, as shown in Fig. 8. Thus,
every node that has only one child is condensed to part of an annotation on an edge, so that all remaining
nodes have at least 2 children each. This adjustment results in MDDs that encode sets with at least as
many members as there are nodes in the encoding.

3.1.6 Reductions with GDDs

All the reductions mentioned in Section 2.1, and more, may be applied on a level-by-level basis to GDDs
in a uniform manner, so that distinct algorithms to handle each reduction are no longer necessary. In each

3 Proposed contributions 23

Y l
Xe: 1 1,0,1,1,0,1
Y
X5: 0
ololoflofololo]oO y
ololololololo]oO Xu: 1
ololololololo]oO
olofololololo]oO
ojojojolofo]0]oO o -
0ololololol1]0]0 !
olofololololo]oO
ololololololo]oO !
Xy 0
Y
Xy 1
Y

O,
(a.) Explicit bit vector. (b.) Fully reduced BDD (implicit) (c.) Proposed solution
(occupies only 64 bits) with null-pointer elimination with null-pointer elimination

Fig. 8: Encodings of {(1,0,1,1,0,1)}

case, an edge that skips a particular level is considered to be an abbreviated form for a very specific form
of node, as follows:

1. Quasi-reduced is an essentially un-reduced form of DD not allowing skipped levels.

2. Fully-reduced level of a GDD. When level k is fully-reduced, an edge from node A which skips level
k and leads to a node C at level j < k is equivalent to the same edge from node A leading instead
to a node B at level k, where B has a single edge leading to C', labeled ‘«’. Thus, a quasi-reduced
GDD can be converted to a fully-reduced GDD by skipping nodes having only the ‘“*’-labeled edge,
as shown in Fig. 6.

3. Identity-reduced level of a GDD. When level k is Identity-reduced, an edge from node A which skips
level k£ and leads to a node C at level j < k is equivalent to the same edge from node A leading
instead to a node B at level k, where B has 2 edges, one labeled ‘X’ leading to ', and the other
labeled ‘%’ leading to an encoding of the empty set.

3 Proposed contributions 24

(a.) Quasi-reduced GDD (b.) Quasi-reduced GDD (c.) Fully-reduced GDD

with null pointer elimination with null ptr elimination

Flg 9: EHCOdngSOff(X): (X7:O/\X5:X6/\X3:X4/\<X2:0/\X1:1\/X2:1/\X1:0)>
VIXe Z0ANXo =X A X1 = XU AN (X =0AX3=1VXg=1AX35#0))

4. Constant-reduced level of a GDD. When level k is Constant(c)-reduced, an edge from node A which
skips level k and leads to a node C at level j < k is equivalent to the same edge from node A leading
instead to a node B at level k, where B has 2 edges, one labeled ‘¢’ leading to C', and the other
labeled ‘x’ leading to an encoding of the empty set.

For purposes of maintaining canonicity, obviously the ‘equivalent’ node B must never exist, as that would
create multiple encodings for a given function. A Fully-reduced level of a GDD, for example, must never
have a node with only a single edge labeled ‘x’, since a path through such a node should simply skip that
level.

The use of the ‘empty set’, meaning a GDD encoding of a function that always returns 0, in items 3
and 4 points out the asymmetric nature of null-pointer elimination. The null pointer customarily is used
to encode a function that always returns 0, but there is no such simple customary encoding for a function
that always returns a constant other than 0. This situation is incompatible with QGDDs and is illustrated
in Fig. 9(b.) where the GDD from Fig. 9(a.) has been modified by null pointer elimination, but is not
fully reduced. Although there is appreciable reduction in nodes and edges, the necessity of including an
awkward empty node indicates that something is wrong. The awkward situation is relieved in Fig. 9(c.)
where full reduction is applied. The complement operation, which nominally can be performed by exchange

3 Proposed contributions 25

Xg:

Xy

Xt

Xy

Xi:

(a.)(b.) Quasi-reduced GDD (c.) Fully-reduced GDD
with or without null pointer elimination with or without null pointer elimination

Flg 10: Encodings of f(X) = _|((X7 = 0/\X5 = X6/\X3 = X4/\ (XQ = 0/\X1 = 1\/X2 = 1/\X1 = 0))
\/(X7 7§O/\X2 :X5/\X1 :X4/\(X6 :0/\X3 = 1\/X6 = 1/\X3 #0))) This function is the
negation of the function encoded in Fig. 9, so diagram (a.) is derived from the diagram in Fig.
9(a.) by exchanging the two leaf labels.

of ‘true’ and ‘false’ leaves, must, in practice include special code to process cases involving encodings of
the empty set or of the ‘full’ set. This asymmetry is seen by comparing the GDD for the complement in
Fig. 10(b.) with Fig. 9(b.), or by comparing the fully reduced complement GDD in 10(c.) with Fig. 9(c.).
[expect to remedy this asymmetry in my GDD algorithm library by providing symmetric leaf elimination,
a simple encoding for all functions that always return a (Boolean) constant, while eliminating the need for
the constant leaves. Use of such an encoding will be indicating by writing the constant just below the box
containing the edge label, as shown in Fig. 11. Additionally, if the edge label is **’, the ‘*” will be omitted,
and the constant will be written to the right of the node. Fig. 11(a.) and (b.) show that symmetric leaf
elimination condenses the encoded form of the function from Fig. 9 and its negation equally, and that also
holds true for the fully reduced encoding (c.) and its negation (d.) as well.

With the use of diagrams with symmetric leaf elimination, the previously mentioned reductions may
now be illustrated as in Fig. 12(a.). Consideration of the previous examples makes obvious the need for
the additional reductions in Fig. 12(b.), which complement the existing set.

3 Proposed contributions 26

X 0| * 0| * o | * o | *
Xg: * ol1]o0 * o] 1]1 ol 11]o ol11]o
Y A 4 \ Y Y \
X, Xs |l o[= * Xl 1]~ * Xs | o Xs | o
Y Y Y Y Y Y
Xy * * * * * *
Y A 4 X Y Y Y Y Y Y
Xt | xifol1]o]ol] = X111 o] = Xslogpi1projfol = Xelog1lrojfjol] =
Xy ol 1]o X1 o 0] 1]1 X |1 ol1]o0 X1 o ol1]o X lo
Y \ Y Y \ Y Y \ Y Y \ Y

Xi: 1 0 0 o1Xxs]o0 1 1 0 1 1Xa]1 1 0 0 0o1Xs10 1 0 0 01Xs10

1 1 1 0 0 0 1 1 1 1 1 1

(a.) Quasi-reduced GDD (b.) Complement of (a.) (c.) Fully-reduced GDD (d.) Complement of (c.)

Fig. 11: Encodings of f(X) = (X7 = 0A X5 = Xg A X3 =Xy A (Xo=0ANX; =1V Xy =1AX, =0))
\/(X7§£0/\X2:X5/\X1:X4/\(X6:0/\X3:1\/X6:1/\X3§£0)) and its negationwith

symetric leaf elimination

3.1.7 Automatic reduction selection per edge

One disadvantage with the use of various reduction schemes is that, in current DD libraries, the reduction
scheme for each DD must be chosen by the modeler using knowledge of the expected structure of the
encoded set. Typically, an entire DD must be encoded using a single reduction scheme, so that different
branches of a DD must be encoded using the same reduction scheme, although the scheme may vary by
level, as with fully-identity reduction, where full reduction is applied to even levels, and identity reduction
is applied to odd levels.

The GDD from Fig. 11 is shown in Fig. 13 with 4 different reductions applied. It can be seen that
each reduction has advantages for some part of the GDD, and that in general, advantageous selection of
the appropriate reduction requires the modeler to have deep understanding of the encoding of sets and of
the sets themselves. Thus, high-performance model checking tools require domain specific knowledge in
their construction. This situation is not reasonable for researchers attempting to build general purpose
tools. However, the necessity of manual selection of reductions may be removed, and the flexibility of

3 Proposed contributions 27

Reduction: | Edge skipping level £ abbreviates:
Quasi N/A
Edge skipping level k
Reduction: abbreviates:
Y
Full *
Y
] Un-identity Te+1] 1
Y
_ Y
Identity T 0
Y v
Non-constant ¢ ¢ 1
Y
Constant c ¢ 0
Y
(a.) Previously mentioned reductions (b.) Suggested new reductions

Fig. 12: Reductions use skipped levels as abbreviations for certain nodes.

branch-specific reductions may be added, through an adjustment of the scheme described in Section 3.1.5.

In this scheme, within a GDD, certain very simple nodes, such as those which would be drawn with
only 1 box, would be condensed to part of an edge annotation, and such annotations would be additionally
condensed in cases where a simple pattern repeats many times, as would be reduced in fully or fully-identity
reduced GDDs. Fig. 14(a.) shows the application of this scheme to reduction of the Quasi-reduced GDD
from Fig. 11(a.), while Fig. 14(c.) is a legend listing the node abbreviations used in the edge annotations
of Fig. 14(a.) and (b.).

This scheme resembles the scheme of Section 3.1.5, with the adjustment that the edge annotations
describe a brief sequence of reductions, instead of a sequence of small indices. To understand this reduction
scheme, consider the first (leftmost) node label box of the root node in Fig. 14(a.). The edge label (0) is
followed by the annotation: ‘[F, I]*’, which is interpreted according to Fig. 14 to be the sequence of nodes:

* Trr1] O * Th41

, , , , that is, the edge is considered to be reduced by full reduction
at level 6, identity reduction at level 5, full reduction at level 4 and identity reduction at level 3, thus
corresponding to the actual nodes found in Fig. 11(a). Each level-skipping edge has an annotation that
is customized for that edge and the removed nodes it encodes. Thus, such an encoding scheme has the

3 Proposed contributions 28

Xy

Xs:

X

(a.) Fully-reduced GDD (b.) Fl-reduced (c.) Constant O-reduced (d.) Const. 1-reduced

Fig. 13: Encodings of f(X) = (X =0A X5 = Xg A Xs =Xy A (Xo=0ANX; =1V Xy =1AX, =0))
VX7 Z0NXo = X5 A X = Xy A (X =0A X3 =1V X =1A X3 #0)) using various reductions

benefit of automatic condensation of GDD nodes when any of the previously discussed reductions would
apply, without the necessity of manual selection. Thus, this feature provides the benefits of all extant
reduction techniques, without additional analysis effort on the part of the library user.

In this diagram I have been careful to limit each edge annotation to a small amount of information.
Specifically, an edge annotation is limited to either a repeated pattern of a few reductions, as in the root
node in Fig. 14(a.), or a list of a few small constants, as with the node at level 2. In such cases, it appears
that the benefit of this reduction scheme outweighs the cost of the annotation size. If an edge annotation
were unlimited in size, allowing the description of a lengthy sequence of reduction types, the same GDD
would be reduced as shown in Fig. 14(b.). This diagram has one fewer node, but it also has a rather
complex annotation on the first edge from the node at level 6. The consequences for this may be that the
data structure representing edges would be larger for all edges, resulting in a net loss for diagrams where
there are few opportunities for reduction.

In more distant future work, an additional steps along these lines could be taken, however, schedule
limitations may place such work beyond the scope of the proposed research.

3 Proposed contributions 29

X symbol reduction node
[A]" | A,..., A (n times)
Xy 0 0
0 constant 0
1 0
X 1 constant 1
*
F full
Xt
Te+1f O
I identity
Xo: xk+3 O
T identity’
X
(a.) GDD cleverly reduced (b.) Excessively reduced (c.) Edge annotation legend

Fig. 14: Encodings of f(X) = (X7 =0A X5 = Xg A X3 =Xy A (Xo=0ANX; =1V Xy =1AX, =0))
V(X7 #0AN Xy = Xs A Xy = XuA (X =0AX3 =1V Xg=1AX;3#0)) using automatic reduction
scheme

3.1.8 Algorithms for GDDs

Algorithms for GDD manipulation are generally expected to resemble those for MDD manipulation except
for the following characteristic. Meanings of subgraphs of GDDs obviously have more context dependence
than meanings of subgraphs of MDDs. This dependence causes non-trivial operations (such as set union)
to have multiple values when they are implemented in a context-independent manner. Each result value
is valid in certain contexts associated with possible sets of constraints on ‘higher’ variables not accessed
by the operation. I anticipate that all of the multiple values of an operation will be cached for later use.

Due to time constraints I previously deferred the writing of efficient algorithms until after the initial
version of this proposal. However, since the proposed schedule has me working on the algorithm library
since the start of July, I included an algorithm for union of GDD-encoded sets in [36](§7.48).

3 Proposed contributions 30
3.2 TeDDy interface improvement through C++ metaprogramming

In lieu of a formal description of the details of the proposed improvements, consider the following algorithm,
as published in [38](§7.3):

44

MDD Bisim(level k, MDD Tg, MDD B;,,) is e memoize this function
local MDD B, MDD B,,;, MDD Z, MDD Zf, MDD D, MDD D?
1 if £ =0 then return B;,; e Jeaf case
2 B+ By,
3 B <« BisimSaturate(k, T¢, B); e saturate below this level
4 repeat
5 Bold «— B;
6 for each e € £ where Top(Te) = k, loop eletp S p/ 2 (p,p)eTe
7 Z«{0W,913d 95 ¢ ND'Bg'}; e in 1 symbolic step (composition)
8 ZR {3 :p>p Ap'BdY; e also 1 step composition

9 D+ {p,))3 : (g€Sk x...xS1)A(p 5 p)A=(p'Zq)}; ealso 1 step
10 DR {(p,q))3d : peSpx...xS1)A(q=>¢)N-(pZF¢)}; ealso 1 step

11 B+« B\ (DuDR); o refine
12 B« BisimSaturate(k, Tg, B); e re-saturate
13 end loop;

14 until B,;q = B;

15 return B;

Fig. 2. Bisimulation algorithm using Saturation heuristic.

MDD BisimSaturate(level k, MDD Te, MDD B) is

local MDD B/, MDD B, MDD B

1 B < new empty mutable MDD node;

2 for each index L in B loop e loop over children

3 B« < Bp;

4 B, < new empty mutable MDD node;

5 for each index R in By loop e Joop over grandchildren

6 Bl p < Bisim(k —1,T¢, B«Rr);

7 end loop;

8 B} « unique(BL);

9 end loop;

10 return unique(B');

Fig. 3. Helper function for Bisimulation algorithm.

7

My saturation-based bisimulation algorithm, exactly as printed in [38](§7.3).

3 Proposed contributions 31

The first C++ version of the code inside Bisim was (after removing the most embarrassing parts):

// Parameters: int L, MDDL::mdd hatS, MDDL::mdd * T, int NQ, MDDL::mdd Bin, MDDL::OperatorCode cache

// calculate T2 and NQ2, for lower levels

MDDL: :mdd * T2 = T;

int NQ2 = NQ;

const int hatSL = hatS.level();

const int SXSL = hatSL+hatSL;

while(NQ2 && (T2[0].level()==SXSL)){ T2++; NQ2--; };

//convenience:

int L3 = L+L+L;

// utility stuff:

bool * oddlevels = levelsmod(levelsmod<bool>(NULL, 4xL, false, 1, 0), 4xL, true, 2, 1); oddlevels[0]=false;
bool * alllevels = levelsmod<bool>(NULL, 4*L, true, 1, 0); alllevels[0]=false;
// mod 3 utility stuff:

bool * levelsl = levelsmod(levelsmod<bool>(NULL, 3L, false, 1, 0), 3*L, true, 3, 1); levelsl[0]=false; // variable 3rd of 3

bool * levels2 = levelsmod(levelsmod<bool>(NULL, 3L, false, 1, 0), 3*L, true, 3, 2); levels2[0]=false; // variable 2nd of 3

bool * levels3 = levelsmod(levelsmod<bool>(NULL, 3L, false, 1, 0), 3*L, true, 3, 0); levels3[0]=false; // variable 1st of 3

bool * levelsl2 = levelsmod(levelsmod(levelsmod<bool>(NULL, 3*L, false, 1, 0), 3%L, true, 3, 1), 3xL, true, 3, 2); levels12[0]=false;

bool * levels23 = levelsmod(levelsmod(levelsmod<bool>(NULL, 3*L, false, 1, 0), 3*L, true, 3, 2), 3*L, true, 3, 0); levels23[0]=false;

bool * levels13 = levelsmod(levelsmod(levelsmod<bool>(NULL, 3*L, false, 1, 0), 3*L, true, 3, 1), 3*L, true, 3, 0); levels13[0]=false;

int * sig2Lop = levelsmod(levelsmod(levelsmod<int>(NULL, 3*L, (int)0x88888888, 1, 0), 3L, (int)OxAAAAAAAA, 3, 0), 3*L, (int)0xCCCCCCCC, 3, 1); sig2Lop[0]=0x88888888;//...

sig2Luse = levelsmod(levelsmod(levelsmod<int>(NULL, 3+L, 3, 1, 0), 3xL, 1, 3, 0), 3*L, 2, 3, 1); sig2Luse[0]=3; //variablel: 0; variable2: 1,0; variable3: 1;
sig2Rop = levelsmod(levelsmod(levelsmod<int>(NULL, 3xL, (int)0x88888888, 1, 0), 3*L, (int)OxAAAAAAAA, 3, 0), 3L, (int)0xCCCCCCCC, 3, 2); sig2Rop[0]=0x88888888;//...
sig2Ruse = levelsmod(levelsmod(levelsmod<int>(NULL, 3#L, 3, 1, 0), 3L, 1, 3, 0), 3*L, 2, 3, 2); sig2Ruse[0]=3; //variablel: 0; variable2: 1; variable3: 1,0;
DeltaBbarop = levelsmod<int>(NULL, 3L, (int)OxFFFFFFFE, 1, 0); DeltaBbarop[0]=0x4F444F44; //variablel: 3|1; variable2: 3|1; variable3: 3|1; variable 0: (3&!2)|(1&!0)
DeltaBbaruse = levelsmod(levelsmod(levelsmod<int>(NULL, 3%L, 15, 1, 0), 3xL, 11, 3, 0), 3*L, 14, 3, 2); DeltaBbaruse[0]=15; //variablel: 3,1,0; variable2: 3,2,1,0...
DeltaBbaralt2use = levelsmod(levelsmod(levelsmod<int>(NULL, 3L, 15, 1, 0), 3*L, 15, 3, 0), 3xL, 15, 3, 1); DeltaBbaralt2use[0]=15; //variable2: 3,2,1,0 everywhere;

.
=]
o

X K K K X K K

MDDL: :mdd B = Bin;
MDDL: :mdd Bold = B;

// first, saturate lower levels:
B = BiSatlSaturation(L, hatS, T2, NQ2, B, cache);

// then do fixed point calculation:
do {
Bold = B;
// operate at this level:
// apply each transition relation at this level (T is sorted by descending Top level):
for (int a=0; (a<NQ) && (T[a].level() == SXSL); ++a) {
MDDL: :mdd Ta = T[a];

// sigil = (B X hatS) & (T X2 hatS) // actually just (T X2 hatS)
MDDL::mdd sigilL = InsertDontCaresQQ(L3, Ta, levels2, hatS, MDD_INSERTDC5_QQ);

// sigiR = (B X hats) & (hats X T) // actually just (hats X T)
MDDL::mdd sigiR = InsertDontCaresQQ(L3, Ta, levels3, hatS, MDD_INSERTDC3_QQ);

// sig2L = (B o T) X2 hatS // actually just (B o T)

// sig2lpre = (B o T)pre = (¥ X B) & (T X *)

MDDL: :mdd sig2Lpre = GenericCompase4QQ(0, 0, B, Ta, sig2Luse, sig2Lop, L3, MDD_GCOMPOSE43_QQ H
MDDL: :mdd sig2L = ProjectUnionQQ(sig2Lpre, levels2, MDD_PROJECTU5_QQ);

MDDL: :mdd sig2Lalt = InsertDontCaresQQ(L3, sig2L, levels2, hatS, MDD_INSERTDC5_QQ);

// sig2R = hatS X (Binv o T) // actually just (Binv o T)

// sig2Rpre = (Binv o T)pre = (¥ X B) & (T X2 %)

MDDL: :mdd sig2Rpre = GenericCompose4QQ(0, O, B, Ta, sig2Ruse, sig2Rop, L3, MDD_GCOMPOSE44_QQ);
MDDL: :mdd sig2R = ProjectUnionQQ(sig2Rpre, levelsl, MDD_PROJECTU4_QQ);

MDDL::mdd sig2Ralt = InsertDontCaresQQ(L3, sig2R, levels3, hatS, MDD_INSERTDC3_QQ);

// DeltaBbarpre = sigiL\(hatS X sig2R) U siglR\(sig2L X2 hatS)

MDDL_ASSERT ((hatS)) ;

MDDL: :mdd DeltaBbarpre = GenericCompose4QQ(sigiL, sig2R, siglR, sig2L, DeltaBbaruse, DeltaBbarop, L3, MDD_GCOMPOSE45_QQ);
MDDL: :mdd DeltaBbarprelalt = MDDL::g_mddf.minus_qq(sigiR,sig2Lalt);

MDDL: :mdd DeltaBbarpre2alt = MDDL::g_mddf.minus_qq(sigiL,sig2Ralt);

MDDL: :mdd DeltaBbarprealt = MDDL::g_mddf.or_qq(DeltaBbarpre2alt,DeltaBbarprelalt);

MDDL: :mdd DeltaBbar = ProjectUnionQQ(DeltaBbarpre, levelsl, MDD_PROJECTU4_QQ);

// put the results into B
B = MDDL::g_mddf.minus_qq(B, DeltaBbar);

// saturate those results:
{if(B) B = BiSatlSaturation(L, hatS, T2, NQ2, B, cache); };
//MDDL_ASSERT ((B)) ;
};
} while (Bold != B);

// destruct utilities

CDEL (DeltaBbaruse) ;

CDEL (DeltaBbarop) ;

CDEL (sig2Ruse) ;

CDEL (sig2Rop) ;

CDEL(sig2Luse);

CDEL (sig2Lop) ;

CDEL (levels13);

CDEL (levels23);

CDEL (levels12);

CDEL(levels3); CDEL(levels2); CDEL(levelsl);
CDEL(alllevels); CDEL(oddlevels);

MDDL: :g_mddf .cache_add(cache, Bin, B); // memoize
return B;

3 Proposed contributions 32

Note the amorphous block of code near the beginning, containing many calls to the levelsmod function.
That code calculates the MDD equivalent of ‘dope vectors’, used in later operations to indicate choices
associated with individual MDD levels of operands in later MDD operations. Those operations are mostly
set and relational compositions of various kinds within the nested do-while and for loops. These calls
are located above the loop, as the vectors are independent of the loop iteration in which they are used.
Generation of this code is very error-prone and tedious. I made a number of templates to simplify this
code specifically, so that generation of the vectors now uses code that has some noticeable relation to the
compositional operations being performed. The next version was:

Parameters: int L, MDDL::mdd hatS, MDDL::mdd * T, MDDL::mdd * Tinv, int NQ, MDDL::mdd Bin, MDDL::OperatorCode cache

// calculate T2, T2inv, and NQ2, for lower levels
MDDL: :mdd * T2 = T;

MDDL: :mdd * T2inv = Tinv;

int NQ2 = NQ;

const int hatSL = hatS.level();

const int SXSL = hatSL+hatSL;

while(NQ2 && (T2[0].level()==SXSL)){ T2++; T2inv++; NQ2--; };

// variables for evaluating B\((U2/3 (T X hatS)\(_ X BoTinv)) U (U2/3 (hatS X Tinv)\(ToB X _)))

// == B\(C {(p @)l exists p’: (p T p’) /\ (q in hatS) /\ ~(exists q’: p’ B q’ /\ q’ Tinv q)}

// U {(p @) | exists q’: (p in hatS) /\ (q’ Tinv q) /\ ~(XXXexists p’: p B p’ /\ p’ Tinv q’XXX)})
static Symbolic_Variable p("p",L);

static Symbolic_Variable pprime("pprime",L);

static Symbolic_Variable q("q",L);

static Symbolic_Variable gprime("gprime",L);

// B o Tinv // == {(p’ q)| exists q’: p’ B q’ /\ g’ Tinv q}
static composition_spec OP_BoTinv(*this); // should be same as OP_ToB
OP_BoTinv.initialize2((booll&bool0), (pprime % qgprime % q), USE()<< pprime << gprime, USE()<< gprime << q, PROJECT()<< gprime);

// ToB// =={(p q’)| exists p’: p T p’ /\ p’ B q’}
static composition_spec OP_ToB(*this); // should be same as OP_BoTinv
OP_ToB.initialize2((bool1&bool0), (p % pprime % qprime), USE()<< p << pprime, USE()<< pprime << gprime, PROJECT()<< pprime);

// U2/3 (T X hatS)\(_ X BoTinv) // == {(p q)| exists p’: (p T p’) /\ (q in hS) /\ ~(p’ BoTinv q)}
static composition_spec OP_UTXhSminusBoTinv (*this);
OP_UTXhSminusBoTinv.initialize3((bool2&bool1& bool0), (p % pprime % q), USE()<< p << pprime, USE()<< q, USE()<< pprime << q, PROJECT()<< pprime);

// U2/3 (hatS X Tinv)\(ToB X _) // == {(p q)| exists q’: (p in hatS) /\ (q’ Tinv q) /\ ~(p ToB q’)}
static composition_spec OP_hSXTinvminusToB(*this);
OP_hSXTinvminusToB.initialize3((bool2&bool1&~bool0), (p % qprime % q), USE()<< p, USE()<< gprime << q, USE()<< p << gprime, PROJECT()<< gprime);

//convenience:
int L2 = L+L;
int L3 = L+L+L;

MDDL: :mdd B = Bin;
MDDL: :mdd Bold = B;

// first, saturate lower levels:
B = BiSatlSaturationint(L, hatS, T2, T2inv, NQ2, B, cache);

// then do fixed point calculation:
do {
Bold = B;
// operate at this level:
// apply each transition relation at this level (T is sorted by descending Top level):
for (int a=0; (a<NQ) && (T[a].level() == SXSL); ++a) {

MDDL: :mdd Ta = T[al;
MDDL: :mdd Tinva = Tinv[al;

// B o Tinv // == {(p’ q)| exists q’: p’ B q’ /\ g’ Tinv q}
MDDL: :mdd BoTinv = OP_BoTinv.execute_on4(L3, L2, NULL, NULL, B, Tinva, MDD_GCOMPOSE43_QQ);

// T oB // =={(p q’)| exists p’: p T p’ /\ p’ B q’}
MDDL: :mdd ToB = OP_ToB.execute_on4(L3, L2, NULL, NULL, Ta, B, MDD_GCOMPOSE44_QQ);

// U2/3 (T X hatS)\(_ X BoTinv) // == {(p q)| exists p’: (p T p’) /\ (q in hS) /\ ~(p’ BoTinv q)}
MDDL: :mdd UTXhSminusBoTinv = OP_UTXhSminusBoTinv.execute_on4(L3, L2, NULL, Ta, hatS, BoTinv, MDD_GCOMPOSE45_QQ);

// U2/3 (hatS X Tinv)\(ToB X _) // == {(p q)| exists q’: (p in hatS) /\ (q’ Tinv q) /\ ~(p ToB q’)}
MDDL: :mdd hSXTinvminusToB = OP_hSXTinvminusToB.execute_on4(L3, L2, NULL, hatS, Tinva, ToB, MDD_GCOMPOSE46_QQ);

MDDL: :mdd DeltaBbar = MDDL::g_mddf.or_qq(UTXhSminusBoTinv,hSXTinvminusToB) ;

// put the results into B

B = MDDL::g_mddf.minus_qq(B, DeltaBbar);

// saturate those results:

{ if(DeltaBbar) if(B) B = BiSatl1Saturationint(L, hatS, T2, T2inv, NQ2, B, cache); };
} whzie (Bold !=B);

MDDL: :g_mddf.cache_add(cache, Bin, B); // memoize

return B;

3 Proposed contributions 33

In the improved code, there is still a block of code near the beginning for initializing vectors, but
here the code is less amorphous, and the vectors are hidden within objects of type composition_spec.
Each composition_spec supplies all the information (except for parameters, sizes, and caching information)
needed by a composition operation used later. This makes both the vector construction code and the
composition operator code more readable. There is still considerable distance between the code and the
algorithm pseudocode, as the set-theoretic notation of the pseudocode are not directly supported in C++.
Additionally, cumbersome characteristics of the existing library interface are obvious, such as the use of
function names (MDDL::g mddf.minus_qq) that depend on which kind of MDDs are being used.

C++ does provide template meta-programming, which can be used to generate complex efficient code
at compile time, while allowing slight coding syntax improvement. I propose to implement a library and
interface that generates efficient code from input code closer to pseudocode algorithms for MDD operations.
With the proposed improvements, I hope to instead write (something like) the following code:

typedef TeDDy::tupleset stateset;
typedef TeDDy::interleaved <stateset,2> intstaterelation;
Parameters: int L, stateset hatS, intstaterelation * T, intstaterelation * Tinv, int NQ, intstaterelation Bin, TeDDy::CacheGroup caches

// calculate T2, T2inv, and NQ2, for lower levels
stateset * T2 = T;

stateset * T2inv = Tinv;

int NQ2 = NQ;

const int hatSL = hatS.level();

const int TL1

const int SXSL = hatSL+hatSL;

while(NQ2 && (T2[0].level()==SXSL)){ T2++; T2inv++; NQ2--; };

// variables for evaluating B\((U2/3 (T X hatS)\(_ X BoTinv)) U (U2/3 (hatS X Tinv)\(ToB X _)))

// == B\C {(p @) | exists p’: (p T p’) /\ (q in hatS) /\ ~(exists q’: p’ B q’ /\ q’ Tinv @)}

// U {(p @)| exists q’: (p in hatS) /\ (q’ Tinv q) /\ ~(XXXexists p’: p B p’ /\ p’ Tinv q’XXX)})
#TeDDy_4_Symbolic_Tuple_Names(p, p_prime, q, g_prime)

//convenience:
int L2 = L+L;
int L3 = L+L+L;

TeDDy::mdd B = Bin;
TeDDy: :mdd Bold = B;

// first, saturate lower levels:
B = BiSati1Saturationint(L, hatS, T2, T2inv, NQ2, B, caches);

// then do fixed point calculation:
do {
Bold = B;
// operate at this level:
// apply each transition relation at this level (T is sorted by descending Top level):
for (int a=0; (a<NQ) && (T[al.level() == SXSL); ++a) {

TeDDy::mdd Ta = T[al;
TeDDy: :mdd Tinva = Tinv([al;

// B o Tinv // == {(p’ q)| exists q’: p’> B q’ /\ q’ Tinv g}
TeDDy: :mdd BoTinv = tuples2<intstaterelation>(p_prime,q) (exists(q_prime) (B(p_prime,q_prime) & Tinva(q_prime,q)));
BoTinv.withcache(caches).calculate();

// ToB// =={(p q’)| exists p’: p Tp’ /\ p’ Bq’}
TeDDy::mdd ToB = tuples2<intstaterelation>(p,q_prime) (exists(p_prime) (Ta(p,p_prime) & B(p_prime,q_prime)));
ToB.withcache(caches) .calculate();

// U2/3 (T X hatS)\(_ X BoTinv) // == {(p q)| exists p’: (p T p’) /\ (q in hS) /\ ~(p’ BoTinv @)}
TeDDy: :mdd UTXhSminusBoTinv = tuples2<intstaterelation>(p,q) (exists(p_prime) (Ta(p,p_prime) & hatS(q) & “BoTinv(p_prime,q)));
UTXhSminusBoTinv.withcache(caches).calculate();

// U2/3 (hatS X Tinv)\(ToB X _) // == {(p q)| exists q’: (p in hatS) /\ (q’ Tinv q) /\ “(p ToB q’)}
TeDDy: :mdd hSXTinvminusToB = tuples2<intstaterelation>(p,q) (exists(q_prime) (hatS(p) & Tinva(q_prime,q) & “ToB(p,q_prime)));
hSXTinvminusToB.withcache(caches).calculate();
TeDDy: :mdd DeltaBbar = UTXhSminusBoTinv .U hSXTinvminusToB;
// put the results into B
B = (B - DeltaBbar).withcache(caches).calculate();
// saturate those results:
{ if (DeltaBbar) if(B) B = BiSatl1Saturationint(L, hatS, T2, T2inv, NQ2, B, caches); };
};
} while (Bold != B);

caches.add(&BiSatSaturationint, Bin, B); // memoize

return B;

3 Proposed contributions 34
Note first that this code should not be taken as a specific definitive example, and that some library syntax
and design issues remain open for resolution in the research phase of this project. In this code, there is
no longer a separate block of code for initializing the control vectors for another block of code. Instead,
the main block of code invokes a customized set of recursive functions which implicitly hold the control
knowledge previously stored in the control vectors. Additional advantages of this improved coding style
are obvious, including the following:

1. The use of types to indicate various forms of encoding, such as interleaved pairs vs. concatenated
pairs.

2. The use of a single name to denote a given operator, independent of which type of tuple sets and
reductions are used in the encoding.

3. The simple combination of multiple operators into efficient aggregate operations.

4. The use of comprehension-like structures, having local variable names, to define relations.

3.3 Non-algorithm library contributions

The above-mentioned algorithm library contributions enable the study of novel model checking algorithms
and techniques described in this section.

3.3.1 Locality enhancement for LTS for weak bisimulation

My saturation-based bisimulation algorithm in Section 2.4.2 is weak in the cases where there are transition
relations having large support. I expect that in many of these cases, such a transition relation may have
useful projections onto uncertain transition relations with relatively small support. An uncertain transition
relation is a transition relation where some pairs in the relation have an imprecise specification for either
(or both) the domain element or (or and) the range element. Such a projection is not necessarily lossless. I
hope to automatically decompose transition relations with large support into multiple uncertain transition
relations having small support. For the purpose of calculating ~, both the original transition relations
and the decomposed uncertain transition relations would be used. In the process of calculating ~, the
saturation based algorithm would give priority to use of the decomposed uncertain transition relations (as
they have small support, hence expected lower usage cost) over the use of the original transition relations
having large support. The hope is that, as with many other saturation-based algorithms, most of the useful
work would be performed by usage of the transitions relations having small support, leaving less need for
using transitions relations having large support, so that the overall run-time would decrease, compared
with the previous algorithm.

3.3.2 Fully symbolic lumping algorithm

I expect to be able to manipulate the definition of lumping, given in Section 2.4.3 into a form directly
applicable to a saturation-based solution analogously to how the definition of bisimulation was manipulated
in Section 2.4.2. If I succeed in this endeavor, the resulting algorithm would be (nearly) the first fully
symbolic lumping algorithm. The algorithm in [16](§7.49) is fully symbolic, but in a way that is somewhat
arbitrary and unnatural. It is likely that such an algorithm would be the only feasible way to perform
lumping on systems where there are very many equivalence classes. A full study of fully symbolic lumping
requires the use of edge-valued GDDs (Section 4.1), which may or may not be available during the course
of this research.

3 Proposed contributions 35
3.3.3 Re-organizing parallel saturation

The efficiency of saturation-based state-space exploration, and many other DD algorithms, is strongly
influenced by the necessary ordering of variables, and by the support of related transition relations, as
abbreviated in the form of event spans. The event span of a transition relation (given a specific variable
ordering) is the smallest set of contiguous levels containing the support variables of the relation. For
purposes of saturation-based state-space exploration, all other things being equal, a variable ordering
which causes transition relations to have small event spans is preferred over a variable ordering which
causes transition relations to have large event spans. Typically, before state-space exploration begins, the
variables have been pre-ordered in such a way as to bring about reasonably small event spans when possible.
This heuristic proposes to take further advantage of this ordering to identify opportunities for parallel
firing of events with non-overlapping spans, during state-space exploration. Due to time limitations, I will
simplify this description to the case where only two processors are available. Sequential saturation-based
state-space exploration consists of: initializing a DD S with an encoding of the set of initial system states,
followed by augmentation of S through firing individual events (transition relations), in the order indicated
by the saturation heuristic, after which S contains an encoding of the entire reachable state-space. The
saturation heuristic gives priority to events with a lower top, where the top of an event is the highest level
of its event span. This heuristic divides the levels into two groups (high and low) and events into three
groups (high, low, and hybrid). Each group (high and low) of levels is contiguous and comprises about half
of the groups, where the exact point of division between them may be subject to tuning. The high group
of events comprises events where the span is entirely within the high levels. Analogously, the low group of
events comprises events where the span is entirely within the low levels. The remaining events comprise
the hybrid group, which is likely to be small given a good variable ordering. However, any system with
no hybrid events could simply be factored into multiple independent systems, hence realistic systems will
always have at least one hybrid event. This technique alters the saturation order by making the high and
low group of events independent of each other, while the high and low groups of events both have priority
over the hybrid events. Within the DD encoding S, the nodes corresponding to high levels are separated
from the nodes corresponding to the low levels by an extra invisible level of symbolic encoding, which
allows concurrent firing of high events and low events, each operation only on the corresponding levels of
S. When high and low events are no longer able to fire due to (possibly temporary) convergence of S,
The extra level of symbolic encoding is processed to unify the higher and lower levels of S into a single
DD, after which hybrid events may fire. When it is time to attempt firings of high and/or low events, the
invisible level of symbolic encoding is re-imposed prior to such firings. The advantage of this scheme is
that high events may be fired in parallel with low events, and there should be very few hybrid events. The
disadvantages are that the invisible level of symbolic encoding must be processed, possibly many times,
before proceeding, and that hybrid events must proceed sequentially. These disadvantages have not been
quantified, yet their extent may (or may not) dominate the benefits of this technique.

4 Potential work 36
4 Potential work

The following investigations may be performed as time allows. It is likely that most of these items are, in
fact, future work.

4.1 Edge-valued GDDs

It is somewhat obvious that an edge-valued variation of GDDs (EVGDDs?), having the benefits of both
EVMDDs and GDDs, is possible, and that a library for manipulating such data structures is a logical
extension of the current proposal. However, as it may take some time to work out the theory of EVGDDs,
it is not clear wether such an investigation can be completed within the time frame required of the current
proposal.

4.2 Novel speculation heuristics for parallel GDD library

This research presents another opportunity to attempt to obtain the parallel scalability gains long hoped
for by model checking researchers. The following techniques have not yet been explored, yet appear to
present obvious opportunities for performance enhancement through parallelism. Rapid progress in this
area is less likely due to my lack of familiarity with any locally available massively parallel computing
platforms. Note that these descriptions below are merely summaries of the most important parts, made
necessarily brief due to the impending deadlines, and in no way illustrate the full extent of my thinking
on this subject. These three speculative techniques relate to library-level parallelism and could become
performance improvements within the TeDDy library. Fundamental library operations on DDs involve
traversals of homologous parts of each DD input involved in the operation. Taking the union, for example,
of A and B involves coordinated traversal of homologous parts of A and B, invoking the union operation
on homologous children (and further descendants) of A and B. A primary problem with the ‘distribution
by level” parallelism scheme described in Section 2.5.1 is that traversal requests sent from the processor
holding a parent node to the processor holding the child nodes of that parent all arrive together, presenting
plenty of work to the processor holding the child nodes, but not to any other processors, limiting the spread
of parallel activity. These first three techniques speculatively initiate parallel activity at lower levels.

4.2.1 Forward speculation

As can be understood from the union() algorithm in Section 2.1.2, the choice of which descendants of A
and B are to be combined in a nested union() operations cannot be reliably determined a priori. Forward
speculation chooses some remote descendants of A and B based on information cached with A and B,
possibly including a list of ‘preferred’ descendants, and always at a specific level. Thus, the union()
function applied to A and B will speculatively invoke union() function applied to some pairs of various
remote descendants of A with various remote descendants of B, potentially producing results which will
be used in the construction of union(A, B). In the case where the level of chosen descendants actually has
very few descendants of A and/or B, this method is more likely to produce useful speedup.

4.2.2 Reverse speculation

Without speculation, (at lower levels of DD) union(A, B) is calculated only if it is a necessary part of a
higher-level union() operation where A and B are homologous components of operands in the higher-level
union() operation. Reverse speculation speculatively calculates union(A, B) based on information cached
with A and B, possibly including information about the sequence of labels on paths which lead to A and

4 Potential work 37

to B. Such information might be stored in compressed form as a signature. Thus, when a higher-level
union() is requested, a speculative calculation of union(A, B) may be launched if a signature of a path
leading to A matches a signature of a path leading to B. This technique seems more likely to produce a
useful speedup in cases where there are few paths leading to A and/or to B, allowing for efficient search
for matching path signatures.

4.2.3 Count-based speculation

Count-based speculation considers all levels of the operands of a highest-level DD operation, to find levels
where the upper bound on the number of output nodes is lowest. If the bound on the number of output
nodes at a given level is below some carefully tuned threshold, speculative calculation of possible output
nodes at that level is initiated. Aside from the cost of extra bookkeeping, this technique costs very little
when the threshold is very low, although it may also be less likely to produce useful speedup.

5 Future work 38
5 Future work

These items are promising avenues of research which are likely to produce useful results given the expected
success of the currently proposed research.

5.1 Additional encoding to promote sharing

It is possible, to potentially increase sharing by using an additional layer of encoding for variable names
(references to members of the tuple argument of an encoded function). This additional layer of encoding
may be thought of as renamings of variables occurring in a sub-tree, applied whenever the subtree is
accessed by a specific edge, which will have an annotation giving the renaming. It seams that relatively
few situations occur where sharing will be improved by such an additional layer of encoding, however, this
has not been quantified, and so could be a subject of future research.

5.2 Real decision diagrams

As with edge-valued GDDs, it appears that a natural progression would be to extend the domain of GDDs
to tuples of reals (R*) in addition to tuples of naturals. Dario D’amico has already explored extending the
domain of MDDs to real tuples in his thesis on using Real Decision Diagrams (RDD’s) [?](§77).

6 Schedule 39
6 Schedule

Here I first enumerate the tasks involved in this research, and then propose a specific schedule for their
execution.

6.1 Tasks

I propose the following plans for technical tasks be performed prior to dissertation, in addition to solving
any further research problems that arise within these tasks. This list is somewhat foreshortened due to
the 10-year time limit imposed on my scholastic duration by the Graduate Division (I must successfully
defend my dissertation during or before 3Q2015, as I started in 4Q2005). Additionally, I prefer to defer
any writing tasks (such as papers and other correspondence) until after the technical tasks are finished
and the dissertation is started, so that enough research may be accomplished to support the dissertation.

1. Preparation of GDD-based model checking research platform.

I will choose a suitable computation platform, which must be a roughly-symmetric parallel processor
that offers scaling to at least 12 cores, with a current implementation of at least 4 cores, in a
system available to me. An algorithm library, having the functionality of GDD operations, will be
constructed on the chosen computation platform, with a well defined (but possibly overly verbose)
API. This must be done keeping in mind the desired properties of the user library interface.

Basic functionality shall be:

(a) Construction of GDD-encoded characteristic functions representing Bundles.
(b) GDD set operations with 0-6 GDD parameters with single quantification and result caching.

(c¢) Checking of match between interleaved/non-interleaved parameter types and corresponding
number of levels.

(d) Automatic reduction choice (Section 3.1.7)
Potential additional functionality may include:
(e) Edge-Valued diagrams with sum quantification for EV4+GDDs and sum and product quantifi-
cation for EV*GDDs

(f) Compression of node contents for common patterns and/or small indices

2. Construction of novel library interface.

One or more layers of API will be added to the GDD library, to allow user coding of relatively
elegant yet efficient model checking code. Assuming the language for the project is C++, this task
will primarily involve template metaprogramming as described in Section 3.2.

3. Demonstration of improved library.

[will adapt and analyze the bisimulation algorithms from our paper [38](§7.3), including my weak
bisimulation algorithm (Section 2.4.2) and Wimmer’s bisimulation algorithm [54](§7.54) using the
new GDD library.

4. Locality enhancement for LTS for weak bisimulation.

I will explore the use of locality enhancement to fully symbolic bisimulation, as described in Section
3.3.1, using the new GDD library.

6 Schedule 40
5. Parallel Saturation Algorithm based on model locality.

Based on the above parallel library implementation, I will measure the parallel speed-up of paral-

lel saturation-based state-space exploration using the re-organized saturation scheme described in
Section 3.3.3.

6. Fully Symbolic Lumping (potential task contingent on schedule).

I will study the performance of a novel fully symbolic lumping algorithm, following the plan described
in Section 3.3.2, using the new GDD library.

7. Practical Application (potential task contingent on schedule).

A relevant model-checking application will be chosen and implemented using the new parallel GDD
library and parallel saturation-based state-space exploration.

As opportunities arise, it will be advantageous to also perform some of the following publishing-related
activities:

PA: Paper on the properties of GDDs.
PB: Report on the TeDDy with GDDs and the novel interface.
PC: Paper on Artificial Locality Enhancement, or Using Uncertainty to Improve Locality.
PD: Paper on Saturation-based Fully Symbolic Lumping.
PE: Papers on Parallel TeDDy implementation, and related parallel library algorithms.
PF: Papers on Model-Locality based parallel Saturation implementation.
PG: Papers on any additional research problems solved.
Some of the following additional activities will be necessary:

H: Writing and defending this proposal.

J: Apply for funding from NSF, or other sources.

K: Write Dissertation.

L: Defend Dissertation.

7 Annotated Bibliography

41

Task

2014 2015
Q2 Q3| Q4]Q1]Q2]Q3

Q4

J
*

H XN oL 90 Otk W —

LK Ok koK
B S

.ok ok ok
X 3k ok
k ok ok ok ok ok ok Xk

Library (multicore)
Interface
Bisimulation
Locality

Saturation
Lumping
Application
Proposal

Seek Funding (oops)
Write Dissertation
Defend Dissertation
Write Papers

Fig. 15: Schedule

7 Annotated Bibliography

I considered many papers from many conference proceedings, and many journals. After reading the ab-
stracts (and frequently much more) of the many chosen papers, the approximately 55 papers and other
publications discussed in this section were selected as being possibly relevant to the current proposal.

The publications fall into several categories:

1. Publications that relate to the theory of decision diagrams, model checking and related algorithms.

2. Publications that illustrate methods that provide scalable parallelism for some applications, that

could hint at techniques that could be useful for parallel implementation of TeDDy.
3. Finally, publications that must be included in such proposals, although practically irrelevant.

I have attempted to list the publications in order corresponding to the above list of categories, although
some publications fall into more than one of these categories. Each entry references the bibliography at

the end of this document for full bibliographic information. Each entry also includes a link, usually to the
relevant DOI page, so the reader may easily access the original works. In some cases there is also a link

to an on-line copy of the publication itself. In one notable case [49](§7.32), there is a link to the on-line
video of the presentation.

7.1 A fine-grained fullness-guided chaining heuristic for symbolic reachability

analysis [10]

Due to time constraints, I merely copy the abstract here:

Chaining can reduce the number of iterations required for symbolic state-space generation
and model-checking, especially in Petri nets and similar asynchronous systems, but requires
considerable insight and is limited to a static ordering of the events in the high-level model.
We introduce a two-step approach that is instead fine-grained and dynamically applied to the

7 Annotated Bibliography

decision diagrams nodes. The first step, based on a precedence relation, is guaranteed to
improve convergence, while the second one, based on a notion of node fullness, is heuristic.
We apply our approach to traditional breadth-first and saturation state-space generation, and
show that it is effective in both cases.

DOI: http://dx.doi.org/10.1007/11901914_7

7.2 A Fully Symbolic Bisimulation Algorithm [37]

Due to time constraints, I merely copy the abstract here:

We apply the saturation heuristic to the bisimulation problem for deterministic discrete-
event models, obtaining the fastest to date symbolic bisimulation algorithm, able to deal with
large quotient spaces. We compare performance of our algorithm with that of Wimmer et al.,
on a collection of models. As the number of equivalence classes increases, our algorithm tends
to have improved time and space consumption compared with the algorithm of Wimmer et al.,
while, for some models with fixed numbers of state variables, our algorithm merely produced
a moderate extension of the number of classes that could be processed before succumbing to
state-space explosion. We conclude that it may be possible to solve the bisimulation problem
for systems having only visible deterministic transitions (e.g., Petri nets where each transition
has a distinct label) even if the quotient space is large (e.g., 10° classes), as long as there is
strong event locality.

DOI: http://dx.doi.org/10.1007/978-3-642-24288-5_19

7.3 AN EFFICIENT FULLY SYMBOLIC BISIMULATION ALGORITHM FOR
NON-DETERMINISTIC SYSTEMS [38]

Due to time constraints, I merely copy the abstract here:

The definition of bisimulation suggests a partition-refinement step, which we show to be
suitable for a saturation-based implementation. We compare our fully symbolic saturation-
based implementation with the fastest extant bisimulation algorithms over a set of benchmarks,
and conclude that it appears to be the fastest algorithm capable of computing the largest
bisimulation over very large quotient spaces.

DOI: http://dx.doi.org/10.1142/S012905411340011X

7.4 Achieving Scalability in Parallel Reachability Analysis of Very Large
Circuits [28]

Due to time constraints, I merely copy the abstract here:

This paper presents a scalable method for parallel symbolic reachability analysis on a
distributed-memory environment of workstations. our method makes use of an adaptive parti-
tioning algorithm which achieves high reduction of space requirements. The memory balance
is maintained by dynamically repartitioning the state space throughout the computation. A
compact BDD representation allows coordination by shipping BDDs from one machine to an-
other, where different variable orders are allowed. The algorithm uses a distributed termination

7 Annotated Bibliography

protocol which none of the memory modules preserving a complete image of the set of reachable
states. No external storage is used not the disk; rather, we make use of the network which
is much faster. We implemented our method on a standard, loosely-connected environment
of workstations, using a high-performance model checker. Our initial performance evaluation
using several large circuits shows that our method can handle models that are too large to
fit in the memory of a single node. The efficiency of the partitioning algorithm is linear in
the number of workstations employed, with a 40-60% efficiency. A corresponding decrease of
space requirements is measured throughout the reachability analysis. Our results show that
the relatively-slow network does not become a bottleneck, and that computation time is kept
reasonably small.

link: http://www.cs.technion.ac.il/users/orna/CAV00-scalable.ps

7.5 A Work-Efficient Distributed Algorithm for Reachability Analysis [26]

Due to time constraints, I merely copy the abstract here:

This work presents a novel distributed, symbolic algorithm for reachability analysis that
can effectively exploit, as needed, a large number of machines working in parallel. The novelty
of the algorithm is in its dynamic allocation and reallocation of processes to tasks and in its
mechanism for recovery, from local state explosion. As a result, the algorithm is work-efficient:
it utilizes only those resources that are actually needed. In addition, its high adaptability
makes it suitable for exploiting the resources of very large and heterogeneous distributed,
non-dedicated environments. Thus, it has the potential of verifying very large systems. We
implemented our algorithm in a tool called Division. Our preliminary experimental results
show that the algorithm is indeed work-efficient. Although that the goal of this research is to
check larger models, the results also indicate the potential to obtain high speedups, because
communication overhead is very small.

DOI: http://dx.doi.org/10.1007/978-3-540-45069-6 _5

7.6 Scalable Distributed On-The-Fly Symbolic Model Checking [3]

Due to time constraints, I merely copy the abstract here:

This paper presents a scalable method for parallel symbolic on-the- fly model checking on a
distributed-memory environment of workstations. Our method combines a parallel version of
an on-the-fly model checker for safety properties with a scalable scheme for reachability anal-
ysis. The extra load of storage required for counter example generation is evenly distributed
among the processes by our memory balancing. For the sake of scalability, at no point dur-
ing computation the memory of a single process contains all the data from any of the cycles.
The counter example generation is thus performed through collaboration of the parallel pro-
cesses. We develop a method for the counter example generation keeping a low peak memory
requirement during the backward step and the computation of the inverse transition relation.
We implemented our method on a standard, loosely-connected environment of workstations,
using a high-performance SMV-based model checker. Our initial performance evaluation using
several large circuits shows that our method can check models that are too large to fit in the
memory of a single node. Our on-the-fly approach may find counter examples even when the
model is too large to fit in the memory of the parallel system.

DOI: http://dx.doi.org/10.1007/3-540-40922-X 24

7 Annotated Bibliography 44
7.7 Achieving Speedups in Distributed Symbolic Reachability Analysis through

Asynchronous Computation [25]

Due to time constraints, I merely copy the abstract here:

This paper presents a novel BDD-based distributed algorithm for reachability analysis which
is completely asynchronous. Previous BDD-based distributed schemes are synchronous: they
consist of interleaved rounds of computation and communication, in which the fastest machine
(or one which is lightly loaded) must wait for the slowest one at the end of each round. We
make two major contributions. First, the algorithm performs image computation and message
transfer concurrently, employing non-blocking protocols in several layers of the communication
and the computation infrastructures. As a result, regardless of the scale and type of the un-
derlying platform, the maximal amount of resources can be utilized efficiently. Second, the
algorithm incorporates an adaptive mechanism which splits the workload, taking into account
the availability of free computational power. In this way, the computation can progress more
quickly because, when more CPUs are available to join the computation, less work is assigned
to each of them. Less load implies additional important benefits, such as better locality of
reference, less overhead in compaction activities (such as reorder), and faster and better work-
load splitting. We implemented the new approach by extending a symbolic model checker from
Intel. The effectiveness of the resulting scheme is demonstrated on a number of large industrial
designs as well as public benchmark circuits, all known to be hard for reachability analysis.
Our results show that the asynchronous algorithm enables efficient utilization of higher lev-
els of parallelism. High speedups are reported, up to an order of magnitude, for computing
reachability for models with higher memory requirements than was previously possible.

DOI: http://dx.doi.org/10.1007/11560548_12

7.8 Verifying Very Large Industrial Circuits Using 100 Processes and
Beyond [22]

Due to time constraints, I merely copy the abstract here:

Recent advances in scheduling and networking have cleared the way for efficient exploitation
of large-scale distributed computing platforms, such as computational grids and huge clusters.
Such infrastructures hold great promise for the highly resource-demanding task of verifying and
checking large models, given that model checkers would be designed with a high degree of scal-
ability and flexibility in mind. In this paper we focus on the mechanisms required to execute a
high-performance, distributed, symbolic model checker on top of a large-scale distributed envi-
ronment. We develop a hybrid algorithm for slicing the state space and dynamically distribute
the work among the worker processes. We show that the new approach is faster, more effective,
and thus much more scalable than previous slicing algorithms. We then present a checkpoint-
restart module that has very low overhead. This module can be used to combat failures which
become probable with the size of the computing platform. However, checkpoint-restart is even
more handy for the scheduling system: it can be used to avoid reserving large numbers of
workers, thus making the distributed computation work-efficient. Finally, we discuss for the
first time the effect of reorder on the distributed model checker and show how the distributed
system performs more efficient reordering than the sequential one. We implemented our con-
tributions on a network of 200 processors, using a distributed scalable scheme that employs a

7 Annotated Bibliography 45

high-performance industrial model checker from Intel. Our results show that the system was
able to verify real-life models much larger than was previously possible.

DOI: http://dx.doi.org/10.1007/11562948 4

7.9 Roomy: A System for Space Limited Computations [31]

Due to time constraints, I merely copy the abstract here:

There are numerous examples of problems in symbolic algebra in which the required storage
grows far beyond the limitations even of the distributed RAM of a cluster. Often this limitation
determines how large a problem one can solve in practice. Roomy provides a minimally invasive
system to modify the code for such a computation, in order to use the local disks of a cluster
or a SAN as a transparent extension of RAM.

Roomy is implemented as a C/C++ library. It provides some simple data structures (arrays,
unordered lists, and hash tables). Some typical programming constructs that one might employ
in Roomy are: map, reduce, duplicate elimination, chain reduction, pair reduction, and breadth-
first search. All aspects of parallelism and remote 1/O are hidden within the Roomy library.

DOL: http://dx.doi.org/10.1145/1837210.1837216

7.10 Parallel Disk-Based Computation for Large, Monolithic Binary Decision
Diagrams [32]

Due to time constraints, I merely copy the abstract here:

Binary Decision Diagrams (BDDs) are widely used in formal verification. They are also
widely known for consuming large amounts of memory. For larger problems, a BDD compu-
tation will often start thrashing due to lack of memory within minutes. This work uses the
parallel disks of a cluster or a SAN (storage area network) as an extension of RAM, in order
to efficiently compute with BDDs that are orders of magnitude larger than what is available
on a typical computer. The use of parallel disks overcomes the bandwidth problem of single
disk methods, since the bandwidth of 50 disks is similar to the bandwidth of a single RAM
sub-system. In order to overcome the latency issues of disk, the Roomy library is used for
the sake of its latency-tolerant data structures. A breadth-first algorithm is implemented. A
further advantage of the algorithm is that RAM usage can be very modest, since its largest use
is as buffers for open files. The success of the method is demonstrated by solving the 16-queens
problem, and by solving a more unusual problem — counting the number of tie games in a
three-dimensional 4x4x4 tic-tac-toe board.

DOI: http://dx.doi.org/10.1145/1837210.1837222

7.11 Distributed Saturation [8]

Due to time constraints, I merely copy the abstract here:

The Saturation algorithm for symbolic state-space generation, has been a recent break-
through in the exhaustive verification of complex systems, in particular globally-asynchronous/locally-
synchronous systems. The algorithm uses a very compact Multiway Decision Diagram (MDD)

7 Annotated Bibliography

encoding for states and the fastest symbolic exploration algorithm to date. The distributed
version of Saturation uses the overall memory available on a network of workstations (NOW) to
efficiently spread the memory load during the highly irregular exploration. A crucial factor in
limiting the memory consumption during the symbolic state-space generation is the ability to
perform garbage collection to free up the memory occupied by dead nodes. However, garbage
collection over a NOW requires a nontrivial communication overhead. In addition, operation
cache policies become critical while analyzing large-scale systems using the symbolic approach.
In this technical report, we develop a garbage collection scheme and several operation cache
policies to help on solving extremely complex systems. Experiments show that our schemes
improve the performance of the original distributed implementation, SmArTNow, in terms of
time and memory efficiency.

URL: http://ntrs.nasa.gov/search. jsp?R=20070017995

7.12 Caching, Hashing, and Garbage Collection for Distributed State Space
Construction [9]

Due to time constraints, I merely copy the abstract here:

The Saturation algorithm for symbolic state-space generation is a recent advance in exhaus-
tive verification of complex systems, in particular globally-asynchronous/ locally-synchronous
systems. The distributed version of Saturation uses the overall memory available on a net-
work of workstations (NOW) to efficiently spread the memory load during its highly irregular
exploration. A crucial factor in limiting the memory consumption in symbolic state-space gen-
eration is the ability to perform garbage collection to free up the memory occupied by dead
nodes. However, garbage collection over a NOW requires a nontrivial communication overhead.
In addition, operation cache policies become critical while analyzing large-scale systems using a
symbolic approach. In this paper, we develop a garbage collection scheme and several operation
cache policies to help the analysis of complex systems. Experiments show that our schemes
improve the performance of the original distributed implementation, SmartNOW, in terms of
both time and memory efficiency.

URL: http://www.cs.ucr.edu/"ciardo/pubs/2007PDMC-DistSMART.pdf

7.13 Parallelising symbolic state-space generators [17]
Due to time constraints, I merely copy the abstract here:

Symbolic state-space generators are notoriously hard to parallelise, largely due to the irreg-
ular nature of the task. Parallel languages such as Cilk, tailored to irregular problems, have
been shown to offer efficient scheduling and load balancing. This paper explores whether Cilk
can be used to efficiently parallelise a symbolic state-space generator on a shared-memory archi-
tecture. We parallelise the Saturation algorithm implemented in the SMART verification tool
using Cilk, and compare it to a parallel implementation of the algorithm using a thread pool.
Our experimental studies on a dual-processor, dual-core PC show that Cilk can improve the
run-time efficiency of our parallel algorithm due to its load balancing and scheduling efficiency.
We also demonstrate that this incurs a significant memory overhead due to Cilk’s inability to
support pipelining, and conclude by pointing to a possible future direction for parallel irregular
languages to include pipelining.

7 Annotated Bibliography

47

DOI: http://dx.doi.org/10.1007/978-3-540-73368-3_31

7.14 Parallel symbolic state-space exploration is difficult, but what is the

alternative? [13]

Due to time constraints, I merely copy the abstract here:

State-space exploration is an essential step in many modeling and analysis problems. Its
goal is to find the states reachable from the initial state of a discrete-state model described. The
state space can used to answer important questions, e.g., ”Is there a dead state?” and "Can N
become negative?”, or as a starting point for sophisticated investigations expressed in temporal
logic. Unfortunately, the state space is often so large that ordinary explicit data structures and
sequential algorithms cannot cope, prompting the exploration of (1) parallel approaches using
multiple processors, from simple workstation networks to shared-memory supercomputers, to
satisfy large memory and runtime requirements and (2) symbolic approaches using decision
diagrams to encode the large structured sets and relations manipulated during state-space gen-
eration. Both approaches have merits and limitations. Parallel explicit state-space generation
is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately
limited by the memory and processors available. Symbolic methods are a heuristic that can ef-
ficiently encode many, but not all, functions over a structured and exponentially large domain;
here the pitfalls are subtler: their performance varies widely depending on the class of decision
diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic ap-
proaches are often much more efficient than explicit ones for many practical models, we argue
for the need to parallelize symbolic state-space generation algorithms, so that we can realize the
advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic
algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts,
and promising directions toward this goal.

DOI: http://dx.doi.org/10.4204/EPTCS.14.1

7.15 Implementation of an Efficient Parallel BDD Package [46]

Due to time constraints, I merely copy the abstract here:
DOI: http://dx.doi.org/10.1145/240518.240639

7.16 AN ANTICIPATED FIRING SATURATION ALGORITHM FOR
SHARED-MEMORY ARCHITECTURES [20]

Due to time constraints, I merely copy the abstract here:

Parallelising symbolic state-space generation algorithms, such as Saturation, is known to
be difficult as it often incurs high parallel overheads. To improve efficiency, related work on
a distributed-memory implementation of Saturation proposed using idle processors for spec-
ulatively firing events and caching the obtained results, in the hope that these results will
be needed lateron. This paper investigates a variant of this anticipated firing approach for
shared-memory architectures, such as multi-core PCs. Rather than parallelising Saturation,
the idea is to run the sequential Saturation algorithm on one core, while the others are given
speculative work. Since computing the optimal strategy for selecting useful work is likely to be

7 Annotated Bibliography

an NP-complete problem, the paper devises and implements various heuristics. The obtained
experimental results show that moderate speed-ups can be achieved as a result of using antici-
pated firing. However, the proposed heuristics require further work in order to be truly useful
in practice.

link: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.7255

7.17 To Parallelize or to Optimize? [19]

Due to time constraints, I merely copy the abstract here:

Model checking is a popular and successful technique for verifying complex digital systems.
Carrying this techniqueand its underlying state-space generation algorithmsbeyond its current
limitations presents itself with a number of alternatives. Our focus is on parallelization which
is made attractive by the current trend in hardware architectures towards multi-core, multi-
processor systems. The main obstacle in this endeavour is that, in particular, symbolic state-
space generation algorithms are notoriously hard to parallelize. In this article, we describe
the process of taking a sequential symbolic state-space generation algorithm, namely a generic,
symbolic BF'S algorithm, through a sequence of optimizations that leads up to the Saturation
algorithm and follow the impact these sequential algorithms have on their parallel counterparts.
In particular, we develop a parallel version of Saturation, discuss the challenges faced in its
design and conduct extensive experimental studies of its implementation. We employ rigorous
analysis tools and techniques for measuring and evaluating parallel overheads and the quality of
the parallelization. The outcome of these studies is that the performance of a parallel symbolic
state-space generation algorithm is almost impossible to predict and highly dependent on the
model to which it is applied. In most situations, perceivable speed-ups are hard to achieve,
but real-world applications where our technique produces significant improvements do exist.
Nevertheless, it appears that time is better invested in optimizing sequential symbolic model
checking algorithms rather than parallelizing them.

DOI: http://dx.doi.org/10.1093/logcom /exp006

7.18 A PARALLEL SATURATION ALGORITHM ON SHARED MEMORY
ARCHITECTURES [21]

Due to time constraints, I merely copy the abstract here:

Symbolic state-space generators are notoriously hard to parallelize. However, the Saturation
algorithm implemented in the SMART verification tool differs from other sequential symbolic
state-space generators in that it exploits the locality of firing events in asynchronous system
models. This paper explores whether event locality can be utilized to efficiently parallelize
Saturation on shared-memory architectures. Conceptually, we propose to parallelize the firing
of events within a decision diagram node, which is technically realized via a thread pool. We
discuss the challenges involved in our parallel design and conduct experimental studies on its
prototypical implementation. On a dual-processor dualcore PC, our studies show speed-ups for
several example models, e.g., of up to 50 % for a Kanban model, when compared to running
our algorithm only on a single core.

link: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.114.1039

7 Annotated Bibliography 49
7.19 Can Saturation be Parallelised? [18]

Due to time constraints, I merely copy the abstract here:

Symbolic state-space generators are notoriously hard to parallelise. However, the Saturation
algorithm implemented in the SMART verification tool differs from other sequential symbolic
state-space generators in that it exploits the locality of firing events in asynchronous system
models. This paper explores whether event locality can be utilised to efficiently parallelise
Saturation on shared-memory architectures. Conceptually, we propose to parallelise the firing
of events within a decision diagram node, which is technically realised via a thread pool. We
discuss the challenges involved in our parallel design and conduct experimental studies on its
prototypical implementation. On a dual-processor dual-core PC, our studies show speed-ups
for several example models, e.g., of up to 50% for a Kanban model, when compared to running
our algorithm only on a single core.

DOI: http://dx.doi.org/10.1007/978-3-540-70952-7_23

7.20 The Fortress Language Specification [1]

The Fortress programming language aims to provide ways to do multithreaded and parallel programming
while still retaining some of the look of traditional programming languages and accounting for the lessons
learned from the last few decades. Fortress provides a relatively traditional data type system, perhaps de-
scribable as a cross between Java types and functional types, allowing inheritance between interfaces (traits
ala Java interfaces), but without traditional Class types. Most control structures in Fortress are parallel
by default, with some allowing the keyword “sequential” to specify sequential behavior. Several syntactic
improvements enable the use of relatively math-like notation where appropriate, and include additional
opportunities for default parallelism. In particular, Set, Array, and Map comprehensions involve implicit
multithreading. The syntactic enhancements also include additional mathematical operator syntax, but
come at some cost, in that many rules are needed to understand exactly how some expressions will be
parsed.

A hierarchical system of regions is provided to allow program control of placement of threads, and
possibly data structures, although it is not clear how to control the distribution of an array. (Possibly
nested) atomic statements are provided so the programmer can avoid race conditions involving shared
variables.

Static parameters may be used with functions and Object types, similarly to template parameters in
C++.

Contracts allow specification of preconditions, postconditions, and invariants. These must be exe-
cutable, however.

Overall, ignoring certain enhancements, Fortress is about what I would expect from an effort to extend
a ‘normal’ language, such as Java, to include support for multithreaded series-parallel computation for
‘normal’ processor systems, such as clusters of x86 multicores. It is an improvement over some previous
attempts at parallel languages, and may remain applicable for some time. I can however easily see the
possibility of a much better language being implemented as part of the current work.

Of particular interest to me is their specification of Symmetric Multiple Dispatch, the implementation
of which is described in a separate paper. This relates to the repair of the Ephemeral language, which
may require some sort of multiple dispatch. It is remotely possible that Fortress will make a good target
language for an Ephemeral compiler.

link: http://labs.oracle.com/projects/plrg/fortress.pdf

7 Annotated Bibliography 50
7.21 The Scala Language Specification Version 2.9 [39]

Scala is a Java-like language with numerous extensions, supporting the development of “domain-specific”
languages as libraries within Scala. To this end, parametric (with type parameters) and ad-hoc polymor-
phic object oriented programming is carefully supported in the language. For example, looping control
structures are “virtualized”, so that those control structures (say “for” loops) are syntactic sugar for some-
thing like iterator calls to the loop variable, so the meaning of loops can be changed by the type of the
loop variable. Also, “Implicits” allow some call parameters to be automatically inserted by the compiler,
increasing the power of user-defined libraries. An “implicit” parameter, when not given at a call site will
be automatically be set to an “implicit” value of the appropriate type if exactly one is visible in the call
scope. The actual rules for implicits are more complex, and also allow implicit values to be automatically
used as type conversion functions, called “views”. The standard library also has some predefined implicits,
that allow a user-defined (polymorphic) library to obtain a “manifest” structure describing the type of
data as seen by the library user.

There is considerable syntactic flexibility in definition of operator names, allowing library authors to
enhance the appearance of code that uses their libraries. Scala also uses the Unicode character set, with
its extra operator characters, and allows XML embedding.

The standard implementation compiles to JVM byte codes. That feature made me initially doubt the
relevance of this language, since I don’t consider the JVM to be a likely platform for massively parallel
processing. In fact, there is no mention of parallelism or even threading in the language or the standard
library specification, although all the Java libraries are fully accessible.

However, Scala seems to be near the cutting edge of research on hosting application-specific mini
languages, which is an alternative approach to some goals of the current proposal. Scala library authors
may effectively define (using OOP and meta-programming-like techniques) mini-languages with which to
write application code.

Whereas I propose to allow user-defined code transformations in the optimization process for a declar-
ative language, Scala allows users to embed (and optimize in any manner they wish) application-specific
languages, allowing the library author and user to guarantee good performance.

The primary weakness I see with this approach, is that Scala does not enforce correctness of such
libraries, as they are user-defined and specified, and the language does not provide for their formal specifi-
cation. Thus, a functional error in the object code could be due to either the user or to the library author.
The current proposal requires that code transformations refine entailment, so that functional errors in
object code are always traceable to the application specification.

In the arena of dynamically typed languages, it is useful to remember that lisp has long been used to
host embedded mini-languages, through the use of the macro mechanism.

link: http://www.scala-lang.org/node/198

7.22 Scala-Virtualized [35]

Scala-Virtualized is an extension, of the Scala language, that provides improved facilities for hosting
domain-specific languages. The three major extensions are as follows: 1. “infix methods” improve syntactic
flexibility by effectively allowing the addition of class members externally to the definition of the class. 2.
“Fully virtualized” program structures. All program constructs are considered syntactic sugared versions of
method calls, rather than just looping constructs as with Scala originally. Consequently, the object system
can convert what appears to be a plain Scala program into a strongly typed abstract syntax tree which
can then be processed by a user-defined library to produce transformed code. 3. Additional information
about source code files is made available to library code, so that user-defined libraries may produce more
meaningful error messages when used incorrectly.

7 Annotated Bibliography 51

Scala-Virtualized has been successfully used to embed SQL queries within Scala programs in a type-safe
manner, among other impressive achievements. As Scala-Virtualized is being developed by the developers
of Scala, I imagine this represents the next step in the evolution of Scala. Likewise, my comments on the
Scala language also apply to Scala-Virtualized. There is no strong support for formal proof of correctness,

and no strong support for parallelism or even multi-threading apart from the Java libraries.
DOI: http://dx.doi.org/10.1145/2103746.2103769

7.23 Leveraging Data-Structure Semantics for Efficient Algorithmic
Parallelism [15]

This paper describes a novel programmer-assisted method for parallelizing code, based on the under-
standing that efficient methods for determining some program properties necessary for efficient parallelism
cannot be anticipated by the compiler writer. In particular, the data footprint of a computation or of a
sub-computation cannot always be represented efficiently as list of memory locations. Also, the footprint
cannot always be determined statically, due to the data-dependent nature of many computations, as well as
the use of pointers and indexing. The data footprint of computations can be useful for determining which
computations (from existing sequentially written code) can be run in parallel. In particular, operations
with non-overlapping memory footprint may be executed in parallel. Unfortunately, comparing footprints
based on lists of memory locations is infeasible for parallelizing significant programs.

The described system provides C+-+ templates and run-time components that allow a programmer
to provide additional information to enable effective parallelization. The system represents the memory
footprint of an operation abstractly, using types supplied by the programmer. The programmer also
provides notifications of changes in the memory footprint of an operation, as well as a way of checking
overlap (and also checking probability of overlap) in footprints represented by the programmer-supplied
types. At run-time, the system calls the programmer-supplied checking functions to determine suitability
of allowing parallel execution of the available operations. The system does this in 2 ways. In systems with
software transactional memory (STM), this information is used to throttle concurrency based on probability
of rollback. For other systems, it is used to obtain guarantees of non-interference before allowing parallel
execution.

This can work well, because the programmer often knows an efficient representation of the desired
footprint. For example, operations that each perform incremental operations on trees, then recursively
descending on subtrees, have a footprint that can be conservatively be represented by reference to the
node on which they are currently operating, the footprint being the subtree under that node. In this case,
overlap between two footprints can be checked by inspecting the relation between the two referenced nodes.

The disadvantage of this approach (aside from the obvious fact that this implementation only applies
to C++) is that there are no correctness guarantees as there are with some systems that rely on static
analysis.

This is a very good example of a system that utilizes programmer knowledge (expressed procedurally, in
this case) that potentially goes far beyond what can be anticipated by the toolmaker (or compiler writer),

to enable greater program performance improvements.
DOI: http://dx.doi.org/10.1145/2016604.2016638

7.24 Distillation with Labelled Transition Systems [27]

The “Distillation” transform for functional programs was introduced in 2007 as an automatic way to
perform certain transforms of list processing code previously thought to require mathematical insight. This

7 Annotated Bibliography 52
paper discusses an explanation of how the Distillation transform sometimes produces a genuine algorithmic
improvement having super-linear speedup. A correctness proof is also sketched.

This is vaguely reminiscent of a 1984 Lisp conference paper subtitled “Listlessness is better than
laziness”.

This paper provides yet another example of the many optimization techniques that are somewhat
specialized and hence not desirable to incorporate into a general purpose compiler, yet are highly desirable
for many programs, necessitating its use in some compilers.

The proposed work solves this dilemma by providing a framework in which a user may safely define
and invoke this optimization without modifying the compilation system itself.

DOI: http://dx.doi.org/10.1145/2103746.2103753

7.25 StagedSAC: A Case Study in Performance-Oriented DSL
Development. [50]

This paper describes two implementations of SAC (Single Assignment C)-like languages in the Scala-
Virtualized framework. SAC is a C-like language with a single-assignment rule for variables, and some
additional array manipulation constructs intended for parallel implementation. In the first implementation,
“LibrarySAC”, a library is defined, utilizing the syntactic flexibility of Scala to provide the programmer
with a way of writing SAC-like code within Scala. SAC functionality is then available within Scala through
the use of library calls.

The second implementation, “StagedSAC”, is accessed through library calls within Scala-Virtualized,
but achieves higher performance through code optimizations and a “lightweight modular staging” (LMS)
framework, also implemented in Scala-Virtualized. The full virtualization of Scala-Virtualized allows the
library code to extract abstract syntax trees of the StagedSAC portion of the code. The library, at
compile time, then performs transformations and optimizations on the code, resulting in improved Scala
code. A constraint system on array shapes is derived from the program graph, the solution of which
sometimes provides partial information on array shapes. Whatever partial information was derivable at
compile time about array shapes is then used to optimize array code, via such improvements as removal
of redundant index bounds checks, and later, loop specialization. All this information is passed to the
LMS framework, which provides common optimizations such as constant folding, CSE, code motion, etc.
Other optimizations such as tiling may be applied to improve cache effectiveness. Upon request, the Delite
framework may also be used to do additional optimizations and generation of GPU code. One of the major
contributions of this work is the ability to use partial shape information in certain ways for optimizing
array code.

A results section provides comparisons between various levels of optimization of the StagedSAC imple-
mentation (executing on JVM) and a native SAC implementation, for some sample array programs (not
using GPU). The fully implemented StagedSAC programs running on JVM had run-times within an order
of magnitude of that of their corresponding natively compiled SAC programs.

This illustrates Scala being used for what it does best, the implementation and customized optimization
of “Domain-Specific” languages within the bounds of interoperability within a general purpose strongly
typed language.

DOI: http://dx.doi.org/10.1145/2103746.2103762

7.26 Active Pebbles: Parallel Programming for Data-Driven Applications [53]

Active Pebbles attempts to provide a framework for message-passing parallel programs that naturally
utilize small messages with little or no coherence or predictability in the message flow patterns. Such

7 Annotated Bibliography 53
programs may experience performance problems on traditional platforms, due to their high per-message
overhead for inter-processor communications. Pebbles are (potentially very small) messages sent between
entities. There may be very many senders, and very many receivers, called targets (also potentially very
small). One may imagine the data flow pattern as a storm in a room full of tiny pebbles. There is no
expectation of regular patterns or coherence. They provide results showing that Active Pebbles gives good
performance for various benchmarks on top of various parallel programming platforms. The authors list 5
mechanisms responsible for the performance of their framework.

1 Fine-Grained Pebble Addressing: Pebbles are addressed directly to their target, with an address of
reasonable size.

2 Message Coalescing: Pebbles may be aggregated temporarily into larger messages by the AP mecha-
nisms, to decrease the messaging overhead on platforms that only efficiently support larger messages.

3 Active Routing: Pebble flow is slightly adjusted, to increase the probability of message coalescing.

4 Message Reduction: Depending on program semantics, certain pebbles may be reduced in transit, if
they are coalesced into the same message.

5 Termination Detection: Support is provided for some distributed quiescence detection algorithms.

[find 1, 2, and 3 most interesting, as these are the mechanisms that overcome the small-message penalty
on some platforms. This occurs with the penalty of small additional latencies introduced by the active rout-
ing and coalescence mechanisms. Fortunately, these mechanisms are programmable, and can be adjusted
to also efficiently handle workloads with well-understood communication patterns. The observed perfor-
mance justifies my assumption (in Ephemeral) that small messages (within the computing/programming
model) are reasonably efficient and sufficient for all parallel programming needs.

This may provide a convenient implementation target for the parallel compiler, if there is not sufficient
time to implement Ephemeral. If there is time to implement Ephemeral, it would be wise to consider use
of some mechanisms from Active pebbles.

DOI: http://dx.doi.org/10.1145/1995896.1995934

7.27 Position paper: Using a “Codelet” Program Execution Model for Exascale
Machines. [56]

The authors observe that course-grained parallelism, of the type that is efficiently supported by extant
architectures, denies the run-time system of certain opportunities for adaptation, and tends to require large
overheads for certain operations, such as task swapping and migration. The authors claim that their work
indicates improvements are possible by dividing the program into smaller pieces (codelets) for execution.

The Codelet model they propose appears to be a hybrid between Ephemeral and the dataflow model.

It is difficult for me to see this work as original, as I have seen many hybrid dataflow systems proposed
since the early 1980’s, and the dataflow model is certainly no stranger to the use of small executable units.
The part that seems novel to me is the claim that their work supports this. It’s too bad the paper gives no
details about, or references to such work. But I suppose that is to be expected from a paper that mentions
IBM Cyclops-64, and Intel’s single chip cloud machine, but not Sun’s Niagara.

A generic hardware model is also mentioned, having a hierarchy of 4 levels (system, node, chip, and
cluster), the typical unit for each level containing an interconnect and multiple units of a lower level
attached to the interconnect. The node level unit also has extra DRAM banks attached to its interconnect.
The lowest, cluster, level has computing units (CU) and at least one scheduling unit (SU), and a cluster

7 Annotated Bibliography 54
memory, and interconnect between them. CUs and SUs have local memory and multiple register sets.
SUs also have the ability to communicate with SUs in other clusters, presumably for load balancing and
migration.

The relation between the hardware model and the codelet model is not clearly explained. My guess
is that this paper was trimmed from a larger paper, and the hardware model was left in to provide some
notion of what kind of computer would benefit from use of the codelet model.

DOI: http://dx.doi.org/10.1145/2000417.2000424

7.28 Adaptive Runtime Selection of Parallel Schedules in the Polytope
Model [42]

This is limited to Polytope model computations, but has improved accuracy compared to many other
techniques. The limitation to possibly parametric polytope model computations allows analytical determi-
nation of loop iteration counts and array sizes after the input array sizes are known. This, in turn, allows
improved performance prediction.

The compiler may produce multiple versions of the code depending on how flexible the array data
dependencies are. Their method produces a modified code at compile time which performs profiling on
itself, along with the production code for performance execution. At install time, each code version is
profiled systematically, with various numbers of threads, various input array sizes/shapes, and various tile
sizes. The profile data, after tabulation, effectively defines a performance model for the code. Finally, at run
time, the input sizes are known, and the number of available processors/threads is known approximately,
so that the model can be used to predict the performance of the best variation of each version of the code.
For each version, the best parameters can be predicted, such as number of threads to use, and tile sizes,
depending on input sizing and processor loading, etc.

This method performs quite well at selecting a good version of the code to execute, because it is able
to account for almost all factors influencing performance. These include: processor design (considered by
load-time profiling), Input data size/shape (accounted for by systematic profiling using Polytope model)
Processor resource availability /loading (via profiling with various numbers of threads)

What I find relevant about this work is that it explores one of many instances where a large class of
computational problems (HPC codes) which are in general difficult to optimize, has a frequently occurring
subset of problems (in this case, problems expressible as coherent loop nests with simple dependencies)
which, as this research now shows, are relatively easy to optimize well, even for parallel processing.

My proposed project will provide a framework in which such cases may be defined and recognized, and
in which to express what needs to be done in such cases, without requiring actual compiler modification.

link: http://dl.acm.org/citation.cfm?id=2048588

7.29 The Elephant and the Mice: The Role of Non-Strict Fine-Grained
Synchronization for Modern Many-Core Architectures [43]

This paper explores 4 questions, among them is the performance gain achievable by the use of non-
strict fine-grained synchronization (dataflow tokens, full/empty tag bits, synchronization state buffer), as
compared with other synchronization mechanisms (barriers, signal-wait).

The authors implemented three fine-grained synchronization mechanisms for the (single-chip) IBM
Cyclops-64, and tested it in very carefully crafted simulations to ensure accuracy of results. The IBM
Cyclops-64 has a relatively symmetric NUMA architecture with a large crossbar and 160 “thread units”
(single issue cores) in pairs having a shared FPU and a crossbar port. Each group of 10 thread units also
share an instruction cache, every four of which also share a crossbar port. Each core has its own data

7 Annotated Bibliography 55
memory, and direct (but higher latency) access to all other cores data memories through the crossbar.
There are no data caches. The cores have scoreboarding which allows some out-of-order execution and
write back. There is also a common high-speed synchronization bus shared by all cores.

The mechanism(s) implemented were integrated deeply into the architecture in the form of an Extended
Synchronization State Buffer (ESSB). The ESSB essentially simulates the use of imaginary tag bits attached
to some memory locations chosen implicitly by the program. Special load and store instructions utilize the
ESSB. In the most effective mechanism tried, ESSB3, a special store sets the full bit associated with the
memory location, after which the special load instruction resets it. If the load instruction occurs before
the needed value has been stored to the location, a stall may eventually occur, but the thread will be
automatically resumed once the data becomes available. The load instruction still issues but the thread
will not stall until the value itself is needed by an operation.

The ESSB mechanisms, along with barriers and signal-wait, were all tested with customized versions
of a number of benchmarks. As hoped for, the ESSB3 versions of all programs scaled well as long as there
was available parallelism, while performance of the equivalent versions using other mechanisms became
limited due to synchronization overhead. In particular, a case of the wavefront benchmark gave almost
linear speed up out to 160 threads with ESSB3, while the best of the other methods (signal-wait) only
scaled to about 115 threads.

One of the other results of the paper is that introduction of fine-grained synchronization increases the
hardware size by at most 10%, that almost entirely due to the ESSB cache-like structure itself.

I claim this provides additional justification for doing things in a fine-grained manner in parallel com-
puting models, as in Ephemeral, although this paper only addresses synchronization methods.

DOI: http://dx.doi.org/10.1145/1995896.1995948

7.30 Programmable Data dependencies and Placements [7]

This paper is based on the factoring of a (data-independent) program into a data dependency graph,
and the individual computations performed at graph nodes. The proposed use of a data dependency
algebra (DDA) to generate the dependency graph is described, as well as use of a space-time DDA (STA)
to describe the communication topology of a parallel processor architecture. The main idea is that a
(data-independent) program can be expessed as the following three modules:

1. The algorithm, independent of data dependency.
2. The data dependency graph expressed as a DDA.
3. The mapping/embedding from the DDA to a the STA of the execution platform.

and that 3 can be generated automatically from 2 and the platform STA, while the programmer factors the
program into 1 and 2. The compiler writers are to be responsible for generating the STA graph descriptions
of target platforms. The paper goes on to describe DDAs for various parallel algorithms, then STAs for
various processing topologies, then various embeddings of DDAs into STAs, and then code generation.
The system was not yet implemented, so the performance results are due to manually “compiled” code.

This system is simillar to a proprietary system “GAUSS” that I ‘almost’ implemented in 1989. GAUSS
did not require programs to be data-independent, however data-dependent programs required more pro-
grammer annotation (manual allocation of processor resources).

It is also simillar to another proprietary system I proposed later in 1989, that would automatically
handle C code, limited to the data-independent case.

7 Annotated Bibliography 56
This paper, together with some of its referrences, shows that automatic placement of computations
onto processors in various topologies has long advanced to a point sufficient to support many practical

high performance applications.
DOI: http://dx.doi.org/10.1145/2103736.2103741

7.31 Expressive array constructs in an embedded GPU kernel programming
language [14]

This paper describes the experimental addition of a secondary kind of array to the Obsidian GPU Kernel
Programming Language.

Obsidian is a Haskell package for generating GPU kernels. Using Obsidian, one writes Haskell code that
produces a Kernel. Unlike many code generators, the Obsidian/Haskell program resembles the generated
kernel, so the programming process is more like writing a kernel in a high level language than like writing
a code generator. Obsidian provides GPU-limited versions of the usual programming constructs, including
arrays. The existing array construct, “pull” arrays, may be read using complex index expressions, but
may only be constructed (written) using coherent indexing, such as an affine function of the threadid.
This works quite well sometimes, for example, allowing a simple form of automatic loop fusion. In some
cases, such as array concatenation, this is inefficient, as it requires use of conditionals within a kernel.
The situation is improved through the use of the novel “push” arrays. Push arrays may be written using
complex indexing expressions, but may not be read that way. After construction, a push array may then
be effectively converted to a pull array, requiring insertion of synchronization code between these different
uses. The paper proceeds to illustrate the use of push arrays via simple parallel sorting kernels (Batcher’s
bitonic algorithm) and performance measurements.

This is another example of a case where a particular optimization (separation of gather and scatter
operations into layers with intervening synchronization), has the following characteristics: One would not
expect it to be built into any compiler, but research shows it is quite effective for certain specialized
situations. It seems obvious enough to be discoverable by any serious programmer.

DOI: http://dx.doi.org/10.1145/2103736.2103740

7.32 The Sequential Prison [49]

The computer graphics (and OOP) pioneer, Ivan Sutherland, makes the case that the self-propagating
cycle of learning and teaching sequential programming has become so entrenched that there will be no
escape without a significant change in the way computation is seen. More specifically, he claims that even
the use of languages encoded as sequences of characters causes a sequential bias in our thinking about
computations so expressed. Many other observations are made in his talk. Asynchronous logic is almost
never used in modern systems, even though it potentially offers considerable energy savings. This may
be evidence that computer engineers are stuck in a rut (sequential clocked vs. self-timed logic) similar to
that (sequential vs. parallel) of computer scientists. The way programming is described contributes to the
sequential prison. A program is usually defined as a sequence of steps. Sutherland says that computer
scientists need to stop using the word “programming” for what they do, and use another word, such as
(perhaps) “configuration”; if they are to ever escape the rut.

The current proposal seeks to avoid becoming trapped in the sequential prison, in various ways including
the following: Predicate logic programming is used at all levels, so that effort is required to introduce
sequencing. Only an abstract syntax is defined, to avoid the necessity of expressing programs as a sequence
of bytes. The system target is the Ephemeral language, which itself avoids sequential bias.

DOI: http://dx.doi.org/10.1145/2048066.2048068

7 Annotated Bibliography 57

VIDEO: http://dl.acm.org/ft_gateway.cfm?id=2048068&ftid=1163270
&dwn=1&CFID=120492121&CFTOKEN=31776533

7.33 Adapt or become extinct! The Case for a Unified Framework for
Deployment-Time Optimization [24]

I should perhaps take this advice, as this project was hatched in the early 80s. =)

This paper advocates the adoption of adaptation in many forms as a necessity for future high -
performance computing applications, especially for scaling the “walls” of memory, communications, parallel
programming, power, etc.

It appears that homogeneity may never arrive in the area of high-performance /high-efficiency computing
the way it has for desktop computing. This in mind, the authors point out that a code that is tuned for one
system is quite likely to perform poorly on another system, due to potential differences in a variety of system
attributes, all of which may need to be accounted for in the code if it is to perform well. These attributes
include ISA, number of processors, memory per processor, interconnection network, cache sharing and
cache hierarchy, among others.

Various extant adaptation strategies are discussed, such as optimizing compilers, algorithms with vari-
ous adjustable performance parameters, auto-tuning libraries, choice of different communication packages,
scheduling methods, and cache-coherence protocols.

It is also pointed out that sometimes adaptation must be done at run-time, for example choosing
matrix representations and algorithms based on the sparseness of data and on the nature of sub-structures.
Another example is the use of schedulers that schedule complementary workloads together to optimize
resource utilization. Another example is use of profiling data.

It is also pointed out that all these techniques are applied in a rather ad-hoc manner, and that a more
holistic approach will be necessary in the future. The authors propose an “adaptation infrastructure”
where a single decision maker receives information both at run-time, and before, in the form of programmer
annotations, static analysis, profile data etc., and uses all this information to make adaptation decisions
of all kinds, both before and during run-time.

I would only point out that having a programming language capable of expressing and controlling
compiler optimizations could greatly simplify the task of creating such an infrastructure, especially in the
case where correctness is required.

DOI: http://dx.doi.org/10.1145/2000417.2000422

7.34 Implementation of a Hierarchical N-Body Simulator Using The OmpSs
Programming Model [41]

This paper describes lessons learned parallelizing Treecode, an N-body gravitation simulator using the
Barns-Hut algorithm, for execution on a moderately (4 6-core Xeon with a total of 48 GB) parallel system.

The OmpSs system is an extension of OpenMP, with additional annotations to designate data flow
directionality between tasks. OmpSs also adds an extra thread for each processor to manage data-flow-like
task synchronization.

The authors consider this algorithm to be a representative example of “irregular scientific applications”,
in that it solves a problem that could be solved using array computing on a regular grid, but requires less
computation, by doing things in a data-dependent manner.

Even on this system with large traditional processors having large memories, the main lesson reported
is that finer grained tasks were much better for load balancing, and that processors should include support
for task creation and scheduling for larger numbers of smaller tasks to improve processor utilization.

7 Annotated Bibliography 58
DOI: http://dx.doi.org/10.1145/2089142.2089150

7.35 Communication and Concurrency [33]

This is Milner’s famous reference on verification of concurrent systems, which contains the definition of
bisimulation I use. It also contains the ‘round-robin’ scheduler model used in some of my benchmarks in
bisimulation research.

7.36 Concurrency and Automata on Infinite Sequences [40]

This is another famous reference on bisimulation, which must be referenced, but which I did not actually
read. I copy the abstract here:

The paper is concerned with ways in which fair concurrency can be modelled using notations
for omega-regular languages languages containing infinite sequences, whose recognizers are
modified forms of Biichi or Muller-McNaughton automata. There are characterization of these
languages in terms of recursion equation sets which involve both minimal and maximal fixpoint
operators. The class of w-regular languages is closed under a fair concurrency operator. A
general method for proving/deciding equivalences between such languages is obtained, derived
from Milner’s notion of simulation.

DOI: http://dx.doi.org/10.1007/BFb0017309

7.37 Graph-Based Algorithms for Boolean Function Manipulation [6]
Due to time constraints, I merely copy the abstract here:

In this paper we present a new data structure for representing Boolean functions and an
associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs
in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further
restrictions on the ordering of decision variables in the graph. Although a function requires, in
the worst case, a graph of size exponential in the number of arguments, many of the functions
encountered in typical applications have a more reasonable representation. Our algorithms
have time complexity proportional to the sizes of the graphs being operated on, and hence are
quite efficient as long as the graphs do not grow too large. We present experimental results
from applying these algorithms to problems in logic design verification that demonstrate the
practicality of our approach.

DOI: http://dx.doi.org/10.1109/TC.1986.1676819

7.38 MACLISP Reference Manual [34]

This manual contains all that is needed to understand the detailed operation of MACLISP. It was from this
manual that I first learned the operation of LISP macros. As LISP operates by eager evaluation, macros
provide one of the few ways to simulate lazy evaluation. The evaluator will call the macro (possibly at run-
time) using the source code of the un-evaluated arguments, so that the macro may give to the arguments
whatever semantics are desired. Proper use of the argument source code by the macro requires care, as
evaluating such source may accidentally cause references to the internal variables of the macro, instead
of the entity they statically appear to reference. This and other related problems eventually lead to the
invention of ‘Hygienic’ Macro Expansion, discussed next.

7 Annotated Bibliography 59
7.39 Hygienic Macro Expansion [30]

I viewed the presentation of this paper at the 1986 conference on LISP and Functional Programming.
The authors presented a workable solution to the problems of incorrect references that can occur when
using macros in non-statically scoped variants of LISP. It was noted that unfortunately, the solution was
implemented entirely in the interpreter and other such supporting code, in such a way that the solution was
not clearly describable within the language itself, so that a meta-level solution could not be constructed
(within user-modified evals presumably) within the language as implemented. Thus, there remained some
messiness clouding the meaning of macro expansions.
DOI: http://dx.doi.org/10.1145/319838.319859

7.40 Syntactic Closures [2]

This paper (which I also viewed at the 1988 conference on LISP and Functional Programming), Presented a
solution to the messiness problem for the ‘extend-syntax’ feature of the R? Scheme programming language.
Again, however, there was unfinished business. It appeared that the language implementation had to

manipulate things in a way that programs in the language could not, in order to make things work cleanly.
DOI: http://dx.doi.org/10.1145/62678.62687

7.41 A Confluent Calculus of Macro Expansion and Evaluation [5]

Due to time constraints, I merely copy the abstract here:

Syntactic abbreviations or macros provide a powerful tool to increase the syntactic expres-
siveness of programming languages. The expansion of these abbreviations can be modeled
with substitutions. This paper presents an operational semantics of macro expansions and
evaluation where substitutions are handled explicitly. The semantics is defined in terms of a
confluent, simple, and intuitive set of rewriting rules. The resulting semantics is also a basis
for developing correct implementations.

DOL: http://dx.doi.org/10.1145/141471.141562

7.42 The C++ Programming Language [47]

Due to time constraints, I merely copy the abstract here:

Written by Bjarne Stroustrup, the creator of C, this is the world’s most trusted and widely
read book on C. For this special hardcover edition, two new appendixes on locales and standard
library exception safety have been added. The result is complete, authoritative coverage of
the C language, its standard library, and key design techniques. Based on the ANSI/ISO C
standard, The C Programming Language provides current and comprehensive coverage of all C
language features and standard library components. For example: abstract classes as interfaces
class hierarchies for object-oriented programming templates as the basis for type-safe generic
software exceptions for regular error handling namespaces for modularity in large-scale software
run-time type identification for loosely coupled systems the C subset of C for C compatibility
and system-level work standard containers and algorithms standard strings, I/O streams, and
numerics C compatibility, internationalization, and exception safety Bjarne Stroustrup makes
C even more accessible to those new to the language, while adding advanced information and
techniques that even expert C programmers will find invaluable.

7 Annotated Bibliography 60
7.43 The C++ Programming Language [48]

Due to time constraints, I merely copy the abstract here:

C++11 has arrived: thoroughly master it, with the definitive new guide from C++ creator
Bjarne Stroustrup, C++ Programming Language, Fourth Edition! The brand-new edition of
the world’s most trusted and widely read guide to C++, it has been comprehensively updated
for the long-awaited C++11 standard. Extensively rewritten to present the C++11 language,
standard library, and key design techniques as an integrated whole, Stroustrup thoroughly
addresses changes that make C+-+11 feel like a whole new language, offering definitive guidance
for leveraging its improvements in performance, reliability, and clarity. C++ programmers
around the world recognize Bjarne Stoustrup as the go-to expert for the absolutely authoritative
and exceptionally useful information they need to write outstanding C++ programs. Now, as
C++11 compilers arrive and development organizations migrate to the new standard, they
know exactly where to turn once more: Stoustrup’s C++ Programming Language, Fourth
Edition.

7.44 Preliminary Ada Reference Manual [29]

I learned Ada from this version of the Ada Reference Manual in 1980. It is interesting to remember that
generic procedures was in its own separate chapter from non-generic procedures. The use of generics in
Ada is quite strongly typed, and appears to be a definite advance over the use of macros when program
understandability is of paramount importance. Ada generics are, of course, much less flexible than C+-+
templates, but, at the time, I saw that the Ada type system was at least more flexible than that of Pascal.
The Ada language remained essentially unchanged until the revisions by the Ada9X efforts, which were
probably implemented sometime after 1999.
DOI: http://dx.doi.org/10.1145/956650.956651

7.45 The Java Language Specification, Java SE 7 Edition [23]

Due to time constraints, I merely copy the abstract here:

Written by the inventors of the technology, The Java Language Specification, Java SE 7 Edi-
tion, is the definitive technical reference for the Java programming language. The book provides
complete, accurate, and detailed coverage of the Java programming language. It fully describes
the new features added in Java SE 7, including the try-with-resources statement, multi-catch,
precise rethrow, diamond syntax, strings-in-switch, and binary literals. The book also includes
many explanatory notes, and carefully distinguishes the formal rules of the language from the
practical behavior of compilers.

7.46 C++ Seminar [45]

Due to time constraints, I merely copy the abstract here:

C++ usage has changed drastically over the past ten years with much more advanced use
of templates, meta-programming, functors, and other high-level concepts becoming common.
Last year, a new C++ standard (C++11, formerly C+-+0x) was released with many new and
exciting changes to the language that follow these trends.

URL: http://www.cs.ucr.edu/"cshelton/cppsem.cgi

7 Annotated Bibliography

61

1.47

Impact of Economics on Compiler Optimization [44]

Due to time constraints, I merely copy the abstract here:

Compile-time program optimizations are similar to poetry: more are written than are ac-
tually published in commercial compilers. Hard economic reality is that many interesting
optimizations have too narrow an audience to justify their cost in a general-purpose compiler,
and custom compilers are too expensive to write. An alternative is to allow programmers to
define their own compile-time optimizations. This has already happened accidentally for C++,
albeit imperfectly, in the form of template metaprogramming. This paper surveys the problems,
the accidental success, and what directions future research might take to circumvent current
economic limitations of monolithic compilers.

DOI: http://dx.doi.org/10.1145/376656.376751

7.48

Simpler multi-threaded model checking via new foundations for implicit
encodings [36]

This document provides an appendix having the text of the proof for canonicty of GDDs, along with the

proof that sets represented by GDD-encoded characteristic functions are closed over basic set operations
(union, intersection, complement, various cartesian products). The appendices also provide details of

BundleUnions, the domain over which GDD-encoded functions are defined. The main document also
contains a more grandiose proposal which was abandoned due to schedule constraints.

7.49

URL: http://www.cs.ucr.edu/ mummem/ProposalCD.pdf

A Symbolic Algorithm for Optimal Markov Chain Lumping [16]

Due to time constraints, I merely copy the abstract here:

Many approaches to tackle the state explosion problem of Markov chains are based on
the notion of lumpability, which allows computation of measures using the quotient Markov
chain, which, in some cases, has much smaller state space than the original one. We present,
for the first time, a symbolic algorithm and its implementation for the lumping of Markov
chains that are represented using Multi-Terminal Binary Decision Diagrams. The algorithm
is optimal, i.e., generates the smallest possible quotient Markov chain. Our experiments on
various configurations of two example models show that the algorithm (1) handles significantly
larger state spaces than an explicit algorithm, (2) is in the best case, faster than an efficient
explicit algorithm while not prohibitively slower in the worst case, and (3) generates quotient
Markov chains that are several orders of magnitude smaller than ones generated by a model-
dependent symbolic lumping algorithm.

DOI: http://dx.doi.org/10.1007/978-3-540-71209-1_13

7.50 Using Edge-Valued Decision Diagrams for Symbolic Generation of Shortest

Paths [12]

Due to time constraints, I merely copy the abstract here:

7 Annotated Bibliography

We present a new method for the symbolic construction of shortest paths in reachability
graphs. Our algorithm relies on a variant of edge-valued decision diagrams that supports
efficient fixed-point iterations for the joint computation of both the reachable states and their
distance from the initial states. Once the distance function is it known, a shortest path from
an initial state to a state satisfying a given condition can be easily obtained. Using a few
representative examples, we show how our algorithm is vastly superior, in terms of both memory
and space, to alternative approaches that compute the same information, such as ordinary or
algebraic decision diagrams.

DOI: http://dx.doi.org/10.1007/3-540-36126-X_16

7.51 SMART: Stochastic Model checking Analyzer for Reliability and Timing,
User Manual [11]

Due to time constraints, I merely copy the abstract here:

SMART is a software package that integrates various high-level logical (functional) and
timing/stochastic (nonfunctional) modeling formalisms (e.g., stochastic Petri nets) in a single
modeling study. Each (sub)model is described in a uniform environment and solved using a
variety of solution techniques, from symbolic model-checking for temporal logic verification
to numerical methods and simulation for performance analysis. Since SMART is intended as
a research tool, it is written in a modular way that allows researchers to perform the easy
integration of new formalisms and solution algorithms. One of the main strengths of SMART
is its emphasis on structural decomposition methods for the efficient storage and analysis of
discrete-state models.

URL: http://www.cs.ucr.edu/"ciardo/SMART/

7.52 Symbolic State-Space Generation of Asynchronous Systems Using
Extensible Decision Diagrams [51]

Due to time constraints, I merely copy the abstract here:

We propose a new type of canonical decision diagrams, which allows a more efficient symbolic
state-space generation for general asynchronous systems by allowing on-the-fly extension of
the possible state variable domains. After implementing both breadth-first and saturation-
based state-space generation with this new data structure in our tool SMART, we are able to
exhibit substantial efficiency improvements with respect to traditional static decision diagrams.
Since our previous works demonstrated that saturation outperforms breadth-first approaches,
saturation with this new structure is now arguably the state-of-the-art algorithm for symbolic
state-space generation of asynchronous systems.

DOI: http://dx.doi.org/10.1007/978-3-540-95891-8_52

7.53 Symbolic computation of strongly connected components and fair cycles
using saturation [55]

Due to time constraints, I merely copy the abstract here:

7 Annotated Bibliography

The computation of strongly connected components (SCCs) in discrete-state models is a
critical step in formal verification of LTL and fair CTL properties, but the potentially huge
number of reachable states and SCCs constitutes a formidable challenge. We consider the
problem of computing the set of states in SCCs or terminal SCCs in an asynchronous system.
We employ the idea of saturation, which has shown clear advantages in symbolic state-space
exploration (Ciardo et al. in Softw Tools Technol Transf 8(1):425, 2006; Zhao and Ciardo
in Proceedings of 7th international symposium on automated technology for verification and
analysis, pp 368381, 2009), to improve two previously proposed approaches. We use saturation
to speed up state exploration when computing each SCC in the Xie-Beerel algorithm, and
we compute the transitive closure of the transition relation using a novel algorithm based on
saturation. Furthermore, we show that the techniques we developed are also applicable to the
computation of fair cycles. Experimental results indicate that the improved algorithms using
saturation achieve a substantial speedup over previous BFS algorithms. In particular, with the
new transitive closure computation algorithm, up to 10150 SCCs can be explored within a few
seconds.

DOI: http://dx.doi.org/10.1007/s11334-011-0146-3

7.54 Forwarding, Splitting, and Block Ordering to Optimize BDD-based
Bisimulation Computation [54]

Due to time constraints, I merely copy the abstract here:

In this paper we present optimizations for a BDD-based algorithm for the computation of
several types of bisimulations which play an important role for minimisation of large systems
thus enabling their verification. The basic principle of the algorithm is partition refinement.
Our proposed optimizations take this refinement-structure as well as the usage of BDDs for the
representation of the system into account: (1) block forwarding updates in-situ newly refined
blocks of the partition, (2) split-driven refinement approximates the blocks that may be refined,
and (3) block ordering heuristically suggests a good order in which the blocks will be refined.

We provide substantial experimental results on examples from different applications and
compare them to alternative approaches. The experiments clearly show that the proposed
optimization techniques result in a significant performance speed-up compared to the basic
algorithm as well as to alternative approaches.

link: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.655

7.55 Symbolic bisimulation minimisation [4]
Due to time constraints, I merely copy the abstract here:

We describe a set of algorithmic methods, based on symbolic representation of state space,
for minimisation of networks of parallel processes according to bisimulation equivalence. We
compute this with the Coarsest Partition Refinement algorithm, using the Binary Decision
Diagram structures. The method applies to labelled synchronised vectors of finite automata
as the description of systems. We report performances on a couple of examples of a tool being
implemented.

DOI: http://dx.doi.org/10.1007/3-540-56496-9_9

8 Acknowledgements 64
7.56 Approximate steady-state analysis of large Markov models based on the

structure of their decision diagram encoding [52]

Due to time constraints, I merely copy the abstract here:

We propose a new approximate numerical algorithm for the steady-state solution of general
structured ergodic Markov models. The approximation uses a state-space encoding based on
multiway decision diagrams and a transition rate encoding based on a new class of edge-valued
decision diagrams. The new method retains the favorable properties of a previously proposed
Kronecker-based approximation, while eliminating the need for a Kronecker-consistent model
decomposition. Removing this restriction allows for a greater utilization of event locality, which
facilitates the generation of both the state-space and the transition rate matrix, thus extends
the applicability of this algorithm to larger and more complex models.

DOI: http://dx.doi.org/10.1016/j.peva.2011.02.005

URL: http://www.cs.iastate.edu/"ciardo/pubs/2011PEVA-Approx.pdf

8 Acknowledgements

I acknowledge the Divine Providence of my Lord Jesus, the Christ, especially in showing that the saturation
heuristic would work with non-deterministic bisimulation, and lumping in 2009, and for making obvious
the canonicity of GDDs. I also thank Him for bringing me to the right advisor at the right time. I thank
my advisor for supporting my travel to RP2011, and for suggesting the lumping problem in 2008.

8 Acknowledgements 65

References

1]

2]

[10]

[11]

[12]

[13]

[14]

E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. S. Jr., and S. Tobin-
Hochstadt. The Fortress Language Specification. Technical report, Sun Microsystems, Inc., 2007.

A. Bawden and J. Rees. Syntactic closures. In Proceedings of the 1988 ACM Conference on LISP and
Functional Programming, LEP 88, pages 86-95, New York, NY, USA, 1988. ACM.

S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable distributed on-the-fly sym-
bolic model checking. In Proceedings of the Third International Conference on Formal Methods in
Computer-Aided Design, FMCAD 00, pages 390-404, London, UK, UK, 2000. Springer-Verlag.

A. Bouali and R. de Simone. Symbolic bisimulation minimisation. In G. von Bochmann and D. Probst,
editors, Computer Aided Verification, volume 663 of Lecture Notes in Computer Science, pages 96—108.
Springer Berlin Heidelberg, 1993.

A. Bove and L. Arbilla. A confluent calculus of macro expansion and evaluation. In Proceedings of the
1992 ACM Conference on LISP and Functional Programming, LFP ’92, pages 278287, New York,
NY, USA, 1992. ACM.

R. Bryant. Graph-based algorithms for boolean function manipulation. Computers, IEEE Transac-
tions on, C-35(8):677-691, Aug 1986.

E. Burrows and M. Haveraaen. Programmable data dependencies and placements. In Proceedings of
the 7th workshop on Declarative aspects and applications of multicore programming, DAMP ’12, pages
31-40, New York, NY, USA, 2012. ACM.

M.-Y. Chung, G. Ciardo, and R. I. Siminiceanu. Distributed saturation. Technical report, Hampton,
VA, United States, 2007. NASA /CR-2007-214862, NIA Report No. 2007-05.

M.-Y. Chung, G. Ciardo, and R. I. Siminiceanu. Caching, hashing, and garbage collection for dis-
tributed state space construction. FElectronic Notes in Theoretical Computer Science, 198(1):121-136,
2008. Proceedings of the 6th International Workshop on Parallel and Distributed Methods in verifi-
Cation (PDMC 2007).

M.-Y. Chung, G. Ciardo, and A. J. Yu. A fine-grained fullness-guided chaining heuristic for symbolic
reachability analysis. In Proceedings of the 4th International Conference on Automated Technology
for Verification and Analysis, ATVA’06, pages 51-66, Berlin, Heidelberg, 2006. Springer-Verlag.

G. Ciardo and Others. Smart: Stochastic model checking analyzer for reliability and timing, user
manual. http://www.cs.ucr.edu/ ciardo/SMART/.

G. Ciardo and R. Siminiceanu. Using edge-valued decision diagrams for symbolic generation of shortest
paths. In M. Aagaard and J. O’Leary, editors, Formal Methods in Computer-Aided Design, volume
2517 of Lecture Notes in Computer Science, pages 256-273. Springer Berlin Heidelberg, 2002.

G. Ciardo, Y. Zhao, and X. Jin. Parallel symbolic state-space exploration is difficult, but what is the
alternative? In PDMC, pages 1-17, 20009.

K. Claessen, M. Sheeran, and B. J. Svensson. Expressive array constructs in an embedded gpu kernel

programming language. In Proceedings of the Tth workshop on Declarative aspects and applications of
multicore programming, DAMP 12, pages 21-30, New York, NY, USA, 2012. ACM.

8 Acknowledgements 66

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

R. Cledat, K. Ravichandran, and S. Pande. Leveraging data-structure semantics for efficient algorith-

mic parallelism. In Proceedings of the 8th ACM International Conference on Computing Frontiers,
CF ’11, pages 28:1-28:10, New York, NY, USA, 2011. ACM.

S. Derisavi. A symbolic algorithm for optimal markov chain lumping. In O. Grumberg and M. Huth,
editors, Tools and Algorithms for the Construction and Analysis of Systems, volume 4424 of Lecture
Notes in Computer Science, pages 139-154. Springer Berlin Heidelberg, 2007.

J. Ezekiel, G. Liittgen, and G. Ciardo. Parallelising symbolic state-space generators. In Proceedings
of the 19th International Conference on Computer Aided Verification, CAV’07, pages 268-280, Berlin,
Heidelberg, 2007. Springer-Verlag.

J. Ezekiel, G. Liittgen, and R. Siminiceanu. Can saturation be parallelised? In L. Brim, B. Haverkort,
M. Leucker, and J. van de Pol, editors, Formal Methods: Applications and Technology, volume 4346
of Lecture Notes in Computer Science, pages 331-346. Springer Berlin Heidelberg, 2007.

J. Ezekiel, G. Liittgen, and R. Siminiceanu. To parallelize or to optimize? J. Log. and Comput.,
21(1):85-120, Feb. 2011.

J. Ezekiel, G. Liittgen, and R. I. Siminiceanu. An anticipated firing saturation algorithm for shared-
memory architectures.

J. Ezekiel, G. Liittgen, and R. I. Siminiceanu. A parallel saturation algorithm on shared memory
architectures.

L. Fix, O. Grumberg, A. Heyman, T. Heyman, and A. Schuster. Verifying very large industrial circuits
using 100 processes and beyond. In Proceedings of the Third International Conference on Automated
Technology for Verification and Analysis, ATVA’05, pages 11-25, Berlin, Heidelberg, 2005. Springer-
Verlag.

J. Gosling, B. Joy, G. L. Steele, Jr., G. Bracha, and A. Buckley. The Java Language Specification,
Java SE 7 Edition. Addison-Wesley Professional, 1st edition, 2013.

G. Goumas, S. A. McKee, M. Sjalander, T. R. Gross, S. Karlsson, C. W. Probst, and L. Zhang.
Adapt or become extinct!: the case for a unified framework for deployment-time optimization (position

paper). In Proceedings of the 1st International Workshop on Adaptive Self- Tuning Computing Systems
for the Ezaflop Era, EXADAPT 11, pages 46-51, New York, NY, USA, 2011. ACM.

O. Grumberg, T. Heyman, N. Ifergan, and A. Schuster. Achieving speedups in distributed symbolic
reachability analysis through asynchronous computation. In Proceedings of the 13 IFIP WG 10.5
International Conference on Correct Hardware Design and Verification Methods, CHARME’05, pages
129-145, Berlin, Heidelberg, 2005. Springer-Verlag.

O. Grumberg, T. Heyman, and A. Schuster. A work-efficient distributed algorithm for reachability
analysis. In J. Hunt, WarrenA. and F. Somenzi, editors, Computer Aided Verification, volume 2725
of Lecture Notes in Computer Science, pages 54—66. Springer Berlin Heidelberg, 2003.

G. W. Hamilton and N. D. Jones. Distillation with labelled transition systems. In Proceedings of the
ACM SIGPLAN 2012 workshop on Partial evaluation and program manipulation, PEPM ’12, pages
15-24, New York, NY, USA, 2012. ACM.

8 Acknowledgements 67

28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving scalability in parallel reachability
analysis of very large circuits. In Proceedings of the 12th International Conference on Computer Aided
Verification, CAV 00, pages 20-35, London, UK, UK, 2000. Springer-Verlag.

J. D. Ichbiah. Preliminary ada reference manual. SIGPLAN Not., 14(6a):1-145, June 1979.

E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba. Hygienic macro expansion. In Proceedings
of the 1986 ACM Conference on LISP and Functional Programming, LFP ’86, pages 151-161, New
York, NY, USA, 1986. ACM.

D. Kunkle. Roomy: A system for space limited computations. In Proceedings of the 4th International
Workshop on Parallel and Symbolic Computation, PASCO 10, pages 22-25, New York, NY, USA,
2010. ACM.

D. Kunkle, V. Slavici, and G. Cooperman. Parallel disk-based computation for large, monolithic

binary decision diagrams. In Proceedings of the 4th International Workshop on Parallel and Symbolic
Computation, PASCO ’10, pages 63-72, New York, NY, USA, 2010. ACM.

R. Milner. Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1989.

D. A. Moon. MACLISP Reference Manual. M.1.T. Project Mac, Cambridge, Mass., USA, 1974.

A. Moors, T. Rompf, P. Haller, and M. Odersky. Scala-virtualized. In Proceedings of the ACM
SIGPLAN 2012 workshop on Partial evaluation and program manipulation, PEPM 12, pages 117—
120, New York, NY, USA, 2012. ACM.

M. Mumme. Simpler multi-threaded model checking via new foundations for implicit encodings, 2014.
http://www.cs.ucr.edu/ mummem/ProposalCD.pdf.

M. Mumme and G. Ciardo. A fully symbolic bisimulation algorithm. In Proceedings of the 5th
International Conference on Reachability Problems, RP’11, pages 218-230, Berlin, Heidelberg, 2011.
Springer-Verlag.

M. MUMME and G. CIARDO. An efficient fully symbolic bisimulation algorithm for non-deterministic
systems. International Journal of Foundations of Computer Science, 24(02):263-282, 2013.

M. Odersky. The Scala Language Specification. Ecole Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland, 2011.

D. Park. Concurrency and automata on infinite sequences. In Proceedings of the 5th GI-Conference
on Theoretical Computer Science, pages 167-183, London, UK, UK, 1981. Springer-Verlag.

M. Pericas, X. Martorell, and Y. Etsion. Implementation of a hierarchical n-body simulator using the
ompss programming model. In Proceedings of the first workshop on Irreqular applications: architectures
and algorithm, TAAA ’11, pages 23-30, New York, NY, USA, 2011. ACM.

B. Pradelle, P. Clauss, and V. Loechner. Adaptive runtime selection of parallel schedules in the
polytope model. In Proceedings of the 19th High Performance Computing Symposia, HPC ’11, pages
81-88, San Diego, CA, USA, 2011. Society for Computer Simulation International.

8 Acknowledgements 63

[43]

[45]
[46]

[47]

[48]
[49]
[50]

[51]

[52]

[53]

J. Ributzka, Y. Hayashi, J. B. Manzano, and G. R. Gao. The elephant and the mice: the role
of non-strict fine-grain synchronization for modern many-core architectures. In Proceedings of the
international conference on Supercomputing, ICS 11, pages 338-347, New York, NY, USA, 2011.
ACM.

A. D. Robison. Impact of economics on compiler optimization. In Proceedings of the 2001 Joint
ACM-ISCOPE Conference on Java Grande, JGI '01, pages 1-10, New York, NY, USA, 2001. ACM.

C. Shelton. C++ seminar, 2012. http://www.cs.ucr.edu/ cshelton/cppsem.cgi.

T. Stornetta and F. Brewer. Implementation of an efficient parallel bdd package. In Proceedings of the
33rd Annual Design Automation Conference, DAC ’96, pages 641-644, New York, NY, USA, 1996.
ACM.

B. Stroustrup. The C++ Programming Language. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 3rd edition, 2000.

B. Stroustrup. The C++ Programming Language. Addison-Wesley Professional, 4th edition, 2013.
I. Sutherland. The sequential prison. SIGPLAN Not., 46(10):1-2, Oct. 2011.

V. Ureche, T. Rompf, A. Sujeeth, H. Chafi, and M. Odersky. Stagedsac: a case study in performance-
oriented dsl development. In Proceedings of the ACM SIGPLAN 2012 workshop on Partial evaluation
and program manipulation, PEPM ’12, pages 73-82, New York, NY, USA, 2012. ACM.

M. Wan and G. Ciardo. Symbolic state-space generation of asynchronous systems using extensible
decision diagrams. In M. Nielsen, A. Kucera, P. Miltersen, C. Palamidessi, P. Tuma, and F. Valencia,
editors, SOFSEM 2009: Theory and Practice of Computer Science, volume 5404 of Lecture Notes in
Computer Science, pages 582-594. Springer Berlin Heidelberg, 2009.

M. Wan, G. Ciardo, and A. S. Miner. Approximate steady-state analysis of large markov models
based on the structure of their decision diagram encoding. Performance Evaluation, 68(5):463 — 486,
2011.

J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine. Active pebbles: parallel programming
for data-driven applications. In Proceedings of the international conference on Supercomputing, 1CS
11, pages 235-244, New York, NY, USA, 2011. ACM.

R. Wimmer, M. Herbstritt, and B. Becker. Forwarding, splitting, and block ordering to optimize
bdd-based bisimulation computation. In C. Haubelt and J. Teich, editors, Proceedings of the 10"
GI/ITG/GMM-Workshop “Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen” (MBMYV), pages 203-212, Erlangen, Germany, mar 2007. Shaker
Verlag.

Y. Zhao and G. Ciardo. Symbolic computation of strongly connected components and fair cycles using
saturation. Innovations in Systems and Software Engineering, 7(2):141-150, 2011.

S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao. Using a "codelet” program execution
model for exascale machines: position paper. In Proceedings of the 1st International Workshop on
Adaptive Self-Tuning Computing Systems for the Exaflop Era, EXADAPT ’11, pages 64-69, New
York, NY, USA, 2011. ACM.

