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ABSTRACT
We consider the problem of computing all-pair correlations in a
warehouse containing a large number (e.g., tens of thousands) of
time-series (or, signals). The problem arises in automatic discov-
ery of patterns and anomalies in data intensive applications such as
data center management, environmental monitoring, and scientific
experiments. However, with existing techniques, solving the prob-
lem for a large stream warehouse is extremely expensive, due to the
problem’s inherent quadratic I/O and CPU complexities.

We propose novel algorithms, based on Discrete Fourier Trans-
formation (DFT) and graph partitioning, to reduce the end-to-end
response time of an all-pair correlation query. To minimize I/O
cost, we partition a massive set of input signals into smaller batches
such that caching the signals one batch at a time maximizes data
reuse and minimizes disk I/O. To reduce CPU cost, we propose
two approximation algorithms. Our first algorithm efficiently com-
putes approximate correlation coefficients of similar signal pairs
within a given error bound. The second algorithm efficiently iden-
tifies, without any false positives or negatives, all signal pairs with
correlations above a given threshold. For many real applications,
our approximate solutions are as useful as corresponding exact so-
lutions, due to our strict error guarantees. However, compared to
the state-of-the-art exact algorithms, our algorithms are up to 17×
faster for several real datasets.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval

General Terms
Algorithm, Performance

Keywords
Correlation Matrix, Discrete Fourier Transform

1. INTRODUCTION
The increasing instrumentation of physical and computing pro-

cesses has given us unprecedented capabilities to collect massive
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volumes of data. Applications for data center management, envi-
ronmental monitoring, financial engineering, scientific experiments,
and mobile asset tracking produce massive time series streams (or,
signals) from various (physical and virtual) sensors. Such applica-
tions typically require stream warehousing systems (SWS) that, un-
like typical data stream systems, can archive data for a long period
of time and efficiently support various statistical and data mining
queries on historic data.

Minimizing response times of ad-hoc queries in an SWS is very
important for effective user interaction. However, achieving this is
extremely challenging as (i) the volume of the data of interest is
massive, and (ii) the benefit of pre-processing techniques (such as
materialized views and indices) can be minimal since the queries
are composed on-the-fly. We use a data center management app-
lication as the running example in the paper. Since data centers
are large capital investments for online service providers, they are
closely monitored for operating conditions and utilizations by col-
lecting various software and hardware performance counters (e.g.,
a server’s CPU and memory utilization, an application’s response
time, etc.). A typical SWS, such as DataGarage [16], monitors mul-
tiple data centers, each of which may contain tens of thousands of
servers. Assume that 500 performance counters are collected from
each server. Then, data centers with 100,000 servers will yield 50
million concurrent data streams and, with a mere 15-second sam-
pling rate, more than 30 billion records (or about 1TB data) a day.
While mining historical data over several months for tasks such
as capacity planning, workload placement, pattern discovery, and
fault diagnostics seems appealing, the sheer volume of the data can
make useful ad-hoc data mining queries impractically slow.

Recent work [20] has shown efficient techniques for compress-
ing data and running simple queries in a SWS. In this paper, we
consider a more complex query of computing a correlation matrix:
given n signals of equal length m, compute a n× n matrix C such
that C[i, j], 1 ≤ i, j ≤ n is the correlation coefficient corr(i, j)
of signals i and j. We consider Pearson’s correlation coefficients;
given two signals x and y of equal length m, with averages µx and
µy and standard deviations σx and σy respectively, their Pearson
correlation coefficient is defined as,

corr(x,y) =
1

m

m−1∑
i=0

(
xi − µx
σx

)(
yi − µy
σy

)
Previous works have shown the importance of computing cross

correlation of a large number of signals. In [20], authors mention
five important queries in a data center management application, out
of which three queries related to server dependency analysis, load
balancing, and anomaly detection involve computing correlation
matrices. For example, Figure 1(a) shows a correlation matrix of
350 signals, where each signal represents the number of TCP con-



(a) Correlation Matrix C (b) Threshold Corr. Matrix CT

Figure 1: Correlation matrices. Darker pixels represent higher
correlation coefficients (e.g., a black pixel represents a corr. co-
eff. of 1).

nections in a server measured every 30 seconds in a day. The matrix
shows the existence of several load balanced clusters of machines.
If such a correlation matrix is periodically computed, any devia-
tion between successive matrices can indicate possible anomalies.
Similarly, many eScience questions are better understood by corre-
lation matrices [9]. In [21] and [27], authors provide examples of
sensing and stock trading applications requiring cross correlation
of tens of thousands of signals.

We consider ad-hoc queries, where individual signals are stored
on disks and a target set of signals and a target time window are de-
fined during the query time. We assume that no precomputed index
specifically designed for correlation computation (such as [1, 27])
exists because of its large overhead and inefficiency to handle ad-
hoc queries. Fast computation of a large correlation matrix in this
setting is challenging because of its high I/O and CPU overhead.
High I/O costs are encountered because, due to limited memory,
signals may need to be read from disk to memory multiple times.
High CPU costs result from examining all pairs of signals and do-
ing expensive floating point operations. As we will show in Sec-
tion 3, computing a correlation matrix for 10,000 signals of length
2880 using a naive approach can take several hours in a standard
desktop computer. If multiple such matrices are to be computed
(e.g., one matrix for each day of signals), this can take up to several
days on a single machine. Such large response times are unaccept-
able for interactive data exploration tasks in a SWS.

To address the above challenges, we consider a slightly relaxed,
yet almost equally useful, version of the problem. In many applica-
tions, including the data center management application, users are
typically interested in correlated (e.g., correlation above a given
threshold T ) signal pairs—uncorrelated signal pairs are typically
not of much interest. Therefore, while the exact correlations of
correlated pairs need to be computed, that of uncorrelated pairs can
often be safely ignored. Therefore, the general problem we consi-
der in this paper is as follows.

PROBLEM 1 (THRESHOLD CORRELATION MATRIX). Given
n signals of equal length m and a threshold T , for 1 ≤ i, j ≤
n, compute a n × n threshold correlation matrix CT such that
CT [i, j] = corr(i, j) if |corr(i, j)| ≥ T and 0 otherwise.

Figure 1(b) shows an example of threshold correlation matrix
with a threshold of T = 0.5. As shown, some of the gray pixels,
with correlation < 0.5 in Figure 1(a) are absent in Figure 1(b); yet,
Figure 1(b) shows the prominent clusters of similar signals.

To reduce I/O costs, we propose a novel data partitioning algo-
rithm that divides a given dataset into batches such that each batch
fits in the available memory. More importantly, batches are care-
fully created such that most signal pairs within a single batch are
correlated, while many pairs with signals in different batches are
uncorrelated. Thus, as signals are read into the memory one batch

at a time, signals that are mutually correlated with each other re-
side in the memory at the same time—in this way, the correlation
coefficients of a cached signal with a large number of other cached
signals can be computed without additional I/Os. We show that the
problem can be modeled as a graph partitioning problem and be
solved using efficient heuristics.

To reduce CPU costs, we propose two novel approximation algo-
rithms for computing a correlation matrix. Our first approximation
algorithm computes correlation coefficients within a given error
bound, while the second algorithm identifies signal pairs with cor-
relation above a threshold without any false positives or false neg-
atives. Our algorithms take the advantage of computational short-
cuts in the Discrete Fourier Transformation (DFT) space and are
significantly faster than an exact algorithm; yet, their approxima-
tion guarantees keep them useful for many real-world applications,
including our running example of the data center management app-
lication.

Our approximation algorithms can be used in combination (with
or without an exact algorithm) during interactive data exploration.
For example, a data center operator can first use our first approxi-
mation algorithm for identifying highly correlated signal pairs. If
the correlation pattern looks interesting, he can further use our sec-
ond approximation algorithm to remove any false positives. If fur-
ther needed, he can use an exact algorithm to compute exact cor-
relations. Such an approach gives a user the flexibility to stop data
exploration early (e.g., after the first step) or continue for greater fi-
delity answers at the cost of increasing computational complexity.

In summary, we make the following contributions.

• We propose a novel caching algorithm for computing a threshold
correlation matrix. The algorithm uses DFT and graph partition-
ing to optimize overall I/O cost (§ 4).

• We propose two efficient approximation algorithms. The first al-
gorithm approximates entries in a threshold correlation matrix
within a given error bound. The second algorithm efficiently
identifies all correlated signal pairs without any false positives
or negatives (§ 5).

• We propose extensions to our basic algorithms to support anti-
correlation and lagged correlation (§ 6).

• Using several real datasets, we evaluate our proposed algorithms.
Our evaluation shows that our algorithms are up to 17× and 71×
faster than existing algorithms for synchronous and lagged corre-
lation respectively (§ 7).

This work is a part of a broader project, called DataGarage [16],
for building a data-driven data center management system. Data-
Garage aims to collect and archive monitoring data from tens of
thousands of servers, to enable users to run ad-hoc and routine data
mining queries on massive data, and to provide useful control feed-
back to data center operators for load balancing, energy optimiza-
tion, anomaly detection, etc. In that context, this work provides an
important building block to mine massive data and to gather valu-
able insights for data center operators.

2. RELATED WORK
Correlation is a similarity measure and prior works have ex-

tensively considered the problem of discovering similar sequences
from a large number of sequences. Traditionally, the Euclidean
distance is used to capture the similarity. The original work by
Agrawal el at. [1] considered discovering similarity between an
online sequence and an indexed database of previously obtained
sequence information. The proposed techniques focused on whole
sequence matching and utilized the DFT to transform data from the



time domain into frequency domain and used multidimensional in-
dex structure to index the first few DFT coefficients. The work was
later generalized to allow subsequence matching [4] and transfor-
mations such as scaling and shifting [19]. Our work differs from
them in that i) we consider Pearson correlation coefficient, which
is optimal for detecting linear relationships, ii) we do not assume
existence of any precomputed index, since our sequence set and the
target time window are defined ad-hoc during query time, and iii)
we consider computing correlation of all sequence pairs, instead of
only the pairs involving a given sequence. From algorithmic point
of view, our caching and approximation algorithms are novel and
were not considered by this previous work.

StatStream [27] and HierarchyScan [12], like our work, con-
sider correlation coefficients as a similarity measure. StatStream
uses DFT to maintain a grid data structure to quickly identify sim-
ilar streams within a sliding window in real-time. HierarchyScan
considers a stream warehouse setting and performs correlation be-
tween the stored sequences and a given template pattern in the
transformed domain (e.g., using DFT or DWT) hierarchically. [2]
uses sketches to correlate uncooperative (i.e., noisy) signals, which
are not prevalent in our target applications. Our work differs from
these works in that: i) none of the work considers I/O optimization
ii) none of the work considers bounded approximation of correla-
tion (e.g., HierarchyScan may output false negatives, sketch may
output both false positives and negatives).

Our use of DFT is in the similar spirit of reducing dimensional-
ity of signals. Previous works have used similar ideas to achieve
tight lower bounds for pruning signals (e.g., to answer similarity
queries [22, 23]). Some existing dimensionality reduction tech-
niques (e.g., APCA [11], PAA [10], MSM [15]) provide better
lower bounds for pruning than DFT and DWT. However, none of
these techniques allows computing correlation (with bounded er-
ror) in the reduced dimensionality space. More specifically, even
though these techniques reduce dimensionality to prune uncorre-
lated (or dissimilar) signals, correlation coefficients (or some other
similarity metrics) of signals are computed in the time domain; in
contrast we use DFT to compute approximate correlation in the fre-
quency domain.

Many other prior works consider similarity or related queries in
streaming scenario [7, 13, 14, 26]. These techniques are not ad-
equate for our target applications since the techniques are not de-
signed for stream warehouse settings, and/or do not explicitly con-
sider correlation coefficients, and/or are not shown to scale to tens
of thousands of streams.

3. MOTIVATION
We use a real dataset to demonstrate I/O and CPU complexities

of computing a large correlation matrix C in a stream warehouse
environment. The dataset, called DataCenter1, records a perfor-
mance counter from a Microsoft data center (more details of the
dataset is in Section 7). It consists of n = 10, 752 sequences, each
of length m = 2880. Each sequence is stored on disk as a separate
file. 1 We use a 2.67 GHz quad core machine with 6GB RAM and
a 750 GB Hitachi hard disk of 7200 rpm for this experiment.

Our experiments show that computing a correlation matrix for
the above dataset is very expensive, especially with limited or no
caching (Table 1). In the worst case, without any caching, a signal
needs to be read from the disk (n − 1) times, to correlate with all
(n−1) other signals. In such a case, computing a correlation matrix
for our above dataset takes approximately 129 hours! Obviously,
most of the time is spent in reading signals from the disk. Our

1Our conclusions hold if all data is stored in a single file.

Cache size, # signals CPU time (Mins) I/O time (Mins)
n (Full cache) 93 4
n
32

(Partial cache) 93 40
2 (No cache) 93 7639

Table 1: Total time for computing a correlation matrix of n =
10, 752 signals for various cache sizes.

experiments show an average CPU utilization of only 2% without
any cache. On the other hand, if the entire dataset can be cached in
DRAM, each signal needs to be read from disk only once and hence
the I/O cost is minimized. In such case, the correlation matrix can
be computed in around 1 hour 37 minutes, highlighting the fact that
more than 127 hours is spent for I/O in the no-cache scenario.

However, in practice, it may not be possible to completely cache
a large dataset. For example, the DataCenter1 dataset for 20,000
signals for a month is more than 24GB, which is significantly big-
ger than the available memory. Thus, only a fraction of the signals
can be cached in the DRAM at a time. In such a case, a single sig-
nal may need to be read from the disk multiple times to correlate
with all other signals. For example, a signal x may be evicted from
the limited cache before another signal y is read from the disk; then
x must be reread from disk later to compute corr(x,y).

An Optimal Baseline Caching Algorithm. Consider the follow-
ing optimal baseline caching algorithm for dealing with a limited
cache. We define the cache size as the number of signals it can hold
at a time. Given n signals and a cache of size (n/q + 1), signals
are partitioned into batches {Bi} of size n/q each, except of the
last batch which can be smaller. Batches are determined according
to signal IDs; i.e., the first n/q signals are in the first batch B1, the
second n/q signals are in the second batch B2, and so on. Each
batch Bi is brought to the cache at once, and correlation coeffi-
cients of all pairs of signals (x,y),x ∈ Bi,y ∈ Bi are computed.
Before the batch Bi is evicted from the cache, all remaining sig-
nals z ∈ Bj>i are read from the disk one at a time. When such a
signal z is read, correlation coefficients of all pairs (x, z),x ∈ Bi
are computed. After that, the next batch of signals is loaded into
the cache and the process continues. This simple caching strategy
is optimal because every time a signal is read from the disk, the
number of correlation coefficients computed with it is exactly n/q,
which is the maximum possible with a cache of size (n/q + 1).

We use the above baseline strategy in our experiments with lim-
ited cache. As shown in Table 1, even if we have a cache large
enough to hold 1/32 of the entire dataset (a partial cache scenario),
I/O cost remains significant (40 minutes). A careful back of the en-
velope calculation shows that the I/O cost to compute an all-pair
correlation matrix of n signals with a cache of size n/q + 1 is pro-
portional to n(1 + q)/2. Thus, the I/O cost linearly decreases with
increasing cache size. We empirically validate this in Section 7.

The above empirical results highlight two main components of
the total execution time.

• High I/O cost: With a limited cache, a significant amount of the
time is spent for reading data from disk.

• High CPU cost: Even if there is enough cache to hold the en-
tire dataset, computation remains expensive, as shown by the Full
cache scenario in Table 1.

We next present techniques to reduce these two costs. For sim-
plicity, we first assume only positive correlation and synchronized
signals in the next two sections. We consider anti-correlation and
lagged correlation in Section 6. Table 2 summarizes the symbols
we use.



Symbol Definition
n Number of signals
m Length of each signal
x,X A signal and its DFT
x̂, X̂ Normalization of x and DFT of x̂
d(x,y) Euclidean distance of x and y
dk(x,y) Euclidean distance of first k elements of x and y
T Correlation threshold

Table 2: Symbols and definitions

4. REDUCING I/O COSTS
In this section, we present a novel technique to reduce the total

I/O costs required to answer a threshold correlation matrix query.
As a shorthand, we call two signals correlated if their correlation
coefficient is above the given threshold, or uncorrelated otherwise.
Thus we need to compute correlation coefficients for correlated sig-
nal pairs only. A naïve algorithm would require computing corre-
lation of all pairs of n signals and have anO(n2) I/O cost. A hypo-
thetical optimal algorithm can reduce the cost in at least two ways.
The first technique is pruning. If the algorithm magically knew
which pairs of signals are correlated, it could compute correlation
coefficients (and read relevant data from disk) for those pairs only
and ignore uncorrelated pairs. The second technique is intelligent
caching. The algorithm can read signals from the disk in an optimal
order such that signals that are mutually correlated with each other
reside in the cache at the same time—thus, a cached signal can be
compared with a large number of other cached signals, reducing
the amortized I/O cost of reading a signal from the disk.

Realizing such an algorithm needs answering two questions. First,
how does the algorithm know which signals are correlated? This
must be done with an I/O cost significantly smaller than theO(n2)—
pruning becomes useless if it itself has an I/O cost close to the
O(n2) I/O cost of a naïve algorithm. Without any background
knowledge about the nature of input signals, the algorithm must
examine all the signals at least once (i.e., read each signal from
disk at least once), implying an O(n) lower bound of I/O cost.

Even after all correlated pairs are identified, I/O cost to compute
correlation coefficients of correlated pairs can still be significantly
high if a good caching strategy is not used. We define a caching
strategy as the order in which signals are read to and evicted from
the cache. The impact of different caching strategies on I/O cost is
illustrated by an example in Figure 2. In Figure 2(a), a black cell
(i, j) implies that signal i and signal j are correlated (e..g, their
correlation coefficient is above a given threshold), and hence we
need to compute their exact correlation coefficient. Knowing this
information (e.g., from an oracle), an algorithm can read the sig-
nals from disk in many different orders, including the two strate-
gies shown in Figure 2(b) and (c). Each step of a strategy shows
the signals that are read from the disk (1st column), the cache con-
tent after the signals are read (2nd column), and the pairs of signals
whose correlation coefficients have been computed at this step. We
assume the cache can hold at most 4 signals at a time. As shown,
both strategies compute the correlations of the same set of signal
pairs; but Strategy 2 does that with almost half the I/O costs of
Strategy 1.2 The example illustrates the importance of choosing a
good caching strategy. This leads us to the second challenge: how
can one find a good caching strategy to minimize I/O costs?

We next address these two challenges.

2Note that correlation is symmetric; i.e., computing corr(x,y)
gives corr(y,x).

Algorithm 1 PruneUncorrelated(S, k)

Require: A set S of n signals, with each signal si ∈ S is of length
m

Ensure: Report likely correlated signal pairs
1: for each signal si ∈ S, 0 ≤ i < n do
2: Read si from disk
3: Normalize si to ŝi
4: DFT [i]← first k DFT coefficients of ŝi
5: for each signal si ∈ S, 0 ≤ i < n do
6: for each signal sj ∈ S, i < j < n do
7: if dk(DFT [i], DFT [j]) ≤

√
2m(1− T ) then

8: Report the pair (i, j) as likely correlated

4.1 Identifying Correlated Pairs
We use Discrete Fourier Transform (DFT) to identify correlated

signal pairs in an I/O efficient manner. The DFT of a signal x =
x0, x1, . . . , xm−1 is a sequence X= X0, X1, . . . , Xm−1 = DFT (x)
of complex numbers given by

Xf =
1

m

m−1∑
k=0

xie
−2πif
m

k, f = 0, 1, . . . ,m− 1

We also define the normalization of x as x̂ = x̂0, x̂1, . . . , x̂m−1,
such that x̂k = (xi − µx)/σx, where µx and σx are mean and
standard deviation of the values x0, x1, . . . , xm−1.

As the following lemma suggests, the correlation coefficient of
signals can be reduced to the Euclidean distance between their nor-
malized series.

LEMMA 1 ([18]). The correlation coefficient of two signals
x and y is corr(x,y) = 1 − 1

2m
d2(x̂, ŷ), where d(x̂, ŷ) is the

Euclidean distance between x̂ and ŷ.

By reducing the correlation coefficient to Euclidean distance, we
can apply the techniques in [27] to report signals with correlation
coefficients higher than a specific threshold.

LEMMA 2 ([27]). Let DFT of the normalized forms of two
signals x and y be X̂ and Ŷ. Then,

corr(x,y) ≥ T ⇒ dk(X̂, Ŷ) ≤
√

2m(1− T )

where dk(X̂, Ŷ) is the Euclidean distance between sequences
X̂0, X̂1, . . . , X̂k−1 and Ŷ0, Ŷ1, . . . , Ŷk−1 for some k ≤ m

2
.

Lemma 2 implies that we can safely ignore signal pairs for which
dk(X̂, Ŷ) >

√
2m(1− T ), since they cannot have correlation co-

efficients above a given threshold T . By ignoring such pairs, we
will get a set of likely correlated signal pairs. This is a superset of
the correlated signal pairs, but there will be no false negatives. Sim-
ilar technique has been used in previous works[1, 27]. For a large
class of real-world signals (called cooperative signals [2]), includ-
ing our data center data and stock prices, the first few low frequency
DFT coefficients are sufficient to capture the overall shape of a sig-
nal. For such signals, computing only a small number of low fre-
quency coefficients, e.g., using k = 5, is sufficient for identifying
likely correlated signal pairs. The number of false positives can be
reduced by using a larger k, which comes at the cost of increased
computational overhead.

The above properties of DFT lay the foundation of our I/O effi-
cient detection of correlated pairs. Algorithm 1 shows the details.
Given n signals of length m on disk, we read one signal at a time
to compute first k DFT coefficients of each signal, resulting in an
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Signals read In Cache Computed pairs
1, 2, 3, 4 1, 2, 3, 4 (1, 2), (3, 4)
5, 6, 7, 8 5, 6, 7, 8 (5, 6), (6, 7), (7, 8)
1, 2 1, 2, 5, 6 (1, 5), (2, 6)
3, 4, 7, 8 3, 4, 7, 8 (3, 7), (4, 8)

Signals read In Cache Computed pairs
1, 2, 5, 6 1, 2, 5, 6 (1, 2), (1, 5), (2, 6), (5, 6)
7 2, 5, 6, 7 (6, 7)
3, 4, 8 3, 4, 7, 8 (3, 4), (3, 7), (4, 8), (7, 8)

(a) Pruning Matrix (b) Caching Strategy 1, 14 disk reads (c) Caching Strategy 2, 8 disk reads

Figure 2: Computing a threshold correlation matrix with two different caching strategies. The cache can hold 4 signals at a time.
Strategy 2 is 1.75× more I/O efficient than Strategy 1.

O(n) total I/O cost. Since k � m, we can maintain the coeffi-
cients in cache. Then, we examine DFT coefficients of all pairs and
identify the pairs of signals that are likely to be correlated (using
Lemma 2). Conceptually, the algorithm produces a matrix like the
one shown in Figure 2(a), where all pairs with correlation above a
threshold and some pairs with correlation below the threshold (i.e.,
false positives) are marked as 1, and all other pairs are marked as
0. We call this a Pruning Matrix P and use it in subsequent steps.

4.2 Caching Strategy
A caching strategy involves deciding which set of signals to bring

into the cache together and how to evict them from the cache. We
use the same general framework we used for the optimal baseline
algorithm in Section 3: we divide signals into batches and bring
them into the cache one batch at a time. However, we introduce
two optimizations in the baseline algorithm. First, before a batch
is evicted from the cache, the baseline algorithm brings all signals
in remaining batches, one at a time, to compute correlation coeffi-
cients of all signal pairs having exactly one signal in the currently
cached batch. In contrast, we use the Pruning Matrix to ignore the
uncorrelated pairs; thus we bring a signal in the cache only if it is
likely correlated with at least one signal in the current batch. In
the best case, if a batch is not correlated with any other signals, no
additional signals need to read before eviction of the batch.

Our second, and the most important, caching optimization care-
fully chooses the batches. Note that, for each likely correlated sig-
nal pair whose two signals are in two different batches, we need
to incur an additional disk read. Suppose the Pruning Matrix sug-
gests that signals x and y are likely correlated and hence we need
to compute corr(x,y). If they are put in the same batch, they will
be read to the cache together and hence corr(x,y) can be com-
puted without additional disk I/O. In contrast, if they are put in
different batches, and if the batch containing x is read to cache
before the batch containing y, y will be read from disk at least
twice—once just before the batch containing x is evicted, to com-
pute corr(x,y), and again when the batch containing y is read to
the cache. Thus, computing correlation between signals in diffe-
rent batches incurs additional I/O costs, and therefore we aim to
partition the signals into batches such that such additional I/O cost
is minimized. In Figure 2, caching strategy 1 uses two batches as
{1, 2, 3, 4} and {5, 6, 7, 8}, which results in four likely correlated
signal pairs across batches. In contrast, caching strategy 2, which
outperforms caching strategy 1, uses two batches as {1, 2, 5, 6} and
{3, 4, 7, 8}, resulting in only one such pair (6, 7) across different
batches.

Optimal data partitioning. Fortunately, we can formulate the
above optimization problem as the node capacitated graph parti-
tioning problem [5]. Given a graph G = (V,E), edge weights
we for e ∈ E, and a capacity B, the goal is to find a partition
(V1, V2, . . . , Vφ) of V such that |Vi| < B for 1 ≤ i ≤ φ and such
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Figure 3: Partitioning signals into two batches to minimize the
multicut size

that
∑
e∈∆ we is minimized, where ∆ is the set of edges whose end

nodes belong to different elements of the partition, typically called
a multicut. The resulting partitioning is called minimum multicut
size partitioning, or min-cut partitioning in short.

In our setting, the cache size B defines the capacity, the graph
has the set of signals as the nodes, and the weight we of the edge
e between node i and node j is P [i, j], where P is the Pruning
Matrix. Thus, different elements of the resulting partition denote
different batches of signals that are read to the cache together. Fig-
ure 3 shows an example graph (only edges with weight 1 are shown)
representing the Pruning Matrix in Figure 2(a), and two batches
of signals resulting in the caching strategy 2 in Figure 2(c). Intu-
itively, we try to avoid pairs of signals that are likely correlated with
each other (as indicated by the Pruning Matrix) to place in different
batches.

The above graph partitioning problem is NP-complete [5]. There
are many heuristics-based and approximation algorithms for bal-
anced graph partitioning [3, 6, 8, 25]. Many of the algorithms are
used in offline circuit partitioning in VLSI design, and hence they
optimize for accuracy at the cost of increased execution time. In
contrast, we need to partition graph online, during query execu-
tion. Hence, we have chosen the simplest and the fastest of these
existing algorithms: the F-M (Fiduccia-Mattheyses) algorithm [6].
F-M is a bi-partitioning algorithm that partitions a given graph into
two equal size partitions while minimizing the size of the multicut.
We use it recursively to get a multi-way balanced partitioning such
that each partition is smaller than or equal to the cache size B and
the multicut size is minimized. (Such a recursive approach has been
shown to yield smaller multicut size than iterative approaches [24].)

Since graph bi-partitioning is NP-Hard, the F-M algorithm uses
heuristics for bi-partitioning. It starts with a random balanced bi-
partitioning and iteratively reduces the multicut size. It defines the
gain of a vertex as the difference between the number of its adja-
cent vertices in its opposite partition and the number of its adjacent
vertices in its current partition. In each iteration, the algorithm con-
siders each vertex in the descending order of gains and tentatively
moves it to the opposite partition. After a vertex is moved to an
opposite partition, the gains of all its adjacent vertices are updated.



Finally, the algorithm finalizes the first k moves such that the total
gain of the first k vertices is maximized and the resulting partitions
are balanced. The algorithm stops whenever an iteration cannot
improve the current bi-partitioining. The algorithm is shown to
converge in very few iterations (< 10) [6].

For multi-way partitioning, we recursively use the F-M algo-
rithm to partition an input graph with n vertices into M partitions
such that the size of each partition is ≤ B. Ideally, we should con-
tinue recursive partitioning until we get M ′ = dn/Be partitions.
However, such a restriction does not provide the partitioning algo-
rithm enough flexibility to find good partitions. So, we continue
partitioning until we get M > M ′, say M = 2dn/Be, partitions.
This results in good partitions, along with a few partitions signif-
icantly smaller than B. At the end, we merge those small parti-
tions together to produce larger partitions of size ≤ B. The final
partitions determine the batches of signals in our caching strategy
mentioned before.

5. REDUCING COMPUTATIONAL COST
The optimizations presented so far help reducing the I/O over-

head of answering a threshold correlation matrix query. However,
as mentioned in Section 3, computing the matrix remains expen-
sive even if we completely ignore the I/O cost. In this section we
present techniques to reduce this computational complexity.

We exploit the fact that real-world applications, including our
running example of data center management application, can often
tolerate some small, bounded approximation errors in computing
correlation. Specifically,

• It is often sufficient to report correlation coefficients within a
small error bound. For example, an application looking for all
signal pairs with correlation> 0.9 may tolerate an error of±0.02
in the computed correlation coefficients.

• It may often be sufficient to only identify all and only the pairs
with correlation above a given threshold; knowing the exact cor-
relation coefficients is not strictly necessary. Note that the Prun-
ing Matrix computed in the previous section is not sufficient for
this purpose since it contains false positives.

In this section, we present two algorithms that can compute app-
roximate threshold correlation matrices satisfying the above require-
ments, but run significantly faster than a corresponding exact algo-
rithm. Figure 4 shows an example of these approximate matrices,
highlighting the fact that they are almost as useful as the exact ma-
trix in Figure 1(a) in identifying correlation patterns.

Note that even in situations where exact correlations may be re-
quired, our approximate algorithms can still be useful for quickly
identifying the existence of interesting correlation patterns in the
data. The algorithms can give users the flexibility to avoid ex-
pensive exact correlation computation if no interesting patterns are
found.

5.1 Approximate Threshold Correlation
Matrix

In this section, we provide solutions for efficiently computing ε-
approximate correlation of signals. An ε-approximate correlation
coefficient corrε(i, j) of two signals i and j is a value within ε of
their exact correlation coefficient corr(i, j); i.e., corr(i, j) − ε ≤
corrε(i, j) ≤ corr(i, j) + ε. Thus, we consider the following
problem.

PROBLEM 2 (APPROX. THRESHOLD CORR. MATRIX). Given
n sequences of equal length m, a threshold T , and an error bound

(a) Cε (ε = 0.04, T = 0.5) (b) CB(T = 0.5)

Figure 4: (a) An approximate threshold corr. matrix Cε, and
(b) a Boolean threshold corr. matrix CB , corresponding to the
matrix C in Figure 1(a).

ε, compute an n×n approximate threshold correlation matrix ma-
trix Cε such that Cε[i, j] = corrε(i, j) if corrε(i, j) > T , and
Cε[i, j] = 0 otherwise.

Figure 4(a) shows an approximate threshold correlation matrix
Cε corresponding to the exact threshold correlation matrix CT in
Figure 1(b). If we zoom in, we would notice that a few white pixels
in CT are shown as gray in Cε (i.e., a few pairs with zero corre-
lation in CT are shown to have non-zero correlation in Cε). This
happens because, due to approximation, a few (not all) pairs with
correlation coefficients within the range [T − ε, T ) are reported to
have a correlation ≥ T . However, as shown in the figure, such
occurrences are rare. Moreover, such approximation is acceptable
since the threshold is not a hard one in most applications. Also note
that such approximation does not introduce any false negatives—no
pairs with correlation above the threshold will be omitted in Cε.

5.1.1 Approximation with Prefix Distance
According to Lemma 1, correlation of two signals corr(x,y)

can be computed by their Euclidian distance d(x̂, ŷ). Thus, one
way to approximate corr(x,y) is to use an approximate value for
d(x̂, ŷ); e.g., dk(x̂, ŷ), for k < m. For significant savings in
computational complexity, it is important that k � m. Unfortu-
nately such approximation does not work well in the time domain—
for k � m, dk(x̂, ŷ) is typically not a good approximation for
d(x̂, ŷ).

We therefore approximate distance in the frequency domain. Since
DFT is a linear transformation, the Euclidean distance is preserved
under the transformation. Therefore, 1

m
d2(x̂, ŷ) = d2(X̂, Ŷ).

This allows us to rephrase Lemma 1 as follows:

corr(x,y) = 1− 1

2
d2(X̂, Ŷ)

Thus, approximate correlation can be computed by using an app-
roximate distance d(X̂, Ŷ), such as dk(X̂, Ŷ) for k < m. Since
for many real-world datasets, first few DFT coefficients (i.e., a
small prefix of the DFT coefficient vector) capture most informa-
tion of the original sequences, dk(X̂, Ŷ) is a good approximation
of d(X̂, Ŷ) for k � m. Thus, unlike in time domain, approximat-
ing distance dwith dk is computationally attractive in the frequency
domain.

However, computing each DFT coefficient requires O(n) com-
putation. Thus, to minimize overall computation cost while guar-
anteeing a given approximation error bound, we need to compute
the smallest number k of DFT coefficients that ensure the target
accuracy. However, the value of k depends on datasets. For some
datasets (e.g., periodic or random-walk signals), a small k may be
sufficient to ensure a good approximation; while a very large k may
be required for some other signals (e.g., white noise signal).



Our main result in this section shows a relationship between the
approximation error in a correlation coefficient and the number of
leading DFT coefficients used for approximating the coefficient. It
uses the notion of energy of a signal. The energy of a signal x is
defined as E(x) = ‖ x ‖=

∑m−1
i=0 x2

i . We also define the energy
captured by the first k components of the signal x as Ek(x) =∑k−1
i=0 x

2
i . The following lemma shows that normalization bounds

the total energy of a signal.

LEMMA 3. Let X̂ be the DFT of normalized signal x̂, then

E(X̂) =

m−1∑
i=0

|X̂i|2 = 1

Ek(X̂) ≤ 1, for k ≤ m

In the following lemma, we show an upper bound of approxima-
tion errors if we use the first k DFT coefficients to compute distance
of two signals.

LEMMA 4. Let X̂ and Ŷ be the DFTs of normalized signals x̂
and ŷ and η = min(2

∑k
i=0 |X̂i|

2, 2
∑k
i=0 |Ŷi|

2) for some k ≤
m
2

. Then

2d2
k(X̂, Ŷ) ≤ d2(X̂, Ŷ) ≤ 2d2

k(X̂, Ŷ) + 4(1− η)

PROOF. The first inequality is obvious. On the second inequality,
using the symmetry of X̂, we get

d2(X̂, Ŷ) =

m−1∑
i=0

|X̂i − Ŷi|
2

≤ 2d2
k(X̂, Ŷ) +

m−k−1∑
i=k+1

(|X̂i|2 + |Ŷi|2 + 2|X̂iŶi|)

Now, using Cauchy and Schwarz inequality, we get

≤ 2d2
k(X̂, Ŷ) +

m−k−1∑
i=k+1

(|X̂i|2 + |Ŷi|2) + 2

√√√√m−k−1∑
i=k+1

|X̂i|2
m−k−1∑
i=k+1

|Ŷi|2

Now, using Lemma 3, we get

≤ 2d2
k(X̂, Ŷ) + 1− η + 1− η + 2

√
(1− η)(1− η)

= 2d2
k(X̂, Ŷ) + 4(1− η)

�
The above lemma leads to our main result.

THEOREM 1. Given two signals x and y and an error bound ε,

corr(x,y)− ε ≤ 1− d2
k(X̂, Ŷ) ≤ corr(x,y) + ε

where the value of k is chosen such that

min(2

k∑
i=0

|X̂i|2, 2
k∑
i=0

|Ŷi|2) ≥ 1− ε

2

The theorem enables us to incrementally compute the smallest
number of DFT coefficients that are sufficient to guarantee the ap-
proximation error to be ≤ ε. For example, if ε = 0.04, we only
need to compute as many DFT coefficients that capture 0.98 of the
normalized energy. Many real-world data sets are cooperative [2];
i.e., most of their energy is concentrated in the lower frequencies
and the energy decreases quickly with higher frequencies. For ex-
ample, in a set of random walk signals (which model, e.g., stock
prices) of length 1000, 98% of the energy is captured by the first

60 coefficients for more than 90% of the signals. Thus, approxi-
mate correlation within an error of 0.04 can be computed by using
only 60 numbers, instead of by using the entire signals that consist
of 1000 numbers each.

Also note that the value of d2
k(X̂, Ŷ) monotonically increases

with increasing k. As soon as d2
l (X̂, Ŷ), for l < k, becomes larger

than a threshold implying corr(x,y) < T , we can abandon the
distance computation as well as computing the rest of the k DFT
coefficients for both signals.

5.1.2 Computational Cost
The above optimization comes with the additional cost of actu-

ally computing the DFT coefficients, as an algorithm A for com-
puting exact correlation in the time domain does not need expensive
DFT operations. However, many systems [20] compute and archive
DFT coefficients along with or in place of raw signals for data com-
pression and efficient data mining; we can simply leverage these al-
ready computed DFT coefficients. Even if the DFT coefficients are
computed on the fly, our overall query processing cost can still be
smaller than A for two reasons. First, we need to compute only a
small number of DFT coefficients. Second, DFT coefficients need
to be computed only once per signal and can be reused for all pairs
involving the signal. A simple back of the envelope calculation
shows the savings. Consider a set of n signals, each of length m.
Computing all pairwise exact correlations in the time domain has
a computational complexity of cost1 =

(
n
2

)
m. In contrast, our

approach has the complexity of cost2 = kmn +
(
n
2

)
k, where the

first component is for computing k DFT coefficients of all n signals
and the second component is for computing pairwise correlations.
Assuming k � m, we get cost2 < cost1 for n > 2k. Thus, as
long as we deal with> 2k signals, the total cost of computing DFT
coefficients and pairwise correlations remains less than computing
exact correlations in the time domain. The benefit becomes more
pronounced with a large number of signals. Our experimental re-
sults in Section 7 include DFT computation overhead and still show
significant speedup.

5.2 Threshold Boolean Correlation Matrix
The second type of approximation we consider is to identify if

a pair of signals has correlation above a given threshold T . More
precisely, we consider the following problem.

PROBLEM 3 (THRESHOLD BOOLEAN CORR. MATRIX). Given
n sequences of equal lengthm and a threshold T , compute a thresh-
old Boolean correlation matrix CB such that,

CB [i, j] =

{
0 if corr(i, j) < T
1 if corr(i, j) ≥ T

Figure 4(b) shows the CB for the threshold correlation matrix
CT in Figure 1(b). As shown, CB still preserves the darker regions
in C and captures valuable information such as clusters of servers
showing similar behavior.

Suppose, given two signals x and y, we somehow know, with-
out actually computing the exact distance d(x,y), the upper bound
UB(x,y) and the lower bound LB(x,y) of their Euclidean dis-
tance. Then, using these bounds with Lemma 5, we may be able to
conclude if x and y are correlated or not. More specifically,

LEMMA 5. Let x and y are the two signals, then

CB [x,y] =

 1 if UB(x,y) ≤ θ
0 if LB(x,y) > θ

Undetermined Otherwise



Algorithm 2 BooleanApproximation(S, T )

Require: A set S of n signals, with each signal si ∈ S is of lengthm, and
a threshold T

Ensure: Report a 0/1 matrix ; 1 for correlated signal pairs and 0 for uncor-
related pairs

1: θ =
√

2m(T − 1)
2: Initialize temporary matrices UB and LB with∞ and 0, respectively
3: for 0 ≤ i < n− 1 do
4: UB[i, i+ 1] = LB[i, i+ 1] = d(si, si+1)
5: CB [i, i+ 1] = 1 if d(si, si+1) ≤ θ, 0 otherwise
6: for each diagonal k, 1 < k < n do
7: for each cell (i, j), 0 ≤ i < n− k, j = i+ k do
8: UB[i, j] = mini<v<j{UB[i, v] + UB[v, j]}
9: LB[i, j] = maxi<v<j{max{LB[i, v]−UB[v, j], LB[j, v]−

UB[v, i]}
10: if UB[i, j] ≤ θ then
11: CB [i, j] = 1
12: else if LB[i, j] > θ then
13: CB [i, j] = 0
14: else
15: UB[i, j] = LB[i, j] = d(si, sj)

16: CB [i, j] = 1 if d(si, sj) ≤ θ, 0 otherwise

where θ =
√

2m(T − 1) and UB(x,y)≥ d(x,y) and LB(x,y)
≤ d(x,y).

The proof of the lemma follows Lemma 2. Obviously, the tighter
the upper and the lower bounds are, the more likely it is to deter-
mine the correlation status of a pair.

The key question is how do we efficiently find good bounds on
distances of two signals? One efficient way to compute the lower
bound is to compute dk(X̂, Ŷ). While using a small k is computa-
tionally cheap, it may not provide a tight lower bound. Moreover,
this does not provide any hints of the upper bound. We address
this problem with the triangular inequality property of Euclidean
distance. The following lemma shows how one can get the bounds
using triangular inequality and a random reference point.3

LEMMA 6. Let x and y are two signals and r is a reference
signal, then

UB(x,y) = d(x, r) + d(y, r) ≥ d(x,y)

and

LB(x,y) = |d(x, r)− d(y, r)| ≤ d(x,y)

One straightforward way to use the above property in computing
CB is to compute distances of all signals from a random reference
signal and then use the distances to compute bounds for all O(n2)
pairs. Unfortunately, apart from being computationally expensive,
the resulting upper bounds are not tight and are practically useless
because a random reference signal is expected to be equally far
from all of the signals in a very high (= m) dimensional space.

To overcome this problem, we need to choose reference signals
carefully. Ideally, for a pair of signal x and y, we want a third
signal v (called a verifier) that is either (i) very close to both x and
y implying that x and y are likely to be close, and hence correlated
to each other, or (ii) very close to x but not to y (or vice versa),
implying that x and y are not correlated. Such verifiers provide
tighter upper and lower bounds of distances between signals and are
effective in labeling signals as correlated or uncorrelated without
expensive distance computation.

The last piece of the puzzle is to efficiently find effective veri-
fiers. Since we deal with a database of a large number of signals;
3We cannot use triangular inequality on correlation values because
correlation is not a metric.

many of which are correlated with each other; we can find such
good verifier signals within the database itself. We now present
a dynamic programming based algorithm to systematically search
the input signals for finding verifiers for different signal pairs.

A Dynamic Programming Algorithm. Given a set of signals, the
algorithm computes, for each signal pair, an upper and a lower
bound of their distances. These bounds are then compared to a
threshold (see Lemma 5) to label pairs as correlated or uncorre-
lated. For the pairs whose correlation status cannot be decided
based on its upper and lower bounds, their true distances are com-
puted to determine their correlation status.

The basic observation is that computing the lower and the upper
bounds of the true distance between signals si and sj, i < j can be
decomposed into the following recursive substructure. This enables
us to compute bounds for a pair of signals from the bounds already
computed for other pairs.

UB(si, sj) = mini<v<j {UB(si, sv) + UB(sv, sj)} (1)
LB(si, sj) = maxi<v<j {max{LB(si, sv)− UB(sv, sj),

LB(sj, sv)− UB(sv, si)}} (2)

Algorithm 5.2 shows the pseudocode of our algorithm for com-
puting CB . It fills the upper-right half of the matrix CB , one di-
agonal at a time.4 First, it computes the true distances (and hence
exact correlations) of the signal pairs on the principal diagonal of
CB (Line 4). The true distances are assigned as lower and up-
per bounds of corresponding signal pairs. These bounds are then
reused for computing correlation of other pairs. Next, the algo-
rithm considers subsequent diagonals, and for each signal pair on
a diagonal, it uses Equations 1 and 2 to compute upper and lower
bounds of their true distances (Line 8 and 9). Diagonals are con-
sidered in order, starting from the principal diagonal towards the
top-right corner of CB . This ensures that before a signal pair (i, j)
is considered, bounds of all the signal pairs (i, v), (v, j), i < v < j
are already computed; hence, these already computed bounds and
Equations 1 and 2 can be used for the pair (i, j). Finally, the algo-
rithm uses Lemma 5 to decide a pair’s correlation status based on its
distance bounds (Line 11 and 13). If the status of a pair cannot be
determined based on its distance bounds, the algorithm computes
exact distance of the pair and decides its correlation status based on
the true distance (Line 16).

Note that, examining all previously computed diagonals for ver-
ifiers can be expensive than computing the exact correlation when
n � m. In conditions like this, we can use a shorter search range
for the verifier. For example, to consider no more than 5 signals
as verifiers, we can use i < v < t, t = min(j, 5) instead of
i < v < j in line 8 and line 9.

6. EXTENSIONS
In this section we describe several useful extensions of our ap-

proximation algorithms described in Section 5.

6.1 Negative Correlation
In real datasets, signals often show negative correlation (or, anti-

correlation). For example, number of bytes available in the main
memory of a server is negatively correlated with the number of
TCP connections made to that server. Both our approximation al-
gorithms can be extended to handle such negative correlations. The
basic idea is that corr(x,y) = −corr(x,−y). Thus, for a given
negative threshold T , corr(x,y) ≤ T ⇒ corr(x,−y) ≥ −T .

4CB is symmetric, so computing half of it is sufficient.



We can easily extend our approximate threshold correlation al-
gorithm in Section 5.1 for deciding if a signal pair (x,y) has an
anti-correlation smaller than a threshold T < 0, as follows. The
modified algorithm compares dk(X̂,−Ŷ) with a threshold based
on −T , where the appropriate value of k is determined by Theo-
rem 1. Note that the modified algorithm does not need to compute
any additional DFT coefficients; the same DFT coefficients com-
puted for positive correlations are sufficient.

Similarly, our algorithm in Section 5.2 for threshold Boolean
correlation query can be extended for negative correlation between
signals x and y by computing lower and upper bounds of the dis-
tance d(x,−y).

The above extensions have the same asymptotic computational
complexity as our original algorithms.

6.2 Lagged Correlation
So far we have considered synchronous correlation where sig-

nals to be correlated are assumed to be aligned with each other in
the time dimension. However, signals in real datasets often exhibit
correlation with unknown lag. For example, in a typical two-tiered
web service deployment, an increase in the number of TCP con-
nections in the front-end server typically precedes an increase in
the CPU load in the back-end server. Intuitively, two signals have
a lagged correlation with lag l if they look very similar when one
signal is delayed by l time ticks. Formally, given two signals x and
y of equal length m, their correlation with lag l is corrl(x,y) =∑m−l−1
i=0

(xi−µx)
σx

(yi+l−µy)

σy
, where µx, µy, σx, σy are defined on

the overlapping part of two signals. Note that synchronous correla-
tion is a special form of lagged correlation with l = 0.

We further define the maximum lagged correlation of two sig-
nals as the maximum of their correlations with all possible lags.
Note that in the above definition, only one signal has been lagged
or shifted. If both signals are periodic, shifting any of the signals
yields the same maximum lagged correlation. Otherwise, if any of
the signals is aperiodic, both the signals need to be shifted to find
the maximum lagged correlation. For simplicity of description, we
here consider shifting only one signal.

We now show how to extend our previous algorithms to consider
maximum lagged correlations, instead of synchronous correlation.
Our approach is similar to BRAID [21], which discovers maximum
lagged correlation of a signal pair in O(lgm) time, where m is
the maximum possible lag. Instead of computing correlations for
all possible lags to find the maximum, BRAID probes in geomet-
ric progression and interpolates the remaining values of the cross
correlation function. Although BRAID is designed for streaming
applications, it can easily be adapted to use in a stream warehous-
ing scenario. However, BRAID computes correlations in the time
domain, which can be significantly expensive for a large number
of long signals. We now show how BRAID can be used in the
frequency domain to avoid such cost.

Note that to compute lagged correlation of x and y with a lag l,
one signal is first shifted (or, lagged) by l time ticks while keeping
the other signal fixed, and then the correlation is computed over
their trimmed, common parts of length (m − l). Without loss of
generality, assume that the common parts include a prefix of signal
x and a suffix of signal y, both of length (m− l); i.e., x0 is aligned
with yl to compute lagged correlation with a lag of l. To work
in the frequency domain, a naïve solution would compute DFT of
all prefixes of x and suffixes of y. However, the following lemma
shows that we can compute DFT coefficients of a signal once, and
then reuse them to compute coefficients for any prefix or suffix of
the signal.

LEMMA 7. Let x be a signal of length m with DFT X. Then,
for r = 0, 1, . . . ,m− l − 1
(i) [Prefix] The DFT of xp = x0, x1, . . . , xm−l−1 is Ẋ where

Ẋr = X mr
m−l

+
1

m− l

[ m−1∑
p=0,p6= mr

m−l

Xp
e2πi(p− pl

m
−r) − 1

e2πi( p
m
− r
m−l ) − 1

]
(ii)[Suffix] The DFT of xs = xl, xl+1, . . . , xm−1 is Ẍ where

Ẍr = S mr
m−l

+
1

m− l

[ m−1∑
p=0,p6= mr

m−l

Sp
e2πi(p− pl

m
−r) − 1

e2πi( p
m
− r
m−l ) − 1

]
where Sp is the l-shift of Xp defined as Sp = e

2πi
m
lpXp.

PROOF.

Ẋr =
1

m− l

m−l−1∑
j=0

xje
− 2πir
m−l j

=
1

m− l

m−l−1∑
j=0

m−1∑
p=0

Xpe
2πij
m

pe−
2πir
m−l j

=
1

m− l

m−1∑
p=0

Xp

m−l−1∑
j=0

e2πi( p
m
− r
m−l )j

= X mr
m−l

+
1

m− l

[ m−1∑
p=0,p 6= mr

m−l

Xp
e2πi(p− pl

m
−r) − 1

e2πi( p
m
− r
m−l ) − 1

]
The proof for suffix is similar.

Thus, once the DFT coefficients for x̂ and ŷ are computed, they
can be reused to compute DFT coefficients for all their prefixes and
suffixes and hence be used for computing correlations with arbi-
trary lags.

The above result enables us to efficiently compute lagged ver-
sions of Cε and CB in the frequency domain. In a lagged Cε, an
entry Cε[i, j] is an ε-approximation of the maximum lagged cor-
relation of signals i and j. Similarly, in a lagged CB , an entry
CB [i, j] is 1 iff the maximum lagged correlation of signals i and j
is above the given threshold.

However, there is a caveat. The basic idea above requires all
DFT coefficients of an original signal; in contrast, our approxima-
tion algorithms compute only a first few DFT coefficients. Thus,
we need to approximate remaining coefficients with zeros, which
introduces errors in the DFT coefficients we compute for prefixes
and suffixes. In general, this may cause our algorithms to violate
approximation guarantees. In practice, however, the effect is very
small because our algorithms compute as many DFT coefficients as
required to capture the most of the energy of a signal; hence, ignor-
ing the remaining coefficients does not affect the accuracy much.
We will experimentally validate this in Section 7.

7. EVALUATION
We evaluate our algorithms using the same machine described in

section 3.
We use four datasets. To perform experiments on massive sized

data, we replicate every signal in a dataset equal number of times
with small additive white noise. This preserves the pairwise corre-
lation structure in the original dataset.

• DataCenter1 contains measurements of the number of TCP con-
nections established over a day to 350 servers in a real data cen-
ter. One measurement is made every 30 seconds, and so a signal
for a day consists of m = 2, 880 samples. The dataset contains
n = 11, 200 signals.
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Figure 5: Impact of I/O and CPU optimizations for computing a threshold correlation matrix. In (a), DC1=DataCenter1,
DC2=DataCenter2, and RW=RandomWalk.

• DataCenter2 is a collection of measurements of the CPU utiliza-
tion of 120 servers in a real data center. One measurement is made
every 30 seconds, and a signal for a day consists of m = 2, 880
samples. The dataset contains n = 4, 745 signals.

• Chlorine [17] is a collection of signals representing chlorine con-
centration at different junctions in a water distribution network.
The original dataset has 166 signals of two weeks long signal
traces (one sample in every 5 minutes). We use week-long (m =
2, 155 samples) traces and replicate them to create a dataset of
n = 10, 624 signals.

• RandomWalk is a collection of n = 16, 384 random walk signals
generated synthetically using Gaussian steps. Each signal ism =
2, 880 samples long.

7.1 Impacts of I/O Optimizations
To show the benefit of our min-cut partitioning based caching

strategy, we compare it with a baseline caching strategy where sig-
nals are randomly partitioned. The only difference between the
two caching strategies is how they partition signals into batches—
both are used for computing a CT , and they both prune signal pairs
based on the same Pruning Matrix. We assume the cache is big
enough to hold 1

32
th of a dataset. The result is shown in Figure 5(a).

As shown, our min-cut partitioning significantly (1.8× - 3.5×) re-
duces the I/O time for all the datasets (the factor of reduction in I/O
time is shown at the top of the second bar). This reduction is at-
tributed to our careful partitioning that reduces the number of disk
I/O required to compute correlation of signal pairs across different
batches. However, the overhead of partitioning is never more than
30 seconds, which is very tiny compared to the end-to-end response
time.

The I/O cost of our caching strategy can be reduced by using a
bigger cache. To show the impact of cache size, we vary the cache
size keeping the datasize fixed. Figure 5(b) shows I/O costs as a
function of the ratio of cache size and data size. As shown, the I/O
time decreases linearly with the increase in available cache size,
and becomes < 10 minutes for a cache of size n/16. This is due
to the fact that with a larger cache, data is partitioned into fewer
batches, and hence fewer disk I/Os are required to compute corre-
lation of signal pairs across batches. The slopes of different lines
demonstrate the amount of correlation present in different datasets.
The more correlated pairs in a dataset are, the larger the slope is.
The RandomWalk dataset has the least slope among all datasets,
as it has the least correlation among signals.

7.2 CPU Speedup due to Approximation
We now show how much our approximation algorithms reduce

the CPU cost of computing a correlation matrix. As a shorthand,
we use the following notations:

• A : an algorithm to compute an all-pair exact correlation matrix
C in the time domain,

• AT : an algorithm, described below, for computing an exact
threshold correlation matrix CT ,

• Aε : our algorithm for computing an approximate threshold cor-
relation matrix Cε (Section 5.1),

• AB : our algorithm for computing a threshold Boolean correlation
matrix CB (Section 5.2).

For different algorithms, we report the speedup factors. The
speedup of an algorithm is the ratio of the end-to-end CPU time of a
baseline algorithm to that of the algorithm. The higher the speedup,
the faster the algorithm. For our approximation algorithms Aε and
AB , we use AT as the baseline. Before reporting the speedups of
our algorithms, we first report the speedup factor ofAT , withA as
the baseline. This will allow us to interpret the speedup factors of
Aε and AB with respect to A as well.

IThreshold Correlation Matrix. To compute CT for a given
threshold, AT prunes uncorrelated signal pairs based on their dis-
tances of k = 5 first DFT-coefficients (similar to the methods in
[1, 27]). The exact correlations of likely correlated signal pairs are
then computed in the time domain. Figure 5(c) shows, for diffe-
rent correlation thresholds, the speedup factors ofAT , with respect
to A (which takes more than 90 minutes of CPU time for all the
datasets). As shown,AT can be several times faster thanA, specif-
ically with high thresholds (e.g., with T = 0.9, AT is > 3× faster
than A). The speedup increases as the threshold increases; this is
because more and more uncorrelated signal pairs can be pruned as
the threshold increases.

IApproximate Threshold Correlation. Figure 6(a) shows the
speedup of Aε, with respect toAT , for different approximation er-
ror bounds ε. As before, we use k = 5 DFT coefficients for pruning
and T = 0.9 as the threshold. The graph shows that even with a
very small error, e.g., 0.02, Aε is significantly faster than AT for
all real datasets. For example, with ε = 0.02, the speedups for the
Chlorine and DataCenter2 datasets are 17 and 9 respectively.
The speedup is small for RandomWalk, because most of its en-
ergy is captured by a very few of its leading coefficients [1], helping
the baseline algorithm AT to perform extremely good (also shown
in Figure 5(c)) with such data. The speedup increases with error
tolerance, as this allows Aε to compute fewer DFT coefficients.

Figure 6(b) shows the speedup of Aε for different thresholds. In
general, the absolute execution time of Aε is not affected much by
different thresholds. In contrast, the baseline algorithm AT runs
faster with bigger thresholds (as shown in Figure 5(c)). Therefore,
the speedup of Aε with respect to AT decreases with increasing
threshold, as shown in Figure 6(b).
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Figure 6: Speedup for computing an approximate and a Boolean threshold correlation matrix. The speedup is computed with respect
to computing an exact threshold correlation matrix.

Dataset CPU time (minutes)
A AT Aε AB

DataCenter1 106 50.7 9.5 18.2
DataCenter2 19 12 0.85 4.9
Chlorine 98 67.5 3.5 10.4

RandomWalk 207 35.2 6.6 29.0

Table 3: Absolute CPU time for different algorithms, with T =
0.7 and ε = 0.04

IBoolean Threshold Correlation. Finally, we test our AB al-
gorithm with varying thresholds. Figure 6(c) shows speedups for
different datasets. In most of the cases speedup is more than 2 and
for Chlorine it reaches up to > 10× for T = 0.9. In general,
AB is slower than Aε; this is because Aε needs to search for good
verifier signals in order to avoid any false positives and negatives.

ISpeedup with respect to A. Since the speedup of AT is re-
ported with respect to A, and other speedups are reported with
respect to AT , we can combine the speedups. For example, for
the DataCenter1 dataset, Aε is 18.75 times faster than A, for
a threshold T = 0.9 and an error bound ε = 0.06. Similarly,
AB is 8.34 times faster than A, for a threshold T = 0.9. For the
DataCenter2 dataset these numbers are 26.4 and 4.1.5

IAbsolute savings. Table 3 shows the absolute CPU time of diffe-
rent algorithms on different datasets. This highlights that, in addi-
tion to significant relative speedups, our algorithms have significant
absolute savings in execution time of different correlation queries.

In none of the experiments above, our algorithms result in a
speedup less than 1. This highlights that our algorithms are never
slower than AT or A with our datasets.

7.3 Lagged Correlation

IError. As mentioned in Section 6.2, our algorithm for comput-
ing lagged Cε may violate ε-approximation guarantee. We now
experimentally measure the effect for computing lagged Cε with
ε = 0.04. After computing lagged Cε, we count the number of sig-
nal pairs that violate the ε-approximation guarantee; i.e., for which
the true maximum lagged correlation is more than ε away from our
estimated maximum lagged correlation. We define the percentage
of signal pairs violating the approximation guarantee as the error of
our algorithm due to lag. Note that, without any lag, our algorithm
has an error of 0 as it never violates the approximation guarantee.

Figure 7 shows the error of our algorithm as a function of maxi-

5We assume a large cache, so that I/O cost is small, to compute the
speedup.
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Figure 8: Speedup for lagged correlation (DC1=DataCenter1,
DC2=DataCenter2, RW=RandomWalk).

mum lag. Lags are shown as percentages of the entire signal lengths
(= m). As shown, the error is very small for all datasets for reason-
able lag values. In particular, Chlorine and RandomWalk incur
close to zero error with a maximum lag of 5% of the entire signal
length. All datasets have errors < 2% even for a large maximum
lag of 20% of an entire signal. Lags are typically much smaller in
practice; e.g., forDataCenter1, a signal represents the entire day,
and hence 10% lag means a lag of 2.4 hours, which is extremely
unlikely in a data center. Thus, for practical values of maximum
lag, our algorithm incurs a very small error.

ISpeedup. The small error above comes with a significant benefit
of speedup. In Figure 8, we report the speedup of our algorithm
to compute a lagged Cε for ε = 0.04, with respect to compute
CT with BRAID [21], the state-of-the-art algorithm for computing
lagged correlation. Both BRAID and our algorithm are configured
to compute correlation coefficients for 16 different lags (recall that
BRAID considers logarithmic number of lags). Figure 8 shows
that our algorithm is 35× to 71× faster than BRAID for different



datasets. This huge speedup comes because our algorithm works
in frequency domain and reuses DFT coefficients across different
lags.

8. CONCLUSION
We have proposed novel algorithms, based on Discrete Fourier

Transform (DFT) and graph partitioning, to reduce the end-to-end
response time of an all-pair correlation query. To optimize I/O cost,
we intelligently partition a massive input signal set into smaller
batches such that caching the signals one batch at a time minimizes
disk I/O. To optimize CPU cost, we have proposed two approx-
imation algorithms. Our algorithms have strict error guarantees,
which makes them as useful as corresponding exact solutions for
many real applications. However, compared to the state-of-the-art
exact solution, our algorithms are up to 17× faster for several real
datasets.
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