
Accelerating Dynamic Time Warping Subsequence Search with GPUs and FPGAs

Doruk Sart, Abdullah Mueen, Walid Najjar,

Eamonn Keogh

University of California, Riverside

{sartd, mueen, najjar, eamonn}@cs.ucr.edu

Vit Niennattrakul

Department of Computer Engineering

Chulalongkorn University,Thailand

g49vnn@cp.eng.chula.ac.th

Abstract—Many time series data mining problems require

subsequence similarity search as a subroutine. While this can

be performed with any distance measure, and dozens of

distance measures have been proposed in the last decade, there

is increasing evidence that Dynamic Time Warping (DTW) is

the best measure across a wide range of domains. Given

DTW’s usefulness and ubiquity, there has been a large

community-wide effort to mitigate its relative lethargy.

Proposed speedup techniques include early abandoning

strategies, lower-bound based pruning, indexing and

embedding. In this work we argue that we are now close to

exhausting all possible speedup from software, and that we

must turn to hardware-based solutions if we are to tackle the

many problems that are currently untenable even with state-

of-the-art algorithms running on high-end desktops. With this

motivation, we investigate both GPU (Graphics Processing

Unit) and FPGA (Field Programmable Gate Array) based

acceleration of subsequence similarity search under the DTW

measure. As we shall show, our novel algorithms allow GPUs,

which are typically bundled with standard desktops, to achieve

two orders of magnitude speedup. For problem domains which

require even greater scale up, we show that FPGAs costing just

a few thousand dollars can be used to produce four orders of

magnitude speedup. We conduct detailed case studies on the

classification of astronomical observations and similarity

search in commercial agriculture, and demonstrate that our

ideas allow us to tackle problems that would be simply

untenable otherwise.

Keywords- time series; similarity search; dynamic time

warping; FPGA; GPU;

I. INTRODUCTION

Subsequence similarity search, the task of finding a
region of much longer time series that matches a specified
query time series within a given threshold, is a fundamental
subroutine in many higher level data mining tasks such as
motif discovery [19], anomaly detection [4], association
discovery, and classification [20][1][33].

More than one hundred different distance measures for
time series have been proposed in the last decade [12];
however there is increasing empirical evidence that Dynamic
Time Warping (DTW) (which includes Euclidean Distance
as a special case) is the best measure across a wide range of
domains [7]. Given DTW’s usefulness and ubiquity, there
has been a large community-wide effort to mitigate its
relative lethargy in the last decade. Speedup techniques for
general search under DTW include various indexing methods
[1][11][7]. Speedup techniques for the special case of a
subsequence similarity search that we are considering here

include early abandoning strategies, embedding and various
“computation reuse” strategies [27]. A recent paper has
shown that much of the apparent progress made in recent
years is fatally flawed [4]. In particular, the speedup comes
at the cost of allowing arbitrary false dismissals (we will
expand on this surprising result in Section III.B).

Even if the apparent recent results had been correct, there
still exist problems for which no current algorithms running
on standard hardware can hope to solve in a reasonable
amount of time. As a concrete example (which we expand to
a case study in Section VII.A), entomologists need to
examine telemetry gathered from insects for the occurrence
of certain patterns known to be indicative of destructive (to
host plants) behaviors. Entomologists at the University of
California have created an archive of four hundred million
data points of this data in the last four years, as part of an
effort to understand and ultimately control just one insect,
the Glassy-winged Sharpshooter (Homalodisca vitripennis).
This insect causes tens of millions of dollars of damage to
the grape industry. Moreover, these entomologists are adding
one to two million data points per day to this archive.
Searching this archive under the DTW distance for a single
(relatively short) query pattern of length 360 takes nine days
on a high-end desktop, using state-of-the-art algorithms.
Similar stories can be told for astronomy (cf. Section VII.B),
computational finance, motion capture processing data [5],
industrial and medical domains.

After surveying and testing the current software
solutions, and talking to several domain experts and
practitioners, we have come to the conclusion that we are
now close to exhausting all possible speedup from software
approaches, and that we must turn to hardware-based
solutions if we are to tackle the problems faced by real world
practitioners. With this motivation, we investigate both GPU
and FPGA based acceleration of subsequence similarity
search under the DTW measure. The use of specialized
hardware to allow subsequence similarity search requires a
detailed understanding of both the hardware strengths and
limitations, and of the DTW computation itself.

As we shall show, our novel algorithms allow GPUs,
which are typically bundled with standard desktops and are
thus essentially free, to achieve two orders of magnitude
speedup. We show that if a domain practitioner is motivated
enough to purchase an FPGA, which can cost as little as a
few thousand dollars, our algorithm can achieve a speedup of
four orders of magnitude.

It is important to note that we see our work as going
beyond the claim that “we have made an important
algorithm faster”. A factor of say, two, speedup for an

important algorithm is useful, but unlikely to make a
significant difference to the community. However, a speedup
factor of a thousand or more really has the potential to make
a significant difference, because it allows problems to be
tackled that are otherwise unimaginable. To consider one
concrete example, time series motif discovery is a useful tool
with applications in dozens of domains. A recent paper
introduced a technique to find motifs in datasets containing
millions of objects in just hours, a significant speed-up [19].
This method explicitly assumes the Euclidean Distance;
however, for the related problem of classification, it is well-
known that DTW is significantly more accurate [7][25][33].
Could we do motif discovery under DTW instead? Even if
we assume optimistically that the DTW could somehow be
made to obey the triangular inequality

1
, using the MK

algorithm in [19] with DTW instead of Euclidean Distance
would push the execution time to years instead of hours.

It is also important to note that we see our work as a
service to the time series data mining community. Many
research projects use DTW similarity search as a subroutine,
and could greatly benefit from significantly improved
performance. As such, all of the code developed for both
GPU and FPGA will be freely available at [39] in perpetuity.

The rest of this paper is organized as follows. In Section
II we consider some related work, followed by the definition
of and background to the problem at hand in Section III. Our
GPU and FPGA acceleration methods are described in
Section IV and V, respectively. Section VI shows an
experimental comparisons of different methods. Finally, in
Section VII, we conduct three detailed case studies in
classification of star light curves, commercial entomology
and data condensing for nearest neighbor classification, and
demonstrate that our ideas allow us to tackle problems that
would be simply untenable otherwise.

II. RELATED WORK

The problem of subsequence similarity search using the
DTW measure has been extensively studied in recent years.
One of the most cited methods is SPRING [27], where a
query time series is searched in a larger streaming time
series. The authors achieve significant speed-up by reusing
computations. Unfortunately, this reuse means that the
method allows false negatives, a problem we will elaborate
on in Section II.B.

Our paper joins the growing literature on hardware
acceleration techniques for important database/data-mining
algorithms, such as FFT [9], relational join [10], etc.
However to the best of our knowledge, this work is the first
to present hardware acceleration techniques for similarity
search in streams under the DTW measure.

1
 To be clear, the DTW does not obey the triangular inequality and is thus a

distance measure, not a distance metric, in spite of more than a dozen

papers that claim the latter. However, some of the lower bounds to DTW

are metrics, and thus some triangular-inequality exploiting algorithms can
be adapted to work with DTW.

III. DEFINITION AND BACKGROUND

For concreteness we begin with a formal definition of the
problem and a discussion of why the current solutions are
inadequate. We begin by defining the time series:

A time series T is a sequence of real numbers t1,t2,,…,tn
representing n uniform samples of a measurement. A
subsequence Cs,m of a time series T is any contiguous set
of m samples starting at s. (i.e., ts,ts+1,…,ts+m-1, where 1≤
s ≤ n-m+1).

Before we compare two time series under any distance
measure, it is critical that we normalize them to have the
same mean and variance

2
. As noted in [12], “without

normalization time series similarity has essentially no
meaning”.

The z-normalization of a time series T is defined as T̑ =
t̑1,t̑2,…,t̑n, where t̑i = (ti – μ) / σ . Here, μ and σ are the
sample mean and the sample standard deviation of T,
respectively.

It is critical at this point to clarify a naive
misunderstanding which is replete in the literature. If we are
doing subsequence similarity search with our z-normalized
query Q for the best matching subsequence in a much longer
time series T, we cannot simply z-normalize T once and
proceed. Instead, we must z-normalize each and every
subsequence we extract from T. Note that in the case that T
is not a batch dataset residing in its entirety in memory (or
disk), but in a data stream, it would not even be logically
possible to z-normalize it all, even if doing so gave
meaningful results.

While DTW is defined to allow for the comparison of
two time series of possibly different lengths, without losing
the generality (see [25], Section 2), we will define it
assuming time series of equal lengths.

Suppose we have two time series, C = c1,c2,…,ci ,…,cm
and Q = q1,q2,…,qj ,…,qm. The Dynamic Time Warping
(DTW) distance between Q and C is denoted by D(C,Q) and
defined as below.

D(C,Q) = d(m,m)

ï
î

ï
í

ì

--

-

-

+-=

)1,1(

)1,(

),1(

min||),(

jid

jid

jid

qcjid ji

0)0,0(=d ; ¥==),0()0,(jdid ; mi ,...,2,1= ; mj ,...,2,1=

In the definition, we use absolute difference for distances
between individual samples. Our methods also work for the
squared difference with no difference in speed.

The m-by-m matrix, d, is called the warping matrix. In a
warping matrix, each cell uses a value from any of the three
previously computed neighbors. Thus, if we trace back the
values used to compute the DTW (i.e. d(m,m)), we get the
warping path that describes the optimal alignment of T and
Q (Figure 1).

2
 Some papers have suggested doing [0,1] or [-1,1] normalization instead.

However, the authors do not seem to appreciate how brutally sensitive this
method is to even small amounts of noise or a single outlier.

C

Q

C

Q

Warping path w

Figure 1 (left-top) Two time series sequences which are similar but out of

phase. (right) To compute the dynamic time warping distance and to align

the sequences, we construct a warping matrix and find a warping path,
represented by solid squares.

The time complexity to compute the D(C,Q) is O(m2
),

and the space complexity is also O(m2
). If we only need the

value of the distance (i.e. d(m,m)) we can delete the trace of
the warping path, and thus, the space complexity can be
reduced to O(m) by storing only two columns of the matrix.

A. Definition of the Problem

We are now in a position to define the subsequence
search problem:

Given a time series T = t1,t2,…,tn and a query Q =

q1,q2,…,qm , find the subsequence Cs,m of T such that

D(Ĉs,m,Q̂), 1≤ s ≤ n-m+1, is minimum.

Given the above definition, we could devise a brute force
algorithm shown in Table 1, which takes O(nm2

) time and
O(nm) space. For completeness, we also show the
pseudocode for computing the DTW distance in Table 2.

TABLE 1: SUBSEQUENCE SEARCH ALGORITHM

Procedure SubsequenceSearch(T,Q)

 T: A time series of n points
 Q: Query time series of m points

1 z-Normalize(Q)
2 for s = 1 to n-m+1
3 z-Normalize(Cs,m)
4 Compute D(Cs,m,Q)
5 Update minimum if necessary

TABLE 2: DTW ALGORITHM

Procedure D(C,Q)

 C: A time series of n points, C(0)= ∞
 Q: A time series of m points, Q(0)= ∞

1 s = 0
2 for i = 0 to m
3 d(i,s) = |C(1)-Q(i)|
4 s = sÅ1 // xor operation
5 for j = 2 to n
6 for i = 0 to m
7 d(i,s) = |C(j)-Q(i)| +

 min(d(i-1,s),d(i,sÅ1),d(i-1,sÅ1))

8 s = sÅ1
9 return d(n,sÅ1)

We have chosen the simplest possible problem definition
with one query, one time series and the same subsequence
length (m). There are more general subsequence search
problems where many queries [29] and time series are
involved, or where rotation/phase invariance is required
under DTW [34][26]. However, all such problems can
benefit directly from a speedup of the simple definition.

B. Why Current Software Solutions Are Not the Answer

As we hinted at above, the several apparent software
solutions to the task at hand contain a serious error. We can
best demonstrate this with a simple experiment.

Suppose we task a DTW subsequence search with the
simple task of detecting the heartbeats of an individual, using
one of that same individual’s heartbeats. It is difficult to
imagine a simpler problem.

We begin by downloading a long ECG sequence from a
61-year-old female and manually extracting a typical beat as
our query [39]. We also manually extract some additional
adjacent beats and compare them to our query, finding them
to be an average distance of about 20.0, so we set our beat
detector at a conservative threshold of 30.0. Figure 2 shows
the beats detected in the first 1,800 datapoints, as we can see,
the majority of the beats are missed. How could this be?

-5

-3

-1

1

3

0 100-5

-3

-1

1

3 Query

Distance to the query

0 500 1000 1500
0

40
80

120

Threshold = 30

Figure 2: A query heartbeat (left) is scanned across an ECG trace. (top-

right) Only three of the twelve beats are detected. Plotting the distance

from the query to the relevant subsequence (bottom) reveals that slight

differences in a subsequence’s mean value (offset) completely dominate the
DTW distance calculation, dwarfing any contribution from the similarity of

the shape.

Note that while the local mean of the ECG trace starts at
about zero, which is also the approximate mean of the query,
the trace slowly rises to have a local mean of about 1.0, then
descends below zero (allowing the detection of a single beat
at about 1,500 as the mean crosses zero).

The problem is that the SPRING algorithm [27] does not
(and, more critically cannot) normalize the offset or
amplitude of the subsequences of the longer time series. It is
therefore implicitly assuming that the query will happen to
have the same offset and amplitude as the matching
subsequence. However, in virtually every domain that
assumption is unwarranted. For example, virtually all ECGs
wander up and down as in our example, the effect is known
as a wandering baseline [18]. Similar problems are observed
in motion capture [16], astronomy, entomology, industrial
process telemetry, EEGs, etc.

It is important to recognize that there is no simple fix for
this problem. The SPRING [27] algorithm achieves its
speedup by exploiting the redundancy of calculations in a
sliding DTW matrix, but if each subsequence is z-
normalized, as it must be to obtain meaningful results, then
there will be no redundant calculations to exploit. For brevity

we will conclude the discussion of the reasons why current
software solutions do not work here. The interested reader
can view [39], where we have many additional examples of
the problem in real domains and a detailed discussion of why
the obvious possible fixes for the problem we have just
pointed out will not solve it. In our view, this problem is very
unlikely to yield to a software solution that improves the
time complexity of the brute force algorithm in Table 1. We
note in passing there are at least one dozen other works that
have the same problem, we pointed to SPRING only because
it is the most cited work on the topic.

IV. ACCELARATION BY GPU

The GPU is a computing device that serves as a
coprocessor for the CPU. It has its own device memory on
the card and can execute many threads in parallel [22]. In
this work we use the ubiquitous NVIDIA CUDA
architecture, where multiple threads running on multiple
processing cores execute the same program on separate data.
This Single Instruction Multiple Data (SIMD) architecture
allows us to map each normalization and DTW distance
computation (Lines 3-4 in Table 1) to be executed in parallel
on different segments of the time series.

Each CUDA function (i.e. kernel) is executed by an array
of threads. Each of these threads is assigned an ID that it
uses to determine memory addresses (i.e. the segment of the
time series) it should operate on. The hardware is free to
determine the mapping and scheduling of these threads on
the available processing cores. A thread block is defined as a
batch of threads that are guaranteed to run simultaneously
and cooperate with each other through shared resources. The
size of a thread block can be specified at runtime. The
NVIDIA CUDA thread architecture is shown in Figure 3.

Figure 3: NVIDIA CUDA Architecture: Each GPU kernel is executed as an
array of threads. Blocks are batches of threads that run concurrently.

The selection of the number of threads per block is an
important parameter to maximize the utilization of the
processor cores. Unfortunately, it depends on the architecture
of the GPU. Thus, obtaining the optimum value is not trivial.
The important variables to consider are the total number of
processing cores and their internal pipeline architectures. For
a more detailed discussion, see [22].

The GPU implementation of Dynamic Time Warping
consists of three main stages:

· The CPU copies the values to the GPU memory

· The CPU calls the GPU kernel

· The CPU copies the output from the GPU

In the first step, the CPU copies the whole time series (T
in Table 1) to the global memory of the GPU. If the time
series is larger than the available device memory, the CPU
splits it into small batches and processes one batch at a time.
This process introduces latency in the output but does not
hamper the real-time processing, as the time to copy the data
is in the range of milliseconds. Therefore, copying batches
one at a time can tolerate a data arrival rate of hundreds of
hertz without overflowing any buffer. Since the query is
fixed and good for all of the batches, we copy it to the global
memory in the beginning and keep it there throughout the
execution.

In the second step, the CPU calls the kernel in the GPU.
Every kernel thread operates on a specific sliding window in
two steps: first, accessing the sliding window to compute the
mean and variance, and second, computing the normalized
DTW distance to the query. For both the steps, each kernel
thread accesses a contiguous segment of m numbers from the
time series T in the global memory. If we batch the threads
responsible for successive sliding windows in a thread block,
the memory accesses by these threads will result into
coalesced accesses. For example in Figure 4, a block of four
threads is shown where the first memory accesses by these
four threads require one read from the memory instead of
four, because of the threads operating on contiguous
locations in the memory.

T1 T2 T3

Input Time Series

t0 t1 t2 t3 t4 t5 t6 t7

T4

Threads t0 t1 t2 t3

One memory access for

four read instructions by

T1, T2, T3 and T4

. . .

. . .

Figure 4: Division of work among threads. Memory accesses are coalesced

by overlapping threads (for m=4).

In the second step, when the mean and variance are
ready, each thread computes the DTW distance between the
query and the normalized subsequence by Table 2. Note that
in Table 2, the query Q is accessed O(m2

) times whereas the
subsequence C is accessed O(m) times. It is important to
maintain this distinction between Q and C although
swapping Q and C in Table 2 would produce correct results.

The reason is that Q is a fixed time series, and by the
problem definition it is not changed during execution.
Furthermore Q is much smaller than T so it can fit in the
shared memory of the GPU device. Shared memory is a
special memory locally available to the processor cores in a
multi-processor of the GPU device. Shared memory is 150x
faster than the global memory which is available to all of the
cores in all of the multi-processors. Typically, shared
memory is much smaller than the global memory and thus is
the ideal place for the query time series.

In the beginning of the DTW computation, the kernel
threads copy the query (Q) into shared memory from the
global memory. The internal data structure for computing the
DTW distance is two column vectors (d in Table 2) of size
m. These vectors are best stored in the shared memory if they
all fit together (e.g., in the case of very small m). Otherwise,
they are stored in the global memory. With all of the
variables in place, the DTW computation is performed. Each
thread stores the computed distance in a global array indexed
by the thread ID.

Finally in the third step, when all of the threads
terminate, the CPU copies the array back to system memory.
Although the algorithm looks for the minimum distance, it is
much simpler and more efficient to copy back all of the
distances to the CPU instead of computing the minimum in
the GPU. Maintaining a variable for the minimum distance
computed by all of the threads requires an atomic instruction
in all of the threads that update the variable. Such an
instruction eventually makes all of these threads update the
variable serially and reduces the parallelism. Therefore,
atomic updates are not recommended.

V. ACCELARATION BY FPGA

A. Data Representations for FPGAs

While GPUs can handle essentially any data that a
normal CPU can, FPGAs require reducing the cardinality
(precision) of the data. This is because in modern FPGAs,
floating point arithmetic does not scale well with larger
applications [15] due to the additional complexity for
handling the mantissa and exponent separately. Therefore,
we select 8-bit integers for representing values in the time
series. Reducing the number of bits not only increases the
performance but also increases the area utilization.
Furthermore, for a given size of the FPGA, we may need to
impose an upper limit on the dimensionality (length) of the
query.

Given that we may need to reduce the cardinality and/or
dimensionality of the data, it is natural to ask if this will
reduce the accuracy of FPGA-based DTW similarity search.
We can strongly affirm that these changes to raw data will
not affect the accuracy of DTW in any meaningful (or indeed
perceptible) way. To see this we can perform some simple
experiments. We took all twenty datasets from the UCR
Time Series Classification Archive [13] and tested to see
what effect reductions in the dimensionality or cardinality
would have. We began by running DTW one-nearest-
neighbor classification on the raw data, confirming the
published results [13]. We then took the data, reduced the

precision from eight bytes to just eight bits, and reran the
DTW one-nearest-neighbor classification. We also took the
raw data, and reduced the dimensionality of all datasets from
their original lengths to exactly 128 (the original lengths for
the twenty problems had a maximum of 637 and a mean of
310.8). While there are sophisticated interpolation algorithms
for resizing time series, we simply used the trivial MATLAB
command:

x = x(1:length(x)/128:end)

to resize the data. The results of this experiment can be

visualized in Figure 5.

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

In this region a 8-

byte representation

is more accurate

In this region a 1-

byte representation

is more accurate

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

In this region the original

128+ value representation is

more accurate

In this region the 128-

value representation is

more accurate

Figure 5: The error rate of twenty time series classification problems

conducted with two reduced representations (left) The original data vs. a

reduced precision data. (right) The original data vs. a reduced

dimensionality data.

A paired T-test
3
 of the null hypothesis that there is no

difference between the two mean accuracies produces a
value of 49.2%, suggesting what is visually obvious from the
figures: there is simply no significant difference made by the
change of representation.

We briefly note that if there was a reason to insist that the
FPGA returns the exact same answer as the original data, we
believe that this would be possible to achieve by producing a
bound on the difference between the distances measured in
the raw space, and the distances measured in the reduced
space, and then returning all of the sequences that match
within the bound for additional inspection. Note that the
downsampling could be achieved by Piecewise Aggregate
Approximation (PAA), and a bound (LB_PAA) between
DTW on the raw data and DTW on the PAA representation
exists [36]. Likewise, the reduction in cardinality could be
achieved by Symbolic Aggregate ApproXimation (SAX); a
bound between DTW on the raw data and DTW on the SAX
representation also exists [6]. We do not further explore such
considerations, given that Figure 5 strongly suggests it is not
a fruitful problem.

B. FPGA Implementation

The design of an FPGA configuration requires
programming using a hardware description language (i.e.,
VHDL/Verilog). In this work, we use an open source C to
VHDL compiler system, ROCCC [37], which allows us to
describe the hardware in C language and generate the VHDL
code automatically. ROCCC also optimizes the design

3 More appropriate and powerful measures of significance (see [28]), which

conforms the null hypothesis.

mainly in three ways. First, it maximizes the throughput by
exploiting loop and instruction level parallelism. Second, it
reuses the data, and third, it generates a pipelined datapath to
minimize the number of clock cycles [29].

Our FPGA design consists of two major blocks:
Normalizer and Warper, to normalize the input data and run
the actual DTW matrix calculations, respectively (Figure 6).
Input data streamed into the system are first given to a First-
In-First-Out (FIFO) buffer. The size and input ratio of this
FIFO can be adjusted according to the FPGA interconnection
mechanism. However, the output of the FIFO generates one
sample (8 bits) every clock cycle. Next, the output of the
FIFO is fed into the Normalizer module. Initially,
Normalizer waits until the first window is received. Every
following normalization operation reuses m-1 operands of
the previous operation, where m is the query length. After the
first output is produced, a new output is generated every
clock cycle. This output is given to another FIFO, which acts
as the intermediate memory component between the
Normalizer and the Warper.

Input

PINs

Input Buffer

m Datapoints
Normalizer

Internal Buffer

m Datapoints

Removing Buffer

1 Datapoint

Warper

1 Datapoint

Figure 6: FPGA Block Diagram. Thick lines are for m-point wide

connections. Thin lines are for one-point wide connections. Buffers are

simple FIFOs.

Internally, a trivial Normalizer module stores m-partial
sliding windows. In every clock cycle, it updates statistics
for all of the partial windows and outputs the window for
which the normalization is complete. Thus, it needs quadratic
O(m2

) space in the FPGA and does not scale with larger
query lengths. In order to support larger query lengths, we
implemented an online Normalizer, which does not
remember intermediate states. It computes the mean (μ) and
standard deviation (σ) online and normalizes exactly one
window in every clock cycle. Thus, it needs linear O(m)
space in the FPGA. Although the trivial Normalizer has
shown better performance in speed due to less overhead, it
does not make any difference in the overall system
performance. The reason for this is that the Warper module
is the real performance bottle-neck as described later.

The Online Normalizer consists of three sub-units, as
shown in Figure 7. The first unit calculates the sum and sum
of squares of all the inputs in a sliding window fashion, by
adding the new value while subtracting the oldest value to be
removed from the sum. Initially, “to remove” value is zero
until the first window is completely received through the
“Datapoint” input. When switching to the next window, the
very first value of the first window is given to “to remove”
and the sum for the second window is obtained at the output.
This output is also given to the Normalize Divider sub-unit,
where the mean and the standard deviation of the latest
window are obtained. The input stream is provided to the
third unit through a buffer. The size of this buffer depends on
the delay of the first two modules. The third module must

wait until the corresponding mean and standard deviation
values are available for a given window. This delay is
provided by the Datapoint Buffer, which is automatically
added by ROCCC. The unit then runs the actual
normalization function. The generated normalized data is
provided to the systolic array (warper) through a buffer, as
shown in Figure 6.

Datapoint

To Remove

x

x

Window Length

Normalize

Adder

Normalize

Divider

m Datapoints

m Normalized

Datapoints

Online

Normalizer

…

Datapoint Buffer

Output to Internal

Buffer

å x

2

å x

μ

σ

Figure 7: Online Normalization Unit. The sum and sum of squares are

obtained in a sliding window approach, by adding the new input and

subtracting the oldest value. The input datapoints are delayed through the

Datapoint Buffer, to make sure that the correct mean and standard
deviation are used.

The Warper module is implemented as a systolic array
[3]. A systolic array consists of data processing units
connected in a matrix fashion. These data processing units
(i.e. cells) share the information with their neighbors
immediately after processing. Using ROCCC’s built-in
systolic array generator, we simply obtain the hardware
description of the Warper module. Structurally, the Warper
module is the same for any window size, except for the size
of the systolic array. This size can be adjusted in the ROCCC
code by tuning a parameter. A Warper module generates one
DTW distance between the normalized sliding window and
the query time series in every m clock cycle where m is the
window size/query length. Since the normalization unit is m
times faster than the Warper unit, we place multiple Warper
units to operate on separate normalized windows generated
by the normalization unit. Ideally, if we had unlimited FPGA
area, we could place m Warper modules to get the maximum
processing speed of one DTW distance in every clock cycle.
When multiple Warper modules are in place, the Internal
Buffer output is fed into them in a round robin fashion.

VI. EVALUATION

In this section, we show the performances for the DTW
subsequence search problem in different hardware settings.
We use the following platforms:

Software: Intel Xeon E5540 CPU at 2.53 GHz

SSE: Intel i7- 920 CPU at 2.66 GHz

GPU: NVIDIA Tesla C1060 with 240 cores

FPGA: Xilinx Virtex 5 LX-330

The SSE (Streaming Single Instruction Multiple Data
(SIMD) Extensions) is an instruction set extension to Intel’s
x86-architecture. It makes use of 128-bit SSE registers and
can merge four 32-bit data to operate concurrently. The
software implementation proposed in Table 1 can be
parallelized by making use of data independencies. However,

it is practically impossible to realize this parallelization on
the DTW matrix calculations. We can only execute SSE
instructions on the normalization operations. The
performance improvement is therefore not significant
compared to the software-based solution.

In Figure 8, we show the time required to answer a query
of length 128 by different hardware settings. We achieve the
highest speedup over the software through FPGA
acceleration, which is 4000 times faster in the best case
scenario. GPU acceleration is 36.3 times faster, on average.
All of the results reported here use 8-bit integers to represent
the values in the time series.

20,000 40,000 80,000 160,000
100

101

102

103

104

105

S
o
ft

w
ar

e

S
S

E

G
P

U

F
P

G
A

Length of the Time Series (T)

T
im

e
in

 S
ec

o
n

d
s

(L
o

g
 S

ca
le

)

Figure 8: Comparison of execution times with different lengths of the input

time series, in LOG scale. The query length is 128. For GPU, block size

is 512.

The FPGA performance results are obtained after
placement and routing operations. We use one trivial
Normalizer unit and eight Warper units. The Normalizer for
window size 128 requires 13% of the target device and runs
at 180MHz. Each Warper unit requires 7% of the area and
run at 240MHz. The Normalization unit provides an output
for each clock cycle. The Warper requires 128 clock cycles.
Therefore, the Warper unit runs more slowly than the
Normalizer. At 240 MHz, one window of length 128 can be
processed through the Warper in 128/240M seconds.
However, using 8 Warpers reduces this to 16/240M seconds.
In other words, 15 million samples (windows) can be
processed per second.

In Figure 9, we show the execution times for a fixed
window size of 1024, the FPGA provides a maximum
speedup of 4500x and the GPU achieves a speedup of 29x
over software. For the window size 1024 on the FPGA, we
use the online Normalizer, as shown in Figure 7. This
module runs at a clock frequency of 180MHz and requires
83% of the FPGA logic. The Warper module runs at
250MHz and requires 9% of the logic. In this case, we can
only place one Warper module safely. Although the area is
dominated by the Normalizer, the throughput of the system
is still determined by the Warper module. The Warper
module requires 1024 clock cycles per cycle. One sample
(window) can be processed in 1024/250M seconds. This
results in a throughput of 244 thousand samples per second.
Note that in the streaming case there are probably few data
sources that could produce data from a single stream at
anything like this rate. However, because the overhead for
switching between streams is so low, we could use a single

FPGA to handle say two hundred streams at 1,000Hz, by
simply multiplexing between (slightly buffered) streams.

20,000 40,000 80,000 160,000
100

101

102

103

104

105

106

107

Length of the Time Series (T)

T
im

e
in

 S
ec

o
n

d
s

(L
o
g

 S
ca

le
)

S
o

ft
w

ar
e

S
S

E

G
P

U

F
P

G
A

Figure 9: Comparison of execution times with different lengths of the input
time series, in LOG scale. The query length is 1024.

In Figure 10 we show the responses of different methods
while varying the size of the query. Recall the methods have
the same time complexity of O(nm2

). The responses show a
clear quadratic growth for software and SSE methods. Our
hardware acceleration techniques are much slower in growth
because of the parallelism our techniques achieve. The trends
in the figure clearly show that our techniques will remain
tenable for larger window size while the software methods
are already intractable.

100 200 300 400 500 600 700 800 900 1000 1100

0

100

200

300

400

500

600

700

800

Query Length (m)

T
im

e
in

 S
ec

o
n
d

s
Software

SSE

GPU FPGA

Figure 10: Execution times for a fixed time series of length 40,000 with

varying query sizes (m).

VII. EXPERIMENTAL CASE STUDIES

In this section we conduct case studies that forcefully
confirm all of the claims and assumptions made in this work.
Recall that we have claimed:

· Time series subsequence search is an important problem
with scientifically and commercially important
applications.

· For at least some problems, Euclidean distance, while
tractable, is simply not accurate/robust enough.

· There exist problems of a scale which makes them
untenable with conventional hardware. We propose
special hardware-based solutions to make them yield.

A. Case Study in Entomology

Many species of insects feed by inserting their stylet (a
long needle-like mouthpart) into a plant and sucking out sap.
While this behavior in itself is generally not harmful to the
plants, if one plant has a disease, the insects will transmit it
from plant to plant.

It is impossible to overstate the commercial impact of
this insect behavior. For example, if we consider just one
species of insect, the Aster leafhopper (macrosteles
quadrilineatus), in one American state, Wisconsin, and one
crop, the carrot, it is estimated that losses exceed two million
dollars a year [8]. However, the Aster leafhopper is just one
of perhaps two thousand insects that exhibit this harmful
piercing/sucking behavior. The worldwide commercial
losses to agriculture are hard to estimate, but for the wine
industry alone the cost is conservatively estimated at several
billion US dollars.

In order to control these insects, their behavior must be
understood. However, direct visual observation of a tiny and
fast-moving insect is very difficult, to say the least. In a 1964
paper in Nature, McLean and Kinsey [17] proposed attaching
a small wire to the insect with conductive glue, and creating
a circuit through the ground in which the plant is potted. As
soon as the insect’s stylet penetrates the plant, the circuit is
completed and a fluctuating voltage, called the Electrical
Penetration Graph (EPG) signal, occurs and can then be
amplified and recorded. Figure 11 shows an example EPG.

0 200 400 600 800 1000 1200

Query Q

Figure 11: A short extract of an EPG graph of a beet leafhopper (Circulifer
tenellus). A query Q can be searched against the longer time series to find

examples of similar behavior.

Since the invention of the McLean-Kinsey apparatus,
EPGs have become the main tool for researchers working on
these insects, and some groups produce several million data
points of time series each day. One critical task researchers
perform is to search for patterns in these long traces [1]. For
example, an expert on the beet leafhopper (Circulifer
tenellus) who has identified the pattern that indicates the
insects’ probing behavior (the query Q in Figure 11) may
wish to know if the less common Black-faced Leafhopper
(Graminella nigrifrons) from a sister Genera Graminella4

also exhibits this behavior.
A survey of the literature tells us that such questions are

frequently asked, and surprisingly, mostly answered by a
manual search of vast archives [1]. Some attempts have been
made to computerize the search process, but it has been
noted that "…it still remains difficult to distinguish some
waveform features and especially, in establishing the
accurate time of transitions between some subsequent
waveforms…" [14] (our emphasis). This variability in time of
transition is of course simply warping of the time between
(sub) behaviors. In Figure 12 we show a zoom-in of Figure
11 which clearly shows that pattern matching in this domain
requires time warping.

4 Both insects are in the Deltocephalinae subfamily

0 60 120 180 240 300 360

Figure 12: A zoom-in from Figure 11 showing that a query behavior

(bottom) corresponding to stylet-insertion matches to a subsequence of a
different insect’s behavior only after warping.

To test the scalability of our ideas in this domain, we
searched for the query shown in Figure 11 and Figure 12 in
an EPG trace of length 1,499,000. The GPU method took
80.39 seconds, tenable given that collecting this trace took
about one day of effort. The FPGA took only 2.24 seconds,
allowing the entomologist the luxury of interactive querying.
The classic software solution took 48.8 minutes, which is
simply so slow that it is never likely to be used by an
entomologist. Recall that these times are for a single query-
by-content search; however, many higher level data mining
algorithms, such as motif discovery [19], anomaly
detection[4], density estimation, etc. require multiple
searches as a subroutine. If we needed to do 1,000 such
searches, the FPGA would require 37 minutes, but the classic
software solution would take 34 days!

B. Case Study in Astronomy

A star light curve is a graph which shows the brightness
of a stellar object over a period of time. Figure 13 shows two
examples. The reasons why the stars change their (actual or
apparent) brightness include planetary transits, self-
occluding binary systems, cataclysmic or explosive events
(nova or supernova) and unknown reasons. The study of
light curves has led to the discovery of pulsars, extra-solar
planets, supernovae, the rate of expansion of the universe,
etc. [24][26].

It is difficult to overstate how many star light curves
exist. Looking backwards, there are over 500,000 glass
photographic plates at Harvard University that were exposed
between 1885 and 1993 [38]. These are currently being
digitized to yield millions of light curves. Looking ahead,
this year sees work starting on the Large Synoptic Survey
Telescope (LSST), a wide-field "survey" reflecting telescope
that will photograph the available sky every three nights. It is
estimated that LSST will produce billions of light curves in
the next decade.

0 200 400 600 800 1000

OGLE052401.70-691638.3

OGLE052357.02-694427.3

Figure 13: Two star light curves that happen to be very similar. If we

happen to know the class label of one, we may predict that the other is in

the same class.

As both old and new light curves come online, an
obvious thing to do is to classify them [24]. Astronomers do
have a large number of classified light curves; in some cases
they can obtain what is effectively ground truth by obtaining
extra features for relatively close stars.

While it is possible to extract a single light curve cycle,
there is no well-defined starting point. Astronomers have an
algorithm called universal phasing to produce a canonical
alignment for light curves, but bemoan the fact that this is
“...an operation that scales poorly to massive data sets”.
However, as we shall see, in addition to poorly scaling, the
universal phasing algorithm does not work as well as
astronomers believe.

We obtained a three-class star light curve dataset which
had been universally phased by astronomers at Time Series
Center at Harvard University. Because we wanted some
experiments with classic CPUs to finish, we created a test set
with just 128 objects, and a training set of 1024 objects. Each
light curve was normalized to have a length of 1024 (as is the
practice in astronomy).

We measured the accuracy of Euclidean distance and
DTW, obtaining accuracies of 80.47% and 86.72%,
respectively. This tells us that “warping” is useful in this
domain, something that had been as least suspected before
[34]. However, rather than stopping here, we decided to test
the universal phasing assumption. Suppose we ignored it and
tested DTW for all possible alignments/shifts. To our
knowledge this has never been attempted before, presumably
because the rotation invariance version of DTW (rDTW) is
O(n3

), which is untenable for a normal CPU. After testing the
rotation-invariant versions of both Euclidean distance and
DTW, we found that the accuracies jumped to 81.2% and
91.4%, respectively. Clearly, universal phasing does not
produce perfect alignments.

Why has this not been noted before? Our entire rDTW
experiment took about 22.7 hours using the GPU, but on
conventional hardware it would take 1.4 months.

TABLE 3: ACCURACIES AND TIMINGS FOR CLASSIFYING 128 LIGHT CURVES

AGAINST A TRAINING SET OF 1,024, WITH ALL SEQUENCES OF LENGTH

1,024. VALUES IN PARENTHESES ARE ESTIMATED BASED ON SHORTER

EXPERIMENTS.

 Accuracy Time FPGA Time GPU Time CPU

ED 80.47% <1.0 seconds <1.0 seconds 2.5 seconds

rED 81.25% <1.0 seconds 55.3 seconds 43.6 minutes

DTW 86.72% <1.0 seconds 43.6 seconds 35.4 minutes

rDTW 91.41% 9.54 minutes 22.7 hours (42 days)

 Finally, we note that there are some algorithmic “tricks”
that can speed up both rED and rDTW [34]. However, since
their speedup is not dependent of the hardware on which
they are implemented, we ignored them here.

C. Case Study in Data Condensing

Our results in the previous section suggest what is
becoming increasingly evident in the literature [7][33], that
the DTW nearest neighbor classifier (DTWnnc) is

exceptionally difficult to beat. This makes our results useful
and broadly applicable. However, there are some domains in
which our results appear to have no impact. It is often useful
to do classification directly on low-powered devices or on
sensors. Such hardware is by definition resource limited.
Surprisingly, our work can have an impact even here.

The simplest and most obvious way to mitigate the
computational and memory demands of DTWnnc is to
discard a large fraction of the training data. The general
version of this idea is known as data editing/condensing/
prototype selection/instance pruning/numerosity reduction
etc. [23][31][33].

It is well known that for general numerosity reduction
algorithms, if we are very careful in choosing which objects
we discard, we can significantly reduce the classification
time while maintaining high accuracy, in some cases actually
improving the accuracy [31]. Accuracy can improve because
a judicious algorithm will start by removing any training
instances that are mislabeled or are simply outliers that tend
to misclassify new instances.

While there are many generic algorithms for numerosity
reduction, Xi et al. explicitly considers a version for
DTWnnc, called AWARD [33]. On the Two-Pattern dataset,
which consists of 1,000 training objects of length 128, they
report that AWARD takes 2.31 days to finish. This is a long
time, but remarkably they show that their algorithm can
throw away about 90% of the data while maintaining the
same accuracy (had they thrown away a random 90% of the
data the accuracy would have decreased significantly [33]).

These results seem very useful, but have had little impact
in the literature. We suspect that part of the reason is the
relative lethargy of AWARD. Can the results in this work
improve the situation? The AWARD algorithm essentially
has to do leaving-one-out K times with (slightly different
subsets of) the K objects in the training set. This means it
must do DTW O(K3

) times.
We re-implemented that algorithm and found that it took

1.49 days. This is faster than the 2.31 days reported in [33],
but this slight difference presumably just reflects four years
of progress in CPU performance. However, for a GPU the
algorithm only takes 50 minutes, and for the FPGA it takes a
mere 4.3 minutes.

It is important to recognize that these results promise
more than just the speedup of some existing sluggish
algorithms. The lead author of [31] bemoaned to us that it
was difficult to design the search algorithm that eventually
became AWARD [32]. Every attempt at adjusting the search
operators required several days to evaluate. Perhaps, if he
had the ability to test the algorithm in minutes instead, he
could have found an even better numerosity reduction
strategy. We leave such considerations to future work.

VIII. CONCLUSION

We have shown that while subsequence similarity search
is an important problem that has attracted great interest, the
current software based solutions cannot provide adequate
speed to tackle important problems in many diverse domains.
We have shown that hardware based solutions offers the only
realistic chance to bridge the gap between current academic

state-of-the-art and pragmatic needs of practitioners. We
have designed (correctly normalizing) DTW similarity
search algorithms for both GPUs and FPGAs and placed all
code in the public domain [39]. We have demonstrated with
three detailed case studies that our algorithms can expand the
purview of DTW to problem previously thought untenable.

Future work includes revisiting current algorithms that
use DTW as a subroutine to see if they can be improved in
the light of a thousand-fold decrease in cost.

ACKNOWLEDGMENT

Dr. Najjar's work was funded by NSF CCF0905509 and
CCF0811416. Dr. Keogh's work was funded by NSF
0803410 and 808770.

REFERENCES

[1] Athitsos, V., Papapetrou, P., Potamias, M., Kollios, G. and
Gunopulos, D. Approximate Embedding-based Subsequence
Matching of Time Series. SIGMOD Conference 2008: 365-378.

[2] Backus, E. A., and Bennett, W. H. The AC-DC Correlation Monitor:
New EPG Design with Flexible Input Resistors to Detect Both R and
emf Components for any Piercing-sucking Hemipteran. Journal of
Insect Physiology. 55: 869-884.

[3] Buyukkurt B. and Najjar W. Compiler Generated Systolic Arrays For
Wavefront Algorithm Acceleration on FPGAs. International
Conference on Field Programmable Logic and Applications, 2008:
655-658.

[4] Chandola, V., Cheboli, D. and Kumar, V. Detecting Anomalies in a
Time series Database. CS Technical Report 09-004, January 2009,
Computer Science Department, University of Minnesota.

[5] Chen, Y., Chen, G., Chen, K. and Ooi, B. C. Efficient Processing of
Warping Time Series Join of Motion Capture Data. ICDE 2009.

[6] Chu, S., Narayanan, S. and Jay Kuo, C.-C. Efficient Rotation
Invariant Retrieval of Shapes using Dynamic Time Warping with
Applications in Medical Databases. In IEEE International
Symposium on Computer-Based Medical Systems (CBMS), Special
Track on Data Mining, 2006.

[7] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X. and Keogh, E.
Querying and Mining of Time Series Data: Experimental Comparison
of Representations and Distance Measures. VLDB 2008.

[8] Frost, K. E. and Groves, R. L. Seasonal Infectivity of Aster
Leafhoppers in Carrot. Technical Report Department of Entomology,
University of Wisconsin-Madison.
www.entomology.wisc.edu/vegento/xtras/proc/2009_asterLeafhoppers.pdf

[9] Govindaraju, N. K., Lloyd, B., Dotsenko, Y., Smith, B. and
Manferdelli, J. High Performance Discrete Fourier Transforms on
Graphics Processors. Proc. of ACM/IEEE SuperComputing 2008.

[10] He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N. K., Luo, Q. and
Sanderv P. Relational Joins on Graphics Processors Proc. of ACM
SIGMOD 2008.

[11] Keogh, E. (2002): Exact Indexing of Dynamic Time Warping. VLDB
2002: 406-417

[12] Keogh, E. J. and Kasetty, S. On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration. Data
Min. Knowl. Discov. 7(4): 349-371 (2003).

[13] Keogh, E., Xi, X., Wei, L. and Ratanamahatana, C. A. (2006). The
UCR Time Series Classification/Clustering Homepage:
www.cs.ucr.edu/~eamonn/time_series_data/

[14] Kindt, F., Joosten, N. N. and Tjallingii, W. F. Electrical Penetration
Graphs of Thrips Revised: Combining DC- and AC-EPG Signals.
Journal of Insect Physiology 52: 1–10.

[15] Lienhart, G., Kugel A., Männer R. Using floating-point arithmetic on
FPGAs to accelerate scientific N-body simulations. FCCM 2002.

[16] Matsunaga, M. and Zordan, V. B. A Dynamics-based Comparison
Metric for Motion Graphs, Computer Graphics International (CGI)
2007.

[17] McLean, D. L. and Kinsey, M. D. A Technique for Electronically
Recording Aphid Feeding and Salivation, Nature 202 (1964), pp.
1358–1359.

[18] Mneimneh, M. A., Yaz, E. E., Johnson, M. T. and Povinelli, R. J. An
Adaptive Kalman Filter for Removing Baseline Wandering in ECG
Signal. Computers in Cardiology, vol. 33, pp.253−256, 2006.

[19] Mueen, A., Keogh, E. J. and Bigdely-Shamlo, N. Finding Time Series
Motifs in Disk-Resident Data, ICDM 2009: 367-376.

[20] Nam, H., Lee, K. and Lee, D. Identification of Temporal Association
Rules from Time-Series Microarray Data Sets. BMC Bioinformatics,
vol. 10 (Suppl 3):S6, March 2009.

[21] Niennattrakul, V. and Ratanamahatana, C. A. Meaningful
Subsequence Matching under Time Warping Distance for Data
Stream. PAKDD 2009: 1013-1020.

[22] NVIDIA CUDA Programming Guide. Version 2.3.
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs
/NVIDIA_CUDA_Programming_Guide_2.3.pdf

[23] Pekalska, E., Duin, R. P. W., and Paclik, P. (2006). Prototype
Selection for Dissimilarity-Based Classifiers. Pattern Recognition,
39:2, pp. 189-208.

[24] Protopapas, P., Giammarco, J. M., Faccioli, L., Struble, M. F., Dave,
R. and Alcock, C. Finding Outlier Light Curves in Catalogues of
Periodic Variable Stars. Mon. Not. R. Astron. Soc. 369(2), 677–696
(2006).

[25] Ratanamahatana, C. and Keogh, E. J. Three Myths about Dynamic
Time Warping Data Mining. SDM 2005.

[26] Rebbapragada, U., Protopapas, P., Brodley, C. E. and Alcock, C.
Finding Anomalous Periodic Time Series: An Application to Catalogs
of Periodic Variable Stars. Machine Learning, Vol. 74, Issue 3, p.
281, 2009.

[27] Sakurai, Y., Faloutsos, C. and Yamamuro, M. Stream Monitoring
under the Time Warping Distance. ICDE 2007: 1046-1055.

[28] Salzberg, S. L. On Comparing Classifiers: Pitfalls to Avoid and a
Recommended Approach. Data Mining and Knowledge Discovery,
1(3), 1997.

[29] Villarreal, J, Park, A., Najjar, W. and Halstead, R. Designing
Modular Hardware Accelerators in C With ROCCC 2.0, in The 18th
An. Int. IEEE Symp. On Field-Programmable Custom Computing
Machines (FCCM), Charlotte, NC, May 2010.

[30] Wei, L., Keogh, E. J., Van Herle, H. and Mafra-Neto, A. Atomic
Wedgie: Efficient Query Filtering for Streaming Times Series. ICDM
2005: 490-497.

[31] Wilson, D. R. and Martinez, T. R. (1997). Instance Pruning
Techniques. ICML’97, Morgan Kaufmann, pp. 403-411.

[32] Xi, X, (2010) Personal Communication. (note to reviewers, this necessary

citation of a personal communication does not violate our anonymity, Dr. Xi

has agreed to preserve our anonymity during the review process)

[33] Xi, X., Keogh, E. J., Shelton, C. R., Wei, L. and Ratanamahatana, C.
A. Fast Time Series Classification Using Numerosity Reduction.
ICML 2006: 1033-1040.

[34] Yankov, D., Keogh, E. J., Wei, L., Xi, X. and Hodges, W. L. Fast
Best-Match Shape Searching in Rotation-Invariant Metric Spaces.
IEEE Transactions on Multimedia 10(2): 230-239 (2008).

[35] Ye, L. and Keogh, E. J. Time Series Shapelets: A New Primitive for
Data Mining. KDD 2009: 947-956.

[36] Zhu, Y. and Shasha, D. Warping Indexes with Envelope Transforms
for Query by Humming. SIGMOD Conference 2003: 181-192

[37] http://roccc.cs.ucr.edu

[38] http://hea-www.harvard.edu/DASCH/index.php

[39] Supporting webpage: For code and data.
http://www.cs.ucr.edu/~mueen/GPU_DTW/index.html

