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Abstract—Many time series data mining problems require 

subsequence similarity search as a subroutine.  While this can 

be performed with any distance measure, and dozens of 

distance measures have been proposed in the last decade, there 

is increasing evidence that Dynamic Time Warping (DTW) is 

the best measure across a wide range of domains. Given 

DTW’s usefulness and ubiquity, there has been a large 

community-wide effort to mitigate its relative lethargy. 

Proposed speedup techniques include early abandoning 

strategies, lower-bound based pruning, indexing and 

embedding. In this work we argue that we are now close to 

exhausting all possible speedup from software, and that we 

must turn to hardware-based solutions if we are to tackle the 

many problems that are currently untenable even with state-

of-the-art algorithms running on high-end desktops.  With this 

motivation, we investigate both GPU (Graphics Processing 

Unit) and FPGA (Field Programmable Gate Array) based 

acceleration of subsequence similarity search under the DTW 

measure. As we shall show, our novel algorithms allow GPUs, 

which are typically bundled with standard desktops, to achieve 

two orders of magnitude speedup. For problem domains which 

require even greater scale up, we show that FPGAs costing just 

a few thousand dollars can be used to produce four orders of 

magnitude speedup. We conduct detailed case studies on the 

classification of astronomical observations and similarity 

search in commercial agriculture, and demonstrate that our 

ideas allow us to tackle problems that would be simply 

untenable otherwise. 
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I.  INTRODUCTION 

Subsequence similarity search, the task of finding a 
region of much longer time series that matches a specified 
query time series within a given threshold, is a fundamental 
subroutine in many higher level data mining tasks such as 
motif discovery [19], anomaly detection [4], association 
discovery, and classification [20][1][33].     

More than one hundred different distance measures for 
time series have been proposed in the last decade [12]; 
however there is increasing empirical evidence that Dynamic 
Time Warping (DTW)  (which includes Euclidean Distance 
as a special case) is the best measure across a wide range of 
domains [7]. Given DTW’s usefulness and ubiquity, there 
has been a large community-wide effort to mitigate its 
relative lethargy in the last decade. Speedup techniques for 
general search under DTW include various indexing methods 
[1][11][7]. Speedup techniques for the special case of a 
subsequence similarity search that we are considering here 

include early abandoning strategies, embedding  and various 
“computation reuse” strategies [27]. A recent paper has 
shown that much of the apparent progress made in recent 
years is fatally flawed [4]. In particular, the speedup comes 
at the cost of allowing arbitrary false dismissals (we will 
expand on this surprising result in Section III.B).  

Even if the apparent recent results had been correct, there 
still exist problems for which no current algorithms running 
on standard hardware can hope to solve in a reasonable 
amount of time. As a concrete example (which we expand to 
a case study in Section VII.A), entomologists need to 
examine telemetry gathered from insects for the occurrence 
of certain patterns known to be indicative of destructive (to 
host plants) behaviors. Entomologists at the University of 
California have created an archive of four hundred million 
data points of this data in the last four years, as part of an 
effort to understand and ultimately control just one insect, 
the Glassy-winged Sharpshooter (Homalodisca vitripennis). 
This insect causes tens of millions of dollars of damage to 
the grape industry. Moreover, these entomologists are adding 
one to two million data points per day to this archive. 
Searching this archive under the DTW distance for a single 
(relatively short) query pattern of length 360 takes nine days 
on a  high-end desktop, using state-of-the-art algorithms. 
Similar stories can be told for astronomy (cf. Section VII.B), 
computational finance, motion capture processing data [5], 
industrial and medical domains.  

After surveying and testing the current software 
solutions, and talking to several domain experts and 
practitioners, we have come to the conclusion that we are 
now close to exhausting all possible speedup from software 
approaches, and that we must turn to hardware-based 
solutions if we are to tackle the problems faced by real world 
practitioners.  With this motivation, we investigate both GPU 
and FPGA based acceleration of subsequence similarity 
search under the DTW measure. The use of specialized 
hardware to allow subsequence similarity search requires a 
detailed understanding of both the hardware strengths and 
limitations, and of the DTW computation itself.  

As we shall show, our novel algorithms allow GPUs, 
which are typically bundled with standard desktops and are 
thus essentially free, to achieve two orders of magnitude 
speedup. We show that if a domain practitioner is motivated 
enough to purchase an FPGA, which can cost as little as a 
few thousand dollars, our algorithm can achieve a speedup of 
four orders of magnitude.  

It is important to note that we see our work as going 
beyond the claim that “we have made an important 
algorithm faster”. A factor of say, two, speedup for an 



important algorithm is useful, but unlikely to make a 
significant difference to the community. However, a speedup 
factor of a thousand or more really has the potential to make 
a significant difference, because it allows problems to be 
tackled that are otherwise unimaginable. To consider one 
concrete example, time series motif discovery is a useful tool 
with applications in dozens of domains. A recent paper 
introduced a technique to find motifs in datasets containing 
millions of objects in just hours, a significant speed-up [19]. 
This method explicitly assumes the Euclidean Distance; 
however, for the related problem of classification, it is well-
known that DTW is significantly more accurate [7][25][33]. 
Could we do motif discovery under DTW instead? Even if 
we assume optimistically that the DTW could somehow be 
made to obey the triangular inequality

1
, using the MK 

algorithm in [19] with DTW instead of Euclidean Distance 
would push the execution time to years instead of hours.  

It is also important to note that we see our work as a 
service to the time series data mining community. Many 
research projects use DTW similarity search as a subroutine, 
and could greatly benefit from significantly improved 
performance. As such, all of the code developed for both 
GPU and FPGA will be freely available at [39] in perpetuity.  

The rest of this paper is organized as follows. In Section 
II we consider some related work, followed by the definition 
of and background to the problem at hand in Section III. Our 
GPU and FPGA acceleration methods are described in 
Section IV and V, respectively. Section VI shows an 
experimental comparisons of different methods. Finally, in 
Section VII, we conduct three detailed case studies in 
classification of star light curves, commercial entomology 
and data condensing for nearest neighbor classification, and 
demonstrate that our ideas allow us to tackle problems that 
would be simply untenable otherwise.  

II. RELATED WORK 

The problem of subsequence similarity search using the 
DTW measure has been extensively studied in recent years. 
One of the most cited methods is SPRING [27], where a 
query time series is searched in a larger streaming time 
series. The authors achieve significant speed-up by reusing 
computations. Unfortunately, this reuse means that the 
method allows false negatives, a problem we will elaborate 
on in Section II.B.     

Our paper joins the growing literature on hardware 
acceleration techniques for important database/data-mining 
algorithms, such as FFT [9], relational join [10], etc. 
However to the best of our knowledge, this work is the first 
to present hardware acceleration techniques for similarity 
search in streams under the DTW measure. 
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 To be clear, the DTW does not obey the triangular inequality and is thus a 

distance measure, not a distance metric, in spite of more than a dozen 

papers that claim the latter. However, some of the lower bounds to DTW 

are metrics, and thus some triangular-inequality exploiting algorithms can 
be adapted to work with DTW.  

III. DEFINITION AND BACKGROUND 

For concreteness we begin with a formal definition of the 
problem and a discussion of why the current solutions are 
inadequate. We begin by defining the time series: 

A time series T is a sequence of real numbers t1,t2,,…,tn 
representing n uniform samples of a measurement. A 
subsequence Cs,m of a time series T is any contiguous set 
of m samples starting at s. (i.e., ts,ts+1,…,ts+m-1, where 1≤ 
s ≤ n-m+1). 

Before we compare two time series under any distance 
measure, it is critical that we normalize them to have the 
same mean and variance

2
. As noted in [12], “without 

normalization time series similarity has essentially no 
meaning”.  

The z-normalization of a time series T is defined as T̑ = 
t̑1,t̑2,…,t̑n, where t̑i = (ti – μ) / σ . Here, μ and σ are the 
sample mean and the sample standard deviation of T, 
respectively. 

It is critical at this point to clarify a naive 
misunderstanding which is replete in the literature. If we are 
doing subsequence similarity search with our z-normalized 
query Q for the best matching subsequence in a much longer 
time series T, we cannot simply z-normalize T once and 
proceed. Instead, we must z-normalize each and every 
subsequence we extract from T. Note that in the case that T 
is not a batch dataset residing in its entirety in memory (or 
disk), but in a data stream, it would not even be logically 
possible to z-normalize it all, even if doing so gave 
meaningful results.  

While DTW is defined to allow for the comparison of 
two time series of possibly different lengths, without losing 
the generality (see [25], Section 2), we will define it 
assuming time series of equal lengths.  

Suppose we have two time series, C = c1,c2,…,ci ,…,cm 
and Q = q1,q2,…,qj ,…,qm. The Dynamic Time Warping 
(DTW) distance between Q and C is denoted by D(C,Q) and 
defined as below. 

D(C,Q) = d(m,m) 
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In the definition, we use absolute difference for distances 
between individual samples. Our methods also work for the 
squared difference with no difference in speed. 

The m-by-m matrix, d, is called the warping matrix. In a 
warping matrix, each cell uses a value from any of the three 
previously computed neighbors. Thus, if we trace back the 
values used to compute the DTW (i.e. d(m,m)), we get the 
warping path that describes the optimal alignment of T and 
Q (Figure 1). 
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 Some papers have suggested doing [0,1] or [-1,1] normalization instead. 

However, the authors do not seem to appreciate how brutally sensitive this 
method is to even small amounts of noise or a single outlier.  
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Figure 1 (left-top) Two time series sequences which are similar but out of 

phase. (right) To compute the dynamic time warping distance and to align 

the sequences, we construct a warping matrix and find a warping path, 
represented by solid squares.  

The time complexity to compute the D(C,Q) is O(m2
), 

and the space complexity is also O(m2
). If we only need the 

value of the distance (i.e. d(m,m)) we can delete the trace of 
the warping path, and thus, the space complexity can be 
reduced to O(m) by storing only two columns of the matrix. 

A. Definition of the Problem 

We are now in a position to define the subsequence 
search problem: 

Given a time series T = t1,t2,…,tn and a query Q = 

q1,q2,…,qm , find the subsequence Cs,m of T such that 

D(Ĉs,m,Q̂), 1≤ s ≤ n-m+1, is minimum. 

Given the above definition, we could devise a brute force 
algorithm shown in Table 1, which takes O(nm2

) time and 
O(nm) space. For completeness, we also show the 
pseudocode for computing the DTW distance in Table 2. 

TABLE 1: SUBSEQUENCE SEARCH ALGORITHM 

Procedure  SubsequenceSearch(T,Q)  

 T: A time series of n points 
 Q: Query time series of m points 

1 z-Normalize(Q) 
2 for s = 1 to n-m+1 
3  z-Normalize(Cs,m) 
4  Compute D(Cs,m,Q) 
5  Update minimum if necessary 

TABLE 2: DTW ALGORITHM 

Procedure  D(C,Q)  

 C: A time series of n points, C(0)= ∞ 
 Q: A time series of m points, Q(0)= ∞ 

1 s = 0 
2 for i = 0 to m  
3  d(i,s) = |C(1)-Q(i)| 
4 s = sÅ1 // xor operation 
5 for j = 2 to n  
6  for i = 0 to m 
7    d(i,s) = |C(j)-Q(i)| + 

    min(d(i-1,s),d(i,sÅ1),d(i-1,sÅ1)) 

8  s = sÅ1 
9 return d(n,sÅ1) 

We have chosen the simplest possible problem definition 
with one query, one time series and the same subsequence 
length (m). There are more general subsequence search 
problems where many queries [29] and time series are 
involved, or where rotation/phase invariance is required 
under DTW [34][26]. However, all such problems can 
benefit directly from a speedup of the simple definition.  

B. Why Current Software Solutions Are Not the Answer 

As we hinted at above, the several apparent software 
solutions to the task at hand contain a serious error. We can 
best demonstrate this with a simple experiment. 

Suppose we task a DTW subsequence search with the 
simple task of detecting the heartbeats of an individual, using 
one of that same individual’s heartbeats. It is difficult to 
imagine a simpler problem.  

We begin by downloading a long ECG sequence from a 
61-year-old female and manually extracting a typical beat as 
our query [39]. We also manually extract some additional 
adjacent beats and compare them to our query, finding them 
to be an average distance of about 20.0, so we set our beat 
detector at a conservative threshold of 30.0. Figure 2 shows 
the beats detected in the first 1,800 datapoints, as we can see, 
the majority of the beats are missed. How could this be?  
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Figure 2: A query heartbeat (left) is scanned across an ECG trace. (top-

right) Only three of the twelve beats are detected. Plotting the distance 

from the query to the relevant subsequence (bottom) reveals that slight 

differences in a subsequence’s mean value (offset) completely dominate the 
DTW distance calculation, dwarfing any contribution from the similarity of 

the shape. 

Note that while the local mean of the ECG trace starts at 
about zero, which is also the approximate mean of the query, 
the trace slowly rises to have a local mean of about 1.0, then 
descends below zero (allowing the detection of a single beat 
at about 1,500 as the mean crosses zero).  

The problem is that the SPRING algorithm [27] does not 
(and, more critically cannot) normalize the offset or 
amplitude of the subsequences of the longer time series. It is 
therefore implicitly assuming that the query will happen to 
have the same offset and amplitude as the matching 
subsequence. However, in virtually every domain that 
assumption is unwarranted. For example, virtually all ECGs 
wander up and down as in our example, the effect is known 
as a wandering baseline [18]. Similar problems are observed 
in motion capture [16], astronomy, entomology, industrial 
process telemetry, EEGs, etc.   

It is important to recognize that there is no simple fix for 
this problem. The SPRING [27] algorithm achieves its 
speedup by exploiting the redundancy of calculations in a 
sliding DTW matrix, but if each subsequence is z-
normalized, as it must be to obtain meaningful results, then 
there will be no redundant calculations to exploit. For brevity 



we will conclude the discussion of the reasons why current 
software solutions do not work here. The interested reader 
can view [39], where we have many additional examples of 
the problem in real domains and a detailed discussion of why 
the obvious possible fixes for the problem we have just 
pointed out will not solve it. In our view, this problem is very 
unlikely to yield to a software solution that improves the 
time complexity of the brute force algorithm in Table 1. We 
note in passing there are at least one dozen other works that 
have the same problem, we pointed to SPRING only because 
it is the most cited work on the topic. 

IV. ACCELARATION BY GPU 

The GPU is a computing device that serves as a 
coprocessor for the CPU. It has its own device memory on 
the card and can execute many threads in parallel [22]. In 
this work we use the ubiquitous NVIDIA CUDA 
architecture, where multiple threads running on multiple 
processing cores execute the same program on separate data. 
This Single Instruction Multiple Data (SIMD) architecture 
allows us to map each normalization and DTW distance 
computation (Lines 3-4 in Table 1) to be executed in parallel 
on different segments of the time series.  

Each CUDA function (i.e. kernel) is executed by an array 
of threads. Each of these threads is assigned an ID that it 
uses to determine memory addresses (i.e. the segment of the 
time series) it should operate on. The hardware is free to 
determine the mapping and scheduling of these threads on 
the available processing cores. A thread block is defined as a 
batch of threads that are guaranteed to run simultaneously 
and cooperate with each other through shared resources. The 
size of a thread block can be specified at runtime. The 
NVIDIA CUDA thread architecture is shown in Figure 3. 

 

Figure 3: NVIDIA CUDA Architecture: Each GPU kernel is executed as an 
array of threads. Blocks are batches of threads that run concurrently. 

The selection of the number of threads per block is an 
important parameter to maximize the utilization of the 
processor cores. Unfortunately, it depends on the architecture 
of the GPU. Thus, obtaining the optimum value is not trivial. 
The important variables to consider are the total number of 
processing cores and their internal pipeline architectures. For 
a more detailed discussion, see [22].   

The GPU implementation of Dynamic Time Warping 
consists of three main stages: 

· The CPU copies the values to the GPU memory 

· The CPU calls the GPU kernel 

· The CPU copies the output from the GPU 

In the first step, the CPU copies the whole time series (T 
in Table 1) to the global memory of the GPU. If the time 
series is larger than the available device memory, the CPU 
splits it into small batches and processes one batch at a time. 
This process introduces latency in the output but does not 
hamper the real-time processing, as the time to copy the data 
is in the range of milliseconds. Therefore, copying batches 
one at a time can tolerate a data arrival rate of hundreds of 
hertz without overflowing any buffer. Since the query is 
fixed and good for all of the batches, we copy it to the global 
memory in the beginning and keep it there throughout the 
execution. 

In the second step, the CPU calls the kernel in the GPU. 
Every kernel thread operates on a specific sliding window in 
two steps: first, accessing the sliding window to compute the 
mean and variance, and second, computing the normalized 
DTW distance to the query.  For both the steps, each kernel 
thread accesses a contiguous segment of m numbers from the 
time series T in the global memory. If we batch the threads 
responsible for successive sliding windows in a thread block, 
the memory accesses by these threads will result into 
coalesced accesses. For example in Figure 4, a block of four 
threads is shown where the first memory accesses by these 
four threads require one read from the memory instead of 
four, because of the threads operating on contiguous 
locations in the memory.  

T1 T2 T3

Input Time Series

t0 t1 t2 t3 t4 t5 t6 t7

T4

Threads t0 t1 t2 t3

One memory access for 

four read instructions by 

T1, T2, T3 and T4

. . .

. . .
 

Figure 4: Division of work among threads. Memory accesses are coalesced 

by overlapping threads (for m=4). 

In the second step, when the mean and variance are 
ready, each thread computes the DTW distance between the 
query and the normalized subsequence by Table 2. Note that 
in Table 2, the query Q is accessed O(m2

) times whereas the 
subsequence C is accessed O(m) times. It is important to 
maintain this distinction between Q and C although 
swapping Q and C in Table 2 would produce correct results. 



The reason is that Q is a fixed time series, and by the 
problem definition it is not changed during execution. 
Furthermore Q is much smaller than T so it can fit in the 
shared memory of the GPU device. Shared memory is a 
special memory locally available to the processor cores in a 
multi-processor of the GPU device. Shared memory is 150x 
faster than the global memory which is available to all of the 
cores in all of the multi-processors. Typically, shared 
memory is much smaller than the global memory and thus is 
the ideal place for the query time series.  

In the beginning of the DTW computation, the kernel 
threads copy the query (Q) into shared memory from the 
global memory. The internal data structure for computing the 
DTW distance is two column vectors (d in Table 2) of size 
m. These vectors are best stored in the shared memory if they 
all fit together (e.g., in the case of very small m). Otherwise, 
they are stored in the global memory. With all of the 
variables in place, the DTW computation is performed. Each 
thread stores the computed distance in a global array indexed 
by the thread ID. 

Finally in the third step, when all of the threads 
terminate, the CPU copies the array back to system memory. 
Although the algorithm looks for the minimum distance, it is 
much simpler and more efficient to copy back all of the 
distances to the CPU instead of computing the minimum in 
the GPU. Maintaining a variable for the minimum distance 
computed by all of the threads requires an atomic instruction 
in all of the threads that update the variable. Such an 
instruction eventually makes all of these threads update the 
variable serially and reduces the parallelism. Therefore, 
atomic updates are not recommended. 

V. ACCELARATION BY FPGA 

A. Data  Representations for FPGAs 

While GPUs can handle essentially any data that a 
normal CPU can, FPGAs require reducing the cardinality 
(precision) of the data. This is because in modern FPGAs, 
floating point arithmetic does not scale well with larger 
applications [15] due to the additional complexity for 
handling the mantissa and exponent separately. Therefore, 
we select 8-bit integers for representing values in the time 
series. Reducing the number of bits not only increases the 
performance but also increases the area utilization. 
Furthermore, for a given size of the FPGA, we may need to 
impose an upper limit on the dimensionality (length) of the 
query.  

Given that we may need to reduce the cardinality and/or 
dimensionality of the data, it is natural to ask if this will 
reduce the accuracy of FPGA-based DTW similarity search. 
We can strongly affirm that these changes to raw data will 
not affect the accuracy of DTW in any meaningful (or indeed  
perceptible) way. To see this we can perform some simple 
experiments. We took all twenty datasets from the UCR 
Time Series Classification Archive [13] and tested to see 
what effect reductions in the dimensionality or cardinality 
would have. We began by running DTW one-nearest-
neighbor classification on the raw data, confirming the 
published results [13]. We then took the data, reduced the 

precision from eight bytes to just eight bits, and reran the 
DTW one-nearest-neighbor classification. We also took the 
raw data, and reduced the dimensionality of all datasets from 
their original lengths to exactly 128 (the original lengths for 
the twenty problems had a maximum of 637 and a mean of 
310.8). While there are sophisticated interpolation algorithms 
for resizing time series, we simply used the trivial MATLAB 
command: 

x = x(1:length(x)/128:end) 

to resize the data. The results of this experiment can be 

visualized in Figure 5. 
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Figure 5: The error rate of twenty time series classification problems 

conducted with two reduced representations (left) The original data vs. a 

reduced precision data. (right) The original data vs. a reduced 

dimensionality data. 

A paired T-test
3
 of the null hypothesis that there is no 

difference between the two mean accuracies produces a 
value of 49.2%, suggesting what is visually obvious from the 
figures: there is simply no significant difference made by the 
change of representation. 

We briefly note that if there was a reason to insist that the 
FPGA returns the exact same answer as the original data, we 
believe that this would be possible to achieve by producing a 
bound on the difference between the distances measured in 
the raw space, and  the distances measured in the reduced 
space, and then returning all of the sequences that match 
within the bound for additional inspection. Note that the 
downsampling could be achieved by Piecewise Aggregate 
Approximation (PAA), and a bound (LB_PAA) between 
DTW on the raw data and DTW on the PAA representation 
exists [36]. Likewise, the reduction in cardinality could be 
achieved by Symbolic Aggregate ApproXimation (SAX); a 
bound between DTW on the raw data and DTW on the SAX 
representation also exists [6]. We do not further explore such 
considerations, given that Figure 5 strongly suggests it is not 
a fruitful problem.  

B. FPGA Implementation 

The design of an FPGA configuration requires 
programming using a hardware description language (i.e., 
VHDL/Verilog). In this work, we use an open source C to 
VHDL compiler system, ROCCC [37], which allows us to 
describe the hardware in C language and generate the VHDL 
code automatically. ROCCC also optimizes the design 

                                                           
3 More appropriate and powerful measures of significance (see [28]), which 

conforms the null hypothesis.  



mainly in three ways. First, it maximizes the throughput by 
exploiting loop and instruction level parallelism. Second, it 
reuses the data, and third, it generates a pipelined datapath to 
minimize the number of clock cycles [29]. 

Our FPGA design consists of two major blocks: 
Normalizer and Warper, to normalize the input data and run 
the actual DTW matrix calculations, respectively (Figure 6). 
Input data streamed into the system are first given to a First-
In-First-Out (FIFO) buffer. The size and input ratio of this 
FIFO can be adjusted according to the FPGA interconnection 
mechanism. However, the output of the FIFO generates one 
sample (8 bits) every clock cycle. Next, the output of the 
FIFO is fed into the Normalizer module. Initially, 
Normalizer waits until the first window is received. Every 
following normalization operation reuses m-1 operands of 
the previous operation, where m is the query length. After the 
first output is produced, a new output is generated every 
clock cycle. This output is given to another FIFO, which acts 
as the intermediate memory component between the 
Normalizer and the Warper.  

Input

PINs

Input Buffer

m Datapoints
Normalizer

Internal Buffer

m Datapoints

Removing Buffer

1 Datapoint

Warper

1 Datapoint

 

Figure 6: FPGA Block Diagram. Thick lines are for m-point wide 

connections. Thin lines are for one-point wide connections. Buffers are 

simple FIFOs. 

Internally, a trivial Normalizer module stores m-partial 
sliding windows. In every clock cycle, it updates statistics 
for all of the partial windows and outputs the window for 
which the normalization is complete. Thus, it needs quadratic 
O(m2

) space in the FPGA and does not scale with larger 
query lengths. In order to support larger query lengths, we 
implemented an online Normalizer, which does not 
remember intermediate states. It computes the mean (μ) and 
standard deviation (σ) online and normalizes exactly one 
window in every clock cycle. Thus, it needs linear O(m) 
space in the FPGA. Although the trivial Normalizer has 
shown better performance in speed due to less overhead, it 
does not make any difference in the overall system 
performance. The reason for this is that the Warper module 
is the real performance bottle-neck as described later. 

The Online Normalizer consists of three sub-units, as 
shown in Figure 7. The first unit calculates the sum and sum 
of squares of all the inputs in a sliding window fashion, by 
adding the new value while subtracting the oldest value to be 
removed from the sum. Initially, “to remove” value is zero 
until the first window is completely received through the 
“Datapoint” input. When switching to the next window, the 
very first value of the first window is given to “to remove” 
and the sum for the second window is obtained at the output. 
This output is also given to the Normalize Divider sub-unit, 
where the mean and the standard deviation of the latest 
window are obtained. The input stream is provided to the 
third unit through a buffer. The size of this buffer depends on 
the delay of the first two modules. The third module must 

wait until the corresponding mean and standard deviation 
values are available for a given window. This delay is 
provided by the Datapoint Buffer, which is automatically 
added by ROCCC. The unit then runs the actual 
normalization function. The generated normalized data is 
provided to the systolic array (warper) through a buffer, as 
shown in Figure 6. 
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Figure 7: Online Normalization Unit. The sum and sum of squares are 

obtained in a sliding window approach, by adding the new input and 

subtracting the oldest value. The input datapoints are delayed through the 

Datapoint Buffer, to make sure that the correct mean and standard 
deviation are used. 

The Warper module is implemented as a systolic array 
[3]. A systolic array consists of data processing units 
connected in a matrix fashion. These data processing units 
(i.e. cells) share the information with their neighbors 
immediately after processing. Using ROCCC’s built-in 
systolic array generator, we simply obtain the hardware 
description of the Warper module. Structurally, the Warper 
module is the same for any window size, except for the size 
of the systolic array. This size can be adjusted in the ROCCC 
code by tuning a parameter. A Warper module generates one 
DTW distance between the normalized sliding window and 
the query time series in every m clock cycle where m is the 
window size/query length. Since the normalization unit is m 
times faster than the Warper unit, we place multiple Warper 
units to operate on separate normalized windows generated 
by the normalization unit. Ideally, if we had unlimited FPGA 
area, we could place m Warper modules to get the maximum 
processing speed of one DTW distance in every clock cycle. 
When multiple Warper modules are in place, the Internal 
Buffer output is fed into them in a round robin fashion.  

VI. EVALUATION 

In this section, we show the performances for the DTW 
subsequence search problem in different hardware settings. 
We use the following platforms: 

Software: Intel Xeon E5540 CPU at 2.53 GHz 

SSE: Intel i7- 920 CPU at  2.66 GHz 

GPU: NVIDIA Tesla C1060 with 240 cores 

FPGA: Xilinx Virtex 5 LX-330 

The SSE (Streaming Single Instruction Multiple Data 
(SIMD) Extensions) is an instruction set extension to Intel’s 
x86-architecture. It makes use of 128-bit SSE registers and 
can merge four 32-bit data to operate concurrently. The 
software implementation proposed in Table 1 can be 
parallelized by making use of data independencies. However, 



it is practically impossible to realize this parallelization on 
the DTW matrix calculations. We can only execute SSE 
instructions on the normalization operations. The 
performance improvement is therefore not significant 
compared to the software-based solution. 

In Figure 8, we show the time required to answer a query  
of length 128 by different hardware settings. We achieve the 
highest speedup over the software through FPGA 
acceleration, which is 4000 times faster in the best case 
scenario. GPU acceleration is 36.3 times faster, on average. 
All of the results reported here use 8-bit integers to represent 
the values in the time series.  
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Figure 8: Comparison of execution times with different lengths of the input 

time series, in LOG scale. The query length is 128. For GPU, block size 

is 512. 

The FPGA performance results are obtained after 
placement and routing operations. We use one trivial 
Normalizer unit and eight Warper units. The Normalizer for 
window size 128 requires 13% of the target device and runs 
at 180MHz. Each Warper unit requires 7% of the area and 
run at 240MHz. The Normalization unit provides an output 
for each clock cycle. The Warper requires 128 clock cycles. 
Therefore, the Warper unit runs more slowly than the 
Normalizer. At 240 MHz, one window of length 128 can be 
processed through the Warper in 128/240M seconds. 
However, using 8 Warpers reduces this to 16/240M seconds. 
In other words, 15 million samples (windows) can be 
processed per second. 

In Figure 9, we show the execution times for a fixed 
window size of 1024, the FPGA provides a maximum 
speedup of 4500x and the GPU achieves a speedup of 29x 
over software. For the window size 1024 on the FPGA, we 
use the online Normalizer, as shown in Figure 7. This 
module runs at a clock frequency of 180MHz and requires 
83% of the FPGA logic. The Warper module runs at 
250MHz and requires 9% of the logic. In this case, we can 
only place one Warper module safely. Although the area is 
dominated by the Normalizer, the throughput of the system 
is still determined by the Warper module. The Warper 
module requires 1024 clock cycles per cycle. One sample 
(window) can be processed in 1024/250M seconds. This 
results in a throughput of 244 thousand samples per second. 
Note that in the streaming case there are probably few data 
sources that could produce data from a single stream at 
anything like  this rate. However, because the overhead for 
switching between streams is so low, we could use a single 

FPGA to handle say two hundred streams at 1,000Hz, by 
simply multiplexing between (slightly buffered) streams.  
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Figure 9: Comparison of execution times with different lengths of the input 
time series, in LOG scale. The query length is 1024. 

In Figure 10 we show the responses of different methods 
while varying the size of the query. Recall the methods have 
the same time complexity of O(nm2

). The responses show a 
clear quadratic growth for software and SSE methods. Our 
hardware acceleration techniques are much slower in growth 
because of the parallelism our techniques achieve. The trends 
in the figure clearly show that our techniques will remain 
tenable for larger window size while the software methods 
are already intractable. 
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Figure 10: Execution times for a fixed time series of length 40,000 with 

varying query sizes (m). 

VII. EXPERIMENTAL CASE STUDIES  

In this section we conduct case studies that forcefully 
confirm all of the claims and assumptions made in this work. 
Recall that we have claimed: 

· Time series subsequence search is an important problem 
with scientifically and commercially important 
applications. 

· For at least some problems, Euclidean distance, while 
tractable, is simply not accurate/robust enough. 

· There exist problems of a scale which makes them 
untenable with conventional hardware. We propose 
special hardware-based solutions to make them yield.  

A. Case Study in Entomology 

Many species of insects feed by inserting their stylet (a 
long needle-like mouthpart) into a plant and sucking out sap. 
While this behavior in itself is generally not harmful to the 
plants, if one plant has a disease, the insects will transmit it 
from plant to plant.  



It is impossible to overstate the commercial impact of 
this insect behavior. For example, if we consider just one 
species of insect, the Aster leafhopper (macrosteles 
quadrilineatus), in one American state, Wisconsin, and one 
crop, the carrot, it is estimated that losses exceed two million 
dollars a year [8]. However, the Aster leafhopper is just one 
of perhaps two thousand insects that exhibit this harmful 
piercing/sucking behavior. The worldwide commercial 
losses to agriculture are hard to estimate, but for the wine 
industry alone the cost is conservatively estimated at several 
billion US dollars. 

In order to control these insects, their behavior must be 
understood. However, direct visual observation of a tiny and 
fast-moving insect is very difficult, to say the least. In a 1964 
paper in Nature, McLean and Kinsey [17] proposed attaching 
a small wire to the insect with conductive glue, and creating 
a circuit through the ground in which the plant is potted.  As 
soon as the insect’s stylet penetrates the plant, the circuit is 
completed and a fluctuating voltage, called the Electrical 
Penetration Graph (EPG) signal, occurs and can then be 
amplified and recorded. Figure 11 shows an example EPG. 
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Figure 11: A short extract of an EPG graph of a beet leafhopper (Circulifer 
tenellus). A query Q can be searched against the longer time series to find 

examples of similar behavior. 

Since the invention of the McLean-Kinsey apparatus, 
EPGs have become the main tool for researchers working on 
these insects, and some groups produce several million data 
points of time series each day. One critical task researchers 
perform is to search for patterns in these long traces [1]. For 
example, an expert on the beet leafhopper (Circulifer 
tenellus) who has identified the pattern that indicates the 
insects’ probing behavior (the query Q in Figure 11) may 
wish to know if the less common Black-faced Leafhopper 
(Graminella nigrifrons) from a sister Genera Graminella4 

also exhibits this behavior.  
A survey of the literature tells us that such questions are 

frequently asked, and surprisingly, mostly answered by a 
manual search of vast archives [1]. Some attempts have been 
made to computerize the search process, but it has been 
noted that "…it still remains difficult to distinguish some 
waveform features and especially, in establishing the 
accurate time of transitions between some subsequent 
waveforms…" [14] (our emphasis). This variability in time of 
transition is of course simply warping of the time between 
(sub) behaviors. In Figure 12 we show a zoom-in of Figure 
11 which clearly shows that pattern matching in this domain 
requires time warping. 

                                                           
4 Both insects are in the  Deltocephalinae subfamily 
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Figure 12: A zoom-in from Figure 11 showing that a query behavior 

(bottom) corresponding to stylet-insertion matches to a subsequence of a 
different insect’s behavior only after warping. 

To test the scalability of our ideas in this domain, we 
searched for the query shown in Figure 11 and Figure 12 in 
an EPG trace of length 1,499,000. The GPU method took 
80.39 seconds, tenable given that collecting this trace took 
about one day of effort. The FPGA took only 2.24 seconds, 
allowing the entomologist the luxury of interactive querying. 
The classic software solution took 48.8 minutes, which is 
simply so slow that it is never likely to be used by an 
entomologist. Recall that these times are for a single query-
by-content search; however, many higher level data mining 
algorithms, such as motif discovery [19], anomaly 
detection[4], density estimation, etc. require multiple 
searches as a subroutine. If we needed to do 1,000 such 
searches, the FPGA would require 37 minutes, but the classic 
software solution would take 34 days! 

B. Case Study in Astronomy 

A star light curve is a graph which shows the brightness 
of a stellar object over a period of time. Figure 13 shows two 
examples. The reasons why the stars change their (actual or 
apparent) brightness include planetary transits, self-
occluding binary systems, cataclysmic or explosive events 
(nova or supernova) and unknown reasons. The study of 
light curves has led to the discovery of pulsars, extra-solar 
planets, supernovae, the rate of expansion of the universe, 
etc. [24][26]. 

It is difficult to overstate how many star light curves 
exist. Looking backwards, there are over 500,000 glass 
photographic plates at Harvard University that were exposed 
between 1885 and 1993 [38]. These are currently being 
digitized to yield millions of light curves. Looking ahead, 
this year sees work starting on the Large Synoptic Survey 
Telescope (LSST), a wide-field "survey" reflecting telescope 
that will photograph the available sky every three nights. It is 
estimated that LSST will produce billions of light curves in 
the next decade. 
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Figure 13: Two star light curves that happen to be very similar. If we 

happen to know the class label of one, we may predict that the other is in 

the same class.  



As both old and new light curves come online, an 
obvious thing to do is to classify them [24]. Astronomers do 
have a large number of classified light curves; in some cases 
they can obtain what is effectively ground truth by obtaining 
extra features for relatively close stars.  

While it is possible to extract a single light curve cycle, 
there is no well-defined starting point. Astronomers have an 
algorithm called universal phasing to produce a canonical 
alignment for light curves, but bemoan the fact that this is 
“...an operation that scales poorly to massive data sets”. 
However, as we shall see, in addition to poorly scaling, the 
universal phasing algorithm does not work as well as 
astronomers believe.  

We obtained a three-class star light curve dataset which 
had been universally phased by astronomers at Time Series 
Center at Harvard University. Because we wanted some 
experiments with classic CPUs to finish, we created a test set 
with just 128 objects, and a training set of 1024 objects. Each 
light curve was normalized to have a length of 1024 (as is the 
practice in astronomy). 

We measured the accuracy of Euclidean distance and 
DTW, obtaining accuracies of 80.47% and 86.72%, 
respectively. This tells us that “warping” is useful in this 
domain, something that had been as least suspected before 
[34]. However, rather than stopping here, we decided to test 
the universal phasing assumption. Suppose we ignored it and 
tested DTW for all possible alignments/shifts. To our 
knowledge this has never been attempted before, presumably 
because the rotation invariance version of DTW (rDTW) is 
O(n3

), which is untenable for a normal CPU. After testing the 
rotation-invariant versions of both Euclidean distance and 
DTW, we found that the accuracies jumped to 81.2% and 
91.4%, respectively. Clearly, universal phasing does not 
produce perfect alignments.  

Why has this not been noted before? Our entire rDTW 
experiment took about 22.7 hours using the GPU, but on 
conventional hardware it would take 1.4 months. 

TABLE 3: ACCURACIES AND TIMINGS FOR CLASSIFYING 128 LIGHT CURVES 

AGAINST A TRAINING SET OF 1,024, WITH ALL SEQUENCES OF LENGTH 

1,024. VALUES IN PARENTHESES ARE ESTIMATED BASED ON SHORTER 

EXPERIMENTS. 

 Accuracy  Time FPGA Time GPU  Time CPU  

ED 80.47% <1.0 seconds <1.0 seconds 2.5 seconds 

rED 81.25% <1.0 seconds 55.3 seconds 43.6 minutes 

DTW 86.72% <1.0 seconds 43.6 seconds 35.4 minutes 

rDTW 91.41% 9.54 minutes 22.7 hours (42 days) 

 Finally, we note that there are some algorithmic “tricks” 
that can speed up both rED and rDTW [34]. However, since 
their speedup is not dependent of the hardware on which 
they are implemented, we ignored them here. 

C. Case Study in Data Condensing  

Our results in the previous section suggest what is 
becoming increasingly evident in the literature [7][33], that  
the DTW nearest neighbor classifier (DTWnnc) is 

exceptionally difficult to beat. This makes our results useful 
and broadly applicable. However, there are some domains in 
which our results appear to have no impact. It is often useful 
to do classification directly on low-powered devices or on 
sensors. Such hardware is by definition resource limited. 
Surprisingly, our work can have an impact even here.  

The simplest and most obvious way to mitigate the 
computational and memory demands of DTWnnc is to 
discard a large fraction of the training data. The general 
version of this idea is known as data editing/condensing/ 
prototype selection/instance pruning/numerosity reduction 
etc. [23][31][33].   

It is well known that for general numerosity reduction 
algorithms, if we are very careful in choosing which objects 
we discard, we can significantly reduce the classification 
time while maintaining high accuracy, in some cases actually 
improving the accuracy [31]. Accuracy can improve because 
a judicious algorithm will start by removing any training 
instances that are mislabeled or are simply outliers that tend 
to misclassify new instances.  

While there are many generic algorithms for numerosity 
reduction, Xi et al. explicitly considers a version for 
DTWnnc, called AWARD [33]. On the Two-Pattern dataset, 
which consists of 1,000 training objects of length 128, they 
report that AWARD takes 2.31 days to finish. This is a long 
time, but remarkably they show that their algorithm can 
throw away about 90% of the data while maintaining the 
same accuracy (had they thrown away a random 90% of the 
data the accuracy would have decreased significantly [33]).   

These results seem very useful, but have had little impact 
in the literature. We suspect that part of the reason is the 
relative lethargy of AWARD. Can the results in this work 
improve the situation? The AWARD algorithm essentially 
has to do leaving-one-out K times with (slightly different 
subsets of) the K objects in the training set. This means it 
must do DTW O(K3

) times.  
We re-implemented that algorithm and found that it took 

1.49 days. This is faster than the 2.31 days reported in [33], 
but this slight difference presumably just reflects four years 
of progress in CPU performance. However, for a GPU the 
algorithm only takes 50 minutes, and for the FPGA it takes a 
mere 4.3 minutes.  

It is important to recognize that these results promise 
more than just the speedup of some existing sluggish 
algorithms. The lead author of [31] bemoaned to us that it 
was difficult to design the search algorithm that eventually 
became AWARD [32]. Every attempt at adjusting the search 
operators required several days to evaluate. Perhaps, if he 
had the ability to test the algorithm in minutes instead, he 
could have found an even better numerosity reduction 
strategy. We leave such considerations to future work.  

VIII. CONCLUSION 

We have shown that while subsequence similarity search 
is an important problem that has attracted great interest, the 
current software based solutions cannot provide adequate 
speed to tackle important problems in many diverse domains. 
We have shown that hardware based solutions offers the only 
realistic chance to bridge the gap between current academic 



state-of-the-art and pragmatic needs of practitioners. We 
have designed (correctly normalizing) DTW similarity 
search algorithms for both GPUs and FPGAs and placed all 
code in the public domain [39]. We have demonstrated with 
three detailed case studies that our algorithms can expand the 
purview of DTW to problem previously thought untenable. 

Future work includes revisiting current algorithms that 
use DTW as a subroutine to see if they can be improved in 
the light of a thousand-fold decrease in cost.     
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