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ABSTRACT
Queries on the web can easily result in a large number of results.
Result Diversification, a process by which the query provides the
k most diverse set of matches, enables the user to better under-
stand/explore such large results. Computing the diverse subset from
a large set of results needs a massive number of pair-wise distance
computations as well as finding the subset that maximizes the total
pair-wise distance, which is NP-hard and requires efficient approx-
imate algorithm.

The problem becomes more difficult when querying semi-structured
data, since diversity can occur not only in the document content
but also (and more importantly) in the document structure; thus
one needs to efficiently measure the structural differences between
results. The tree edit distance is the standard choice but, is too ex-
pensive for large result sets. Moreover, the generalized tree edit
distance ignores the context of the query and also the content of the
documents resulting in poor diversification. We present a novel al-
gorithm for meaningful diversification that considers both the struc-
tural context of the query and the content of the matched results
while computing pair-wise distances. Our algorithm is an order of
magnitude faster than the tree edit distance with an elegant worst
case guarantee.

We also present a novel algorithm to find the top-k diverse sub-
set of matches. Our algorithm skips unnecessary distance compu-
tations and works in time linear on the size of the result-set. We
experimentally demonstrate the utility of our algorithms as a plug-
in for standard query processors without introducing large error and
latency to the output.

1. INTRODUCTION
Vast repositories of semi-structured data exist on the web and are

accessed by user queries typically using an XML query language
(such as XPath [10] and XQuery [8]). It is typical for such queries
(especially when searching the web) to return a large answer set,
making it quite a challenge for the user to capture/view the whole
result space. Result Diversification has been recently introduced
for relational datasets [13][23][24], as an approach to ease inter-
preting a massive result set by returning the k most diverse results.
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Algorithms for XML result diversification have also been proposed
recently [11][21] but, they only consider the data content (i.e. key-
words) of the query.

What makes the problem challenging is that diversity can oc-
cur not only in the content of the documents but also (and more
importantly) in the structure of the documents. Since the XML-
based query can contain ancestor-descendent(//) or wildcard(*) re-
lationships, there maybe significant structural differences (e.g., ad-
ditional nodes in a matched path) among the returned results. Such
diversity will not be explored by the content-only based diversifi-
cation; instead we need an approach that takes into account differ-
ences both in the structure and content of the results.

To elaborate, let us consider an example document of biblio-
graphic records shown in figure 1. The document has three records:
two PhD theses and a paper written by two different authors. An ex-
ample XPath query (in figure 2) describing “Find all bibliographic
entries of Faloutsos”, has three exact matches shown by the thick
lines in figure 1. Assume instead that we want to present the user
with the two most diverse results. We should then provide the pair
of matches (among the three possible pairs) that exhibits the highest
diversity. Among the three matches, the one on the right (match 3)
is structurally different from the other two because it is a record of
a paper whereas the others are records for PhD theses. The matches
on the left (match 1) and in the middle (match 2) are different be-
cause of the contents of the “PhDThesis” records (match 1 is a
record for “Michalis” while match 2 is a record for “Christos”).
Ideally, we would like to return to the user matches 2 and 3, since
they are different both in content and in structure. Therefore, we
need a diversification method that combines both the structural and
content-based differences of the results.

A naive way to find the most diverse k-subset from a set of N
returned results, is to take the maximum of the total pair-wise dis-
tance as a measure of diversity for all of the

(
N
k

)
subsets. Typically

N and k are thousands and tens, respectively. Such an instance
of the problem requires 1002 distance computations. The distance
measure, therefore, must be very efficient to keep the computation
time tolerable. In addition to that, the number of times distances
are computed must be reduced.

For structural query processing, a popular choice [6] of distance
measure is the tree edit distance [25]. We focus on extending the
tree edit distance in two ways (section 4). First, we consider the
contents of the nodes and also the structural context of the query
to perform well in presence of both types of differences and thus,
provide meaningful diversification. Second, we leverage off the
known skeleton (i.e. the query) of the results to compute the dis-
tance measure faster. We present a novel algorithm to achieve both
of them. Our distance measure is comprehensive and our algorithm
is at least an order of magnitude faster than the generalized tree
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Figure 1: Bib document containing three records, (a) PhDThesis of Michalis Faloutsos, (b) PhDThesis of Christos Faloutsos and (c)
a Paper of Michalis Faloutsos.

edit distance with O(n2) worst case time complexity, where n is
the number of nodes in the comparing trees.

PhDThesis

Faloutsos

1

2

(a) Tree Structure

//PhDThesis//Faloutsos

(b) XPath Expression

Figure 2: (a) An example query for the documents in figure 1.
(b) The XPath expression for the same query.

Diversification is an NP-hard [15] problem. Therefore, enumer-
ating all of the subsets to measure their goodness is necessary for
exactness but prohibitive even if we have the best distance measure.
For efficiency, we need an approximate algorithm that checks only
a tiny fraction of the number of subsets the naive algorithm checks
(section 5).

2. PROBLEM FORMULATION
An XML document is an ordered labeled tree T . T is a graph

with vertices V (T ) and edges E(T ). An edge (u,v)∈ E(T ) rep-
resents a parent child relationship where u is the parent of v. Only
the root has no parent. A node u can have zero or more children in
a strict left to right order. Nodes with zero child are leaves. anc(u)
defines the set of ancestors of node u. Every node has a label de-
noted by label(u). A postorder traversal of a tree visits the children
of a node from left to right before visiting the node. For example,
the postorder traversals of the trees in figure 1 are shown by the
numbers beside each node. We denote the nodes of a tree by the
postorder sequence t1, t2, . . . , tn, where n = |T | is the number of
nodes in T . The subtree rooted at node ti is denoted by Ti. The
postorder sequence of Ti is a subsequence of T ending at ti and
starting at l(ti). l(ti) is the leftmost node of the tree Ti. For exam-
ple, l(9) = l(6) = 5 and l(14) = 10 in figure 1(c).

We are given a query Q which is also an ordered labeled tree
where edges represent XPath axes. We are also given a set of XML
documents D, in which we find matches for the query.

A map between a node si in a tree S and a node tj in a tree T is
an ordered pair (si, tj). We define a relation M : V (S) → V (T )
or simply a mapping M : S → T such that M maps some nodes
of S to some nodes of T with the following conditions.

1. 1 ≤ i ≤ |S| and 1 ≤ j ≤ |T |
2. For any two pairs (si, tj) and (su, tv) in M

(a) i = u if and only if j = v (One-to-one condition).
(b) si is to the left of su if and only if

tj is to the left of tv (Sibling-order condition).
(c) si is an ancestor of su if and only if

tj is an ancestor of tv (Ancestor-order condition).
Note that M is not a function and, therefore, is not defined for all
nodes in S and T . Nodes mapped by M capture similar structure
in both S and T . M ′ : T → S is the inverse mapping of M such
that for all (s, t) ∈ M , (t, s) ∈ M ′. If M is defined for every node
s ∈ S, then M is a complete mapping. If M is complete, M ′ is not
guaranteed to be complete. If both M and M ′ are complete, they
are called maximal mappings.

M is called an outer mapping if (i) for every leaf s in S, M(s)
is a leaf in T and (ii) root(T ) = M(root(S)). If both M and M ′

are outer then they are called minimal mapping. Figure 4(b) shows
an example of minimal mapping between S and T .

An exact match of a query Q is another ordered labeled tree T ,
such that there is a complete and minimal mapping M : Q → T
and for all (q, t) ∈ M , label(q) = label(t). There has been many
algorithms proposed for finding all of the exact matches of query
Q in D [2][7][18][22][9]. There is also algorithm [6] that finds
approximate matches where query Q may not have complete map-
pings. Each approximate match of the query Q is an exact match of
query Q′, where Q′ is a relaxed version of the original query Q [4].
We consider the matching algorithm A as given and A(D,Q) is the
set of matches denoted by T = {T1, T2, . . . , Tn}. We denote a dis-
tance measure by d(., .), which computes the dissimilarity between
two matches Ti and Tj .

A set R ⊂ T of size k is the most diverse if the total pair-wise
distance

∑
Ti,Tj∈R d(Ti, Tj) is the maximum. The matches in R

are said to be the top-k diverse matches for the query Q in the doc-
ument set D.

[TOP-k DIVERSE MATCHES]. For a given Q and D, find the
k-subset R of the set of matches T such that the total pair-wise
distance of R (i.e.

∑
Ti,Tj∈R d(Ti, Tj)) is the maximum over all

such subsets.

The optimal algorithm to find the top-k diverse matches requires
enumerating all the k-subsets of the set T and selecting the one
with maximum pair-wise distance. This algorithm has O(|T |k)
time complexity and therefore, too slow for interactive queries. To
solve the problem efficiently there are two lines of attack; speeding
up the distance measure and considering only a fraction of the sub-
sets heuristically. In section 4, we describe our approach of com-



puting distance very fast by taking both the structure and content
of the query into account. In section 5, we describe our heuristic
approach to find the diverse subset efficiently.

3. RELATED WORK
Query Processing on Semi-structured Data (i.e. XML docu-

ments) has been addressed in several occasions and there are three
different types of algorithms have been proposed; path based [2][9],
twig based [7][18] and sequence based [22]. In path based meth-
ods, the original query is divided into paths from root to leaves and,
the matches corresponding to these paths are joined together to con-
struct a complete match. Twig based methods perform better than
path based ones by considering the twig as a whole and, therefore,
eliminates expensive stitching operations. Sequence based methods
first convert the query and document into sequences and perform a
search for the query subsequence in the document sequence. It has
been recently shown that LCS-Trim [22] outperforms the other ap-
proaches. Hence we have chosen it as the query processor for our
algorithms in this paper. It should be noted that the choice of query
processing algorithm is orthogonal to our problem.

Diversifying search results is also a well addressed area of re-
search. [15] provides a general framework for the result diver-
sification problem. Specialized solutions for relational and web
databases are also proposed [1][13][23]. There are rich surveys on
diversification [14][17][24] that classify the available algorithms
into two principal types, the greedy best first approach and the it-
erative gain maximization approach. In this paper, we focused on
the greedy best first method because it needs few linear scans of the
data and does not depend on a large number iterations to produce
better quality results.

Despite the wide range of work on diversification, there is little
on diversifying XML query results. [11][21] proposed result di-
versification based on keyword queries instead of classic XPath or
XQuery queries and concentrate only on the content information
of the documents. None of these methods formally consider the
structural diversity among the results. We present the first of such
diversification algorithm that treats the results as trees rather than
collections of labels.

Computing dissimilarity between trees using the tree edit dis-
tance (TED) [25] is one of the first methods for comparing tree-like
structures. [16] proposed O(n2) lower and upper bounds of the tree
edit distance. [5] provides an O(n2) algorithm for approximating
tree edit distance through string edit distance. None of these meth-
ods defined the special case of computing TED in presence of a
given seed mapping. We present the first exact algorithm to com-
pute the seeded tree edit distance.

4. DISTANCE MEASURE FOR DIVERSIFI-
CATION

To diversify a set of matches for an XML query, we need a dis-
tance measure that can compare two trees. The tree edit distance
[25] is the most widely used distance measure for tree structures.
The idea is to transform one tree to the other such that the total cost
of the sequence of edit operations performed for the transformation
is minimum and hence the distance between the two trees.

There are three types of edit operations. The delete operation
removes a node n from the tree and connects the children of n as
the children of the n’s parent preserving the sibling order of the
children. The insertion operation on a node n adds an edge from
some node p to n and makes a subsequence of children of p the
children of n. The rename operation changes the label of a node.

For every operation, an associated cost is defined. The cost can

depend on the operation, the label of the node(s) being operated on
as well as the context at which the operation is being performed.
The simplest cost model assumes equal cost for all of the three
operations: insertion, deletion and rename. Such cost model makes
tree editing distance symmetric i.e. transforming any of the trees to
the other yields the same distance.

Any valid mapping M : S → T can be translated to a sequence
of edit operations to convert one tree to another. The sequence of
operations is (i) delete all non-mapped node in S, (ii) rename all
mapped nodes that do not have the same label and, (iii) insert all
non-mapped nodes in T . Since, M preserves the structural similar-
ity by the three conditions described in the definition of mapping,
at any intermediate stage of the sequence of operations M remains
valid. The converse is also true. If we are given a sequence of edit
operations, there exists a mapping M : S → T that has cost no
higher than that of the sequence of edit operations[25]. Therefore
finding the least costly sequence of edit operations is the same as
to finding the least costly mapping as defined below.

DEFINITION 1. Given a mapping M : S → T and a equal
cost for the operations, we define the cost(M) as

cost(M) = (|S| − |M |) + (|T | − |M |) + |Mm|
where Mm = {(s, t) ∈ M |label(s) ̸= label(t)}.

The term |S|− |M | denotes the number of non-mapped nodes in
the tree S and this is the number of deletions we need to perform.
Similarly, |T | − |M | is the number of insertions and |Mm| is the
number of rename operations.

DEFINITION 2. Tree edit distance between S and T , TED(S, T ),
is the smallest cost over all mappings M : S → T .

Tree edit distance finds the best possible mapping preserving the
structural similarity. But while computing the distance between
two matches, TED does not utilize the information that both the
matches have complete-minimal mapping from the query. In the
next two subsections, we present a new algorithm that uses these
two mappings for computing distances. We start with adding the
structural context sensitivity in the distance measure and, add the
content sensitivity in the later subsection.

4.1 Context Aware Diversity
We first provide a simple example showing that TED fails to

capture the desired dissimilarity because of ignoring the structural
context of the query.

Consider the example in figure 3 where we have three matches
for the query shown on the left. Based on the structure of the query,
the two most diverse matches should be match 1 and 2. The reason
is the XY segment is located in different parts of matches 1 and
2 while match 3 has some parts common with both match 1 and
2, separately. But according to the tree edit distance, all of the
pairwise distances are 2. Therefore, TED cannot distinguish the
two most diverse matches (i.e. 1 and 2) in this example.

More precisely, while converting match 1 to match 2, TED
needs only two operations: delete B from match 1 and insert B
as in match 2. Recall both of the B nodes in match 1 and 2 are
mapped from the node B in the query. This implicitly maps the
two B nodes of match 1 and 2 together. Therefore, B must not be
deleted or inserted while the editing distance between match 1 and
2 is computed in the context of the query. However, as in the above
example, the generalized algorithm for tree edit distance does not
always preserve this query mapping. If we consider an implied
mapping between the matches using the mappings from the query,
the distance between match 1 and 2 becomes 4, and thus, makes
them the most diverse pair.
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Figure 3: For the query shown on the left there are three
matches found. The distance values for the tree edit distance
and our proposed variant are shown on the right.

In the next section, we describe our algorithm to compute the
modified tree edit distance that considers the query mappings as
contextual information. We denote the modified distance measure
as Seeded Tree Edit Distance (STED).

Consider the set of matches T of a given query Q. Let S, T ∈ T
be any two matches for the query Q as shown in figure 4 and MS

and MT are the complete minimal mappings from Q to S and T .
We define a new mapping M : S → T where (si, tj) ∈ M for

all (q, si) ∈ MS and (q, tj) ∈ MT . Note that, M may not be
complete but always minimal. We call M a seed map. From now,
M always refers to a minimal mapping and, therefore, the direction
of the map is not important at any point.
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Figure 4: An example query (Q) on the left with two matches
S and T . The induced minimal mapping between S and T is
shown by the dashed lines.

Note that, if M̂ : S → T is a super mapping such that M̂ ⊇ M
then cost(M̂) ≤ cost(M) under equal costs of edit operations.
Because we want to preserve the seed mapping M as the context,
we modify the tree edit distance to find a super mapping of M that
minimizes the total cost instead of any mapping.

DEFINITION 3. The seeded tree edit distance, STED(S, T,M),
between S and T given a minimal mapping M : S → T , is the
smallest cost over mappings M̂ ⊇ M .

To compute STED using existing algorithms for computing tree
edit distance, we can just change the cost model trivially. More
precisely, if (s, t) ∈ M then cost of deleting s, inserting t and
mapping s (or t) to a different node x ̸= t (or s) is raised to infinity.
This change in cost model guarantees that (s, t) would be in the
optimal mapping.

The classic algorithm for tree edit distance is a dynamic pro-
gramming algorithm which computes a matrix of size |S| × |T |
where a cell (i, j) denotes the tree edit distance between Si and Tj .
For example, figure 5(a) shows the matrix for trees in figure 4 when
the change in the cost model is adopted. Clearly most of the entries

are invalid and contribute nothing to the final distance value. This
motivates us to develop an efficient algorithm for finding STED
for two trees when the seed map is given. The algorithm is de-
scribed sequentially and is justified with necessary definitions and
lemmas as we go along.
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Figure 5: (a) Tree edit distance matrix of S and T (b) Mapped
chunks of S, T and corresponding STED

Let UT = {x|x ∈ V (T ) and ∃y[(x, y) ∈ M or (y, x) ∈ M ]}
be the set of mapped nodes in a tree T . Note that all of the leaves
and the root of T are in UT . If the tree is divided at every node
in UT by keeping two copies in the two halves, we will get |UT |
chunks from T . Let C(T,M) or CT in short denote the set of
chunks found in tree T and CT

u denote the chunk rooted at a node
u ∈ UT . For example, figure 5(b) shows the chunks of S and T
from figure 41.

Since M : S → T is a one-to-one mapping, every chunk CS
u

from tree S has a mapped chunk CT
M(u) in the tree T . The submap-

ping Mu : CS
u → CT

M(u) induced from M is minimal by defini-
tion. Note that no internal node in CS

u is mapped by M . Moreover,
no internal node in CS

u will be mapped by the optimal mapping M̂
to a node in CT

M(v) where u ̸= v. The following lemma describes
the fact more formally.

LEMMA 1. Optimal mapping M̂ for STED(S, T,M) will not
map any node from one chunk CS

u to another chunk CT
M(v) such

that there are u, v ∈ US and u ̸= v.

PROOF. Let n ∈ CS
u and m ∈ CT

M(v) are two nodes in S and
T (see figure 6(a)). For contradiction, lets assume (n,m) ∈ M̂ .
Therefore, u is anc(n) in S and M(v) is anc(m) in T . Since v
and M(v) are matched so v is anc(n) in S. Now, by construc-
tion, v can not be in the path from u to n. Therefore, v is also
anc(u). Since u and M(u) are matched, M(u) has to be anc(m)
and desc(M(v)). Because no internal node in the path from M(v)
to m can be a mapped node by M , this is a contradiction.

u

v

n m

M(v)

(a) lemma 1

v

x

M(w)

w

u

(b) lemma 2

Figure 6: Contradictions of Lemma 1 & 2

Using the above lemma, we can now say that finding optimal
mappings for every pair of mapped chunks is sufficient. If we only
1The reader may wonder why defining the leaves as tiny chunks.
In reality, they have inconsequential effect on the performance but,
helps to simplify the description by far.



find the mappings for the mapped pairs of chunks, compute the
editing distance for these mappings and then, sum these distances
for all of the mapped pairs of chunks; it is the same as the optimal
editing distance between S and T . Mathematically,

cost(M̂) =
∑

u∈US

cost(Mu : CS
u → CT

M(u)) (1)

To find the mapping between CS
u and CT

M(u), we now present
an O(n2) algorithm where n is the number of nodes in CS

u and
CT

M(u). Since there is a one to one mapping between chunks, from
now on we denote CS

u and CT
M(u) by S and T for simplicity of

description. Similarly, we denote Mu as M .

DEFINITION 4. The leaf-sequence L(u) of a node u in a tree
T consists of the leaves of T rooted at u in the left to right order.

For example, in the left tree of figure 7 L(7) =< 1, 3, 6 >. We
extend the definition of mapping for a leaf-sequence by taking the
sequence of the matched nodes in the other tree i.e. M(L(7)) =
M(< 1, 3, 6 >) =< M(1),M(3),M(6) >.
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Figure 7: Compressed trees of first mapped pair chunks in fig-
ure 5(b) and corresponding leaf and stem sequence

Recall that in a chunk, only root and leaves are mapped by M .
No other internal nodes in a chunk will be in M . Our goal is to find
the mappings for these internal nodes in M̂ . The following lemma
states the key of our algorithm classifying the internal nodes that
will not be mapped by M̂ at all. In other words, two internal nodes
can be mapped only if their leaf sequences are also mapped by M .

LEMMA 2. For a node u in S, if there is no node in T with the
leaf-sequence M(L(u)), then u is not mapped by M̂ .

PROOF. For contradiction let u is matched with v in T (see fig-
ure 6(b)). Since v has a different leaf-set from M(L(u)), there
is at least one map (w,M(w)) such that either w ∈ L(u) and
M(w) /∈ L(v) or the vice versa. Without losing generality, as-
sume w ∈ L(u). Since u is an anc(w), v has to be an anc(M(w))
according to the definition of mapping. Since M(w) /∈ L(v), by
construction, there is a x ∈ L(v) which is also anc(M(w)). Since
x is a leaf node of a chunk, there has to be (y, x) ∈ M such that
y is a anc(w) and a desc(u). This leads to contradiction since no
chunk has an internal node mapped by M .

There can be multiple nodes in the same tree having the same
leaf-sequence and nodes with the same leaf-sequence form a path
in a tree. Based on this observation, we can compress S and T by
collapsing paths to single nodes. Figure 7 shows the compressed
trees of the first pair of chunks in figure 5(b), where nodes in a
single path with the same leaf sequence are shown as the label of
the corresponding edge. We call a collapsed path a stem.

DEFINITION 5. A stem is a subsequence P of the nodes in the
postorder sequence of a tree such that ∀iL(Pi) = L(P1) where Pi

is the ith node in P . L(P ) is defined to equal L(Pi).

The table in figure 7 shows the stem and leaf sequence of all the
nodes of the two compressed trees. We are now required to find
the pairs of stems from the two trees having leaf sequences mapped
from one to the other. We need to do it efficiently without checking
all possible pairs of stems. We argue that, one parallel scan through
S and T in post-order is sufficient.

Our algorithm parallely scans the nodes in trees S and T in post-
order. Assume the algorithm is currently looking at two nodes
u and v from S and T , respectively. If their leaf-sequences are
mapped by M , we compute the mapping between their stems in a
way described later. If their leaf-sequences are not mapped by M
then, we can skip either u or v and advance the scan with the con-
fidence that the skipped node will never be mapped by an M̂ . The
lemma 3 justifies this decision. Note that the parallel scan requires
at most |S|+ |T | − 1 checks for pairs of stems.

LEMMA 3. Let u be a node in S. Let pl and pr be the leftmost
and the rightmost nodes in M(L(u)) in the tree T , respectively.
Also let v be a node in T and, ql and qr are the leftmost and right-
most nodes in L(v) in the tree T . If M(L(u)) ̸= L(v) then

1. if pr > qr or (pr = qr and pl < ql), then for no node
x > u, M(L(x)) = L(v).

2. If qr > pr or (qr = pr and ql < pl), then for no node
x > v, M(L(u)) = L(x).

3. no other case occur.

PROOF. If x and y are any two nodes and x > y (i.e. x is to the
right of y) then only one of the following is true2.

⋆ x is an ancestor of y and, therefore, L(y) is a subsequence of
L(x). L(y) ⊆ L(x)

⋆ At their least common ancestor, x is in a right subtree to y and,
therefore, they have no common subsequence. L(x) ∩ L(y) = ∅.

1. Note that M(L(u)) ̸= L(v). The given condition essentially
describes three possible scenarios as shown in figure 8(a-c).
For any node x > u, there can be two cases.

⋆ If L(x) = L(u) then trivially M(L(x)) ̸= L(v).

⋆ If L(u) ⊂ L(x) or L(u) ∩ L(x) = ∅ then there is a leaf
t ∈ L(x) where M(t) /∈ M(L(u)). Now M(t) can be in
two possible places.

•M(t) < pl: Definitely pr ∈ M(L(x)). Since M(t) /∈
L(v) (in figure 8(b-c)) and pr /∈ L(v) (in figure 8(a)), there-
fore M(L(x)) ̸= L(v).

•M(t) > pr: Trivially M(t) /∈ L(v), therefore M(L(x)) ̸=
L(v).

2. Since M is minimal, using the inverse mapping M ′ and sim-
ilar arguments as above we can prove that for no node x > v,
M(L(u)) = L(x).

2We are abusing the set operations for sequences. We believe the
context clarifies the intended meaning.



3. For any two nodes in a tree it is not possible to have both
L(x) ∩ L(y) ̸= ∅ and L(y) * L(x). Therefore, the remain-
ing cases as shown in the figure 8(d) cannot occur.

v

ql prplqr

v

ql prpl qr

v

qr ,prpl ql

v

ql prpl qr

(a) (b) (c) (d)

Figure 8: The tree T . (a-c) Three possible scenarios for case 1.
(d) An impossible scenario which cannot occur as described in
case 3 of lemma 3.

The remaining piece of the puzzle is to find the optimal mapping
between the stems having leaf-sequences mapped from one to the
other. The following lemma describes how we compute the optimal
mapping and the distance as well. Here, SED stands for string edit
distance [19]; The proof of this lemma is skipped for brevity as it is
a straight forward specialization of the tree edit distance for paths
(see [25] for details).

LEMMA 4. If PS and PT are two stems of S and T , respec-
tively, such that M(L(PS

1 )) = L(PT
1 ), then TED(PS , PT ) =

SED(PS , PT ).

Using the above lemmas 1 to 4 we have designed our algorithm
1 for computing STED. STED(S, T,M) takes in two trees S and
T and divides them into chunks. For each mapped pair of chunks,
the algorithm parallelly scans to see if there is any pair of stems
with mapped leaf sequence. For mapped stems, the algorithm com-
putes the string edit distance of the stems and add the value to the
total cost. For non-mapped pair of stems, the algorithm adds the
length of one of the stems that is guaranteed to remain unmapped
in M̂ . Note that, adding length of the stem is equivalent to inser-
tion/deletion of all of the nodes in the stem.

The running time of the proposed algorithm is O(n2) with the
requirement of a minimal seed mapping M . In the worst case,
when both of the trees are simple paths the algorithm costs exactly
O(n2) time to compute the string edit distance where n is the num-
ber of nodes in the trees. Note that, the standard tree edit distance
is at least O(n3) [6] and, therefore, our algorithm is faster than the
generalized tree edit distance by at least an order of magnitude (i.e.
a factor of n) while being more meaningful as well.

4.2 Content Based Diversity
In the previous section, we have described how the mapping in-

duced by the query can be used to compute accurate and efficient
distances for diversification. If we use STED for the matches in
figure 1, both (1, 3) and (2, 3) produce distance values of 1 and,
consequently, result in a tie. Because (1,3) involves the same per-
son (i.e. “Michalis”) while (2,3) does not, the obvious choice for
the diverse pair is (2,3). Now the question is, how we can modify
STED to capture true diversity by breaking such tied situation.

The answer is, by taking the contents (i.e. nodes in the docu-
ment that are structurally unrelated to the query) into consideration.
Contents can create different levels of differences between matches

even if the matches are structurally similar to each other. For exam-
ple, in figure 1 the first two matches are PhDThesis records linked
to Faloutsos, but their authors are different.

When two nodes of a map (si, tj) have the same label (i.e.
label(si) = label(tj)), under the equal cost model no cost is added
to the total. There can be differentiating features in the branches
of the subtrees Si and Tj that are not matched to the query and,
hence are ignored by STED. For example, First Name/Michalis is
a branch of Author in match 1 which is not matched to any part of
the query. Let SR

i and TR
j are the two trees rooted at si and tj that

contain the remaining branches unmatched to the query. We add a
correction cost c ∈ [0, 1] as a cost of the map (si, tj) to capture
the amount of mismatch present in SR

i and TR
j .

The correction cost c can trivially be computed by simply tak-
ing the TED(SR

i , TR
j ) and normalizing by the maximum possible

distance between a pair of matches. However, TED is too costly
to use for computing the fractional contributions from the contents
just to break the ties. We develop a novel approach to obtain the
correction cost c efficiently.

At first, we classify nodes of an XML document in one of the
four categories: value, attribute, entity and connector.

⋆ All leaf nodes are Value nodes.
⋆ A parent of a value is an Attribute
⋆ A parent of an attribute is an Entity if it is not an attribute itself.
⋆ A node other than the above three is a Connector.

Similar classification has been proposed in [20] when the Doc-
ument Tree Descriptor (DTD) is not available. We scan the docu-
ments once to identify the type of every node. For example in figure
1, there are four attributes; School, First Name and Last Name, Ti-
tle and, three entities; PhDThesis, Author and Paper.

The four classes of nodes are defined keeping the usual structure
of an XML document in mind. In general, an attribute (similar to
a “variable” in programming languages) has exactly one value and
no other child. Therefore, attributes do not require the above men-
tioned correction cost as their values are always compared. In con-
trast, entities generally have multiple attributes and may need some
correction cost. Since connectors have no attribute/value, having
correction cost for them is not meaningful.

To compute the correction cost for entities, we only consider the
number of mismatched attributes. Two attributes are mismatched if
they have the same label but different values. For example, in fig-
ure 1 the entity Author in all the documents has two attributes First
Name and Last Name. While comparing the two Author nodes in
1 and 2, the number of mismatched attributes is 1 because of the
different first names. If an attribute is present in only one entity
and absent in the other, it does not confirm any difference between
the entities and, therefore, these attributes are not counted as mis-
match [21]. For example, had there be a Middle Name attribute for
the Author entity in match 1, the number of mismatched attributes
would still be 1.

We define the correction cost for entities as below.

ce =
Number of mismatched attributes
Total number of distinct attributes

(2)

Here, the total number of attributes is a normalization constant.
Examples of correction costs for entities: cAuthor = 0.5 for the
match pairs (1, 2) and (2, 3).

Let us revisit the problem of breaking ties for the matches in
figure 1. (1, 3) has a distance of 1 and (2, 3) has a distance of 1.5
when the above defined correction costs are used with the equal cost
model. Thus, adding content awareness breaks the tie meaningfully
in favor of the true diverse set of matches.



4.3 Algorithm for STED
Algorithm 1 shows the pseudocode for finding STED between

two matches S and T when the minimal mapping M is given. Con-
sider two matches S and T of figure 4 as the inputs of algorithm 1.
The algorithm creates all the chunks as shown in figure 5(b) at lines
1 and 2 using the algorithm 3 . For each pair of mapped chunks,
we initiate two pointers n and m (lines 5-6) that iterate through
the chunks in their respective postorder sequence. The algorithm
also computes (using the algorithm 5 at line 7-8) two sequences
(i.e. arrays), B and E, that store the beginning and ending leaves
of the leaf-sequences. For example, Bi and Ei are the beginning
and ending leaves of L(i).

At every iteration, the stems of the of nodes n and m are found
(lines 11-12) by the algorithm 2. Algorithm 2 creates and returns
the stem of node n by concatenating nodes with the same leaf-
sequence as L(n) in the post-order of C. The algorithm also returns
the first node after n with different leaf-sequence.

When the stems are ready, the algorithm 1 checks to see if the
stems have mapped leaf-sequences (i.e. the beginning and end-
ing leaves are same). The algorithm handles the pair of stems
with mapped leaf-sequences in two different ways (lines 13 and
15) based on the first node of the stem. If the first nodes (i and
j) are leaves, by the definition of chunks they are matched to the
query nodes by the query processor and we want to preserve their
mapping. Note that, if i is a leaf, so is j and vice versa. To preserve
the mapping between the leaves, the algorithm computes string edit
distance for the rests of the stems and add the cost for the mapping
of the leaves (line 16). When i and j are not leaves, the algorithm
simply takes the string edit distance between the stems.

When the leaf-sequences are not mapped, there can be two cases
as described in the lemma 3. In the first case, the node i remains
active for the next iteration but stem the PT of the node j is in-
serted/deleted (line 18). In the remaining case, the node j remains
active and PS is inserted/deleted (line 20).

Figure 9 shows the iterations of the loop at line 4 for the first pair
of chunks in figure 5(b). The final STED(S, T,M) is 6 which is
equal to the last entry of the tree matrix in figure 5(a).

Algorithm 1 SeededTreeEditDistance(S, T,M)

Require: S and T are two trees, M : S → T is a minimal mapping
Ensure: Return the seeded tree edit distance
1: CS ← Chunks(S,M)//algorithm 3
2: CT ← Chunks(T,M)
3: sum← 0
4: for each pair (CS

u , CT
M(u)

) do
5: n← first node of CS

u in post-order
6: m← first node of CT

M(u)
in post-order

7: BS , ES ← LeafSequences(CS
u )

8: BT , ET ← LeafSequences(CT
M(u)

)

9: while n and m are not nil do
10: i← n, j ← m
11: PS , n← FindStem(n,CS

u )
12: PT ,m← FindStem(m,CT

M(u)
)

13: if BT
j = M(BS

i ), ET
j = M(ES

i ) and i,j are not leaves then
14: sum← sum+ SED(PS , PT )
15: else if BT

j = M(BS
i ), ET

j = M(ES
i ) and i,j are leaves then

16: sum← sum+ SED(PS − i, PT − j) + cost(i, j)
17: else if M(ES

i ) > ET
j or (M(ES

i ) = ET
j and M(BS

i ) < BT
j )

then
18: sum← sum+ |PT |, n← i
19: else
20: sum← sum+ |PS |, m← j

Algorithm 2 FindStem(n,C)

Require: A chunk C and a node n in C
Ensure: Return the stem P and the next n after the stem
1: i← n, P ← ϵ
2: while L(i) = L(n) and n is not nil do
3: P ← Concatenate(P, n)
4: n← next node of C in post-order

Algorithm 3 Chunks(S,M)

Require: A tree S and a minimal M mapping to or from S
Ensure: Return C, a set of chunks of S
1: C ← ∅, Q = {x|x ∈ V (S) and ∃y [(y, x)or(x, y) ∈M ]}
2: for each u in Q do
3: Cu ← FindChunk(u, ϵ,Q)
4: add Cu to C

4.4 Properties of the Distance Measure
The seeded tree edit distance (STED) has some elegant proper-

ties: triangular inequality, fast lower bound and upper bound.

4.4.1 Triangular Inequality
The original tree edit distance holds the triangular inequality.

STED also holds the triangular inequality as long as the seed map-
ping is same.

STED(T1, T2,M)+STED(T2, T3,M) ≥ STED(T1, T3,M)

PROOF. The STED can be obtained by creating a cost model
from M . Since, M is fixed, and TED holds triangular inequality,
STED also holds triangular inequality.
When we add content awareness in STED, it becomes a bit compli-
cated. If we choose to use the described definition for “mismatch”
in the previous section, the triangular inequality does not hold. But
there is a way around for performance critical applications where
triangular inequality is the key for performance. If we consider ab-
sent attributes as mismatched attributes, triangular inequality holds
with the given definition of correction cost.

4.4.2 Lower Bounds
Another desirable property of a distance measure is the availabil-

ity of low cost lower bounds for fast similarity search. There is a
simple lower bound for STED that requires O(n) time for compu-
tation while STED itself requires O(n2).

STED requires computing the string edit distance for stems with
mapped leaf-sequences. A trivial lower bound for String edit dis-
tance is the absolute difference between the lengths of the strings
being compared. If we use such trivial bounds whenever STED
needs a string edit distance, the resulting distance value is a lower
bound to the original STED.

4.4.3 Upper Bounds
Similar to lower bound, an upper bound of STED can be com-

puted by taking the sum of the lengths of the two stems used in
string edit distance computations. Such an upper bound also re-
quires O(n) time for computation.

Algorithm 4 FindChunk(n,Cu, Q)

Require: A node n, the list of mapped nodes Q and the current chunk Cu

to add in
Ensure: Return the modified current chunk Cu

1: add n to Cu

2: if Cu = ϵ or n /∈ Q then
3: for each child v of n in left to right order do
4: Cu ← FindChunk(v, Cu, Q)



Algorithm 5 LeafSequences(S)

Require: A tree S
Ensure: Return two arrays B and E containing the start and end nodes of

the leaf sequences of every node in S
1: B ← ϵ, E ← ϵ
2: FindLeafSequence(Root(S), B,E)

Algorithm 6 FindLeafSequence(u,B,E)

Require: A node u and two arrays B and E to store the start and end of
L(u)

1: if u is a leaf then
2: Bu ← u,Eu ← u
3: else
4: for each child v of u do
5: FindLeafSequence(v,B,E)
6: i← leftmost child of u
7: j ← rightmost child of u
8: Bu ← Bi, Eu ← Ej

5. DIVERSIFICATION
Result set diversification is an NP-hard problem. Many heuris-

tics [12] have been proposed to find approximate diverse result set
(greedy heuristic, interchange heuristic, clustering heuristic, etc.).
In this paper we utilize the greedy heuristic algorithm [13] (see al-
gorithm 7) which selects a seed of one or two matches (line 1).
Once the seed is selected, the algorithm finds the next object to add
in the final result set (line 4-5). To do that, the algorithm compares
each of the remaining matches to the already added matches in the
result set and add the one that has the maximum total distance to the
current result set. The algorithm stops once k matches are added
to the result set (line 3). The algorithm computes linear number of
editing distances on the number of matches (|(T )|) as k << |T |.
We consider three methods Diameter Seed [13], Lower Bound Seed
and Random Seed for selecting the seeds.

• Diameter Seed: Select the farthest pair of points (diameter)
in the set of matches (i.e. T ) as the seed. Finding the di-
ameter is inherently quadratic in time complexity for high
dimensional data.

• Lower Bound Seed: Select the farthest pair of points by us-
ing the lower bound (as described in section 4.4) instead of
the true tree edit distance. This approach is also quadratic
but promises to be faster.

• Random Seed: Select one match as the seed at random. This
approach is efficient but suffers degradation in quality (see
section 6).

Algorithm 7 Greedy −Diversification(T ,K,Algo)

Require: A set of matches T , the final result set size k
Ensure: Return the set R of top-k diverse matches from T
1: R← initial seed(s)
2: T ← T -R
3: while |R| < k do
4: find Ti in T such that the total pair-wise distance of

R ∪ Ti is maximum for all Ti ∈ T
5: R← R ∪ Ti, T ← T - Ti

In figure 10, we demonstrate the trends of the seed selection
algorithms as the number of matches increases. We compare the
running time of the algorithms with that of a standard query pro-
cessor (LCS-Trim [22]). As the figure suggests, the curves are di-
verging and therefore, the motivation of having a diverse result set
no longer worth the waiting time after the matches are available
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Figure 9: Iterations performed by the algorithm 1 for the first
pair of chunks in figure 5(b).

from the query processor. Clearly we need an efficient diversifica-
tion algorithm taking sublinear time with the increasing number of
matches.

0.5 1 1.5 2 2.5 3

x 10
4

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of Results

R
u

n
n

in
g

 T
im

e
 (

s
)

Diameter-Seed
Lower Bound-Seed
Random-Seed
LCS-Trim

Figure 10: Comparison of running times of different diversifi-
cation algorithms with a sample query processor, LCS-Trim.

5.1 Novel Heuristic for Seed Selection
As we have discussed random-seed linear time diversification al-

gorithm improves the running time but degrades the quality, which
motivates to propose a new and fast heuristic for seed selection, so
to have similar time complexity as random-seed while improve the
overall quality of diverse result set.

We propose a new scoring technique for selecting the initial seed.
Instead of a random seed, we want to start from one of the matches
which have an extreme value for a relevant but low cost feature.
One such feature is the count of nodes in a match. Counting nodes
for every match and selecting the one with the maximum count
takes one linear scan over the matches. Note that, this process
does not require any distance computation. We name this selec-
tion method as QMax.
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Average Distance Gap vs k for different diversification algorithms
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Figure 12: Experimental Results for the Query Q3

6. PERFORMANCE EVALUATION
To experimentally demonstrate the utility of our algorithms, we

have used the Treebank dataset3 because of its rich structural vari-
ations. We have selected seven queries (table 1). The queries
are structurally different from each other to cover several extreme
cases. The experiments are performed in a standard unix system on
a 2.10 GHz processor and 4GB of RAM.

Query XPath Expression Matches
Q1 //S[/V P/NP ][/V P ] 11752
Q2 //EMPTY//X/V P/PP//NP 1412
Q3 //S[//NNS][//JJ ][//V P//NNP ] 30349
Q4 //EMPTY//S/V P/ ∗ /SBAR//PP//NN 28463
Q5 //S[//DT ][/V P//PRP_DOLLAR_] 4559
Q6 //S[/NP ][/V P/ ∗ /PP//NNP ] 35326
Q7 //S[//NP/NNP ][//CC][/ ∗ /V P [/V BZ] 906

[//NP/_NONE_]]

Table 1: Query Set

6.1 Speedup of STED
Our first experiment is to evaluate the performance of STED in

comparison with the generalized tree edit distance that uses a mod-
ified cost model to preserve the seed map. We also use an interme-
diate algorithm which divides the trees into chunks as STED but,
computes regular tree edit distances (with the modified cost model)
for every pair of chunks. Figure 11(a) shows the average time taken
to compute the distance between two results for the queries in table
1. Note that all three methods compute the same distance as out-
put, thus the quality of the distance measures are equal. However,
STED performs at least two orders of magnitude faster than the tree
edit distance while the chunk-only version achieved notable amount
of speedup demonstrating the importance of the our chunking ap-
proach.

6.2 Evaluation of Diversification Algorithms
3http://www.cs.washington.edu/research/xmldatasets/

We compare the seed selection algorithms, Diameter Seed (Dia),
Lower Bound Seed (LB) and Random Seed (Rand), against our
proposed heuristic, QMax. Note that, Dia and LB require quadratic
number of distance computations for seed selection, while the Rand
and QMax need no distance computation for seed selection.

6.2.1 Qualitative Analysis
For qualitative analysis, we compare the final result sets returned

by different algorithms with the result set generated by the optimal
(brute force) algorithm for the same query and input parameters.
We use two criteria to measure the quality, precision and percent-
age gap. Precision of an algorithm is the fraction of the optimal
top-k matches that the algorithm returns. Percentage gap is the
percentage of the deviation of the total pair-wise distances of an
algorithm from that of the optimal algorithm. For the efficiency of
the brute force algorithm, the number of candidate results (N) is
fixed to be 100 (figure 11(b),11(c)). In both the measures QMax
performs better than LB and Rand, and very close to Dia.

6.2.2 Scalability Analysis
Our next experiment is to evaluate the scalability of the diversifi-

cation algorithms as the number of candidate results and k increase.
We have shown the experiments for the query Q3, since it is com-
plicated in structure and can generate a wide range of structurally
diverse results.

In figure 12(a), we show the running times of the algorithms
to produce top-25 diverse results for different sizes of result sets.
Clearly QMax outperforms the quadratic algorithms Dia and LB
(figure 12(a)). The curve for Rand is skipped for visual clarity as it
overlaps the curve for QMax.

In figure 12(b), the total pair-wise distances of the top-25 di-
verse matches are shown for different algorithms. In both figures
11(c) and 12(b), QMax achieves insignificantly less accurate re-
sults compared to Dia. Reader may interpret this little loss on ac-
curacy as the price paid for the huge speedup shown in figure 12(a).
In practice, the small difference in the total distance does not add
subjectively noticeable changes in the reported output.



We have also studied the running time and the total pair-wise
distance of the algorithms for different values of k for a fixed result
set size (figure 12(c) and 12(d)). Quadratic seed selection methods
(Dia and LB), need so large an amount of time for selecting the
seed that the rests of the algorithms (with complexity O(k|(T )|))
negligibly increase the total time (figure 12(c)). In contrast, QMax
selects the seed very fast and therefore, the running time for QMax
linearly increases with k. This ensures a possible adaptation of our
algorithm as an anytime algorithm, where the user can preemptively
stop the computation at any time with the best answers she could
get in the elapsed amount of time.

7. CONCLUSION
We have modified the standard tree edit distance to consider the

query-context and the contents for XML result diversification. We
have also given a novel heuristic technique for speeding up the ex-
isting algorithms. We have experimentally validated our contribu-
tions.

Our focus has been to develop methods to diversify exact matches
to the query. As for future research, we note that our algorithm can
be extended to work on approximate matches.

In a typical approximate query matching system [3][4], the query
is perturbed to generate few approximate queries. Later, exact
matches for these approximate queries are found. Let SQ denotes
the set of approximate queries of Q. Also let the exact result set
for a query q ∈ SQ be T q . Finding the top-k diverse results for Q
can then be done in two steps. In the first step, we compute top-k
diverse results for each T q using our efficient STED and diversi-
fication algorithm. In the second step, we find the top-k diverse
results from the k|SQ| matches of the first step. As two matches
for two different queries in SQ may not have a complete mapping
between them, we use the modified tree edit distance described in 4
instead of STED. The number of distances computed in the second
step is not significant as k|SQ| is in the order of hundreds.

All the approximate matches are not equally relevant to the query,
which necessitates to use relevance score in diversity calculation.
We can use relevance score in [4] or any other function suitable for
this purpose.
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