
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Exact Primitives for Time Series Data Mining

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Abdullah Al Mueen

March 2012

Dissertation Committee:
Dr. Eamonn Keogh, Chairperson
Dr. Vassilis Tsotras
Dr. Stefano Lonardi

Copyright by
Abdullah Al Mueen

2012

The Dissertation of Abdullah Al Mueen is approved:

Committee Chairperson

University of California, Riverside

Acknowledgements

I would like to take this opportunity to express a deep gratitude to my adviser

Dr. Eamonn Keogh for guiding me into research on knowledge discovery from data. He

gracefully granted me immense freedom to work on my own interest and above all, blessed

me with his philosophy of doing scientific research. I humbly thank Dr. Vassilis Tsotras and

Dr. Stefano Lonardi for their generous support in compiling this thesis.

I express gratitude to my colleagues in the data mining lab at UCR: Bilson Campana, Jin

Shieh, Qiang Zhu, Lexiang Ye, Xiaoue Wang, Art Rakthanmanon, Yuan Hao, Bing Hu and

Jesin Zakaria. Together we traveled through many memorable moments of our PhD studies.

I particularly thank Jin for bringing the Tiny Images dataset in the lab, Qiang for his original

experiments in section 2.4.3 and Lexiang for providing her shapelet code and supporting me

in further development.

I thank the donors of the datasets. I am grateful to M. Brandon Westover and Sydney

Cash for the EEG dataset which setup the basis of this thesis. I particularly thank Gregory

Walker and Candice Stafford of the Entomological Dept. of UCR for the Beet Leafhopper

data and their assistance with interpreting the data. I thank Antonio Torralba, Rob Fergus, and

William Freeman for the Tiny Images dataset. I am also grateful to Nima Bigdely-Shamlo

for the Brain Activity data and the magnificent results in section 3.4.1.

Finally I would like to thank my wife, Shahani Noor, for being my constant inspiration.

iv

ABSTRACT OF THE DISSERTATION

Exact Primitives for Time Series Data Mining

by

Abdullah Al Mueen

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2012

Dr. Eamonn Keogh, Chairperson

Data mining and knowledge discovery algorithms for time series data use primitives such

as bursts, periods, motifs, outliers and shapelets as building blocks. For example a model

of global temperature considers both bursts (i.e. solar fare) and periods (i.e. sunspot cy-

cle) of the sun. Algorithms for finding these primitives are required to be fast to process

large datasets. Because exact algorithms that guarantee the optimum solutions are very slow

for their immense computational requirements, existing algorithms find primitives approxi-

mately. This thesis presents efficient exact algorithms for two primitives, time series motif

and time series shapelet. A time series motif is any repeating segment whose appearances

in the time series are too similar to happen at random and thus expected to bear important

v

information about the structure of the data. A time series shapelet is any subsequence that

describes a class of time series differentiating from other classes and thus can be used to

classify unknown instances.

We extend the primitives for different environments. We show exact methods to find mo-

tifs in three different types of time series data. They are the in-memory datasets suitable for

batched processing, the massive archives of time series stored in hard drives and finally, the

streaming time series with limited storage. We also describe an exact algorithm for logical-

shapelet discovery that combines multiple shapelets to better describe complex concepts.

We use efficient bounds to the goodness measures to increase the efficiency of the ex-

act algorithms. The algorithms are orders of magnitude faster than the trivial solutions and

successfully discover motifs/shapelets of real time series from diverse sensors such as EEG,

ECG, EPG, EOG, Accelerometers and Motion captures. We show applicability of these al-

gorithms as subroutines in high-level data mining tasks such as summarization, classification

and compression.

vi

Contents

List of Tables viii

List of Figures ix

List of Algorithms x

1 Introduction 1

1.1 Time Series Motif . 3

1.2 Time Series Shapelet . 6

2 Exact Discovery of Time Series Motifs 10

2.1 Definitions and Background . 11

2.2 The MK Algorithm . 16

2.2.1 The Intuition behind MK . 16

2.2.2 A Formal Statement of MK . 20

2.3 Experiments . 27

2.3.1 Performance Comparison . 27

vii

2.3.2 Choosing the number of reference points 30

2.3.3 Why not use other lower bounding techniques? 32

2.3.4 z-Normalizing the time series . 34

2.3.5 Extension to Multidimensional Motifs 37

2.3.6 Discussion and Interpretation of Results 38

2.4 Experimental Case Studies . 43

2.4.1 Finding Repeated Insect Behavior 43

2.4.2 Automatically Constructing EEG Dictionaries 47

2.4.3 Motif-based Anytime Time Series Classification 50

2.5 Prior and Related Work . 52

2.6 Conclusion . 55

3 Extension to Disk Resident Time Series 56

3.1 Related Work . 57

3.2 DAME: Disk Aware Motif Enumeration . 59

3.2.1 A Detailed Intuition of Our Algorithm 60

3.2.2 A Formal Description of DAME . 65

3.2.3 Correctness of DAME . 70

3.3 Scalability Experiments . 71

3.3.1 Sanity Check on Large Databases 72

3.3.2 Performance for Different Block Sizes 74

viii

3.3.3 Performance for Different Motif Lengths 75

3.3.4 In-Memory Search Options . 76

3.4 Experimental Case Studies . 77

3.4.1 Motifs for Brain-Computer Interfaces 78

3.4.2 Detecting Near-Duplicate Images 81

3.4.3 Discovering Patterns in Polysomnograms 82

3.5 Conclusion . 84

4 Extension to Streaming Time Series 85

4.1 Notation and Background . 87

4.1.1 Why is this Problem Hard? . 90

4.2 Related Work . 91

4.3 Online Monitoring of Motif . 93

4.3.1 The First Solution . 93

4.3.2 Reducing Space and Time Complexity 97

4.4 Online MK Algorithm . 101

4.5 Performance Evaluation . 105

4.6 Extending Online MK . 108

4.6.1 Adapting to Variable Data Rate . 109

4.6.2 Monitoring Multidimensional Motifs 112

4.7 Applications of Online Motifs . 112

ix

4.7.1 Online Summarization/Compression 113

4.7.2 Acoustic Wildlife Management . 115

4.7.3 Closing the Loop Problem . 116

4.8 Conclusion . 118

5 Exact Discovery of Time Series Shapelets 119

5.1 Definition and Background . 120

5.1.1 Brute-force Algorithm . 123

5.2 Speedup Techniques . 127

5.2.1 Efficient Distance Computation . 127

5.2.2 Candidate Pruning . 130

5.2.3 The Fast Shapelet Discovery Algorithm 134

5.3 Logical-Shapelet . 135

5.4 Evaluation . 139

5.5 Case Studies . 142

5.5.1 Cricket: Automatic Scorer . 142

5.5.2 Sony AIBO Robot: Surface Detection 145

5.5.3 Passgraphs: Preventing Shoulder-Surfers 146

5.6 Conclusion . 148

6 Conclusion 149

Bibliography 152

x

List of Tables

5.1 The accuracies of different algorithms on the two test sets. 144

5.2 The accuracies of different algorithms on the passgraph trajectories and ac-

celerometer signals from SONY AIBO robot. 146

xi

List of Figures

1.1 (top) The output steam flow telemetry of the Steamgen dataset has a motif of

length 640 beginning at locations 589 and 8,895. (bottom) by overlaying the

two motifs we can see how remarkably similar they are to each other. 4

1.2 (a) Idealized motions performed with a Wii remote. (b) The concatenated

accelerometer signals from recordings of actors performing the motions (c)

Examples of Shapelets that describe each of the motions. 7

2.1 A visual intuition of early abandoning. Once the squared sum of the accumu-

lated gray hatch lines exceeds r2, Its confirm that the full Euclidean distance

exceeds r . 15

2.2 (A) A small database of two-dimensional time series objects. (B) The time

series objects can be arranged in a one-dimensional representation by mea-

suring their distance to a randomly chosen point, in this case O1. (C) The

distances between adjacent pairs along the linear projection is a (generally

very weak) lower bound to the true distance between them 17

xii

2.3 We scan the objects from left to right, measuring the true distances between

them. Note that just for the first pair O1, O8 the linear distance is the true

distance. In all other cases the linear distance is a lower bound. For example,

the lower bound distance between O8, O6 is 3, but our test of the true distance

reveals dist(O8, O6) = 42.0 . 18

2.4 A necessary condition for two objects to be the motif is that both of them

intersect a sliding window, of width best-so-far , at the same time. Only

pairs O8, O6 and O4, O5 survive the sliding window pruning test 19

2.5 (left)Plot of successive pairs of numbers of a time series. (right) Comparison

of DAME with divide and conquer approach 28

2.6 A comparison of three algorithms in the time taken to find the motif pair

in increasingly large random walk databases. For the brute force algorithm,

values for dataset sizes beyond 30,000 are extrapolated 29

2.7 A comparison of three algorithms in the time taken to find the motif pair in

increasingly large electroencephalograph databases (all subsets of the EEG

dataset). For the brute force algorithm, values for dataset sizes beyond 30,000

are extrapolated . 30

2.8 A plot of execution time vs. the number of reference points. Note that once

the number of reference points is beyond say five, its exact value makes little

difference. Note the log scale of the time axis 31

xiii

2.9 (left) Two points x and y are projected on a plane by a rotation around the

axis joining two reference points r1 and r2. (middle) Known distances and

the lower bound after the projection. (right) Planar and linear bound are

plotted against true distances for 40,000 random pairs 33

2.10 Comparison of the number of times ptolemaic bound prunes a distance com-

putation to that of linear bound for various values of n and m 34

2.11 (top) A segment of ECG with a query. (middle) All the twelve beats are

detected. Plotting the z-normalized distance from the query to the relevant

subsequence (bottom) Three of the twelve beats are missed. Plotting the

un-normalized Euclidean distance reveals that slight differences in a subse-

quence’s mean value (offset) completely dominate the distance, dwarfing any

contribution from the similarity of the shape 35

2.12 An example of multidimensional motif found in the motion captures of two

different Indian dances. In the top row, four snapshots of the motions aligned

at the motif are shown. In the bottom, the top-view of the dance floor is

shown and the arrows show the positions of the subjects 38

2.13 How the size of the dataset effects the average, nearest neighbor and motif

distances . 40

2.14 The error rate of DTW and ED on increasingly large instantiations of the

Two-Pat problem . 41

xiv

2.15 (left) A scatter plot where each point represents the Euclidean distance (x-

axis) and the DTW distance (y-axis) of a pair of time series. Some data

points had values greater than 12, they were truncated for clarity (right) a

zoom-in of the plot on the left . 42

2.16 A schematic diagram showing the apparatus used to record insect behavior . . 44

2.17 An Electrical Penetration Graph of insect behavior. The data is complex and

highly non-stationary, with wandering baseline, noise and dropouts 44

2.18 The motif of length 480 found in the insect telemetry shown in Figure 2.17.

Although the two instances occur minutes apart they are uncannily similar . . 45

2.19 The motif of length 400 found in an EPG trace of length 78,254 . (inset)

Using the motifs as templates, we can find several other occurrences in the

same dataset . 46

2.20 The first ten seconds of an EEG trace. In the experiment discussed below, we

consider a full hour of this data . 48

2.21 (left) Bold Lines: The first motif found in one hour of EEG trace LSF5.

Light Lines: The ten nearest neighbors to the motif. (right) A screen dump

of Figure 6.A from paper [95] . 49

2.22 The out-of-sample accuracy of three different ordering techniques on two

benchmark time series datasets. The y-axis shows the accuracy of 1NN if the

algorithm is interrupted after seeing x objects 51

xv

3.1 (A) A sample database of 24 points. (B) Disk blocks containing the points

sorted in the order of the distances from r. The numbers on the left are the

ids. (C) All points projected on the order line. (D) A portion of an order line

for a block of 8 points. (E) After pruning by a current motif distance of 4.0

units. (F) After pruning by 3.0 units . 61

3.2 Execution times in days on random walks and EOG data 73

3.3 Total execution times with CPU and I/O components recorded on one million

random walks for different block sizes (left) for the DAME Motif method

and (right) for the searchAcrossBlocks method 75

3.4 (left) Execution times on one million random walks of different lengths.

(right) Comparison of in-memory search methods 76

3.5 Two subsequences corresponding to the first motif 80

3.6 Motif 1 start latencies in epochs . 80

3.7 Euclidean distance to Motif 1 . 81

3.8 (left) Five identical pairs of images. (right) Five very similar, but non-identical

pairs . 82

3.9 A section of the EOG from the polysomnogram traces 83

3.10 Motif of length 4.0 seconds found in the EOG 84

4.1 Forty-five minutes of Space Shuttle telemetry from an accelerometer. The

two occurrences of the best ten-minute long motif are highlighted 85

xvi

4.2 Maintaining motifs on a forty-five minute long sliding window. (top) Initially

A and B are the motif pair. (bottom) but at time 790, two new subsequences

C and D become the new motif pair of subsequences 86

4.3 (left) A set of 8 points. (right) At a certain time tick 1 is deleted and 9 is

inserted . 94

4.4 (left) The data structure of points. (right) The data structure after the update

(1 is deleted and 9 is inserted) . 94

4.5 (left) The squared space structure. Each point has one RNN-list (upper part)

and one N-list (lower part). Both of the lists are in order of the distances.

(right) The reduction of space using observation 4.1 97

4.6 (left) The space reduction using the temporal ordering of the neighbors. (right)

In the next time tick 1 is deleted from all of the lists and 9 is inserted 101

4.7 Building the Neighbor list of point 6. (left) The order line while 6 is being

inserted. (middle) The states of the N-lists after each insertion. (right) The

distance values assumed in this example . 102

4.8 Empirical demonstration of the slow growth of average update time with

respect to window size (w varies, m = 256) and motif length (m varies

w = 40, 000) . 106

xvii

4.9 Empirical demonstration of the slow growth of average length of N-list with

respect to window size (w varies, m = 256) and motif length (m varies

w = 40, 000). Labels are in order of the heights of the right-most points of

the curves . 107

4.10 (left) Time usage per point in EEG dataset with varying w and m. (right)

Space usage per point in EOG dataset with varying w and m 107

4.11 (left) The average amount of distance computation is much less in our al-

gorithm than FastPair for EEG and further decreases with decreasing dm.

(right) Speedup is consistent over all of the datasets for m=256 and w=40,000 109

4.12 (left) Fraction of Data Used (the amount of subsequences considered) plotted

against the varying data rate for w=32,000. Our algorithm can operate at

200Hz while skipping roughly every other point. (right) The fraction of the

motifs discovered drops more slowly than the fraction of data used 111

4.13 (top) An excerpt of record sddb/51 Sudden Cardiac Death Holter Data. (mid-

dle) A PLA of the data with an approximately 0.06 compression rate (bottom)

A Motif-Representation approximation of the data at twice the compression

rate still has a lower error . 114

4.14 (top) A stream is examined for motifs 3 seconds long, with a history of 12

seconds. (bottom) The discovered motif is the cry of a Great Horned Owl,

whose cry is phonetically written as hoo, hooo,—,hooo, hooo 116

xviii

4.15 (left) The map of the “New College.” A segment of robot motion is shown.

(right) Motif: The most similar pair of image-pairs that are 90 samples apart

and their color histograms. The image-pairs are from the same location and

thus our algorithm detected the loop-closure 117

5.1 Orderline for the shapelet P. Each time series is placed on the orderline based

on the sdist from P. Note that, the time series that carries P is placed at

position 0 on the orderline. Also note that, P aligns at different positions on

different time series . 125

5.2 (a) Illustration of a distance computation required between a pair of subse-

quences starting at positions u and v, respectively, and of length l. Dashed

lines show other possible distance computations. (b) The matrix M for com-

puting the sum of products of the subsequences in (a) 128

5.3 (a) A sequence S1 and its orderline. (b) Distance between the sequences

S1 and S2 is R. (c) The points on the orderline within [τ − R, τ + R] are

transferred to their majority partition. (d) The computation of the information

gain for (S1, τ) and upper bound for (S2, τ) 133

5.4 (a) Two classes of synthetic time series. (b) Examples of single shapelets that

cannot separate the classes. Any other single shapelet would fail similarly.

(c) Two shapelets connected by an and operation can separate the classes . . 139

xix

5.5 (left) Comparison of running times between our method and the original

shapelet algorithm. Note the log scale on both axes. (right) The individ-

ual speedup factors for both of our proposed techniques: Candidate Pruning

and Efficient Distance Computation . 141

5.6 (a)The training set of the cricket dataset by concatenating signals from every

axis of the accelerometer. (b) The two signs an umpire performs to declare

two types of illegal delivery. (c) Shapelets found by our algorithm and the

original algorithm . 143

5.7 (a) Two classes of time series from the SONY AIBO accelerometer. (b) The

and-shapelets from the walk cycle on carpet. (c) The Sony AIBO Robot . . . 145

5.8 (a) Two classes of X-axis trajectories drawn by different users. (b) The or-

shapelets from three different examples of class 0 showing three turns in the

passgraphs . 147

xx

List of Algorithms

2.1 [L1, L2] = BruteForce Motif(D) . 20

2.2 [L1, L2] = Speedup Motif(D) . 23

2.3 [L1, L2] = MK Motif(D,R) . 25

3.1 [L1, L2] = DAME Motif(B) . 66

3.2 searchAcrossBlocks(top,mid, bottom) 68

3.3 [D,Dist] = load(b) . 68

3.4 searchInBlock(D,Dist) . 69

3.5 update(D1, D2, Dist1, Dist2, x, y) . 70

4.1 insertPoint(p) . 103

4.2 buildNeighborList(p) . 104

4.3 deletePoint(p) . 104

5.1 Shapelet Discovery(D) . 124

5.2 sdist(x, y) . 124

5.3 bestIG(L,magGain,maxGap) . 125

5.4 sdist new(u, l, Statsx,y) . 129

xxi

5.5 upperIG(L,R) . 134

5.6 Fast Shapelet Discovery(D) . 136

xxii

Chapter 1

Introduction

A time series is an ordered sequence of real valued numbers. Typically, the numbers are

uniformly sampled measurements of an event or quantity e.g., temperature of a room, pH of

water supply, acceleration of a robot arm, price of a stock option etc.

Numerous commercial sensors exist that record and transmit time series. Any of them

can potentially produce massive amount of time series data. For example echocardiogram

(ECG), a widely used diagnostic test, is recorded at 150Hz or above. A patient can generate

upto 50MB of ECG time series per day. “An estimated 300 million ECGs are recorded each

year” [64]. Therefore, the total ECG data produced can easily reach hundreds of terabytes a

year.

Data mining practitioners have long been developing algorithms for processing such di-

verse and large scale time series data. Initial goal was to generate tools or primitives to

extract important features of a time series such as bursts [54][118], periods [43][33], anoma-

1

lies [19][110], motifs [59], shapelets [115] and discords [114]. A relatively recent trend is

to use the primitives in algorithms for high-level tasks. For example, Minnen et al. [67]

recognizes activity and say, “We approach the activity discovery problem as one of sparse

motif discovery in multivariate time series.” McGovern et al. [65] predicts severe weather

and say, “Our approach first identifies . . . the temporal ordering of the motifs necessary for

prediction.” Vlachos et al. [108] predicts search-query demand and say, “Next we devise a

test to separate the important periods from the unimportant ones.”

The algorithms for data mining should generally have two properties. First, the algo-

rithms should be very efficient to process large scale data and second, should guarantee the

exact optimality of the output. In addition to that, a primitive for time series data mining

should be exact and efficient to facilitate the high-level algorithms that use it. For example, a

high-level algorithm may call or invoke the primitive multiple times and may use the quality

of the primitive to decide the stopping criterion.

Typically the primitives’ algorithms avoid the massive computations required for exact-

ness and content with suboptimal/close solutions. Such approximate solutions lack any guar-

antee on the quality of the output and in consequence are not widely usable in high-level

algorithms for diverse domains. For example, many researchers have used time series motifs

in domains as diverse as medicine [4][5], entertainment [18], biology [47], telemedicinse

[40], telepresence [7], television broadcast [21] and severe weather prediction [65]. All of

these algorithms are approximate and highly optimized for respective domains.

2

In this thesis, we develop efficient exact algorithms for two time series primitives: time

series motif and time series shapelet. The algorithms are comparable to the approximate al-

gorithms in speed and always guarantee the optimal answer. The algorithms possess all the

benefits of exactness. We use the algorithms in classic data mining tasks such as classifica-

tion, summarization and compression. We extend the algorithms for different environments

(i.e. disk resident data and online data) and diverse data sources such as ECG (Electrocar-

diogram), EEG (Electroencephalogram), EOG (Electrooculogram), EPG (Electrical Pene-

tration Graph), Accelerometer, Motion Capture, Audio and Video.

In the next two sections of this chapter, we briefly introduce time series motif and time

series shapelet. In Chapter 2 we describe the in-memory algorithm for finding time series

motif with a detailed background. In Chapter 3 and 4 we describe two extensions of motif

discovery. In Chapter 5 we present the algorithm for finding shapelets. Finally in Chapter 6

we conclude with a summary and describe future possibilities.

1.1 Time Series Motif

A time series motif is a set of subsequences (i.e. segments) of a time series, which are

very similar to each other [59] in their shapes. Figure 1.1 illustrates an example of a motif

discovered in an industrial dataset. The time series shown in the top is a trace of steam flow

from an industrial valve. The red and blue time series shown overlapped on one another are

the motifs. The motifs are so similar that it is implausible that they happened at random and

3

therefore, deserve a further exploration. In reality, the similarity of the motifs was directed

by a control valve that is always operated by the same machineries.

“Time series motifs generally form the primitives for many data mining tasks” [83] and

it has been demonstrated in many domains. For example, [85] recently investigated a motif-

based algorithm for controlling the performance of data center chillers, and reported “switch-

ing from motif 8 to motif 5 gives us a nearly $40,000 in annual savings!”. Motif discovery

is a core subroutine in many research projects on activity discovery [42][67], with applica-

tions in elder care [105], surveillance and sports training. In addition, there has been a recent

explosion of interest in motifs from the graphics and animation communities, where motifs

are used for finding transition sequences to allow just a few motion capture sequences to be

stitched together in an endless cycle [9].

0 2000 4000 6000 8000 10000

0

10

20

30

0 100 200 300 400 500 600 700 800

Figure 1.1: (top) The output steam flow telemetry of the Steamgen dataset has a motif of
length 640 beginning at locations 589 and 8,895. (bottom) by overlaying the two motifs we
can see how remarkably similar they are to each other.

4

To find time series motif, one can imagine the inherent necessity of all-to-all comparisons

of the contiguous subsequences of the given time series. Therefore, the obvious algorithm

for finding motif is quadratic on the size (i.e. length) of the given time series. For meaningful

motif discovery, the larger the time series the better is the chance of capturing similar occur-

rences and therefore, a simple quadratic algorithm is computationally expensive and close to

intractable. Researchers have long abandoned the hope of computing the exact solution (i.e.

the most similar motif) to the motif discovery problem. Instead, many approximate algo-

rithms to discover motifs have been proposed in the past that can handle some large datasets

[9][22][40][66][68][88][98].

In this thesis, for the first time, we show an exact algorithm to find time series motifs.

While our exact algorithm is still quadratic in the worst case, we show that we can reduce

the time required for finding motif by three orders of magnitude. In fact, under most realistic

conditions our exact algorithm is faster than the current linear time approximate algorithms

and other exact algorithms with better guarantees in the worst case. The reason is either

they have very large constant overheads or their best cases are the same as the worsts. As

we shall show, our algorithm allows us to tackle problems which have previously thought

intractable, for example, automatically constructing dictionaries of recurring patterns from

electroencephalographs.

The challenges involved in finding motifs exactly vary with the type and size of the time

series data. If the given time series fits in the main memory, the critical part (i.e. cost unit)

of the algorithm is the computation of similarities (i.e. the Euclidean distance) between

5

subsequences. Therefore, the main focus of an in-memory algorithm is to reduce the number

of comparisons. In contrast if the data does not fit in the memory and is stored in the disk,

there is an additional challenge of carefully organizing the disk accesses. Similarly when the

data is streaming in real time, the speed of the data imposes an upper limit on the computation

time per sample. In this thesis we investigate all of the three scenarios described above and

propose efficient solutions for each of them. We also demonstrate real applications that

generate the above scenarios and our algorithms discover significant motifs in all of them.

1.2 Time Series Shapelet

Time series shapelets were introduced in 2009 as a primitive for time series data mining

[115]. Shapelets are small subsequences that separate the time series into two classes by

asking the question “Does this unknown object have a subsequence that is within τ of this

shapelet?” Where there are three or more classes, repeated application of shapelets can be

used (i.e. a decision tree-like structure) to predict the class label. Figure 1.2 shows examples

of shapelets found in a dataset of accelerometer signals [60]. Every time series in the dataset

corresponds to one of two hand motions performed by an actor tracing a circular or rectan-

gular path through the air with an input device. The shapelet denoted by P in the figure is the

one that maximally separates the two classes when used with a suitable threshold. In essence,

the shapelet P captures the sinusoidal acceleration pattern of the circular motion along the

Z-axis.

6

X-axis Y-axis Z-axisMotions

(a) (b) (c)

P

α βγ δ

γ

δ

βα

P

Figure 1.2: (a) Idealized motions performed with a Wii remote. (b) The concatenated
accelerometer signals from recordings of actors performing the motions (c) Examples of
Shapelets that describe each of the motions.

Time series shapelets are generating increasing interest among researchers [44] [65] [112]

for at least two reasons. First, in many cases time series shapelets can learn the inherent

structure of the data in a manner that allows intuitive interpretation. For example, beyond

classifying, say, normal/abnormal heartbeats, shapelets could tell a cardiologist that the dis-

tinguishing feature is at the beginning of the dicrotic pulse. Second, shapelets are usually

much shorter than the original time series, and unlike instance based methods (i.e. k-NN)

that require comparison to the entire dataset, we only need one shapelet at classification

time. Therefore, shapelets create a very compact representation of the class concept, and this

compactness means that the time and space required for classification can be significantly

reduced, often by at least two orders of magnitude. This is a particularly desirable property

in resource limited systems such as sensor nodes, cell phones, mobile robots and smart toys.

Despite the above promising features of time series shapelets, the current algorithm [115]

for discovering them is still relatively lethargic and, therefore, does not scale up to use on

7

real-world datasets, which are often characterized by being noisy, long, and non-uniformly

sampled.

In addition, the current definition of shapelets is not expressive enough to represent cer-

tain concepts that seem quite common in the real world (examples appear in Chapter 5). In

particular, the expressiveness of shapelets is limited to simple binary presence/absence ques-

tions. While recursive application of these binary questions can form a decision tree-like

structure, it is important to recognize that the full expressive power of a classic, machine-

learning decision tree is not achieved (recall a decision tree represents the concept space of

disjunction of conjunctions). For example, differentiating classes by using only binary ques-

tions is not possible if, the classes differ only in the number of occurrences of a specific

pattern rather than presence/absence of a pattern.

In this thesis, we address the problem of scalability and show how an efficient algorithm

allows us to define a more expressive shapelet representation. We introduce two novel tech-

niques to speedup the search for shapelets. First, we precompute sufficient statistics [90] to

compute the distance (i.e. similarity) between a shapelet and a subsequence of a time series

in amortized constant time. In essence, we trade time for space, finding that a relativity small

increase in the space required can help us greatly decrease the time required. Second, we use

a novel admissible pruning technique to skip the costly computation of entropy (i.e. the good-

ness measure) for the vast majority of candidate shapelets. Both of the speedup techniques

are admissible hence the algorithm discovers the best shapelet exactly.

8

We further show that we can combine multiple shapelets in logic expressions such that

complex concepts can be described. For example, in the dataset shown in Figure 1.2, there are

discontinuities in the rectangular motion. It will not be possible to describe the rectangular

class using one shapelet if there are variable pause times at the corners in different instances.

In such cases, we can express the rectangular class by the logical-shapelet “α and β and

γ and δ.” Here, each literal corresponds to one of the straight line motions as shown in

Figure 1.2(c). In addition, our algorithm is able to find shapelet that increases the gap/margin

between classes even if they are already separated by other candidates. This allows for more

robust generalization from the training to test data.

We show the efficiency of our algorithm on twenty-four datasets and achieve up to 27×

speedup over the current algorithm experimentally. We demonstrate that combination of

shapelets can better describe classes than single shapelets can do in multiple datasets such

as accelerometer signals from sports automation, pen-based biometrics and accelerometer

signals from a mobile robot.

Before we end this chapter, we state our experimental philosophy. We have designed all

experiments such that they are not only reproducible, but easily reproducible. To this end,

we have built several webpages [2] which contain all datasets and code used in this thesis,

together with spreadsheets which contain the raw numbers displayed in all the figures. In

addition, the webpage contains many additional experiments which we could not fit into this

thesis; however, we note that this thesis is completely self-contained.

9

Chapter 2

Exact Discovery of Time Series Motifs

In this chapter, the time series motif is defined formally and the in-memory exact algorithm is

presented. This is the first efficient algorithm to find time series motif exactly. We break down

the chapter in five major sections. Section 2.1 defines the problem and describes underlying

assumptions. Section 2.2 describes the intuition behind the algorithm and formally proves

the correctness. Section 2.3 shows the scalability experiments and necessary discussions on

certain choices we made. Section 2.4 describes independent case studies on several datasets.

We also describe the related work in Section 2.5 of this chapter.

10

2.1 Definitions and Background

Before describing our algorithm, we define the key terms for this chapter.

Definition 2.1 [TIME SERIES] A Time Series is a sequence T = (t1, t2, . . . , tm) which

is an ordered set of m real valued numbers.

The ordering is typically temporal; however other kinds of data such as color distribu-

tions [41], shapes [104] and spectrographs [117] also have a well defined ordering and can

fruitfully be considered “time series” for the purpose of indexing and mining. It is possible

there could be variable time spacing between successive points in the series. For simplicity

and without loss of generality we consider only equispaced data in this thesis. In general, we

may have many time series to consider and thus need to define a time series database.

Definition 2.2 [TIME SERIES DATABASE] A Time Series Database D is an unordered

set of n time series possibly of different lengths.

Again for simplicity, we assume that all the time series are of same length and D fits in

the main memory (a disk-aware version of our algorithm is given in Chapter 3). Thus D is

a matrix of real numbers where Di is the ith row in D as well as the ith time series Ti in the

database and Di,j is the value at time j of Ti. Having a database of time series, we are now

in a position to define time series motifs.

Definition 2.3 [TIME SERIES MOTIF] The Time Series Motif of a time series database

D is the unordered pair of time series {Ti, Tj} in D which is the most similar among all

11

possible pairs. More formally, the pair {Ti, Tj}, i 6= j is the motif IFF ∀a,b,a6=b dist(Ti, Tj) ≤

dist(Ta, Tb).

Note that our definition excludes the trivial match of a time series with itself by not

including i = j. We can extend motifs to subsequences of a very long time series by treating

every subsequences of length m (m << n) as an object in the time series database. Motifs

in such a database are subsequences that are conserved locally in the long time series. More

formally,

Definition 2.4 [SUBSEQUENCE] A subsequence of length m of a time series T =

(t1, t2, . . . , tm) is a time series Ti,m = (ti, ti+1, . . . , ti+m−1) for 1 ≤ i ≤ n−m+ 1.

Notice the term subsequence is used for contiguous subsequences of the time series as

opposed to arbitrary subsequences in discrete strings.

Definition 2.5 [SUBSEQUENCE MOTIF] The Subsequence Motif is a pair of subse-

quences Ti,m, Tj,m of a long time series T that are most similar. More formally, the pair

{Ti,m, Tj,m}, |i− j| ≥ w > 0 is the motif IFF

∀a,b,|a−b|≥w dist(Ti,m, Tj,m) ≤ dist(Ta,m, Tb,m)

We impose a limit on the relative positions of the subsequences in the motif. This says that

there should be a gap of at least w places/samples between the subsequences. For example,

w = m gives us non-overlapping motifs only. For a given separation window w, the total

12

number of possible motif pairs is exactly 1
2
(m− n− w + 1)(m− n− w), which is slightly

less than the number of otherwise possible pairs (i.e. 1
2
(m− n+ 1)(m− n)).

This restriction helps to prune out the trivial subsequence motifs [84]. For example (and

considering discrete data for simplicity), if we were looking for motifs of length four in the

string:

sjdbbnvfdfpqoeutyvnABABABmbzchslfkeruyousjdq

Then in this case we probably don’t want to consider the pair {ABAB,ABAB} to be a motif,

since they share 50% of their length (i.e AB is common to both). Instead, we would find the

pair {sjdb, sjdq} to be a more interesting approximately repeated pattern. In this example,

we can enforce this by setting the parameters w = 4.

With the exception of the minor overhead of keeping track of the trivial matches [22] in

finding subsequence motif, our algorithm is agnostic to how the time series in the database

are produced (i.e. subsequences or independent time series) and it assumes to have a time

series database as the input and to output the time series motif found in the database. There

are some obvious possible generalizations of the above definition of time series motifs.

Definition 2.6 [kTH MOTIF] The kth-Time Series motif is the kth most similar pair in

the database D.

13

Instead of dealing with pairs only we can also extend the notion of motif to sets of time

series that are very similar to each other.

Definition 2.7 [RANGE MOTIF] The Range motif with range r is the maximal set of time

series that have the property that the maximum distance between them is less than 2r.

The range motif corresponds to dense regions or high dimensional “bumps.” Finding the

range motif is equivalent to finding a maximal clique in the high dimensional space where

there is an edge between a pair of time series if their distance is less than 2r. A reasonable

approximation of range motif can be to find the first motif and then selecting all the time

series within r of the first motif.

In all the definitions given above we assumed there is a meaningful way to measure the

distance between two time series. There are several such ways in the literature and our

method is valid for any distance measure that is a metric. We use z-normalized Euclidean

distance and define it as below.

Definition 2.8 [Z-NORMALIZED EUCLIDEAN DISTANCE] The z-normalized Euclidean

distance d(X, Y) between two time seriesX and Y of lengthm is d(X, Y) =
√∑m

i=1(x̂i − ŷi)2

where x̂i = xi−µx
σx

and ŷi = yi−µy
σy

. Here µ and σ are the mean and standard deviation com-

puted from the population.

Recently an extensive empirical comparison has shown that the Euclidean distance is

competitive with more complex measures on a wide variety of domains [29]. A detail reason-

ing about this choice of distance measure is given in Section 2.3.6. Z-normalized Euclidean

14

distance is essentially the positive correlation between the time series [72] and invariant to

scale and offset of the comparing time series. In Section 2.3.4, we describe experiments on

real data demonstrating the choice of normalization.

Computing Euclidean distance between two time series of length m takes a full pass

over the two time series and thus has O(m) time complexity. However when searching for

the nearest neighbor for a particular time series Q, it is possible to abandon the Euclidean

distance computation as soon as the cumulative sum goes beyond the current best-so-far ,

an idea known as early abandoning [6]. For example assume the current best-so-far has a

distance of 13.93. If, as shown in Figure 2.1, the next item to be compared is further away,

then at some point the sum of the squared error will exceed the current minimum distance

r = 12. So the rest of the computation can be abandoned since this pair can’t have the

minimum pairwise distance.

0 10 20 30 40 50 60 70 80 90

-2

0

2

sum of squared error

exceeded r2 = 144

Figure 2.1: A visual intuition of early abandoning. Once the squared sum of the accumulated
gray hatch lines exceeds r2, Its confirm that the full Euclidean distance exceeds r

It has long been known that early abandoning reduces the amortized cost of computing

the distances to less than O(m), however, in this work we show for the first time, and explain

why, early abandoning is particularly effective for motif discovery (Section 2.3.6). The

15

algorithm presented in the next section is designed for the original definition of time series

motif (Definition 2.3). Once this problem can be solved quickly, the generalizations to the

kth motif and the range motif are trivial and incur only a tiny additional overhead. Therefore,

for simplicity, we will ignore these extensions in our description of the algorithm.

2.2 The MK Algorithm

In Section 2.2.2 we have a detailed formal explanation of our exact motif discovery algo-

rithm. However, for clarity and ease of exposition the next section contains a simple visual

intuition of the underlying ideas that the algorithm exploits. We call our algorithm Motif

Kymatology (MK), as we aim to find motifs in waveforms, rather than in strings.

2.2.1 The Intuition behind MK

In Figure 2.2(A) we show a small dataset of two-dimensional time series objects. We are

interested in finding the motifs, which we can see here are objects O4 and O5.

Before our algorithm begins, we must assume the best-so-far distance for the motif pair

to be infinity. As shown in Figure 2.2(B), we can choose a random object (in this case O1),

as a reference point, and we can order all other objects by their distances to that point. As a

side effect of this step, we can use the distance between O1 and its nearest neighbor O8, to

update the best-so-far distance to be 23.0.

16

Note that in the act of sorting the objects we can record the distances between adjacent

pairs, as shown in Figure 2.2(C). It is critical to recall that these distances are not (in general)

the true distances between objects in the original space, rather they are lower bounds to those

true distances.

1
8

6
4 5

7

3
2

1
8

6
4 5

7

3
2

1 8 6 4 5 73 2

23 3 21 6 31 14 28

A) Original space

B) Projection to 1D space

C) Lower bounds for adjacent pairs

Figure 2.2: (A) A small database of two-dimensional time series objects. (B) The time series
objects can be arranged in a one-dimensional representation by measuring their distance to a
randomly chosen point, in this case O1. (C) The distances between adjacent pairs along the
linear projection is a (generally very weak) lower bound to the true distance between them

The key insight of our algorithm is that this linear ordering of data provides us with some

useful heuristic information to guide our motif search. The observation is that if two objects

are close in the original space, they must also be close in the linear ordering. Note that the

contrapositive is not true. Two objects can be arbitrarily close in the linear ordering but very

far apart in the original space.

17

In the next stage of our algorithm we can scan across the linear ordering and measure

the true distances between adjacent pairs. If, while doing this we encounter a pair that has a

distance less than the current best-so-far , we can update it, as shown in Figure 2.3. In our

example we slide from left to right, updating the estimated distance between O8 and O6 of

3.0 to the correct distance of 42.0. Similarly we update the estimated distance between O6

and O4 to 49.0. In our next update, we find the true distance between O4 and O5 is only 7.0.

Since this is less than our current best-so-far , we update it.

1 8 6 4 5 73 2

23 3 21 6 31 14 28

42

49

7

32

20

44

Update best-so-far

Figure 2.3: We scan the objects from left to right, measuring the true distances between them.
Note that just for the first pair O1, O8 the linear distance is the true distance. In all other cases
the linear distance is a lower bound. For example, the lower bound distance between O8, O6
is 3, but our test of the true distance reveals dist(O8, O6) = 42.0

In our contrived example, we have already found the true motif. However this may not

be true in general. Moreover, we do not know at this point that the current best-so-far refers

to the true motif. However we can now use the linear representation combined with the

best-so-far to prune off large fraction of the search space.

18

For example, could the pair O8 and O3 be closer than our best-so-far? We can answer

that question without having to actually measure the true distance between them. The lower

bound distance in our linear representation is 60.0, but our best-so-far is only 7.0. Given that,

we can be sure that the pair O8 and O3 is not a candidate to be the motif. More generally, we

can take a sliding window of exactly width 7 (the best-so-far), and slide it across the linear

order testing for possible pairs of objects that could be the true motif. As shown in Figure

2.4 a necessary condition for two objects to be the motif is that both of them intersect the

sliding window at the same time.

1 8 6 4 5 73 2

Figure 2.4: A necessary condition for two objects to be the motif is that both of them intersect
a sliding window, of width best-so-far , at the same time. Only pairs O8, O6 and O4, O5
survive the sliding window pruning test

In this example, only pairs O8, O6 and O4, O5 could be the true motif, but in this case we

already know the true distances for these pairs, so we are done. More generally, we may have

additional true and/or false positives not pruned by this test, and we would need to check all

of them in the original space.

This then, is the major intuition behind our approach. The full algorithm differs in several

ways: Not all objects are equally good as a reference point, we use a simple heuristic to find

a good reference points. In the above exposition we did one round of pruning. However for

19

Algorithm 2.1 [L1, L2] = BruteForce Motif(D)

Require: A database D of n time series
Ensure: Locations L1 and L2 of a motif

1: best-so-far ←∞
2: for i← 1 to n do
3: for j ← i+ 1 to n do
4: if d(Di, Dj) < best-so-far then
5: best-so-far ← d(Di, Dj)
6: L1 ← i,L2 ← j
7: return L1,L2

large datasets this may still leave a huge number of candidate pairs to check. Instead, we can

run multiple pruning steps with multiple reference points to do additional pruning. In the

next section we consider a more formal and detailed discussion of these points.

2.2.2 A Formal Statement of MK

For ease of exposition we will first consider the brute force motif discovery algorithm, and

then show how our algorithm can be obtained by modifying it. The brute force algorithm as

outlined in 2.1 has a worst case complexity of O(n2). The algorithm maintains a running

minimum best-so-far and updates it whenever the algorithm finds a pair of time series having

a smaller distance smaller between them.

The algorithm is simple a pair of nested loops which tests every possible combination of

pairs of time series, and reports the pair {L1, L2} which has the minimum distance between

them.

20

Speeding up the Brute Force Algorithm

In order to significantly speed up the brute force algorithm we must find a way of pruning

off as many distance computations so that the algorithm does not need to compare all pairs.

This is because each distance computation takes O(m) time which makes the brute force

algorithm precisely anO(n2m) algorithm. Algorithm 2.2 shows the version of our algorithm

after the speeding up techniques have been applied. We recommend the reader to match this

with Algorithm 2.1 to identify the changes. To prune off a possible distance computation

for a pair we would need to be sure that the pair can’t be a motif. The obvious way is to

compute the actual distance and compare it with the best-so-far as done in the brute force

algorithm. But we can do it in a better way by having cheaply computed lower bounds

on the distances for all possible pairs. Since we are using distance metric like Euclidean

distance, we can use the triangular inequality property of Euclidean distance to find lower

bounds. Let ref is a reference time series which may or may not be an object in D. Let,

{Di, Dj} is the pair whose distance we don’t want not compute. Now by triangular inequality

|d(ref,Di)−d(ref,Dj)| ≤ d(Di, Dj). Thus if we know the distances on the left, we can use

them as lower bound for the d(Di, Dj) after a cheap subtraction. If this lower bound happens

to be larger than the best-so-far (the running minimum), we can safely avoid computing the

d(Di, Dj) (lines 10 in Algorithm 2.2). Otherwise {Di, Dj} remain as a potential motif to be

compared. The distances of the time series in D from ref can be computed and saved (in a

single column table called Dist) before the search starts and it takes only O(n) time which

is small enough compared to the O(n2) search time (lines 3-4 in Algorithm 2.2). Hence

21

computing the lower bounds needs only two table look ups. Note that we prefer having a

time series in D as the reference because it helps the algorithm to start with a good initial

best-so-far (instead of infinity) before the start of the search. This also needs attention to

prevent the {ref, ref} from occurring by assigning a large value in Dist at the entry for ref .

Doing this trick reduces the number of distance computations, but still requires searching all

possible pairs.

To get rid of all-to-all comparisons, we need an alternative search strategy that can stop

well before seeing all pairs. Our strategy is the ordered search. Ideally if we sort the lower

bounds for every pair in ascending order and compare pairs in that order, we can stop our

search as soon as we get a pair whose lower bound is greater than the best-so-far at that

time. This is unrealistic because it will take O(n2 log n2) to sort the lower bounds and surely

worse than the brute force algorithm. Rather than sorting lower bounds for every pairs we

can sort the distances from the reference time series which is the linear ordering as mentioned

in the previous section. This sorting can also be performed before the search starts and thus

costs reasonably small time of O(n log n) (lines 5 in Algorithm 2.2). Since we look up

the table Dist to avoid distance computations, instead of sorting all the distances in Dist,

we can sort the indices to the rows of Dist. This ordered array of indices is named as I in

Algorithm 2.2 at line 5. Technically, I is the sorted order of the time series in D where

d(ref,DI(i)) ≤ d(ref,DI(j)) iff i 6= j. Now the question is how the ordering would guide

the search and help to stop the search early. The following two lemmas have the answer.

22

Algorithm 2.2 [L1, L2] = Speedup Motif(D)

Require: A database D of n time series
Ensure: Locations L1 and L2 of a motif

1: best-so-far ←∞
2: ref ← randomly chosen time series Dr from D
3: for j ← 1 to n do
4: Distj ← d(ref,Dj)
5: find an ordering I of the indices to the time series in D such that DistI(j) ≤ DistI(j+1)

6: offset← 0, abandon← false
7: while abandon = false do
8: offset← offset+ 1, abandon← true
9: for j ← 1 to n− offset do

10: if |DistI(j) −DistI(j+offset)| < best-so-far then
11: abandon← false
12: x← d(DI(j), DI(j+offset))
13: if x < best-so-far then
14: best-so-far ← x
15: L1 ← I(j),L2 ← I(j + offset)
16: return L1,L2

Lemma 2.1 IfDI(j+offset)−DI(j) > best-so-far for all 1 ≤ j ≤ n−offset and offset > 0

then DI(j+w) −DI(j) > best-so-far for all 1 ≤ j ≤ n− w and w > offset.

Proof: For a positive integer offset and for j = 1, 2, . . . , n−offset if {DI(j), DI(j+offset)}

fail to have their lower bounds less than the best-so-far then for all positive integers w >

offset and for all j = 1, 2, . . . , n − w, {DI(j), DI(j+w)} will also fail to have their lower

bounds less than the best-so-far . This is true from the definition of I that says

d(ref,DI(j)) ≤ d(ref,DI(j+offset)) ≤ d(ref,DI(j+w))

This can be rewritten as

d(ref,DI(j+offset))− d(ref,DI(j)) ≤ d(ref,DI(j+w))− d(ref,DI(j))

Therefore if the left part is larger than best-so-far the right part will obviously be larger.

23

Lemma 2.2 If offset = 1, 2, . . . , n−1 and j = 1, 2, . . . , n−offset then {DI(j), DI(j+offset)}

generates all the possible pairs.

If we search the databaseD for all possible offsets by which two time series can stay apart

in the linear ordering, we must encounter all the possible pairs. Since I has no repetition, it

is obvious that {DI(j), DI(j+offset)} will generate all the pairs with no repetition. Hence this

lemma states the exactness of our search strategy.

With the help of these two lemmas we can build the search strategy. The algorithm

starts with an initial offset of 1 and searches pairs that are offset apart in I ordering.

After searching all pairs of offset apart it increases the offset and searches again (for the

next round). The algorithm continues till it reaches an offset for which there is no pair

having lower bound larger than the best-so-far and staying offset apart in the I ordering.

In Algorithm 2.2, lines 7-13 incorporate this search strategy. Obviously it is true that this

strategy has the worst case complexity O(n2) equal to the brute force algorithm. But this

only occurs in the cases where the “motif has distance larger than any lower bound computed

using a random reference.” With no doubt it is very unlikely to happen in real time series

databases.

Generalization to multiple reference points

The speeding up that we gained in the previous section can be extended to multiple reference

time series and use them to have tighter lower bounds. Using multiple reference time series

24

Algorithm 2.3 [L1, L2] = MK Motif(D,R)

Require: A database D of n time series
Ensure: Locations L1 and L2 of a motif

1: best-so-far ←∞
2: for i← 1 to R do
3: refi ← randomly chosen time series from D
4: for j ← 1 to n do
5: Disti,j ← d(refi, Dj)
6: Si = standard deviation(Disti)
7: find an ordering Z of the indices to the references in ref such that SZ(i) < SZ(i+1)

8: find an ordering I of the indices to the D such that DistZ(1),I(j) < DistZ(1),I(j+1)

9: offset← 0, abandon← false
10: while abandon = false do
11: offset← offset+ 1, abandon← true
12: for j ← 1 to n− offset do
13: if |DistZ(1),I(j) −DistZ(1),I(j+offset)| < best-so-far then
14: abandon← abandon∧false
15: reject← false
16: for i = 1 to R do
17: lower bound = |DistZ(i),I(j) −DistZ(i),I(j+offset)|
18: if lower bound > best-so-far then
19: reject← true , break
20: if reject = false then
21: x← d(DI(j), DI(j+offset))
22: if x < best-so-far then
23: best-so-far ← x
24: L1 ← I(j),L2 ← I(j + offset)
25: else
26: abandon← abandon∧true
27: return L1,L2

raises some issues in our previous version. We show the final version of our algorithm in

algorithm 2.3 and again recommend the user to watch it for the changes.

To get the tighter lower bounds we use multiple reference time series randomly chosen

from D as before. The number of references is a parameter to our algorithm represented by

R. As a consequence of using multiple references, Dist becomes a two dimensional table

that stores distances between any reference time series to any time series in D. Again note

25

that we will need to prevent invalid motifs of same time series by assigning large values in

Dist.

The way multiple references help tightening the lower bounds is very simple. In effect

we will use the maximum of the lower bounds. This is correct because if one lower bound is

larger than best-so-far the maximum would also be larger and there is no way the pair would

become a motif. Since the lower bounds are not stored anywhere, the algorithm needs to

compute all the R lower bounds for every single pair (lines 16-17 in Algorithm 2.3). Rather

than computing the maximum which would take O(R) time, we compare each bound with

the current best-so-far and reject (line 19 in Algorithm 2.3) computing the true distance as

soon as one bound is higher than the best-so-far . Thus amortized cost of the combined lower

bound is smaller than O(R).

Although multiple reference time series tightens the lower bounds, all of them can’t be

used in the search strategy. This is because it needs to follow exactly one ordering (Lemma

2.2). To choose a reference time series for ordering the time series in D, we select the one

(Z(1) in line 10) with the largest standard deviation in the distances from itself to others

in D (lines 7-8 in Algorithm 2.3). The intuition behind it is - the larger the deviation is

the larger the lower bounds would be and the more probable the “early stop” and “reject

comparisons” would be. Since we need to sort the standard deviations in descending order

for all the references, we can use this order of the references to reject a pair earlier instead of

a random order.

26

2.3 Experiments

In this section, we compare MK with two available trivial counter parts because MK is first

of its kind. We demonstrate the parameter sensitivity and discuss some of the characteristics

of the algorithm.

We performed the scalability experiments on both synthetic and real data. All the experi-

ments are performed on a computer with an AMD 2.1GHz Turion X2 Ultra ZM-80 processor

and 3.0GB of DDR2 memory. The algorithm is coded in C and compiled with gcc.

2.3.1 Performance Comparison

The two trivial algorithms we consider comparing with MK are the divide and conquer algo-

rithm [11] and the standard brute force algorithm described in Algorithm 2.1.

The divide and conquer based algorithm for finding the closest-pair of points in space

is prevalent in the text books of computational geometry. The divide and conquer (DaC)

approach for finding closest pair in multidimensional space is described in great detail in

[11]. DaC works in O(n logd n) time for any data distribution, which is expensive for large

d. For “sparse” data DaC works inO(n log n). The relevant definition of sparsity is given “as

the condition that no d-ball in the space (that is, a sphere of radius d) contains more than some

constant c points.”[11] This condition ensures that the conquer step remains a linear operation

with no more than cn pairs of close points to be compared. But subsequences of a long time

series form a trail in the high dimensional space which may cross itself arbitrary number

27

of times to violate the sparsity condition for efficient DaC algorithm [35]. A simple 3D

demonstration is shown in Figure 2.5(left) by plotting all triplets of successive real numbers

in an ECG time series.

-2
0

2
4 -2

0
2

4
-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10
x 105

0

1

2

3

4

5

6

7

8
x 1010

Number of Time Series in the Database

N
u
m
b
er
 o
f
D
is
ta
n
ce
 C
o
m
p
u
ta
ti
o
n
s

Divide and Conquer

MK

Figure 2.5: (left)Plot of successive pairs of numbers of a time series. (right) Comparison of
DAME with divide and conquer approach

Considering the above two observations, we may expect MK to perform much better than

the divide and conquer algorithm. As shown in Figure 2.5(right), this is the case. For a motif

length of 128, we tested up to one million points of EEG time series and DaC performs 100

times more distance computations than MK for the larger datasets. These results are in spite

of the fact that we allowed DaC to “cheat”, by always using the best axis to divide the data

at each step.

To compare with the standard brute force algorithm, we use random walk time series to

test our algorithm. Random walk data is a difficult case for our algorithm, since we should

not expect a very close motif pair to exist in the data. We produced 10 sets of random walks

of different sizes containing from 10,000 to 100,000 time series, all of length 1024. We ran

28

our algorithm 10 times on each of these datasets and took the average of the execution times.

Figure 2.6 shows a comparison of the brute force algorithm with our MK algorithm in terms

of the execution time.

20,000 40,000 60,000 80,000 100,000

0

1

2

3

4

5

x 104

Number of time series in dataset (m)

E
x
ec
u
ti
o
n
 t
im
e
in
 S
ec
o
n
d
s

Brute Force

Brute Force with early abandoning

MK (our proposed algorithm)

Figure 2.6: A comparison of three algorithms in the time taken to find the motif pair in
increasingly large random walk databases. For the brute force algorithm, values for dataset
sizes beyond 30,000 are extrapolated

The difference in execution times is quite dramatic, for 100,000 objects brute force takes

12.7 hours, but our algorithm takes only 12.4 minutes (with a standard deviation of 55 sec-

onds).

As dramatic as this speedup is, it is in fact the worst case for our algorithm. This is be-

cause there is no reason to expect a particularly close pair of objects in a random walk dataset.

In real datasets the results are generally significantly better. For example, we repeated the

experiment with an EEG dataset s shown in Figure 2.7.

29

20,000 40,000 60,000 80,000 100,000

0

1

2

3

4

5
x 104

Number of time series in dataset (m)

E
x
ec
u
ti
o
n
 t
im
e
in
 S
ec
o
n
d
s

Brute Force

Brute Force with early abandoning

MK (our proposed algorithm)

Figure 2.7: A comparison of three algorithms in the time taken to find the motif pair in
increasingly large electroencephalograph databases (all subsets of the EEG dataset). For the
brute force algorithm, values for dataset sizes beyond 30,000 are extrapolated

Here the brute force time is essentially unchanged, but the time for our algorithm is only

2.17 minutes (with a standard deviation of 13.5 seconds).

2.3.2 Choosing the number of reference points

Our algorithm has one input parameter, the number of reference time series used. Up to

this point we have not discussed the parameter in detail, however it is natural to ask how

critical its setting is. A simple thought experiment tells us that a too small and too large a

value should produce a slower algorithm. In the former case, if few reference time series are

used, most candidate pairs are not pruned, and must be examined by brute force. In the latter

case, we may have only O(n) pairs of candidates left to check, but the time to create a one-

dimensional representation from a reference time series is O(n), so we may not break even

30

and we may have been better off to just brute force the remaining time series. This reasoning

tells us that a plot of execution time vs. number of reference time series should be U-shaped

plot, and we should target a parameter that gives us the bottom of the curve. In Figure 2.8 we

illustrate this observation with an experiment in varying the number of reference points and

measuring the execution time. Note that the rightmost value, corresponding to zero reference

points is equivalent to the special case of brute force search.

0 10 20 30 40 50 60

5

6

7

8

L
o
g
ar
it
h
m
 o
f
ti
m
e

(s
ec
o
n
d
s)

Number of Reference Time Series Used

Time to find the motif in a database of 64,000

random walk time series of length 1,024

Figure 2.8: A plot of execution time vs. the number of reference points. Note that once the
number of reference points is beyond say five, its exact value makes little difference. Note
the log scale of the time axis

This plot suggests that the input parameter is not critical. Any value from five to sixty

gives two orders of magnitude speedup. Moreover, this is true if we change the length of

the time series, the size of the database (i.e n) or the data type. For this reason, we fixed the

number of reference points to be eight in all the experiments in this chapter.

31

2.3.3 Why not use other lower bounding techniques?

We consider two other ways of using the distances from multiple reference points for tighter

lower bounds.

In our algorithm we compute distances fromR reference points to all of the objects. In the

line 16 of Algorithm 2.3, we use each reference point one at a time to compute a lower bound

on the distance between a pair and check to see if the lower bound is greater than the current

best (best-so-far). This lower bound is a simple application of the triangular inequality

computed by circularly projecting the pair of objects onto any line that goes through the

participating reference point. We call this idea the linear bound for clarity in the following

discussion. Since we pre-compute all of the distances fromR reference points, one may think

about getting a tighter lower bound by combining these referenced distances. In the simplest

case, to find a planar bound’ for a pair of points using two reference points, we can project

both the points (x and y) onto any 2D plane, where two reference points (r1 and r2) reside,

by a circular motion about the axis connecting the reference points.

After that, simple 2D geometry is needed to compute the lower bound (dashed line) using

five other pre-computed distances (solid lines in Figure 2.9(mid)). We have computed both

the bounds on one million pairs of time series of length 256. In 56% of the pairs, planar

bounds are larger than linear bounds. Intuitively it seems from this value that the planar

bound is tighter. But the true picture is more complex. The average value of linear bounds

is 30% larger than that of planar bounds and standard deviation of linear bounds is 37%

larger than that of planar bounds. In Figure 2.9(right), it is clear that the linear bound is

32

r1 r2

y
x

r1 r2

x
y

Rotational axis 40

30

20

10

0

10

20

30

40

Planar bounds

Linear bounds

A
ct

u
al

 d
is

ta
n

ce
s

Larger Gap

Smaller Gap

Figure 2.9: (left) Two points x and y are projected on a plane by a rotation around the axis
joining two reference points r1 and r2. (middle) Known distances and the lower bound after
the projection. (right) Planar and linear bound are plotted against true distances for 40,000
random pairs

significantly tighter than the planar one when the actual distances between pairs are larger.

Moreover, the planar bound is complex to compute compared to a simple subtraction in the

case of a linear bound.

The second way of using two reference points for computing lower bounds is by using

ptolemaic bound [46]. Ptolemy’s inequality says xr1 ∗ yr2 ≤ xy ∗ r1r2 + xr2 ∗ yr1 for the

four points shown in Figure 2.9(left). In our effort to test if ptolemaic bound is better than

the linear bound based on the triangular inequality, we compute the number of times either

of the bounds successfully prunes a pair while the other doesn’t in line 18 of Algorithm 2.3.

We plot the counts in Figure 2.10 for various values of n and m. Since there is no clear

winner and linear bound is simpler, we opt to use the linear bound for pruning.

There are many other ways of computing lower bounds by using various projections (e.g.

random [23], orthogonal [82] etc.) and transforms (e.g. fourier [107], wavelet [16] etc.).

However, they are primarily developed for similarity search or indexing large databases and

33

105 106 107 108 109 1010
105

106

107

108

109

1010

Pruning by Triangular Inequality

P
ru

n
in

g
 b

y
 P

to
le

m
a

ic
 I
n

e
q

u
a

li
ty

Ptolemaic bound wins

Linear bound wins

Figure 2.10: Comparison of the number of times ptolemaic bound prunes a distance compu-
tation to that of linear bound for various values of n and m

have significant preprocessing overhead. Motif discovery is an unsupervised process and can-

not afford to precompute complex projections/transforms for in-memory datasets. Therefore

we opt for simple linear ordering of the subsequences that adds insignificant overhead.

2.3.4 z-Normalizing the time series

The algorithms we describe in this thesis perform explicit z-normalizations of the time series

in the database. At this point we demonstrate the necessity of such normalization and discuss

the possible impact on the design of the algorithms.

We begin by downloading a long ECG sequence [38] from a 61-year-old female and

manually extracting a segment of interest of length 2155 as shown in Figure 2.11. We take

the first beat (shown by the thick line) of the segment as a query. We set a conservative

34

threshold of 50% correlation equivalent to a distance of 13. Figure 2.11(middle,bottom)

show the distances of every subsequence from the query. We see no missing beat for the

z-normalized distance whereas the un-normalized Euclidean distance misses three beats out

of twelve. How does that happen? The reason is that the un-normalized distance is not

shift/offset and scale invariant.

25

200 400 600 800 1000 1200 1400 1600 1800 2000

5

15

200 400 600 800 1000 1200 1400 1600 1800 2000

5

15

25

200 400 600 800 1000 1200 1400 1600 1800 2000
-4

-2

0

2

4
Query

Euclidean Distance

z-Normalized Distance

Threshold

50% Correlation

Threshold

50% Correlation

Missed Beats

Figure 2.11: (top) A segment of ECG with a query. (middle) All the twelve beats are detected.
Plotting the z-normalized distance from the query to the relevant subsequence (bottom) Three
of the twelve beats are missed. Plotting the un-normalized Euclidean distance reveals that
slight differences in a subsequence’s mean value (offset) completely dominate the distance,
dwarfing any contribution from the similarity of the shape

Note that while the query and the first subsequence of the trace both have identical local

mean, the trace slowly rises and falls to have local means very different from that of the query.

This feature is named as the “Wandering Baseline” and contributes to the larger Euclidean

35

distances in Figure 2.11(bottom) hence, the missing beats. Similar case exists where the

scale of the matching subsequences pushes the distances beyond the threshold.

Readers may find some domains such as body temperature, inflation rate etc. where offset

and scale invariances are meaningless. We argue that simple threshold based methods can

solve almost all the problems in those domains because offset is all that matters. For example,

body temperature of over 100 ◦F can easily be classified as “fever.” Therefore, complex data

mining techniques are not very useful for such time series. In general z-normalization works

more accurately in mining tasks for many other domains (i.e. on 37 out of 39 problems

considered in [29]).

Apart from the benefits of z-normalization, it introduces computational difficulty in all

of the algorithms presented in this thesis. Consider two successive subsequences of a time

series of length m. They share a subsequence of length m − 1 in the original time series.

Notice that the same pair of subsequences may not have any identical value after they are z-

normalized just because they may have different means and standard deviations. Therefore,

in none of the algorithms in this thesis we could utilize the overlaps between subsequences.

Since we don’t reuse computation in evaluating the distances, we treat a distance com-

putation as the unit of computation in this thesis unless otherwise specified. Therefore an

algorithm of O(n2) requires quadratic number of distance computations.

36

2.3.5 Extension to Multidimensional Motifs

Because MK works with any metric distance measure, it is very easily extendible to multi-

dimensional time series, so long as we use a metric to measure distances among them. We

can use multidimensional Euclidean distance for multidimensional time series which is com-

puted by taking the Euclidean distance for all the values along each of the dimensions. The

squared errors from different dimensions can be weighted by their relative importance. Any

weighting scheme preserves the metric property of Euclidean distance and thus our exact al-

gorithm is directly applicable to multidimensional data. Previously researchers have worked

on approximate methods for finding repeated patterns in multidimensional time series [32]

and in motion capture data [73]. Being exact, our algorithm bears good promise to be useful

in these domains too.

A good example of multidimensional time series is human motion capture data where the

3D positions and angles of several joints of the body are recorded while a subject performs

a specific motion. The positions of different joints are synchronous time series and can be

considered as different dimensions of a multidimensional time series. While computing the

similarity of motion segments, we must define the relative importance (weights) of different

body parts. For example, to compare Indian dances we may need to put larger weights on

the hands and legs than head and chest. To test the applicability of MK on multidimensional

data, we use two dance motions from the CMU motion capture databases and identified the

motion-motif shown in Figure 2.12. Each of the dance motions are more than 20 seconds

37

long and we search for motif of length 1 second. The motion-motif we found is a dance

segment that denotes “joy” in Indian dance.

Figure 2.12: An example of multidimensional motif found in the motion captures of two
different Indian dances. In the top row, four snapshots of the motions aligned at the motif
are shown. In the bottom, the top-view of the dance floor is shown and the arrows show the
positions of the subjects

2.3.6 Discussion and Interpretation of Results

In the following sections we interpret and explain the results of the scalability results in more

detail.

Why is Early-Abandoning so Effective?

While the results in the previous section bode well for the MK algorithm, a perhaps unex-

pected result is that just using early-abandoning can make brute force search significantly

38

faster. While it has been known for some time that early-abandoning can speed up nearest

neighbor search; most work suggests that the speedup is a small constant, in the range of

two to three [53]. However, at least for the random walk experiment shown in Figure 2.6

it appears early-abandoning can produce at least a ten-fold speed up. It is informative to

consider why this is so. The power of early-abandoning comes from the (relative) value of

the best-so-far variable during search. If it has a small value early on in a search, then most

items can be abandoned very quickly. However, we typically have no control over how fast

the best-so-far decreases; we simply hope that a relatively similar object will be encountered

early in the search.

The key insight into explaining why early-abandoning works so well for motif discovery

is to note that there are simply many more possibilities for the best-so-far to decrease early

in the (quadratic) search for a motif, than during the (linear) search for a nearest neighbor. To

see this, we performed a simple experiment. We measured the average distance between two

time series, the nearest neighbor distance for ten randomly chosen time series, and the motif

distance, all for increasingly large instantiations of a database of random walks of length 128.

The results are shown in Figure 2.13.

Note that average distance is essentially independent of the dataset size. The mean dis-

tance of a query to its nearest neighbor decreases with database size as we would expect,

however note that the motif distance decreases more dramatically, and is significantly smaller.

This effect is like a real-valued version of the familiar birthday paradox. In a dataset con-

sisting of 23 people, the chance that one of them will share your birthday (the analogue to

39

Number of Time Series in the Dataset (m)

0

4

8

12

16

0 2000 4000 6000 8000 10000

Motif Distance

1NN Distance

Average Distance

E
u
cl
id
ea
n
 D
is
ta
n
ce

Figure 2.13: How the size of the dataset effects the average, nearest neighbor and motif
distances

linear nearest neighbor search) is just 6.1%. However, the chance of any two people sharing

a birthday (the analogue to quadratic motif search) is 50.7%. There are simply many more

possibilities in the latter case. Likewise, for motif search, there are so many possible ways

for pairs to be similar that we can be confident to find very low best-so-far early on, and

therefore extract the most benefit out of early abandoning.

Why not use DTW or Uniform Scaling?

In this work we have used the classic Euclidean distance as the underlying distance measure.

However one could imagine using Dynamic Time Warping (DTW) or Uniform Scaling Eu-

clidean distance (US) instead. In many independent works it has been shown that DTW and

US can produce superior classification/clustering accuracy and superior subjective judgments

of similarity in diverse time series domains [53][104].

40

However recent work has forcefully shown that for DTW, it’s superiority over Euclidean

distance for nearest neighbor classification is an inverse function of the dataset size. As the

datasets gets larger, the difference between DTW and Euclidean distance rapidly decreases

[92]. To see this, we performed 1NN classification with both DTW and Euclidean distance

for increasing large instantiations of the Two-Pattern dataset, a highly “warped” publicly

available time series dataset. Figure 2.14 shows the results.

2000 3000 4000 5000 6000

0

0.1

0.2

0.3

0.4

0.5

0 1000

Two-Pat Dataset
Euclidean

DTW

Increasingly Large Training Sets

O
u
t-
o
f-
S
am
p
le

E
rr
o
r
R
at
e

Figure 2.14: The error rate of DTW and ED on increasingly large instantiations of the Two-
Pat problem

We have performed similar experiments on 20 other time series datasets, this example

is interesting only in that it is the slowest to converge. Upon reflection, this result is unsur-

prising, as the datasets get larger, the expected distance (under any measure) to the nearest

neighbor will decrease (c.f. Figure 2.13). Given this fact, the Euclidean distance is more

likely to find a nearest neighbor so near that “warping” the distance (and therefore decreasing

the distance) is unlikely to change the rankings of nearest neighbors, and therefore unlikely

to change the class prediction.

41

Given that this is true for 1NN classification, we can expect it to be even more of a factor

for motif discovery, since motif discovery has allows many more distance comparisons, and

the smallest of them (the motif distance) is likely to be so small that DTW and Euclidean

distance will be essentially identical. To see this, we randomly created 300 pairs of random

walks, and measured the distance between them using DTW and Euclidean distance. The

results are shown in a scatter plot in Figure 2.15.

0 2 4 6 8 10 120

2

4

6

8

10

12

0 2
0

2

Euclidean Distance

D
T
W
 D
is
ta
n
c
e

Zoom-In

Figure 2.15: (left) A scatter plot where each point represents the Euclidean distance (x-axis)
and the DTW distance (y-axis) of a pair of time series. Some data points had values greater
than 12, they were truncated for clarity (right) a zoom-in of the plot on the left

We can see that if two objects are relatively far apart under the Euclidean distance, then

using DTW can make them appear closer, and change possibility the nearest neighbor rank-

ing. However, as objects get relatively close under the Euclidean distance, the difference

between the Euclidean distance and DTW diminishes. In this example, for values under 1.0,

42

both measures are near perfectly correlated. Empirically we find that for random walks of

this length, by they time we have a mere 100,000 objects in the dataset, the average motif

distance is usually much less than 0.25.

Given these facts, we can now succinctly answer the question as to why we do not use

the DTW distance to find motifs. The answer is that for the very large datasets we consider,

it does not make any difference to the result. Identical remarks apply to uniform scaling.

2.4 Experimental Case Studies

Having demonstrated the scalability of our algorithm in the previous section, we now turn

our attention to demonstrate the utility of time series motifs in various domains.

2.4.1 Finding Repeated Insect Behavior

In the arid to semi-arid regions of North America, the Beet leafhopper (Circulifer tenellus)

shown in figure 2.16, is the only known vector (carrier) of curly top virus, which causes major

economic losses in a number of crops including sugar-beet, tomato, and beans [49]. In order

to mitigate these financial losses, entomologists at the University of California, Riverside are

attempting to model and understand the behavior of this insect [94].

It is known that the insects feed by sucking sap from living plants; much like the mosquito

sucks blood from mammals and birds. In order to understand the insect’s behaviors, ento-

mologists glue a thin wire to the insect’s back, complete the circuit through a host plant and

43

Beet Leafhopper (Circulifer tenellus)

plant membrane

Stylet

voltage source

input resistor

V

0 50 100 150 200
0

10

20

to insect
conductive glue

voltage reading

to soil near plant

Figure 2.16: A schematic diagram showing the apparatus used to record insect behavior

then measure fluctuations in voltage level to create an Electrical Penetration Graph (EPG) as

shown in Figure 2.16.

0 10,000 20,000 30,0000

1

2

3

x 104

Approximately 14.4 minutes of insect telemetry

Figure 2.17: An Electrical Penetration Graph of insect behavior. The data is complex and
highly non-stationary, with wandering baseline, noise and dropouts

This method of data collection produces large amounts of data, in Figure 2.17 we see

about a quarter hour of data, however the entomologists data archive currently contains thou-

sands of hours of such data, collected in a variety of conditions. Up to this point, the only

44

analysis of this data has been some Fourier analyses, which has produced some suggestive

results [94]. However Fourier analysis is somewhat indirect and removed from the raw data.

In contrast motif discovery operates on the raw data itself and can potentiality produce more

intuitive and useful knowledge. In Figure 2.18 we show the motif of length 480 discovered

in the entire 33,021 length time series shown in Figure 2.17.

0 100 200 300 400 500

1

2

3
x 104

Instance at 9,036

Instance at 3,664

Figure 2.18: The motif of length 480 found in the insect telemetry shown in Figure 2.17.
Although the two instances occur minutes apart they are uncannily similar

As we can see, the motifs are uncannily similar, even though they occur minutes apart.

Having discovered such a potentially interesting pattern, we follow up to see if it is really sig-

nificant. The first thing to do is to see if it occurs in other datasets. We have indexed the entire

archive with an iSAX index [92] so we quickly determined the answer to be affirmative, this

pattern does appear in many other datasets, although the “plateau” region (approximately

from 300 to 380 in Figure 2.18) may be linearly scaled by a small amount [94]. We recorded

the time of occurrence and looked at the companion video streams which were recorded syn-

chronously with the EPGs. It appears that the motif occurs immediately after phloem (plant

sap) ingestion has taken place. The motif discovered in this stream happens to be usually

45

smooth and highly structured, however motifs can be very complex and noisy. Consider

Figure 2.19 which shows a motif extracted from a different trace of length 78,254.

Additional examples of

the motif

0 50 100 150 200 250 300 350 400
-3

-2

-1

0

1

2

3

4

5

6

Instance at 20,925

Instance at 25,473

Figure 2.19: The motif of length 400 found in an EPG trace of length 78,254 . (inset) Using
the motifs as templates, we can find several other occurrences in the same dataset

In this case, examination of the video suggests that this is a highly ritualized grooming

behavior. In particular, the feeding insect must get rid of honeydew (a sticky secretion, which

is by-product of sap feeding). As a bead of honeydew is ejected, it temporarily forms a highly

conductive bridge between the insect and the plant, drastically affecting the signal.

Note that these examples are just a starting point for entomological research. It would

be interesting to see if there are other motifs in the data. Having discovered such motifs

we can label them, and then pose various hypotheses. For example: “Does motif A occur

more frequently for males than females?”. Furthermore, an understanding of which motifs

correlate with which behaviors suggests further avenues for additional data collection and

experiments. For example, it is widely believed that Beet leafhoppers are repelled by the

46

presence of marigold plants (Tagetes). It may be possible to use the frequency of (now)

known motifs to detect if there really is a difference between the behavior of insect with and

without the presence of marigolds. We defer further discussion of such issues to future and

ongoing work.

2.4.2 Automatically Constructing EEG Dictionaries

In this example of the utility of time series motifs we discuss an ongoing joint project be-

tween the authors and Physicians at Massachusetts General Hospital (MGH) in automat-

ically constructing “dictionaries” of recurring patterns from electroencephalographs. The

electroencephalogram (EEG) measures voltage differences across the scalp and reflects the

activity of large populations of neurons underlying the recording electrode [76]. Figure 2.20

shows a sample snippet of EEG data. Medical situations in which EEG plays an important

role include, but are not limited to, diagnosing and treating epilepsy; planning brain surgery

for patient’s with intractable epilepsy, monitoring brain activity during cardiac surgery and

in certain comatose patients; and distinguishing epileptic seizures from other medical con-

ditions (e.g. “psudoseizures”). The interpretation of EEG interpretation data involves in-

ferring information about the brain (e.g. presence and location of a brain lesion) or brain

state (e.g. awake, sleeping, having a seizure) from various temporal and spatial patterns, or

graphoelements (which we see as motifs), within the EEG data stream. Over the roughly

100 years since its invention in the early 1900s, electroencephalographers have identified a

small collection of clinically meaningful motifs, including entities named “spike-and-wave

47

complexes”, “wicket spikes”, “K-complexes”, “sleep spindles” and “alpha waves”, among

many others examples. However, the full “dictionary” of motifs that comprise the EEG con-

tains potentially many yet-undiscovered motifs. In addition, the current, known motifs have

been determined based on subjective analysis rather than a principled search. A more com-

plete knowledge of the full complement of EEG motifs may well lead to new insights into

the structure of cortical activity in both normal circumstances and in pathological situations

including epilepsy, dementia and coma.

0 2 4 6 8 10
-8000

-7800

-7600

-7400

-7200

-7000

LSF5

10 seconds of EEG activity

Figure 2.20: The first ten seconds of an EEG trace. In the experiment discussed below, we
consider a full hour of this data

Much of the recent research effort has focus on finding typical patterns that may be as-

sociated with various conditions and maladies. For example, [96] attempts to be an “Atlas

of EEG patterns”. However, thus far, all such attempts at finding typical patterns have been

done manually and in an ad-hoc fashion. A major challenge for the automated discovery

of EEG motifs is large data volumes. To see this, consider the following experiment. We

conducted a search for the motif of length 4 seconds, within a one hour EEG from a single

channel in a sleeping patient. The data collection rate was 500 Hz, yielding approximately

48

2 million data points, after domain standard smoothing and filtering, an 180,000 data point

signal was produced. Using the brute force algorithm (c.f. Algorithm 2.1), finding the motif

required over 24 hours of CPU time. By contrast, using the MK algorithm described in this

chapter, the same result requires 2.1 minutes, a speedup of about factor of about 700. Such

improvements in processing speed are crucial for tackling the high data volume involved in

large-scale EEG analysis. This is especially the case in attempting to complete a dictionary

of EEG motifs which incorporates multi-channel data and a wide variety of normal situa-

tions and disease states. Having shown that automatic exploration of large EEG datasets is

tractable, our attention turns to the question, is it useful? Figure 2.21(left) shows the result

of our first run of our algorithm and Figure 2.21(right) shows a pattern discussed in a recent

paper [95].

0 200 400 600 800

Occurrence at 34.51 minutes

Occurrence at 36.21 minutes

Time [ms]

Figure 2.21: (left) Bold Lines: The first motif found in one hour of EEG trace LSF5. Light
Lines: The ten nearest neighbors to the motif. (right) A screen dump of Figure 6.A from
paper [95]

49

It appears that this automatically detected motif corresponds to a well-known pattern, the

K-complex. K-complexes were identified in 1938 [76][62] as a characteristic event during

the sleep. This figure is at least highly suggestive that in this domain, motif discovery can

really find patterns that are of interest to the medical community. In ongoing work we are

attempting to see if there are currently unknown patterns hiding in the data.

2.4.3 Motif-based Anytime Time Series Classification

We conclude our experimental section with an example of a novel use for time series motifs.

There has been recent interest in converting classic batch data mining algorithms to anytime

versions [104]. In some cases this is trivial, for example we can frame the nearest-neighbor

classification algorithm as an anytime algorithm simply by conducting a sequential search

for the unlabeled items nearest neighbor in the labeled dataset [104]. If the algorithm is inter-

rupted before completing the full search, then the label of the best-so-far nearest neighbor is

returned as the class label. This simple idea can be enhanced by sorting the labeled instances

such that the most useful instances are seen early in the sequential search. In all work that

we are aware of, “most useful” is determined by some estimate of how often each instance

is used to correctly predict, as opposed to incorrectly predict, unknown instances [104][111].

The astute reader will immediately see a potential weakness here. Suppose we happen to

have two nearly identical instances with the same class label in the training dataset. Further-

more, suppose they both happen to useful instances (in the sense discussed above). In this

case, both of the instances will be pushed to the head of the sequential search array. However,

50

this is clearly redundant; we should push either one, but not both top, of the sequential search

array. Time series motifs potentially allow a fix for this problem. We can discover the 1st

motif, and then move one of the pair to the head of the sequential search array. Then we

can rerun motif discovery on the remaining n− 1 time series (excluding the recently moved

object) again move one of the motif pair to the front, and begin motif discovery on n − 2

objects and so on. This strategy should ensure high diversity of the first few training exam-

ples encountered by the anytime classification algorithm. We tested this simple idea against

random ordering, and a well known ordering algorithm called Drop3 [111]. We considered

two publicly available datasets, CBF and Face4.

0 5 10 15 20 25 300

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25

Random ordering

Drop3

Motif ordering

CBF Dataset Face Four Dataset

Number of instances seen before interruption

A
cc
u
ra
cy

Figure 2.22: The out-of-sample accuracy of three different ordering techniques on two bench-
mark time series datasets. The y-axis shows the accuracy of 1NN if the algorithm is inter-
rupted after seeing x objects

The results are quite surprising. The motif ordering algorithm is significantly better that

Drop3, even though it does not consider any information about useful any individual instance

51

is, it is merely enhancing the diversity seen by the classifier in the early part of the nearest

neighbor search.

2.5 Prior and Related Work

A theoretical lower bound on finding the closest pair of points in 2-dimensional space is

O(n log n) [97]. The trivial extension to an arbitrary d-dimensional space gets a hidden

constant term with this lower bound which is exponential to d. For high dimensional data

(i.e. long time series) this constant overhead dominates the running time.

The divide-and-conquer algorithm in [11] exploits two properties of virtually all real

datasets: sparsity of the data and the ability to select a “good” cut plane to get a true

O(n log n) algorithm. This algorithm recursively divides the data by a cut plane. At each

step it projects the data to the cut plane to reduce the dimensionality by one and then solve

the subproblems in the lower dimensional space. Unfortunately this algorithm also hides a

very high constant factor, which is of the order of d. In addition, the large worst-case memory

requirement and essentiality random data accesses made the algorithm impractical for disk-

resident applications. We compare both the brute force and the divide-and-conquer algorithm

to MK and discuss the reason for the amazing speedup we get in Section 2.3.1.

The literature is replete with different ways of defining time series “motifs.” Motifs are

defined and categorized using their support, distance, cardinality, length, dimension and un-

derlying similarity measure. Motifs may be restricted to have a minimum count of participat-

52

ing similar subsequences [22][36] or may only be a single closest pair [70]. Motifs may also

be restricted to have a distance lower than a threshold [22][36][113] or restricted to have a

minimum density [68]. Most of the methods find fixed length motifs [22][36][70][113], while

there are a handful of methods for variable length motifs [68][98][99]. Multidimensional

motifs and subdimensional motifs are defined [68] and heuristic methods to find them are

explored in [68][68][98][32]. Depending on the domain in question, the distance measures

used in motif discovery can be specialized, such as allowing for “don’t cares” to increase

tolerance to noise [22][88]. In this thesis, we explicitly choose to consider only the simplest

definition of a time series motif, which is the closest pair of time series. Since virtually all

of the above approaches can be trivially calculated with inconsequential overhead using the

closest pair as a seed, we believe the closest pair is the core operation in motif discovery.

Therefore, we ignore other definitions for brevity and simplicity of exposition.

Many of the methods for time series motif discovery are based on searching a discrete

approximation of the time series, inspired by and leveraging off the rich literature of motif

discovery in discrete data such as DNA sequences [22][84][36][68][98][88]. Discrete repre-

sentations of the real-valued data must introduce some level of approximation in the motifs

discovered by these methods. In contrast, we are interested in finding motifs exactly with

respect to the raw time series. More precisely, we want to do an exact search for the most

similar pair of subsequences (i.e. the motif) in the raw time series. It has long been held that

the exact motif discovery is intractable even for datasets residing in main memory. Note that

in the previous chapter we show that motif discovery is tractable for large in-core datasets.

53

Given this, the most of the literature has focused on fast approximate algorithms for

motif discovery [9][22][40][66][68][88][98], however there is one algorithm that proposes

to exactly solve the time series motif problem. The FLAME algorithm of [100] is designed

to find motifs in discrete strings (i.e. DNA), but the authors show that time series can be

discretized and feed into their algorithm. They note that their algorithm “is guaranteed to

find the motif”s. However, this is only true with respect to the discrete representation of the

data, not with the raw time series itself. Thus the algorithm is approximate for real-valued

time series. Furthermore, the algorithm is reported to take about 16 seconds to find the motif

of length eleven in a financial time series of length 8,400, whereas our algorithm only takes

0.53 seconds (on average) to find the exact motif, with similar hardware.

Approximate algorithms fair little better. For example, a recent paper on finding approx-

imate motifs reports taking 343 seconds to find motifs in a dataset of length 32,260 [66], in

contrast we can find exact motifs in similar datasets, and on similar hardware in under 100

seconds. Similarly, another very recent paper reports taking 15 minutes to find approximate

motifs in a dataset of size 111,848 [9], however we can find exact motifs in similar datasets

in under 4 minutes. Finally, paper [61] reports five seconds to find approximate motifs in a

stock market dataset of size 12,500, whereas our exact algorithm takes less than one second.

Bearing these numbers in mind, we will simply ignore other motif finding approaches for the

rest of this work.

To the best of our knowledge, our algorithm is completely novel. However there are

related ideas in the literature. For example, [20] also exploits the information gained by the

54

relative distances to randomly chosen reference points. However they use this information

to solve the approximate similarity search problem, whereas we use it to solve the exact

closest-pair problem.

2.6 Conclusion

In this chapter, we have introduced the first exact motif search algorithm which is signifi-

cantly faster than the brute force search. We have further demonstrated the utility of motif

discovery in a variety of data domains. In the next chapters, we extend this in-memory algo-

rithm for disk resident data and online data.

55

Chapter 3

Extension to Disk Resident Time Series

In spite of extensive research in recent years [22][36][70][113], finding exact time series

motifs in massive databases is an important open problem. Previous efforts either found

approximate motifs or considered relatively small datasets residing in main memory (or in

most cases, both). In this work, we describe for the first time a disk-aware algorithm to

find exact time series motifs in multi-gigabyte databases containing tens of millions of time

series. As we shall show, our algorithm allows us to tackle problems previously considered

intractable, for example finding near duplicates in a dataset of forty-million images.

The rest of this chapter is organized as follows. We review some of the related work from

the database community. We mostly follow the definitions and notations of the Section 2.1

and specify clearly if otherwise. We formally describe our algorithm with elegant examples

and empirically evaluate the scalability and utility of our ideas.

56

3.1 Related Work

To the best of our knowledge, the closest-pair/time series motif problem in high dimensional

(i.e. hundreds of dimensions) disk resident data has not been addressed. There has been

significant work on spatial closest-pair queries [74][24]. These algorithms use indexing tech-

niques such as R-tree [39] and R*-tree [10] which have the problem of high creation and

maintenance cost for multidimensional data [56]. In [109], it has been proved that there is

a dimensionality beyond which every data or space partitioning method degenerates into se-

quential access. Another possible approach could be to use high dimensional self similarity

join algorithms [56][30][8]. If the data in hand is joined with itself with a low similarity

threshold we would get a motif set, which could be quickly refined to find the true closest

pair. Indeed, [56] does consider (an approximation of) stock market time series as one of

their examples. However, the threshold must be at least as big as the distance between the

closest pair to filter it from the self-join results. This is a problem because most of the time

users do not have any idea about a good threshold value. Obviously, user can choose a very

large threshold for guaranteed results, but this degrades the performance a lot. In this regard,

our method is parameter free and serves the exact purpose of finding the closest pair of time

series in disk resident data. In addition, the datasets we wish to consider in this chapter have

three orders of magnitude more objects than any of the datasets considered in [24][56][74]

and dimensionality (i.e length) of the motifs are from several hundreds to a thousand whereas

57

in [56] the maximum dimensionality is thirty. Therefore, our algorithm is the first algorithm

to find exact time series motifs in disk resident data.

In this chapter we employ a bottom-up search algorithm that simulates the merge steps

of the divide-and-conquer approach [11]. Our contribution is that we created an algorithm

whose worst-case memory and I/O overheads are practical for implementation on very large-

scale databases. The key difference with the optimal algorithm that makes our algorithm

amenable for large databases is that we divide the data without reducing the number of di-

mensions and without changing the data order at any divide step. This allows us to do a

relatively small number of batched sequential accesses, rather than a huge number of random

accesses. As we shall see, this can make a three to four orders of magnitude difference in the

time it takes to find the motifs on disk-resident datasets.

To the best of our knowledge, our algorithm is completely novel. However we leverage

off related ideas in the literature [20][48][116]. In particular, the iDistance method of Ja-

gadish et al. [48] introduces the idea of projecting data on to a single line, a core subroutine

in our algorithm. Other works, for example [20] also exploits the information gained by the

relative distances to randomly chosen reference points. However they use this information to

solve the approximate similarity search problem, whereas we use it to solve the exact closest-

pair problem. In [48][116], reference objects have been used for each partition of a B+ tree

index which is adapted for different data distribution. However, we use only one reference

object to do the data ordering. In [30], reference objects (pivots) are used to build an index

for similarity joins. While we exploit similar ideas, the design of the index is less useful

58

for the closest-pair problem because of data replication and parameter setting described pre-

viously. Both [48] and [116] use the idea of pivots to do K-nearest neighbor search, and

report approximately one order of magnitude speedup over brute force. However we use the

idea of pivots for motif discovery and report four to five orders or magnitude. What explains

this dramatic difference in speedup? A small fraction can be attributed to the simple fact

that we consider significantly larger datasets, and pivot-based pruning is more effective for

larger datasets. However, most of the difference can be explained by our recent observation

that the speed up of pivot-based indexing depends on the value of the best-so-far variable

[70]. While this value does decrease with datasets size for K-nearest neighbor search or full

joins [30], it decreases much faster for motif discovery, allowing us to prune over 99.99% of

distance computations for real-world problems.

3.2 DAME: Disk Aware Motif Enumeration

A set of time series of length n can be thought of as a set of points in n-dimensional space.

Finding the time series motif is then equivalent to finding the pair of points having the min-

imum possible distance between any two points. Before describing the general algorithm in

detail, we present the key ideas of the algorithm with a toy example in 2D.

59

3.2.1 A Detailed Intuition of Our Algorithm

For this example, we will consider a set of 24 points in 2D space. In Figure 3.1(A) the

dataset is shown to scale. Each point is annotated by an id beside it. A moment’s inspection

will reveal that the closest pair of points is {4,9}. We assume that a disk block can store at

most three points (i.e. their co-ordinates) and their ids. So the dataset is stored in the disk

in eight blocks. We begin by randomly choosing a reference point r (see Figure 3.1(A)).

We compute the distance of each data point from r and sort all such distances in ascending

order. As the data is on the disk, any efficient external sorting algorithm can be used for this

purpose [69][78]. A snap shot of the database after sorting is shown in Figure 3.1(B). Note

that our closest pair of points is separated in two different blocks. Point 4 is in the fourth

block and point 9 is in the fifth block. Geometrically, this sorting step can be viewed as

projecting the database on one line by rotating all of the points about r and stopping when

every point is on that line. We will be using this line in the next chapters; we name this line

the order line since it holds all of the points in the increasing order of their distances from

r. The order line shown in Figure 3.1(C) begins at the top, representing a distance of 0 from

r and continues downward to a distance of infinity. Note that the order line shown in Figure

3.1(C) is representative, but does not strictly conform to the scale and relative distances of

Figure 3.1(A). Data points residing in the same block after the sorting step are consecutive

points in the order line and thus, each block has its own interval in the order line. In Figure

3.1(C) the block intervals are shown beside the order line. Note that, up to this point, we have

not compared any pairs of data points. The search for the closest pair (i.e. comparisons of

60

pairs of points) will be done on this representation of the data. Our algorithm is based upon

the same principal as the MK algorithm. If two points are close in the original space, they

must also be close in the order line. Unfortunately, the opposite is not true; two points which

are very far apart in the original space might be very close in the order line. Our algorithm

can be seen as an efficient way to weed out these false positives, leaving just the true motif.

As alluded to earlier, we search the database in a bottom-up fashion. At each iteration we

partition the database into consecutive groups. We start with the smallest groups of size 1

(i.e. one data point) and iteratively double the group size (i.e. 2,4,8,. . .).

1

5

3

8

10

11

9

7

24

12

22

4

17

14

15

6

2

13

20

21

23

16

18

19

(B)

1

5

3

7

1612

2011

6

24

21

18

2

22
17

15

23

13

14

8

4

9

19

r

(A)

10

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(D) (E) (F)

x

x-y

x+y

y

y

1

2

3

4

5

6

7

8

(C)

Figure 3.1: (A) A sample database of 24 points. (B) Disk blocks containing the points sorted
in the order of the distances from r. The numbers on the left are the ids. (C) All points
projected on the order line. (D) A portion of an order line for a block of 8 points. (E) After
pruning by a current motif distance of 4.0 units. (F) After pruning by 3.0 units

61

At each iteration we take disjoint pairs of consecutive groups one at a time and compare

all pairs of points that span those two groups. Figure 3.1(D) shows a contrived segment

of an order line unrelated to our running example, where a block of eight points is shown.

An arc in this figure represents a comparison between two points. The closest four arcs to

the order line {(1,2),(3,4),(5,6),(7,8)} are computed when the group size is 1. The following

eight arcs {(1,3),(1,4),(2,3),(2,4), (5,7),(5,8),(6,7),(6,8)} are computed when the group size is

2 and the rightmost sixteen arcs are computed when the group size is 4. Note that each group

is compared with one of its neighbors in the order line at each iteration. After the in-block

searches are over, we move to search across blocks in the same way. We start by searching

across disjoint pairs of consecutive blocks and continually increasing the size of groups like

2 blocks, 4 blocks, 8 blocks, and so on. Here we encounter the issue of accessing the disk

blocks efficiently, which is discussed later. As described thus far, this is clearly a brute force

algorithm that will eventually compare all possible pairs of objects. However, we can now

explain how the order line helps to prune the vast majority of the calculations. Assume A and

B are two objects, and B lies beyond A in the order line; i.e. dist(A, r) ≤ dist(B, r). By the

triangular inequality we know that dist(A,B) ≤ dist(B, r) − dist(A, r). But dist(B, r) −

dist(A, r) is the distance between A and B in the order line. Thus, the distance between

two points in the order line is a lower bound on their true distance. Therefore, at some point

during the search, if we know that the closest pair found so far has a distance of y, we can

safely ignore all pairs of points that are more than y apart on the order line. For example,

in Figure 3.1(E), if we know that the distance between the best pair discovered so far is

62

4.0 units, we can prune off comparisons between points {(1,6),(1,7),(1,8),(2,7),(2,8),(3,8)},

since they are more than 4.0 units apart on the order line. Similarly, if the best pair discovered

so far had an even tighter distance of 3.0 units, we would have pruned off four more pairs.

(see Figure 3.1(F)). More critically, the order line also helps to minimize the number of

disk accesses while searching across blocks. Let us assume that we are done searching all

possible pairs (i.e. inside and across blocks) in the top four blocks and also in the bottom four

blocks (see Figure 3.1(B)). Let us further assume that the smaller of the minimum distances

found in each of the two halves is y. Let x be the distance of the cut point between the two

halves from r. Now, all of the points lying within the interval (x− y, x] in the order line may

need to be compared with at least one point from the interval [x, x+ y). Points outside these

two intervals can safely be ignored because they are more than y apart from the points in the

other half. Since in Figure 3.1(C) the interval (x− y, x] overlaps with the intervals of blocks

3 and 4 and the interval [x, x + y) overlaps with the intervals of blocks 5 and 6, we need

to search points across block pairs {3,5},{3,6},{4,5} and {4,6}. Note that we would have

been forced to search all 16 possible block pairs if there were no order line. Given that we

are assuming the database will not fit in the main memory, the question arises as to how we

should load these block pairs when the memory is very small. In this work, we assume the

most restrictive case, where we have just the memory available to store exactly two blocks.

Therefore, we need to bring the above four block pairs {{3,5},{3,6},{4,5},{4,6}} one at a

time. The number of I/O operations depends on the order in which the block pairs are brought

into the memory. For example, if we search the above four pairs of blocks in that order, we

63

would need exactly six block I/Os: two for the first pair, one for the second pair since block

3 is already in the memory, two for the third pair and one for the last pair since block 4 is

already in the memory. If we choose the order {{3,5},{4,6},{3,6},{4,5}} we would need

seven I/Os. Similarly, if we chose the order {{3,5},{4,5},{4,6},{3,6}}, we would need five

I/Os. In the latter two cases there are reverse scans; a block (4) is replaced by a previous

block (3) in the order line. We will avoid reverse scans and avail of sequential loading of the

blocks to get maximum help from the order line. Let us consider how the order line helps in

pruning pairs across blocks. When we have two blocks in the memory, we need to compare

each point in one block to each point in the other block. In our running example, during the

search across the block pair {3,6}, the first and second data points in block 3 (i.e. 8 and 10 in

the database) have distances larger than y to any of the points in block 6 in the order line (see

Figure 3.1(C)). The third point (i.e. 11) in block 3 has only the first point (i.e. 6) in block 6

within y in the order line. Thus, for block pair {3,6}, instead of computing distances for all

nine pairs of data points we would need to compute the distance for only one pair,<11,6>.

At this point, we have informally described how a special ordering of the data can reduce

block I/Os as well as reduce pair-wise distance computations. With this background, we

hope the otherwise daunting detail of the technical description in the next section will be less

intimidating.

64

3.2.2 A Formal Description of DAME

For the ease of description, we assume the number of blocks (N) and the block size (M)

are restricted to be powers of two. We also assume that all blocks are of the same size

and that the main memory stores only two disk blocks with a small amount of extra space

for the necessary data structures. Readers should note that some of the variables in the

algorithms are assumed to be global variables accessible from all the algorithms. These are

bsf, B,M,R,Dref, L1 and L2. Shaded lines denote the steps for the pruning of pairs from

being selected or compared. We call our algorithm DAME, Disk Aware Motif Enumeration.

Our algorithm is logically divided into subroutines with different high-level tasks. The main

method that employs the bottom-up search on the blocks is DAME Motif . The input to

this method is a set of blocks B which contains every subsequence of a long time series or

a set of independent time series. Each time series is associated with an id used for finding

its location back in the original data. Individual time series are assumed to be z-normalized.

If they are not, this is done in the sorting step. DAME Motif first chooses R random time

series as reference points from the database and stores them in Dref . These reference time

series can be from the same block, allowing them to be chosen in a single disk access. It then

sorts the entire database, residing on multiple blocks, according to the distances from the

first of the random references named as r. The reason for choosing R random reference time

series/points will be explained shortly. The computeInterval method at line 5 computes

the intervals of the sorted blocks. For example, if si and ei are respectively the smallest and

largest of the distances from r to any time series in Bi, then [si, ei] is the block interval of Bi.

65

Computing these intervals is done during the sorting phase, which saves a few disk accesses.

Lines 7-14 detail the bottom-up search strategy. Let t be the group size, which is initialized

to one, and iteratively doubled until it reaches .

Algorithm 3.1 [L1, L2] = DAME Motif(B)

Require: A set B of N blocks each containing M time series
Ensure: Locations L1 and L2 of the motif

1: bsf ←∞
2: Dref ←Randomly pick R time series
3: r ← Dref1
4: sort(B, r)
5: s, e← computeInterval(B)
6: t← 1
7: while t ≤ N

2
do

8: top← 1
9: while top < N do

10: mid← top+ t
11: bottom← top+ 2t
12: searchAcrossBlocks(top,mid, bottom)
13: top← bottom
14: t← 2t
15: return L1,L2

For each value of t, pairs of time series across pairs of successive t-groups are searched

using the searchAcrossBlock method. The searchAcrossBlocks method searches for the

closest pair across the partitions [top,mid) and [mid, bottom). The order of loading blocks

is straightforward (lines 1 and 8). The method sequentially loads one block from the top

partition, and for each of them it loads all of the blocks from the bottom partition one at

a time (lines 4 and 11). D1 and D2 are the two memory blocks and are dedicated for the

top and bottom partitions, respectively. A block is loaded to one of the memory blocks by

the load method. load reads and stores the time series and computes the distances from the

66

references. DAME Motif and all subroutines maintain a variable bsf (short form of “best

so far”) that holds the minimum distance discovered up to the current point of search. We

define the distance between two blocks p and q by sq− ep if p < q. Lines 2-3 encode the fact

that if block p from the top partition is more than bsf from the first block (mid) of the bottom

partition, then p cannot be within bsf of any other blocks in the bottom partition. Lines 9-10

encode the fact that if block q from the bottom partition is not within bsf of block p from the

top partition, then none of the blocks after q can be within bsf of p. These are the pruning

steps of DAME that prune out entire blocks. Lines 5-6 and 12-13 check if the search is at the

bottom-most level. At that level, searchInBlock is used to search within the loaded block.

Lines 14-15 do the selection of pairs by taking one time series from each of the blocks. Note

the use of istart at lines 14 and 19. istart is the index of the last object of block p which

finds an object in q located farther than bsf in the order line. Therefore, the objects indexed

by i ≤ istart do not need to be compared to the objects in the blocks next to q. So, the next

time series to istart is the starting position in p when pairs across p and the next of q are

searched. For all the pairs that have escaped from the pruning steps, the update method is

called.

The method searchInBlock is used to search within a block. This method employs

the same basic bottom-up search strategy as the DAME Motif , but is simpler due to the

absence of a memory hierarchy. Similar to the searchAcrossBlocks method, the search

across partitions is done by simple sequential matching with two nested loops. The pruning

step at lines 11-12 terminates the inner loop over the bottom partition at the jth object which

67

Algorithm 3.2 searchAcrossBlocks(top,mid, bottom)

Require: top, mid and bottom blocks from B
Ensure: Update L1 and L2 if necessary

1: for p← top to mid− 1 do
2: if smid − ep ≥ bsf and mid− top 6= 1 then prune step
3: conitinue prune step
4: D1,Dist1← load(Bp)
5: if mid− top = 1 then
6: searchInBlock(D1, Dist1)
7: istart← 0
8: for q ← mid to bottom− 1 do
9: if sq − ep ≥ bsf and bottom−mid 6= 1 then prune step

10: break prune step
11: D2,Dist2← load(Bq)
12: if bottom−mid = 1 then
13: searchInBlock(D2, Dist2)
14: for i← istart+ 1 to M do
15: for j ← 1 to M do
16: if Dist11,i −Dist21,j < bsf then prune step
17: update(D1, D2, Dist1, Dist2, i, j)
18: else prune step
19: istart← i prune step
20: break prune step

Algorithm 3.3 [D,Dist] = load(b)

Require: A block id b
Ensure: Data D and referenced distances in Dist

1: D ← read(b)
2: for i← 1 to R do
3: for j ← 1 to M do
4: Disti,j ← distance(Drefi, Dj)

is the first to have a distance larger than bsf in the order line from the ith object. Just as

with searchAcrossBlocks method, every pair that has escaped from pruning is given to the

update method for further consideration.

The update method does the distance computations and updates the bsf and the motif ids

(i.e. L1 and L2). The pruning steps described in the earlier methods essentially try to prune

68

Algorithm 3.4 searchInBlock(D,Dist)

Require: Data D and the distances Dist from the references
Ensure: Update L1 and L2 if necessary

1: t← 1
2: while t ≤ M

2
do

3: top← 1
4: while top < M do
5: mid← top+ t
6: bottom← top+ 2t
7: for i← top to mid− 1 do
8: for j ← mid to bottom− 1 do
9: if Dist1,i −Dist1,j < bsf then prune step

10: update(D,D,Dist,Dist, i, j)
11: else prune step
12: break prune step
13: top← bottom
14: t← 2t

some pairs from being considered as potential motifs. When a potential pair is handed over to

update, it also tries to avoid the costly distance computation for a pair. In the previous section,

it is shown that distances from a single reference point r provides a lower bound on the true

distance between a pair. In update, distances from multiple (R) reference points computed

during loads are used to get R lower bounds, and update rejects distance computation as

soon as it finds a lower bound larger than bsf . Although R is a preset parameter like N and

M , its value is not very critical to the performance of the algorithm. Any value from five to

sixty produces near identical speedup, regardless of the data R (c.f. section 2.3.2).

Note that the first reference time series r is special in that it is used to create the order

line. The rest of the reference points are used only to prune off distance computations. Also

note the test for trivial matches [22][70] at line 6. Here, a pair of time series is not allowed to

be considered if they overlapped in the original time series from which they were extracted.

69

Algorithm 3.5 update(D1, D2, Dist1, Dist2, x, y)

Require: Data D1, D2, the distances Dist1, Dist2 and the locations x, y
Ensure: Update L1 and L2 if necessary

1: reject← false
2: for i← 2 to R do prune step
3: lower bound← |Dist1i,x −Dist2i,y| prune step
4: if lower bound > bsf then prune step
5: reject← true, break prune step
6: if reject = false and trivial(D1x, D2y) = false then prune step
7: if distance(D1x, D2y) < bsf then
8: bsf ← distance(D1x, D2y)
9: L1 ← id(D1x), L2 ← id(D2y)

3.2.3 Correctness of DAME

The correctness of the algorithm can be described by the following two lemmas. Note that

pruning steps are marked by the shaded regions in the pseudocode of the previous section.

Lemma 3.1 The bottom-up search compares all possible pairs if the pruning steps are re-

moved.

Proof: In searchInBlock we have exactly M time series in the memory block D. The

bottom-up search does two-way merging at all levels for partition sizes t = 1, 2, 4, . . . , M
2

successively. For partitions of size t, while doing the two-way merge, the number of times

update is called is Mt
2

. Therefore, the total number of calls to update is {20 + 21 + 22 +

. . . + 2x−1}M
2

, where M = 2x. This sum exactly equals the total number of possible pairs

. Similarly, DAME Motif and searchAcrossBlocks together do the rest of the search for

partition sizes t = M, 2M, 4M, . . . , NM
2

to complete the search over all possible pairs.

Lemma 3.2 Pruning steps ignore pairs safely.

70

Proof: Follows from Section 3.2.2.

Before ending the description of the algorithm, we describe the worst-case scenario for

seachAcrossBlocks. If the motif distance is larger than the spread of the data points in the

order line, then all possible pairs are compared by DAME because no pruning happens in

this scenario. Therefore, DAME has the worst-case complexity of O(n2). Note, however,

that this situation would require the most pathological arrangement of the data, and hundreds

of experiments on dozens of diverse real and synthetic datasets show that average cost is well

below n2.

3.3 Scalability Experiments

In this section we describe experimental results to demonstrate DAME’s scalability and

performance. Experiments in Sections 3.3.1 to 3.3.3 are performed in a 2.66GHz Intel

Q6700 and the rest of the experiments are performed on an AMD 2.1GHz Turion-X2. We

use internal hard drives of 7200 rpm. As before, we have built a webpage that contains all of

the code, data files for real data, data generators for synthetic data and a spreadsheet of all the

numbers used to plot the graphs in this thesis [2]. In addition, the webpage has experiments

and case studies which we have omitted here due to space limitations.

Note that some of the large-scale experiments we conduct in this section take several days

to complete. This is a long time by the standards of typical empirical investigations in data

71

mining conferences; however, we urge the reader to keep in mind the following as they read

on:

• Our longest experiment (the “tiny images” dataset [102]) looks at 40,000,000 time

series and takes 6.5 days to finish. However, a brute force algorithm would take 124

years to produce the same result. Even if we could magically fit all of the data in main

memory, and therefore bypass the costly disk accesses, the brute force algorithm would

require (40,000,000*39,999,999)*0.5 Euclidean comparisons, and require 8 years to

finish.

• Our largest experiment finds the exact motif in 40,000,000 time series. If we sum up

the sizes of the largest datasets considered in papers [99][70][36][22][84] which find

only approximate motifs, they would only sum to 400,000. So we are considering

datasets of at least two orders of magnitude larger than anything attempted before.

• In many of the domains we are interested in, practitioners have spent weeks, months

or even years collecting the data. For example, the “tiny images” dataset in [102] took

eight months to be collected on a dedicated machine running 24 hours a day. Given the

huge efforts in both money and time to collect the data, we believe that the practitioners

will be more than willing to spend a few days to uncover hidden knowledge from it.

72

3.3.1 Sanity Check on Large Databases

We begin with an experiment on random walk data. Random walk data is commonly used to

evaluate time series algorithms, and it is an interesting contrast to the real data (considered

below), since there is no reason to expect a particularly close motif to exist. We generate a

database of four million random walks in eighty disk blocks. Each block is identical in size

(400MB) and can store 50,000 random walks of length 1024. The database spans more than

320GB of hard drive space in ascii format. We find the closest pair of random walks using

DAME on the first 2, 4, 8, 16, 32, 64 and 80 blocks of this database. Figure 3.2 shows the

execution times against the database size in the number of random walks.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 106

0

1

2

3

4

5

6

7

D
ay
s
in
 D
A
M
E
_
M
o
ti
f

Number of Time Series in the Database

Figure 3.2: Execution times in days on random walks and EOG data

In another independent experiment we use DAME on a very long and highly oversam-

pled real time series (EOG trace, cf. Section 3.3.3) to find a subsequence-motif of length

1024. We start with a segment of this long time series created by taking the first 100,000 data

73

points, and iteratively double the segment-sizes by taking the first 0.2, 0.4, 0.8, 1.6, 3.2 and

4.0 million data points. For each of these segments, we run DAME with blocks of 400MBs,

each containing 50,000 time series, as in the previous experiment. Figure 3.2 also shows the

execution times against the lengths of the segments. Because of the oversampled time series,

the extra “noise” makes the motif distance larger than it otherwise would be, making the bsf

larger and therefore reducing the effectiveness of pruning. This is why DAME takes longer

to find a motif of the same length than in a random-walk database of similar size.

3.3.2 Performance for Different Block Sizes

As DAME has a specific order of disk access, we must show how the performance varies

with the size of the disk blocks. We have taken the first one million random walks from the

previous section and created six databases with different block sizes. The sizes we test are 40,

80, 160, 240, 320 and 400 MBs containing 5, 10, 20, 30, 40 and 50 thousand random walks,

respectively. Since the size of the blocks is changed, the number of blocks also changes to

accommodate one million time series. We measure the time for both I/O and CPU separately

for DAME Motif (Figure 3.3(left)) and for searchAcrossBlocks (Figure 3.3(right)).

Figure 3.3(left) shows that I/O time decreases as the size of the blocks gets larger and

the number of blocks decreases. On the other hand, the CPU time is worse for very low

or very high block sizes. Ideally it should be constant, as we use the same set of random

walks. The two end deviations are caused by two effects: When blocks are smaller, block

intervals become smaller compared to the closest pair distance, and therefore, almost every

74

10,000 20,000 30,000 40,000 50,000

2

3

4

5

6

7

8

9

10

11

12

Number of Time Series per Block

S
ec
o
n
d
s
in
 D
A
M
E
_
M
o
ti
f

x 103

10,000 20,000 30,000 40,000 50,000

0

1

2

3

4

5

6

7

8

Number of Time Series per Block

S
ec
o
n
d
s
in
 s
ea
rc
h
A
cr
o
ss
B
lo
ck
s

I/O

x 103

Figure 3.3: Total execution times with CPU and I/O components recorded on one million
random walks for different block sizes (left) for the DAME Motif method and (right) for the
searchAcrossBlocks method

point is compared to points from multiple blocks and larger number of disk accesses is re-

quired. When the blocks become larger, consecutive pairs on the order line in later blocks are

searched after the distant pairs on the order line in an earlier block. Therefore, bsf decreases

at a slower rate for larger block sizes. Figure 3.3(right) shows that the search for a motif

using the order line is a CPU-bound process since the gap between CPU time and I/O time is

large, and any effort to minimize the number of disk loads by altering the loading order from

the one adopted in DAME will make little difference in the total execution time.

3.3.3 Performance for Different Motif Lengths

To explore the effect of the motif length (i.e. dimensionality) on performance, we test

DAME for different motif lengths. Recall that the motif length is the only user-defined

75

parameter. We use the first one-million random walks from Section 3.3.1. They are stored in

20 blocks of 50,000 random walks, each of length 1024. For this experiment, we iteratively

double the motif length from 32 to 1024. For each length x, we use only the first x temporal

points from every random walk in the database. Figure 3.4(left) shows the result, where all

the points are averaged over five runs.

The linear plot demonstrates that DAME is free of any exponential constant (2d) in the

complexity expression, as in the optimal algorithm. The linear increase in time is due to

the distance computation, which needs a complete scan of the data. Note the gentle slope

indicating a sub-linear scaling factor. This is because longer motifs allow greater benefit

from early abandoning [70].

Number of Time Series per Block

S
ec
o
n
d
s
in
 s
ea
rc
h
In
B
lo
ck

Brute Force

MK

Bottom-Up

10,000 20,000 30,000 40,000 50,000

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200

3

4

5

6

7

8

9

10

Motif Length

S
ec
o
n
d
s
in
 D
A
M
E
_
M
o
ti
f

x 103

Figure 3.4: (left) Execution times on one million random walks of different lengths. (right)
Comparison of in-memory search methods

76

3.3.4 In-Memory Search Options

While searching within a memory block,DAME does a bottom-up search starting with pairs

of consecutive time series, continuing until it covers all possible pairs. Thus, DAME has a

consistent search hierarchy from within blocks to between blocks. There are only two other

exact methods we could have used, the classic brute-force algorithm or the recently pub-

lished MK algorithm [70]. We measure the time that each of these methods takes to search

in-memory blocks of different sizes, and experiment on different sizes of blocks ranging from

10,000 to 50,000 random walks of length 1024. For all of the experiments, the databases are

four times the block sizes and values are averaged over ten runs. From the Figure 3.4(right),

brute force search and the MK algorithm perform similarly. The reason for MK not perform-

ing better than brute force here is worth considering. MK performs well when the database

has a wide range and uniform variability on the order line. Since the database in this exper-

iment is four times the block size, the range of distances for one block is about one fourth

of what it would be in an independent one-block database of random walks. Therefore, MK

cannot perform better than brute force. The bottom-up search performs best because it does

not depend on the distribution of distances from the reference point, and moreover, prunes

off a significant part of the distance computations.

77

3.4 Experimental Case Studies

In this section we consider several case studies to demonstrate the utility of motifs in solving

real-world problems.

3.4.1 Motifs for Brain-Computer Interfaces

Recent advances in computer technology make sufficient computing power readily available

to collect data from a large number of scalp electroencephalographic (EEG) sensors and to

perform sophisticated spatiotemporal signal processing in near-real time. A primary focus of

recent work in this direction is to create brain-computer interface (BCI) systems.

In this case study, we apply motif analysis methods to data recorded during a target recog-

nition EEG experiment [15]. The goal of this experiment is to create a real-time EEG clas-

sification system that can detect “flickers of recognition” of the target in a rapid series of

images and help Intelligence Analysts find targets of interest among a vast amount of satel-

lite imagery. Each subject participates in two sessions: a training session in which EEG

and behavior data are recorded to create a classifier and a test session in which EEG data is

classified in real time to find targets. Only the training session data is discussed here.

In this experiment, overlapping small image clips from a publicly available satellite image

of London are shown to a subject in 4.1 second bursts comprised of 49 images at the rate

of 12 per second. Clear airplane targets are added to some of these clips such that each

burst contains either zero (40%) or one (60%) target clip. To clearly distinguish target and

78

non-target clips, only complete airplane target images are added, though they can appear

anywhere and at any angle near the center of the clip. After viewing the RSVP burst the

subject is asked to indicate whether or not he/she has detected a plane in the burst clips, by

pressing one of two (yes/no) finger buttons. In training sessions only, visual error/correct

feedback is provided. The training session comprises of 504 RSVP bursts organized into

72 bouts with a self-paced break after each bout. In all, each session thus includes 290

target and 24,104 non-target image presentations. The EEG from 256 scalp electrodes at 256

Hz and manual responses are recorded during each session. Each EEG electrode receives

a linear combination of electric potentials generated from different sources in and outside

the brain. To separate these signals, an extended-infomax Independent Component Analysis

(ICA) algorithm [58][28] is applied to preprocessed data from 127 electrodes to obtain about

127 maximally independent components (ICs). The ICA learns spatial filters in the form

of an unmixing matrix separating EEG sensor data into temporally maximally independent

processes, most appearing to predominantly represent the contribution to the scalp data of one

brain EEG or non-brain artifact source, respectively. It is known that among ICs representing

brain signals, some show changes in activity after the subject detects a target. However, the

exact relationships are currently unknown. In an ongoing project, we attempt to see if the

occurrences of motifs are correlated with these changes. We use DAME to discover motifs

of length 600 ms (153 data points), on IC activity from one second before until 1.5 second

after image presentation. Figure 3.5 shows the discovered motif.

79

0 100 200 300 400 500 600
-2

-1

0

1

2

3

Time (ms)

N
o
rm
a
liz
e
d
 I
C
 a
c
ti
v
it
y Motif 1

Segment 1
Segment 2

Figure 3.5: Two subsequences corresponding to the first motif

Figure 3.6 shows the start latencies of the first motif for a cluster with a radius of twice

the motif distance, i.e. twice the Euclidean distance between the two time series shown in

Figure 3.5. Note that the distribution of these latencies is highly concentrated around 100

ms after target presentation. This is significant because no information about the latency of

the target has been provided beforehand, and thus the algorithm finds a motif that is highly

predictive of the latency of the target.

Motifs can also be used as classifier features. Figure 3.7 shows the Euclidean distance

between the first motif and subsequences starting at all latencies in each epoch. A distinct

pattern of decreased distance can be seen in target epochs but not in non-target epochs. If the

minimum distance to motif 1 is used as a feature, an area of 0.83 under ROC curve can be

achieved in epochs shown in Figure 3.7.

80

-1000 -500 0 500 1000

10

20

30

40

50

60

70

80

90

100

110

Latency

E
p
o
ch
s

Before target

presentation

After target

presentation

IC 17, Motif 1

Figure 3.6: Motif 1 start latencies in epochs

Time (ms)

-1000 -800 -600 -400 -200 0 200 400 600 800

50

100

150

200

250

300 4

6

8

10

12

14

16

18

20

22

T
a
rg
e
t
e
p
o
c
h
s

N
o
n
-t
a
rg
e
t
e
p
o
c
h
s

Figure 3.7: Euclidean distance to Motif 1

3.4.2 Detecting Near-Duplicate Images

Algorithms for near-duplicate detection in images are useful for finding copyright violations,

detecting forged images, and summarizing large image collections (by showing only one

example from a set of near duplicates). These algorithms can be seen as two-dimensional

analogues of time series motif discovery. While many specialized algorithms exist for this

81

problem, it is clear that time series motif discovery could be used for this task, if we can find

a way to meaningfully representation images as “time series.” While there are many possible

ways to convert two-dimensional images to a one-dimensional signal, the most obvious is the

classic trick of treating the color distribution histogram as a time series [41].

To test this idea, we use the 40 million images from the dataset in [102]. We convert each

image to a pseudo time series by concatenating its normalized color histograms for the three

primary colors [38]. Thus, the lengths of the “time series” are exactly 768. We run DAME

on this large set of time series and find 1,719,443 images which have at least one and on

average 1.231 duplicates in the same dataset. We also find 542,603 motif images which have

at least one non-identical image within 0.1 Euclidean distances of them. For this experiment,

DAME has taken 6.5 days (recall that a brute-force search would take over a century). In

Figure 3.8, samples from the sets of duplicates and motifs are shown. Subtle differences in

the motif pairs can be seen; for example, a small “dot” is present next to the dog’s leg in one

image but not in the other. The numbers in between image pairs are the ids of the images in

the database.

3.4.3 Discovering Patterns in Polysomnograms

In polysomnography, body functions such as pulse rate, brain activity, eye movement, muscle

activity, heart rhythm, breathing etc. are monitored during a patient’s sleep cycle. To measure

the eye movements an Electrooculogram (EOG) is used. Eye movements do not have any

periodic pattern like other physiological measures such as ECG and respiration. Repeated

82

2495

21298

2477

21280

3305

22166

3245

21891

2553

21371

32751032

17012103

15513839

15513780

31391181

6791228

23277616

23277667

38468056

11896606

Exact Matches Approximate Matches

Figure 3.8: (left) Five identical pairs of images. (right) Five very similar, but non-identical
pairs

patterns in the EOG of a sleeping person have attracted much interest in the past because of

their potential relation to dream states. We use DAME to find a repeated pattern in the EOG

traces from the “Sleep Heart Health Study Polysomnography Database” [38]. The trace has

about 8,099,500 temporal values at the rate of 250 samples per second. Since the data is

oversampled, we downsample it to a time series of 1,012,437 points. A subset of 64 seconds

is shown in Figure 3.9.

1952 1960 1968 1976 1984 1992 2000 2008 2016
-200

0

200

Figure 3.9: A section of the EOG from the polysomnogram traces

After a quick review of the data, one can identify that most of the natural patterns are

shorter in length (i.e. 1 or 2 seconds) and are visually detectable locally in a single frame.

Instead of looking for such shorter patterns, we search for longer patterns of 4.0 seconds

83

long with the hope of finding visually undetectable and less frequent patterns. DAME has

finished the search in 10.5 hours (brute force search would take an estimated 3 months) and

found two subsequences shown in Figure 3.10 which have a common pattern, and very

unusually this pattern does not appear anywhere else in the trace. Note that the pattern has a

plateau in between seconds 1.5 and 2.0, which might be the maximum possible measurement

by the EOG machine.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-150

-100

-50

0

50

100

150

2304th second

1618th second

2304th second

1618th second

2304th second

1618th second

Figure 3.10: Motif of length 4.0 seconds found in the EOG

We map these two patterns back to the annotated dataset. Both the subsequences are

located at points in the trace just as the person being monitored was going back and forth

between arousal and sleep stage 1, which suggests some significance to this pattern.

3.5 Conclusion

In this chapter we have introduced the disk aware algorithm for exact motif discovery. Our

algorithm can handle databases of the order of tens of millions of time series, which is at

84

least two orders of magnitude larger than anything attempted before. We used our algorithm

in various domains and discovered significant motifs. To facilitate scalability to the handful

of domains that are larger than those considered here (i.e. star light curve catalogs), we may

consider parallelization, given that the search for different group sizes can easily be delegated

to different processors.

85

Chapter 4

Extension to Streaming Time Series

Time series motifs are approximately repeated subsequences of a longer time series stream.

Figure 4.1 shows an example of a ten-minute long motif discovered in telemetry from a

shuttle mission.

0 500 1000 1500 2000 2500

STS- 40 Z-Axis (excerpt)

Figure 4.1: Forty-five minutes of Space Shuttle telemetry from an accelerometer. The two
occurrences of the best ten-minute long motif are highlighted

Whenever a repeated structure is discovered, it immediately suggests some underlying

reason for the conservation of the pattern. In this case a little investigation tells us that this

86

pattern is indicative of a “correction burn” subroutine to compensate for random drift in the

orbiter.

However, as others have observed in many other settings, most data sources are not static

but dynamic, and data may stream in effectively forever. This suggests two obvious ques-

tions: is it possible to discover and maintain motifs on streaming data, and is it meaningful

and useful to do so? In this thesis we answer both questions in the affirmative. We develop

the first online motif discovery algorithm which monitors and maintains exact motifs in real

time over the most recent history of a stream. While we defer a formal definition of the

problem until later, Figure 4.2 gives a visual intuition of the problem .

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500

3000 3500

A

B

C

D

Figure 4.2: Maintaining motifs on a forty-five minute long sliding window. (top) Initially A
and B are the motif pair. (bottom) but at time 790, two new subsequences C and D become
the new motif pair of subsequences

Our algorithm has a worst-case update time which is linear to the window size, allow-

ing deployment in realistic settings with current off-the-shelf hardware. As to the utility of

87

streaming motif discovery, we show empirically its usefulness on several real world prob-

lems in the domains of robotics, wildlife monitoring, and online compression. In addition,

we show that our core ideas allow useful extensions of our algorithm to deal with data sources

that produce data at changing rates and discovering motifs in multidimensional streams.

The rest of this chapter is organized as follows. In Section 2 we introduce necessary

background materials and notation and in Section 3 we discuss related work. In Section 4 we

introduce our algorithm, and in Section 5 evaluate its performance. Section 6 we consider

some extensions to allow us to solve related problems. Section 7 sees an extensive testing of

our ideas in several diverse domains, and we offer conclusions and directions in Section 8.

4.1 Notation and Background

Our algorithm considers real time streaming environments. In this section we define the

environment in which our algorithm works and the notion of online motif. We begin by

defining the data type of interest, a streaming time series:

Definition 4.1 [STREAMING TIME SERIES] A streaming time series is a continuous

sequence x = (x1, x2, . . . , xt) of real-valued numbers where xt is the most recent value. The

numbers are generated at a rate of λ, which can be constant or variable within a range.

88

We are not interested in the entire history of the time series, but rather the recent history,

which we capture in a sliding window:

Definition 4.2 [SLIDING WINDOW] A sliding window (W) is the latest w numbers

(xt−w+1, xt−w+2, . . . , xt) in the streaming time series x.

Within a sliding window, we are interested in motifs, which informally are repeated sub-

sequences. We restate the definition of a subsequence for completeness.

Definition 4.3 [SUBSEQUENCE] A subsequence of length m of a streaming time series

x = (x1, x2, . . . , xt) is a time series xi,m = (xi, xi+1, . . . , xi+m−1) for 1 ≤ i ≤ t−m+ 1.

We are now in a position to define the online motif. We define the online motif of lengthm

in the most recent sliding window as the most similar non-overlapping pair of subsequences.

Definition 4.4 [ONLINE MOTIF] The online motif of length m of a time series x =

(x1, x2, . . . , xt) is a pair of subsequences (xi,m, xj,m) for 1 ≤ i < i + m ≤ j ≤ t −m + 1

such that d(xi,m, xj,m) is the smallest among all such pairs.

The reason for considering only the non-overlapping sequences is to avoid trivial matches

that are inherently similar because they share most of their values [22]. Glancing back at

Figure 4.2, we can see the examples of online motifs, which changed as time passed. Now

we can define the class of algorithms our method belongs to.

Definition 4.5 [EXACT ONLINE MOTIF] The exact search for the online motif of length

m of a time series x = (x1, x2, . . . , xt) finds the pair of subsequences (xi,m, xj,m) for 1 ≤

89

i < i+m ≤ j ≤ t−m+1 such that Euclidean distance between xi,m and xj,m is the smallest

among all such pairs.

Note that there is always a motif pair under the definition of an exact search. We denote

the output produced by an exact search as the exact motif, as opposed to the approximate

motifs, which may not be the most similar pair under Euclidean distance.

For ease of presentation we only discuss the case of maintaining a single motif pair.

However, it is simple to modify our algorithm to maintain a pattern that appears k-times or

to maintain all pairs having distances smaller than a threshold.

To measure the distance between subsequences we use the ubiquitous z-normalized Eu-

clidean distance as before.

At every time tick, a new subsequence xt−m+2,m of length m is generated in W and

the oldest subsequence xt−w,m is deleted from W . Therefore, in our model of online motif

discovery we assume that at every time tick a new object/point (i.e. subsequence) is generated

and the oldest object/point is deleted. Objects may have an exclusion condition (for example,

to avoid trivial matches) specifying the objects with which it should not be compared. This

model is general enough to discover the online motif in streams of independent objects such

as individual images, video frames, transactions and motion poses.

Our algorithm requires O(wm) arithmetic operations to compute all distances in one up-

date. The most costly part of this is floating point multiplication. Let’s assume a pessimistic

constant of b which roughly denotes the amount of time each floating point operation takes.

In current computers, b can be close to 10−8 seconds. Given this and a user-given (m,w)

90

pair, we can easily compute the maximum rate (1
bmw

) at which our algorithm guarantees to

operate. We assume that λ is below this maximum rate until Section 4.6.1, where we remove

the restriction.

4.1.1 Why is this Problem Hard?

Here we explicitly state why this problem does not lend itself to simple or “off-the-shelf”

solutions. The issues are well known in the general context of dynamic closest pair [34], but

are worth restating here.

Assume that we have identified the motif pair in a window W . We know the exact loca-

tions of the two occurrences of the motif, and their exact Euclidean distance D. If we now

insert a single data point at the head of the queue, what do we now know? The answer is

very little; the motif pair may have changed, and if it has, then all we know is that the new

motif pair has a distance of at most D. The locations of the new motif pair can be anywhere.

Suppose instead that we delete a single data point from the tail of the queue, what do we

now know? The answer is again, very little, as the new locations of the motif pair can be

anywhere. All we know is the (now) lower bound D on the motif distance. However, in the

case we are considering, we both insert (enqueue) and delete (dequeue) at each time tick, so

we have neither an upper nor lower bound on the motif distance, nor any constraint on where

they might be. So in principle, we can be forced to completely “resolve” the motif discovery

at each time step, with a O(w2m) cost, even though our data has changed only a tiny amount,

91

say, 0.0001%. However, as we shall show in the next section, by caching some computations

we can guarantee that we can maintain the motifs in just O(wm) time.

4.2 Related Work

Eppstein describes an algorithm for maintaining the closest pair of points under any distance

measure [34]. This algorithm solves a slightly more general problem than the one we con-

sider, in that it can have any arbitrary order of insertion and deletion, and it does not require

metric properties in the distance measure. It has found use mainly in speeding up agglomera-

tive clustering and in some other offline applications. There is a subtle but critical difference

between the dynamic closest pair maintained in [34][74] and the online motif discovery we

consider here. In our case we are in a streaming environment where for every update we have

a fixed time until the next value comes in. As such we must optimize the worst-case time at

each insertion for an application that runs forever. In contrast, the method in [34] optimizes

the total running time after all of the updates (i.e. the clustering) for an application that runs

for a finite time. These distinctions are critical, and cannot be removed by assuming a buffer

in which we temporarily cache difficult cases, since an arbitrary number of difficult cases

may arrive one after another to overflow the buffer.

Another approach in dealing with dynamic closest pair maintenance is commonly known

as the “lazy approach” [17]. Here the data structure is not updated until the closest pair

changes. In a streaming scenario we are interested in, this idea reduces the amortized time

92

costs, but does not allow us to tightly bound the time per individual object arrival on arbitrary

streams.

In [12] an optimal algorithm for maintaining the closest pair of points is described. It

runs in logarithmic time with linear space. This algorithm works by hierarchically dividing

the space into sub-spaces and has a problematic exponential constant (2d) where d is the

dimensionality of the objects. It is well understood that space/data partitioning methods do

not work well beyond dimensionality on the order of eight to ten [109]. However, the time

series motifs that we are trying to maintain can be of any length from hundreds to thousands.

Eppstein actually introduces two different types of data structures in [34], a quadratic

space-linear update time and a linear space-O(w log2w) update time considering constant

m. We believe that for the general dynamic closest pair problem these are currently the best

two choices. Our algorithm falls in the first category and utilizes the temporal ordering of

updates to have an amortized O(w
3
2) space complexity.

In [26], statistics such as average, sum, minimum, maximum etc. are maintained over a

sliding window. Their objective is to approximate these statistics in bounded space and time,

whereas we are dealing with higher level statistics ,i.e. the closest pair. Our work can be seen

as an attempt to add motif to the set of statistics that can be maintained; however none of the

techniques in [26] are of direct help to us. In summary, to the best of our knowledge, none

of this work, nor the rest of the literature on maintaining the closest pair of points has direct

bearing on the exact search problem.

93

4.3 Online Monitoring of Motif

In this section we describe our algorithm with a running example. Assume that we are given a

set of eight points in 2D as shown in Figure 4.3(left) (for now ignore the connecting arrows).

Every point is numbered by the timestamp of their time of arrival. Recall that our task is

to find the closest pair of points (currently 4 and 1), and maintain the closest pair as we

simultaneously delete 1 and insert 9, then delete 2/insert 10, then delete 3/insert 11 and so

on. We will begin with a naive version and revise it to define our algorithm.

4.3.1 The First Solution

First note that the closest pair in Figure 4.3(left) can be changed by one or both of the

following two events (see Figure 4.3(right)):

• Deletion: If one of the objects in the closest pair is deleted, there must be a new closest

pair having a distance not less than that of the departing closest pair. For example, after

1 is deleted (8,2) is the new closest pair.

• Insertion: If the new object is closer to any object than the current closest pair, the

motif pair must be updated to reflect that. For example, (6,9) is the new closest pair

after the insertion of 9.

Note that in our example, the closest pair has been changed by both the insertion and deletion.

Now, the arrows connecting the points in Figure 4.3 represent the nearest neighbor re-

lation. For example, the arrow from 5 to 2 denotes that 2 is the nearest neighbor of 5. To

94

4

5

2

7

3

6

8

1

4

5

2

7

3

6

8

1

9

Figure 4.3: (left) A set of 8 points. (right) At a certain time tick 1 is deleted and 9 is inserted

8 7 21 8 1 24

5 1 3 24

8 67 RNN-list

Nearest Neighbor

Points

Arrive

Points

Depart 1 2 3 4 5 6 7 8

7 7 92 3 2 68

7 9 3 2 65

48

2 3 4 5 6 7 8 9

Figure 4.4: (left) The data structure of points. (right) The data structure after the update (1 is
deleted and 9 is inserted)

maintain the closest pair online, our first choice is to track the nearest neighbors of all of

the objects. We use the data structure shown in Figure 4.4(left) for this purpose. Here the

horizontal arrows show the direction of insertion and deletion of normalized subsequences

represented as points. Each data point is associated with a list of pointers to the reverse near-

est neighbors, the RNN-list. RNN-list is not ordered therefore insertion to it is a constant

time operation. A data point also has a pointer to its nearest neighbor, NN. With each pointer

the distance associated with the pair is also stored. If we can maintain such a data structure,

95

we can answer the closest pair query for this sliding window efficiently simply by finding the

minimum of the NN distances. Next we show how we update this data structure.

Update upon insertion: When a new point 9 is inserted, the distances to all of the

existing points (1-8) from 9 are computed to find its NN (i.e. 6). While computing the

distances we may find that the new point is nearest to an older point. Therefore, we may

need to reset an older point’s NN as well as the new point’s RNN-list. For example, after 9

is inserted, the NN of 6 is changed to 9 from 8 (Figure 4.4(right)), and also, 6 is inserted in

the RNN-list of 9. After the nearest neighbor x of the new object is found we need to update

the RNN-list of x. For example, the NN of 9 is 6 and therefore, 9 is added in the RNN-list

of 6 (Figure 4.4(right)). The update upon insertion is O(wm), as we have no way to avoid

those O(m) distance computations.

Update upon deletion: To handle deletion we need to look at the RNN-list of the de-

parting point. For each of those reverse nearest neighbors, we need to find their new nearest

neighbors. For example, after 1 is deleted, both 4 and 7 have been assigned new nearest

neighbors (Figure 4.4(right)). In the worst case, a point can have O(w) reverse nearest

neighbor and thus the naive approach to handle the deletion would take O(w2m) time.

Counting both insertion and deletion, the naive algorithm needs O(w2m) update time.

The space complexity is O(w) since each point appears exactly once in all of the RNN-lists.

In the next version of our algorithm we reduce the update time complexity to O(w2). As

visually hinted at in Figure 5.2(left), we create a huge space overhead in addressing the

problem, which we will mitigate later.

96

The squared space version:

In this version we change the data structure to store a complete neighbor list (N-list) instead

of just the nearest neighbor (NN). The N-list entries are sorted by the distances from the

owner of the list (Figure 5.2(left)). Here also the closest pair is the minimum of the first

points of the N-lists.

Update upon insertion: The new object needs to be compared with every old object

and be inserted in every old object’s N-list in distance order. If we implement N-list by min-

heap then insertion in an N-list is O(logw). As a whole, the insertion cost can be as low as

O(wm). If N-lists are simple linked-lists, the insertion cost would be O(w2) since ordered

insertion in is O(w) and w > m.

Update upon deletion: For every reverse nearest neighbor x of the departing point p,

we delete the first few entries (including the departing one) from the N-list of x to get the

next nearest neighbor y within the sliding window. We also insert x in the RNN-list of y.

For example, when 1 goes out of the sliding window (Figure 5.2(left)), 1 is deleted from the

heads of the N-lists of all of its RNNs (7 and 4). Then 7 and 4 are inserted in the RNN-lists

of 3 and 7 respectively. Similarly, when 2 departs, 2 is deleted from 5’s N-list leaving 1 in

the head of 5’s N-list. Since 1 would be an invalid entry as it is already out of the sliding

window, it is also deleted for consistency. 2 is then deleted from 8’s N-list leaving 6 in the

head which is a valid entry as 6 is not yet departed.

If we use min-heap we may need to heapify after every deletion to get the next minimum

distance. Therefore, min-heap increases the deletion cost to O(w2 logw). For simple linked-

97

list, the worst case is O(w2) as we may need to delete w2 entries from an overgrown 2w2

sized data structure.

Altogether, we opt for simple linked-list as the data structure for the N-list and can per-

form an update in O(w2) time.

8 7 21 8 1 24

5 1 3 24

8 67

5 1 17 3 3 67

7 6 75 2 4 55

1 4 83 7 5 72

4 8 42 5 2 13

6 1 38 1 8 38

3 5 66 4 6 46

1 2 3 4 5 6 7 8

1 1 21 3 1 2

2 13 2 3 6

42 5 4 5

3 1 5 7

4 2 1

6 3

4

1 2 3 4 5 6 7 8

R-lists

N-lists

87

54

3

2

6

Figure 4.5: (left) The squared space structure. Each point has one RNN-list (upper part) and
one N-list (lower part). Both of the lists are in order of the distances. (right) The reduction
of space using observation 4.1

4.3.2 Reducing Space and Time Complexity

We use two observations stated below for further refinement.

Observation 4.1 Every pair of points appears twice in the data structure. If we keep just

one copy of each, it is still possible to retrieve the closest pair from this data structure.

98

To exploit the above observation, we can skip updating the old N-lists during insertion

even if the new point becomes the nearest neighbor of an older point. That way the insertion

involves only building the N-list of the new point and inserting into exactly one RNN list.

This is clearly O(wm) as we can sort the list after inserting all of the old objects. Figure

5.2(right) shows the data structure after applying observation 4.1. Note that the N-list of a

point now only holds points that arrived earlier than it. Also note that the RNN-lists contain

only later points. For example, the RNN-list of 7 does not have 3 although 7 is the NN of

3. The RNN-list of a point is built when subsequent points are added and we will denote

it as R-list (Reverse list) from this point on. The reason is that R-list points to the opposite

direction of N-list and stores the pointer to the later/newer N-lists where its owner is in the

head.

Deletion is still O(w2). Since the N-lists are always kept sorted and valid, the motif pair

is guaranteed to be among the first points of the N-lists as before.

Observation 4.2 A point x can never make a motif (x, y) with a later point y if there is a

point x < z < y such that d(x, y) ≤ d(z, y).

This is because (z, y) would remain the closest pair when x goes out of the sliding win-

dow. The direct implication of the above is that the points in an N-list can be stored in the

strict increasing order of their timestamps starting with the nearest neighbor. Obviously the

distance ordering must be preserved.

For example, (6,4) will never get a chance to be the motif because (6,5) has smaller

distance than (6,4) (Figure 5.2(right)) and we can safely skip (6,4) when the N-list of 6 is

99

created in the newer version (Figure 4.6(left)). Note that < 2, 5 > is a strictly increasing

sub-list of the N-list of 6, but it does not start with the nearest neighbor (3) and so it would

be an erroneous N-list. The correct N-list for 6 is < 3, 5 > as shown in Figure 4.6(left).

After building the N-list, we can use observation to delete some of the older points safely

and build a strictly time ordered list by only one pass over the N-list. Therefore, it does

not increase the insertion cost. As a benefit of the strict temporal ordering, now a departing

point can only occur in the head of the N-lists of the points in its R-lists and nowhere else.

This removes the burden of deleting extraneous pointers after the heads at deletion time and

reduces the deletion cost toO(w). The update cost is dominated by the distance computations

upon insertion which is O(wm).

The space complexity still appears as worst-case-quadratic with the above two observa-

tions. In the worst-case, the N-list of every point could contain all of the previous points

exactly in the order of their arrival. However, we argue that such a pathological worst case

can never occur. In terms of amortized space cost, we can prove that our algorithm needs

O(w
3
2) amortized space. The proof is the following.

The N-list of a point arriving at time t can be any of the random permutations of all of the

objects preceding it i.e. t − w + 1, t − w + 2, . . . , t − 1. There are O(w) preceding objects

and w! possible permutations. Now, we are storing the neighbors in the ascending order of

their arrivals in the NN-list. Therefore, the average length of an NN-list is at most as large

as the average length (Ln) of the longest increasing subsequence of a random permutation of

length w. There have been many conjectures about the exact distribution of Ln but all agree

100

that the expected value is O(n1/2) [79]. Therefore, the expected space needed for the data

structure is O(w
3
2).

Reducing Time to create N-list:

To further reduce the update time we need to reduce the number of distance computations

upon insertion. We can use an order line [70] to order the points on a 1D line. The order

line is just a circular projection of all of the points around a reference/pivot point [30]. The

relative distance between a pair of points on the order line is a lower bound on their true

distance in the original space. Thus, for every pair of points we now know a lower bound on

their true distance, which can be used to decide if we will compare and insert a point into the

N-list of the newly added point. To facilitate this, we first find an allowable upper limit of

the distance between an older point and the new point and then check if the lower bound for

this pair is larger than this upper limit. Given any growing N-list, the allowable upper limit

of the distance between a point x and the new point n is the minimum of d(n, y) for y > x.

To illustrate this idea, in Figure 4.7 the evolving N-list of point 6 is shown. On the

left the order line is shown with points 1 through 6 and their positions/referenced distances

illustrated. Starting from 6 the algorithm walks both directions on the order line and compares

every new point encountered with point 6. Thus the order line provides a specific order of

the points within the sliding window to be compared with the new point. In this example the

order can be 3, 2, 1, 4 and 5. The state of the N-list after each of the points is considered is

shown by Figure 4.7. First of all, 3 is inserted as UL(3, 6) =∞. Now, 2 has a lower bound

101

1 1 21 3 1 2

8 67

54

2 43 5 3 6

4 7

5

6

1 2 3 4 5 6 7 8

3

2

2 3 32 3 2 6

4 93

78

54 4 6 8

5 7

6

2 3 4 5 6 7 8 9

5 6

Figure 4.6: (left) The space reduction using the temporal ordering of the neighbors. (right)
In the next time tick 1 is deleted from all of the lists and 9 is inserted

LB(2, 6) = 1, which is smaller than the upper limit UL(2, 6) = d(3, 6) = 1.5. Therefore, we

compute d(2, 6) = 3, which is larger than the UL, and so 2 is not inserted. Similarly, 1 has

a lower bound LB(1, 6) = 2 which is larger than UL(1, 6) = d(3, 6) = 1.5 and therefore, 1

is not inserted. After that, 4 is inserted, as it has LB(4, 6) = 2 smaller than UL(4, 6) = ∞.

Finally, 5 is inserted for the same reason in the list. The last step is to sort the list and remove

out-of-order points. For example, 4 is knocked out of the N-list at this step.

4.4 Online MK Algorithm

With the above example elucidated, we can complete the description of the subsequent mod-

ifications made to the naive algorithm to produce our final algorithm named Online MK.

Algorithm 4.1 through 4.3 show the pseudocode of our algorithm. There are two subrou-

102

Clean

up

(6, 7)
(3, 6)

(2, 8)

(5, 11)

(4, 9)

(1, 5)
(3) d(3,6) = 1.5

(1) d(1,6) is not computed

(2) d(2,6) = 3 > d(3,6)

(4) d(4,6) = 6

(5) d(5,6) = 4.5

33 3 3 3

4 4

3 1 4 52

Insertion Order(Point, Position)

R-lists after every insertion

6 6 6 6 6

3

5

6

5

r

Figure 4.7: Building the Neighbor list of point 6. (left) The order line while 6 is being
inserted. (middle) The states of the N-lists after each insertion. (right) The distance values
assumed in this example

tines for insertions and deletions made to the sliding window. Each of them takes in a point

(p) as the argument and performs the necessary operations on the data structure. At every

time tick, insertPoint(latestpoint) and deletePoint(oldestpoint) are called to keep the

data structure updated. The locations and the distance of the motif pair are always available

after these two operations. The data structure is assumed to be accessible by every subroutine.

When insertPoint(p) (Algorithm 4.1) is called with the new point p, p is compared with

the reference point (randomly generated or chosen from the database [70]). By projecting

p on the order line (line 1) we mean computing the referenced distance (i.e. d(p, r)) and

inserting it in the sorted order-line (which is simply a doubly-linked list of pointers). After

that, the buildNeighborList(p) (Algorithm 4.2) is called to insert p and create its N-list in

the data structure. As described earlier, the points are considered in the order of the distance

103

Algorithm 4.1 insertPoint(p)
Require: An order line
Ensure: p is inserted in the data structure

1: Project p on the order line
2: buildNeighborList(p)
3: Sort p.N-list in ascending order of distances from p
4: Remove all x from p.N-list such that x.timeStamp < prevN−list(x).timestamp
5: Insert p in the R-list of p.N-list.head
6: if d(p, p.N-list.head)< motif distance then
7: Update motif pair with (p,p.N-list.head)

from p on the order line (line 2 in Algorithm 4.2). Before inserting a point n in the N-list,

the algorithm finds the allowable upper limit u by looking at the current N-list (line 3) and

compares it with the lower bound which is the same as the difference between the referenced

distances of p and n (i.e. LB(n, p) = |d(n, r)− d(p, r)|). If the lower bound is smaller than

the upper limit, the algorithm computes the distance d(p, n) and again compares this with u.

In case of d(p, n) < u, n has to be inserted in the N-list of p. The loop (line 1) finishes when

the immediately previous point in the time order of p is already inserted and the lower bound

of a point is larger than the d(prevtime(p), p). The reason for this is that all points that would

be considered if the loop were not broken must have u < d(prevtime(p), p) and therefore

would never succeed in the if statement at line 4.

When buildNeighborList(p) returns, the N-list is sorted according to the distances from

p (line 3 of Algorithm 4.1) and all the points that meet observation 4.3.2 are removed from

the N-list (line 4). Then, p is inserted in the R-list of the first point of its own N-list (line 5).

At line 6 the algorithm checks if the new point forms a motif and updates the motif pair if it is

so. Note that the computation of upper limit should be efficient enough to preserve the benefit

104

Algorithm 4.2 buildNeighborList(p)
Require: An order line
Ensure: Neighbor list of p is built

1: while true do
2: n← next point from p on the order line
3: u← UL(n, p.N-list)
4: if LB(n, p) < u then
5: if d(n, p) < u then
6: insert n in p.N-list at the head
7: else if LB(n, p) ≥ d(prevtime(p), p) then
8: break

Algorithm 4.3 deletePoint(p)
Require: An order line
Ensure: p is deleted from the data structure

1: for all points q in the R-list of p do
2: Remove q.N-list.head
3: Insert q into R-list of q.N-list.head
4: Remove p from the order line
5: if p is one of the motif pair then
6: Find x for which d(x, x.N-list.head) is minimum
7: Update motif pair with (x, x.N-list.head)

of reduction in distance computation. We leave it as a design choice for the practitioners for

brevity and lack of space.

When the deletePoint(p) (Algorithm 4.3) is called with the oldest point p, all of its

reverse neighbors (q) will lose their nearest neighbor which is p itself (line 2). Since q is a

later point than q.N-list.head, the algorithm inserts q into the R-list of q.N-list.head. If p is

one of the motif pair, the algorithm finds a new motif by finding the minimum of all of the

nearest neighbor distances (lines 6-7).

105

4.5 Performance Evaluation

We have used four very different datasets in our experiments, EEG trace [70], EOG trace [71],

insect behavior trace [70] and a synthetic random walk (RW). All datasets, codes, videos and

numbers used to generate the figures in this section are available to be downloaded from the

supporting webpage [2]. We use a 2.67 GHz Intel quad core processor with 6GB RAM.

To the best of our knowledge there is no other algorithm that discovers time series mo-

tifs online1, although there are works on dynamic maintenance of the closest pair in high

dimensionality. It is possible to trivially modify any of these algorithms to perform the on-

line closest pair problem. We have selected the highly optimized implementation of the well

referenced work [34] for this purpose. To be fair to the authors of [34], we note that we

made changes to the implementation to specialize it for time series motif discovery, and the

original code is more general than our problem requires, as it allows arbitrary insertions and

deletions, whereas we only need to be able to support insertions at the “head” and deletions

at the “tails.”

We have used the implementation of the FastPair data structure as it performs best

in most of the applications [34]. Figure 4.8 shows that our algorithm grows a lot more

slowly than FastPair if we change both of the parameters w and m while fixing the other

at a specific value. For different datasets FastPair performs almost identically, so we show

only the best one. The speedup in average update time is guaranteed as we compute O(w)

1Based just the title, the reader may imagine that On-line motif detection in time series with SwiftMotif [37]
discovers time series motifs online. However this work finds approximate motifs offline then approximately
filters them online

106

distances per update while FastPair computes O(w log2w) distances. Although we cache

more statistics and thus use more space per point, in Figure 4.9 we can see an almost flat

average space usage per point over a large range of window sizes and motif lengths. This

is significantly less than the worst case space needed per point, which is O(w). Note that

random walk needs significantly larger N-lists to accommodate more neighbors. The reason

for this is the prominent low-varying trends of random walk. For any m, a new subsequence

becomes neighbor to a relatively larger set of subsequences that just show the same trend

after normalization even if they have different slopes and variances.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fast Pair

Insect

EEG

EOG

RW

A
v
er
ag
e
U
p
d
at
e
T
im
e
(S
ec
)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

Window Size (w)

0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Insect

EEG

EOG

RW

Fast Pair

A
v
er
ag
e
U
p
d
at
e
T
im
e
(S
ec
)

Motif Length (m)

Figure 4.8: Empirical demonstration of the slow growth of average update time with respect
to window size (w varies, m = 256) and motif length (m varies w = 40, 000)

We have two parameters to be set by the users, w and m. Optimum values of (w,m)

significantly depend on the domain and are very easy for the practitioners to interpret as both

can be measured in seconds or in the number of samples. In Figure 4.10 we show the average

update time per point for every combination of two sets of possible values ofw andm (Figure

4.10). Although the Figure shows values for the EEG dataset, other datasets exhibit a similar

107

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

10

20

30

40

50

60

70

80

90

100

110

Insect

EEG

EOG

RW

A
v
er
ag
e
L
en
g
th
 o
f
N
-l
is
t

Window Size (w)

0 200 400 600 800 1000

0

50

100

150

200

250

300

350

Insect

EEG

EOG

RW

Motif Length (m)

A
v
er
ag
e
L
en
g
th
 o
f
N
-l
is
t

Figure 4.9: Empirical demonstration of the slow growth of average length of N-list with
respect to window size (w varies, m = 256) and motif length (m varies w = 40, 000). Labels
are in order of the heights of the right-most points of the curves

shape. Figure 4.10 shows the space used per point for the EOG dataset. Note that there are

three zero values showing the invalid combinations where a motif cannot be defined such as

w=1000, m=512.

64
128

256
396

512
1024

1k
2k

4k
8k

10k
20k

40k

0

0.02

0.04

0.06

Window Sze(w)Motif Length (m)

A
v
er
a
g
e
 U
p
d
a
te
 T
im

e
(s
ec
)

Motif Length (m) Window Size (w)
64

128
256

396
512

1024

1k
2k

4k
8k

10k
20k

40k
0

50

100

150

Window Size (w)Motif Length (m)

A
v
e
ra
g
e
 L
e
n
g
th
 o
f
N
-l
is
t

Motif Length (m) Window Size (w)

Figure 4.10: (left) Time usage per point in EEG dataset with varying w and m. (right) Space
usage per point in EOG dataset with varying w and m

108

As impressive as these results are, the following observation allows us to further improve

them. In most applications, we can define the maximum distance (dm) beyond which no

pair can be meaningfully called a motif simply because they are not similar enough to be

of interest in that domain. As a concrete example, in the wildlife monitoring application

discussed in Section 4.7.2, we found that motifs that had a value greater than about 12.0 did

not correspond to sounds that people found to be subjectively similar. Therefore, we can ask

the algorithm not to even bother finding the motif pair, if they would have a distance of more

than dm=12.0. To incorporate dm in our algorithm, only line 8 in Algorithm 4.2 needs to be

changed, to test if LB(n, p) ≥ min(d(prevtime(p), p), dm). If we can obtain a reasonable dm

from domain experts, it can reduce the number of distance computations performed per point

with the help of the order line. The reason for this is that our algorithm can prune off all of

the pairs having distances > dm without computing the true distances.

Consequently, it makes our algorithm faster. Figure 4.11(left) shows that when we use

dm=0.4m (equivalent to 80% correlation) and 0.2m (equivalent to 90% correlation) then

the average number of distance computation in the EEG dataset has been reduced for every

window size. The speedup is generic for all of the datasets, as shown in Figure 4.11(right).

4.6 Extending Online MK

The basic online motif discovery algorithm described above can be extended, augmented

and modified in numerous ways. We shared a very early draft of this work with domain

109

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

102

103

104

105

105

Window Size (w)

A
v
er

ag
e

D
is

ta
n

ce
 C

o
m

p
u

ta
ti

o
n

FastPair

d
m
= 0.2m

d
m
= ∞

d
m
= 0.4m

0

0.01

0.02

0.03

0.04

InsectEEG EOG RW

d
m

=
 ∞

A
v
er

ag
e

U
p

d
at

e
T

im
e

(S
ec

)

d
m

=
 0

.4
m

d
m

=
 0

.2
m

Figure 4.11: (left) The average amount of distance computation is much less in our algo-
rithm than FastPair for EEG and further decreases with decreasing dm. (right) Speedup is
consistent over all of the datasets for m=256 and w=40,000

experts in motion capture, medicine, robotics and agricultural monitoring, and asked them

to suggest a “wish list” of extensions. The top two requests were adapting to variable data

rates (robotics and agricultural monitoring) and handling multidimensional motifs (motion

capture, robotics). In the next two subsections we show how this can be accomplished.

4.6.1 Adapting to Variable Data Rate

Recall that our framework allows a guaranteed performance rate. That is to say, given values

for m, w and a time to compute one distance calculation, we can compute the fastest arrival

rate λ that we can a guarantee to handle. However, even if asked to perform at exactly

this rate, we can generally expect to have idle CPU cycles, simply because there is a gap

between the pathological worst case we must consider and the average performance on real

datasets. An obvious question is whether we can we bridge this gap between our average

110

performance, and the worst-case situation we must guarantee to handle, but expect to rarely

if ever encounter in the real world. The problem is exasperated by the fact that up to this point

we are assuming constant arrival rates. For example, suppose that a stream produces data at

100Hz 99.999999% of the time, but very occasionally produces a burst at 120Hz. If we can

just handle 100Hz with an off-the-shelf processor, must we really spend $300 for a faster

processor that can handle the rarely seen faster rate? Much of the literature on monitoring

streams for various events makes the constant arrival rate assumption [93]. However, variable

arrival rates are common in many domains. Previously, similar problems have been dealt with

by load shedding in Data Stream Management systems with techniques that allow dropping

operators [101], while still maintaining the quality of the results. We believe that skipping

points is also the best solution in the current context.

Concretely, we skip every point that arrives within the current update operation (one

insertion and one deletion). For example, for a 100Hz stream, if the update for xi,m takes

30ms then our algorithm would skip two immediate points (xi+1,m and xi+2,m) and would

start updating from the third point (xi+3,m) on. However, if an update takes less than 10ms

then we would not skip the following point. Therefore, for a smaller average update time (i.e.

6ms in a 100Hz stream) a whole range of data usage (amount of data not skipped) is possible.

For example, if all of the updates take 6ms then 100% data points are used and nothing is

skipped. In contrast, about 50% of the data will be skipped if there are oscillating update

times of 1ms, 11ms, 1ms, 11ms and so on. Figure 4.12(left) shows the fraction of the stream

that is not skipped for different data rates with of w=32,000. For most of our datasets, our

111

algorithm can process at 200Hz while skipping every alternate point. Most real time sensors

work on less than 100Hz, a rate at which we process more than 60% of the data.

Obviously there is a chance that one of the skipped points is a potential motif. There is no

way to predict if a skipped point would be a motif with some future subsequence. Therefore,

we accept this potential loss for the sake of an infinitely running system. In Figure 4.12(right)

we show that although we skipped 30-40% of the points in high data rates (i.e. over 100Hz),

we did not miss many of the motifs. The drop rate of the number of motifs discovered is

slower than the drop in data usage.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fraction of Data Used

F
ra
ct
io
n
 o
f
M
o
ti
fs
 D
is
co
v
er
ed

EOG

Random Walk

EEG

Insect

0 50 100 150 200 250

0.4

0.5

0.6

0.7

0.8

0.9

1.0
EOG

Random Walk

EEG

Insect

F
ra
ct
io
n
 o
f
D
at
a
U
se
d

Data Rate (Hz)

Figure 4.12: (left) Fraction of Data Used (the amount of subsequences considered) plotted
against the varying data rate for w=32,000. Our algorithm can operate at 200Hz while skip-
ping roughly every other point. (right) The fraction of the motifs discovered drops more
slowly than the fraction of data used

If we considered the unique motifs (non-overlapping) only, our algorithm would rarely

miss any of them. The reason for this is the following: “A skipped subsequence is very similar

to the previous and following non-skipped subsequences” (i.e. they are “trivial matches”

112

[22]). Thus, even if we skipped a subsequence, its trivial mates would get a chance to form a

motif that is almost identical to the non-skip version.

4.6.2 Monitoring Multidimensional Motifs

Our algorithm is trivially extendible to multidimensional time series motifs. For simplicity,

let’s consider the two-dimensional case of online motif discovery. At every time tick here we

have exactly two points arriving and two points departing. For the two time series we keep

two separate data structures, each similar to Figure 4.6(left). Depending on the application

we can ignore/allow a motif within/across the same/different series. The primary change is

to redefine the set of subsequences that are compared with the latest subsequence at the time

of insertion. Thus, in the N-list and R-list, nodes can point to points in both of the sequences.

Both of the observations of Section 4.3.2 hold for such N-lists, and the size of an N-list on

average is still O(w
1
2).

The update cost is now O(wd), where d is the number of simultaneous time series. The

space needed for the whole data structure is O(w
3
2d). The closest pair can be found as before

by checking the heads of the N-lists in both of the data structure.

4.7 Applications of Online Motifs

Online motif discovery is appropriate for settings where real-valued numbers are generated

at a high rate and there is a necessity for tracking a particular behavior that creates similar

113

subsequences in the stream. We have tested our algorithm on several datasets that fit this

model, and use online motif discovery as a sub-routine. We note that these case studies

are really demonstrations rather than experiments. In particular, space limitations prohibit

us from providing pseudocode and some minor details. However, this is useful to motivate

some applications made possible by online motif discovery. Note that, as before, all data and

code is freely available at [2].

4.7.1 Online Summarization/Compression

Online summarization/compression of time series data is an important problem that has at-

tracted considerable research. Existing approaches use various time series representations,

including piecewise linear approximations (PLA) (as shown in Figure 4.13(middle)), piece-

wise constant approximations [?], Fourier approximations [80] and wavelets [16]. However,

the obvious idea of summarizing a real-valued stream by dynamically finding reoccurring

patterns in the data, placing one occurrence in a dictionary and assigning future occurrences

to pointers to the dictionary entry, does not appear in the literature. We believe that this

omission is due to the fact that until now there was no practical method to find the necessary

reoccurring patterns in real time. Clearly the results in this chapter repair this omission.

Plugging motifs into virtually any online compression algorithm is very simple. Most of

the algorithms keep a small buffer of raw data similar to our sliding window. Within that

buffer they run a simple search algorithm, deciding, for example, whether to approximate a

heartbeat with 6 or 5 linear segments (See Table 6 of [50] as a concrete example) All we have

114

0 500 1000 1500 2000

Raw

PLA

MR

A

B
A AB B B B B

Figure 4.13: (top) An excerpt of record sddb/51 Sudden Cardiac Death Holter Data. (mid-
dle) A PLA of the data with an approximately 0.06 compression rate (bottom) A Motif-
Representation approximation of the data at twice the compression rate still has a lower error

to do is add a new search operator that asks “would it be better to approximate this section

with linear segments, or one of the motifs in the current motif dictionary?” Given this idea,

all we need to do is set two parameters; how many motifs and of what length we should keep

in the dictionary. In Figure 4.13 we show an excerpt where we chose (after seeing the first

five minutes of the data) to maintain just two motifs, one of length 250 and one of length 200.

In this example we compare our approach to the most referenced method [81], which

uses PLA. We found that even if we force the motif-representation based method to use half

the space of PLA, it can still approximate the data with a residual error that is approximately

one-ninth that of PLA. The approximations achieved are not only of a higher fidelity than

other methods, but have the advantage of being highly interpretable in some circumstances.

Note that the improvements achieved by the motif based algorithms are highly variable. On

stock market data, with little or no repeated structure, there is no improvement; but on normal

115

heartbeats, which are of course highly repetitive, the reduction in size (for the same residual

error as PLA) can be two or three orders of magnitude for larger datasets.

4.7.2 Acoustic Wildlife Management

Acoustic wildlife management is a useful tool for measuring the health of an eco-system, and

several projects are currently monitoring the calls of various birds, frog and insects [103]. A

key issue is that while sensors typically monitor twenty-four hours a day, memory limits

for storage, or bandwidth limits for transmission, form a bottleneck on how much data can

be retained in field-deployed sensors. For example, [103] reports that when using a simple

thresholding algorithm, “we have been able to reduce half an hour of raw recording to only 13

seconds of audio,” however, they acknowledge that this data comes with some false positives.

However, as [27] notes, “Animals of many species sing or call in a repetitive and species

specific fashion” (our emphasis). We can exploit the repetitive nature of certain bird calls to

reduce the amount of data retained while also reducing the false positive rate. For example,

consider our efforts to monitor a sensor from woods in Monterrey, California. The sound data

is converted into mel-frequency cepstrum coefficients mfcc, and only the first coefficient is

examined. In this project, only Strigiformes (owls) are of interest, and domain experts have

noted that most owls repeat their calls in a window of eight to ten seconds and that the

calls last from one to three seconds [86]. Given this, we set w = 12 seconds, and m = 3

seconds, erring a little on the long side of those values. On a thirty second trace that we

manually confirmed had only ambient noise, we found that the mean motif value was 42.3,

116

with standard deviation of 7.1. Given that we only record sounds that have corresponding

motifs with a value less than 10.0, such a value is very unlikely to happen by chance. In

Figure 4.14 we show an example of a detected motif with a value of 4.57, which corresponds

to the call of a Great Horned Owl.

0 50 100 150 200 250

hoo, hooo, --- hooo , hooo

0 200 400 600 800

W = 12 seconds

m = 3 seconds

Figure 4.14: (top) A stream is examined for motifs 3 seconds long, with a history of 12
seconds. (bottom) The discovered motif is the cry of a Great Horned Owl, whose cry is
phonetically written as hoo, hooo,—,hooo, hooo

4.7.3 Closing the Loop Problem

Closing the loop is a classic problem in robotics in which we task the robot with recognizing

when it has returned to a previously visited place. The robot may sense its environment with

a multitude of sensors, including cameras and ultrasonic transceivers, all of whose output can

be represented as “time series.” The problem is challenging in two aspects: first, the robot

must be able to recognize that it has returned to a previously visited place. This is a significant

117

challenge, but assuming we can solve it, there is the second challenge of mitigating time and

space complexity on resource limited robots. Naturally, we can see our algorithm as a tool

for continuously maintaining the most likely candidate locations for loop closure.

0 400 800 1200 1600
0

4

8

12

16

0 400 800 1200 1600
0

4

8

12

16

Start Loop Closure Detected

Figure 4.15: (left) The map of the “New College.” A segment of robot motion is shown.
(right) Motif: The most similar pair of image-pairs that are 90 samples apart and their color
histograms. The image-pairs are from the same location and thus our algorithm detected the
loop-closure

In an effort to verify this utility, we use the “New College” dataset [25], where a set of

2,146 images have been collected by a moving robot. The images are taken from both sides

of the robot. We convert the images to “time series” by taking their color histogram and

group the images from both sides to form a sequence of image-pairs. We feed our algorithm

with this data and w = 200. We also provide a separation window of 90 images for excluding

trivial similarities. Our algorithm found 89 unique motifs, 46 of them being loop-closures.

One of the motifs and its location are shown in Figure 4.15. Although online MK catches

about 50% of the loop closure, we argue that it essentially comes for free as online MK can

118

work at very high rate. The rest of the undetected closures can easily be confirmed by high

level algorithms and thus online MK reduce the computational burden.

4.8 Conclusion

In this chapter we introduce the first practical algorithm for finding and maintaining time

series motifs on fast moving streams. We showed applications of our ideas in robotics, online

compression and wildlife management.

119

Chapter 5

Exact Discovery of Time Series Shapelets

Time series shapelet is a new primitive for classification of time series datasets [115]. In

spite of being published for only a few years, shapelets are used in several work. For ex-

ample, [112] uses shapelets on streaming data as “early predictors” of a class, [65] uses an

extension of shapelets in an application in severe weather prediction, [45] uses shapelets to

find representative prototypes in a dataset, and [44] uses shapelets to do gesture recognition

from accelerometer data.

Inspired by the success of time series shapelets, we focus on improving the original algo-

rithm to find them. The original algorithm requires massive computation for being exact and

thus limiting its application on many real datasets potentially carrying important shapelets.

We devise techniques to speedup the exact algorithm by efficient caching and admissible

pruning.

120

We enrich time series shapelet demonstrating cases where multiple shapelets can identify

complex concepts that were missed by single shapelet. We describe exact algorithm to dis-

cover such logical combinations of shapelets. It is important to note that there is essentially

zero-cost for the expressiveness of logical-shapelets. If we apply them to a dataset that does

not need their increased representational power, they simply degenerate to classic shapelets,

which are a special case. Thus, our work complements and further enables the growing

interest in shapelets.

5.1 Definition and Background

In this section, we define shapelets and the other notations used in this chapter. We start with

redefining time series and subsequences for the ease of exposition.

Definition 5.1 [TIME SERIES] A Time Series T is a sequence of real numbers t1, t2, . . . , tm.

A time series subsequence Si,l = ti, ti+1, . . . , ti+l−1 is a continuous subsequence of T starting

at position i and length l.

A time series of length m can have m(m+1)
2

subsequences of all possible lengths from one

to m.

If we are given two time seriesX and Y of same lengthm, we can use the Euclidean norm

of their difference (i.e. X−Y) as a distance measure. To achieve scale and offset invariance,

we must normalize the individual time series using z-normalization before the actual distance

is computed. This is a critical step; even tiny differences in scale and offset rapidly swamp

121

any similarity in shape (c.f. Section 2.3.4). In addition, we normalize the distances by

dividing with the length of the time series. This allows comparability of distances for pairs

of time series of different lengths. We call this length-normalization. In the rest of the chapter

we use “normalized distance” to mean both length and z-normalization.

The normalized Euclidean distance is generally computed by the formula
√

1
m

∑m
i=1(x̂i − ŷi)2

(c.f. definition 2.8). Thus, computing a distance value requires time linear on the length of

the time series. In contrast, we compute the normalized Eucledian distance between X and

Y using five numbers derived from X and Y . These numbers are denoted as sufficient statis-

tics in [90]. The numbers are
∑
x,

∑
y ,

∑
x2 ,

∑
y2 and

∑
xy. It may appear that we are

doing more work than necessary; however, as we make clear in Section 5.2.1, computing

the distance in this manner enables us to reuse computations and reduce the amortized time

complexity from linear to constant.

The population mean and varaince can be computed from these statistics as µx = 1
m

∑
x

and σ2
x = 1

m

∑
x2 − µ2

x, respectively. The positive correlation and the normalized Euclidean

distance between X and Y can then be expressed as below [72].

C(x, y) =

∑
xy −mµxµy
mσxσy

(5.1)

dist(x, y) =
√

2(1− C(x, y)) (5.2)

Many time series data mining algorithms such as 1-NN classification, clustering and density

estimation require only the comparison of time series that are of equal lengths. In contrast,

122

time series shapelets require us to test if a short time series (the shapelet) is contained within

a certain threshold somewhere inside a much longer time series. To achieve this, the shorter

time series is slid against the longer one to find the best possible alignment between them.

Definition 5.2 [SUBSEQUENCE DISTANCE] The normalized subsequence distance, or

in short sdist, between two time series x and y with lengths m and n, respectively, and for

m ≤ n is

sdist(x, y) =
√

2(1− Cs(x, y))

Cs(x, y) = max
0≤l≤n−m

∑m
i=1 xiyi+l −mµxµy

mσxσy
(5.3)

In the above definition µy and σy denote the mean and standard deviation of m consecu-

tive values from y starting at position l + 1. Note that, sdist is not symmetric. Assume that

we have a dataset D of N time series from C different classes. Let us also assume, every

class i (i = 1, 2, . . . , C) has ni (
∑

i ni = N) labeled instances in the dataset. An instance

time series in D is also denoted by Di for i = 1, 2, . . . , N .

Definition 5.3 [ENTROPY] The entropy of a datasetD is defined asE(D) = −
∑C

i=1
ni

N
log(ni

N
).

If the smallest time series in D is of length m, there are at least N m(m+1)
2

subsequences

in D that are shorter than every time series in D. We define a split as a tuple (s, τ) where

123

s is a subsequence and τ is a distance threshold. A split divides the dataset D into two

disjoint subsets or partitions Dleft = {x : x ∈ D, sdist(s, x) ≤ τ} and Dright = {x :

x ∈ D, sdist(s, x) > τ}. We define the cardinality of each partition by N1 = |Dleft| and

N2 = |Dright|. We use two quantities to measure the goodness of a split: information gain

and separation gap.

Definition 5.4 [INFORMATION GAIN] The information gain of a split is I(s, τ) = E(D)−

N1

N
E(Dleft)− N2

N
E(Dright).

Definition 5.5 [SEPARATION GAP] The separation gap of a split is G(s, τ) =

1
N2

∑
x∈Dright

sdist(s, x) − 1
N1

∑
x∈Dleft

sdist(s, x).

Now we are in position to define time series shapelets.

Definition 5.6 [SHAPELET] The shapelet for a dataset D is a tuple of a subsequence of

an instance within D and a distance threshold (i.e. a split) that has the maximum information

gain while breaking ties by maximizing the separation gap.

5.1.1 Brute-force Algorithm

In order to properly frame our contributions, we begin by explaining the brute-force al-

gorithm for finding shapelets in a dataset D (Algorithm 5.1). Dataset D contains multiple

time series of two or more classes and possibly of different lengths.

124

Algorithm 5.1 Shapelet Discovery(D)

Require: A dataset D of time series
Ensure: Return the shapelet

1: m← minimum length of a time series in D
2: maxGain← 0,maxGap← 0
3: for j ← 1 to |D| do every time series in D
4: S ← Dj

5: for l← 1 to m do every possible length
6: for i← 1 to |S| − l + 1 do every start position
7: for k ← 1 to |D| do compute distances of every time series to the candidate

shapelet Si,l
8: Lk ← sdist(Si,l, Dk)
9: sort(L)

10: (τ, updated)← bestIG(L,maxGain,maxGap)
11: if updated then gain and/or gap are changed
12: bestS ← Si,l,bestτ ← τ ,bestL← L
13: return (bestS, bestτ, bestL,maxGain,maxGap)

Algorithm 5.2 sdist(x, y)

Require: Two time series x and y. Assume |x| ≤ |y|.
Ensure: Return the normalized distance between x and y

1: minSum←∞
2: x← zNorm(x)
3: for j ← 1 to |y| − |x|+ 1 do every start position on y
4: sum← 0
5: z ← zNorm(yj,|x|)
6: for i← 1 to |x| do compute the Eucledian distance
7: sum← sum+ (zi − xi)2
8: minSum← min(minSum, sum)
9: return

√
minSum/|x|

Since time series can be considered to be points in high dimensional space, we will denote

D as a database of points. The algorithm generates a candidate subsequence Si,l in the

three loops in lines 3, 5, and 6 of Algorithm 5.1, which essentially generates all possible

subsequences of all possible lengths from D. In lines 7-9, an array L is created which holds

the points in D in the sorted order of their distance from the shapelet candidate. A schematic

view of this array is illustrated in Figure 5.1. We call this schematic line, as before, the

125

Algorithm 5.3 bestIG(L,magGain,maxGap)

Require: An order line L and current best gain and gap.
Ensure: Update the best information gain and separation gap and return the split point τ

1: for k ← 1 to |D| − 1 do
2: τ ← (Lk + Lk+1)/2
3: Count n1,i and n2,i for i = 1, 2, . . . , C.
4: Count N1 and N2 for both the partitions.
5: I ← Information gain computed by definition 5.4
6: G← Separation gap computed by definition 5.5
7: if (I > maxGain or (I = maxGain

∧
G > maxGap)) then

8: maxGain← I , maxGap← G, maxτ ← τ
9: updated← true

10: return (maxτ, updated)

orderline. Intuitively, the ideal shapelet is the one that orders the data as such all instances

of one class are near the origin, and all instances of the other classes are to the far right, with

no interleaving of the classes.

P
Orderline

0

∞

Figure 5.1: Orderline for the shapelet P. Each time series is placed on the orderline based
on the sdist from P. Note that, the time series that carries P is placed at position 0 on the
orderline. Also note that, P aligns at different positions on different time series

Distance values are computed by Algorithm 5.2. Both of the normalizations – z-normalization

and length-normalization (before and after the computation of Euclidean distance, respec-

tively) – are performed here. Note that repeatedly performing normalization before comput-

126

ing distances is expensive because the same sequences are normalized multiple times. Our

novel caching mechanism in Section 5.2.1 will remove this difficulty.

Given the orderline, the computation of information gain is linear in the dataset size.

Algorithm 5.3 describes the method of finding the best split point paired with the current

candidate sequence. At line 2, we selected the mid points between two consecutive points

on the orderline as split (τ) points. Although there are infinite number of possible split

points, there are at most |D| − 1 distinct splits that can result in different information gains.

Therefore, it is sufficient to try only these |D| − 1 splits. Computing the information gain

from the orderline requires O(N) time, which includes counting statistics per class for the

three sets (i.e. D,Dleft, Dright) in line 3 and 4. The rest of the computation can be done in

O(C) time in line 5 and 6. Finally, the current best gain and gap are updated if appropriate.

The time complexity of the algorithm, assuming no additional memory usage (i.e. linear

space cost), is clearly untenable. There are at least N m(m+1)
2

shapelet candidates (i.e. the

number of iterations through loops in line 3, 5, and 6). For each of the candidates, we

need to compute distances to each of the N time series in D (i.e. line 8). Every distance

computation takes O(m2) time. In total, we need O(N2m4) arithmetic operations. Such

a huge computational cost makes the brute-force algorithm infeasible for real applications.

Since N is usually small as being the size of a labeled dataset, and m is large to make the

search for local features meaningful, we focus on reducing factors of m from the cost.

127

5.2 Speedup Techniques

The original shapelet work introduced by Ye, et al. [115] showed an admissible technique

for abandoning some unfruitful entropy computations early. However, this does not improve

the worst case complexity. In this work, we reduce the worst case complexity by caching dis-

tance computations for future use. In addition, we describe a very efficient pruning strategy

resulting in an order of magnitude speedup over the method of Ye et al.

5.2.1 Efficient Distance Computation

In Algorithm 5.1, any subsequence ofDj with any length and starting at any position is a po-

tential shapelet candidate. Such a candidate needs to be compared against every subsequence

of Dk with the same length, starting at any position. The visual intuition of the situation is

illustrated by Figure 5.2. For any two instances Dj and Dk in D, we need to consider all

possible parallelograms like the ones shown in the figure. For each parallelogram, we need

to scan the subsequences to sum up the squared errors while computing the distance. Clearly

there is a huge redundancy of calculations between successive and overlapping parallelo-

grams.

Euclidean distance computation for subsequences can be made faster by reusing overlap-

ping computation. However, reusing computations of z-normalized distances for overlapping

subsequences needs at least quadratic space and, therefore, is not tenable for most applica-

tions. When we need all possible pairwise distances among the subsequences, as we do in

128

1−+ lv

1−+ lu

u

v(a) (b)

Dj

Dk

l

u

v

Figure 5.2: (a) Illustration of a distance computation required between a pair of subsequences
starting at positions u and v, respectively, and of length l. Dashed lines show other possible
distance computations. (b) The matrix M for computing the sum of products of the subse-
quences in (a)

finding shapelets, spending the quadratic space saves a whole order of magnitude of compu-

tation time.

For every pair of points (Dj, Dk) we compute five arrays. We represent these arrays as

Statsx,y in the algorithms. Two of the arrays (i.e. Sx and Sy) store the cumulative sum of

the individual time series x and y. Another two (i.e. Sx2 and Sy2) store the cumulative sum

of squared values. The final one (i.e. M) is a 2D array that stores the sum of products for

different subsequences of x and y. The arrays are defined mathematically below. All of the

arrays have left margin of zero values indexed by 0. More precisely, Sx[0], Sy[0], Sx2 [0],

Sy2 [0], M[0, 0], M[u, 0] for u = 1, 2, . . . , |x|, and M[0, v] for v = 1, 2, . . . , |y| are all zeros.

Sx[u] =
∑u

i=0 xi , Sy[v] =
∑v

i=0 yi,

Sx2 [u] =
∑u

i=0 x
2
i , Sy2 [v] =

∑v
i=0 y

2
i

M[u, v] =


∑v

i=0 xi+tyi if u > v,∑u
i=0 xiyi+t if u ≤ v

where t = abs(u− v).

129

Algorithm 5.4 sdist new(u, l, Statsx,y)

Require: start position u and length l and the sufficient statistics for x and y.
Ensure: Return the subsequence distance between xu,l and y

1: minSum←∞
2: {M, Sx,Sy,Sx2 ,Sy2} ← Statsx,y
3: for v ← 1 to |y| − |x|+ 1 do
4: d← distance computed by (5.1) and (5.2) in constant time
5: if d < minSum then
6: minSum← d
7: return

√
minSum

Given that we have computed these arrays, the mean, variance, and the sum of products

for any pair of subsequences of the same length can be computed as below.

µx = Sx[u+l−1]−Sx[u−1]
l

, µy = Sy [v+l−1]−Sy [v−1]
l

σ2
x =

Sx2 [u+l−1]−Sx2 [u−1]
l

− µ2
x, σ2

y =
Sy2 [v+l−1]−Sy2 [v−1]

l
− µ2

y

∑l−1
i=0 xu+iyv+i = M[u+ l − 1, v + l − 1]−M[u− 1, v − 1].

This in turn means that the normalized Euclidean distance (the information we actually

want) between any two subsequences xu,l and yv,l of any length l can now be computed using

equations 5.1 and 5.2 in constant time. The Algorithm 5.4 describes the steps. The algorithm

takes as input the starting position u and the length l of the subsequence of x. It also takes the

precomputed Statsx,y carrying the sufficient statistics. The algorithm iterates for all possible

start positions v of y and returns the minimum distance. Thus we can see that the procedure

sdist new saves at least an O(m) inner loop computation from procedure sditst.

130

5.2.2 Candidate Pruning

The constant time approach for distance computation introduced in the previous section helps

reduce the total cost of shapelet discovery by a factor of m. Our next goal is to reduce the

number of iterations that occur in the for loop at line 6 in the Algorithm 5.1. The core idea

behind our attack on this problem is the following observation: If we know (s, τ) is a poor

shapelet (i.e. it has low information gain) then any similar subsequence to s must also result

in a low information gain and, therefore, a costly evaluation (computing all the distances)

can be safely skipped. Assume we have observed a good best-so-far shapelet at some point

in the algorithm. Let us denote this shapelet (Sp, τp) and its information gain Ip. Imagine we

now test (Si,l, τ), and it has very poor information gain Ii,l < Ip. Let us consider the next

subsequence Si+1,l. Here is our fundamental question. Is it possible to use the relationship

(the Euclidean distance) between Si,l and Si+1,l, to prune Si+1,l?

To develop our intuition, let us first imagine a pathological case. Suppose that dist(Si,l, Si+1,l) =

0; in other words, Si+1,l is the exact same shape as Si,l. In that case we can obviously prune

Si+1,l, since its information gain must also be Ii,l. Suppose, however, in the more realistic

case, that Si,l and Si+1,l are similar, but not identical. We may still be able to prune Si+1,l.

The trick is to ask, “how good could Si+1,l be?” , or a little more formally, “What is an upper

bound on the information gain of Si+1,l.” It turns out that it is simple to calculate this bound!

Let the distance between Si,l and Si+1,l be R. By triangular inequality, sdist(Si+1,l, Dk)

can be as low as sdist(Si,l, Dk) − R and as high as sdist(Si,l, Dk) + R regardless of the

alignment of Si+1,l on Dk. Thus, every point on the orderline of Si,l has a “mobility” in

131

the range [−R,R] from its current position. Given this mobility, our goal is to find the

best configuration of the points that gives maximum information gain when split into two

partitions. The points that lie outside [τ−R, τ+R] can have no effect on the information gain

for candidate (Si+1,l, τ). For the points inside [τ −R, τ +R] we can shift them optimistically

in either direction to increase the information gain.

Every class c ∈ C has nc instances in the database which are divided into two partitions

by a split. Let nc,1 and nc,2 be the number of instances of class c in partition Dleft and

Dright, respectively. A class is weighted to the left (or simply called left-major/right-minor)

if nc,1

N1
> nc,2

N2
. Similarly, a class is called right-major/left-minor if nc,1

N1
≤ nc,2

N2
. The following

lemma describes the optimal choice for a single point.

Theorem 5.1 Shifting a point from its minor partition to its major partition always increases

information gain.

Proof: Lets assume c is a left-major class. So nc,1

N1
> nc,2

N2
. If we move one point of class

c from the right partition to the left partition, for i = 1, 2, . . . , C the change in information

gain is ∆I .

∆I =
∑

i
ni,1

N
log

ni,1

N1
+
∑

i
ni,2

N
log

ni,2

N2
−
∑

i 6=c
ni,1

N
log

ni,1

N1+1

−
∑

i 6=c
ni,2

N
log

ni,2

N2−1 −
nc,1+1

N
log nc,1+1

N1+1
− nc,2−1

N
log nc,2−1

N2−1

Using
∑

i 6=c ni,1 = N1−nc,1 and
∑

i 6=c ni,2 = N2−nc,2, we can simplify the above as below.

N.∆I = N1 logN1 − nc,1 log nc,1 + (nc,1 + 1) log(nc,1 + 1)

+N2 logN2 − nc,2 log nc,2 + (nc,2 − 1) log(nc,2 − 1)

− (N1 + 1) log(N1 + 1)− (N2 − 1) log(N2 − 1)

132

Since, nc,1

N1
> nc,2

N2
for t ∈ [0, 1] the following is also true

nc,1+1−t
N1+1−t > nc,2−t

N2−t . In addition, nc,1, N1, nc,2, N2 are all positive integers; therefore, we can

take log on both side and integrate from 0 to 1.∫ 1

0
log nc,1+1−t

N1+1−t dt−
∫ 1

0
log nc,2−t

N2−t dt > 0. If we evaluate the integral, it becomes the right-side

part of the above equation for N.∆I . Therefore, ∆I > 0.

If we shift a point from the minor partition to the major partition, the major/minor par-

titions of the class remain the same as before shifting, simply because, if nc,1

N1
> nc,2

N2
then

nc,1+1

N1+1
> nc,2−1

N2−1 . Therefore, shifting all the minor points of a class to its major partition

increases the information gain monotonically, and thus, this can be treated as an atomic oper-

ation. We denote such a sequence of shifts as a “transfer”. Transferring a class may change

the major-minor partitions of other classes and, consequently, the transfer direction for that

class. Therefore, if we transfer every class based on the major-minor partitions in the initial

orderline, it does not necessarily guarantee the maximum information gain.

In the case of two-class datasets, there is always one left-major and one-right major class.

Therefore, shifting all of the points in [τ −R, τ +R] to their major partition will not change

the major-minor partitions of either of the classes; thus, this guarantees the optimization (i.e.

the upper bound) even if the initial transfer directions are used.

For a case of more than two-classes, almost all of the time initial major-minor partitions

hold after all of the transfers are done. Unfortunately, it is possible to construct counter

examples, even if we rarely confront them on real data. To obtain the optimal bound we need

to try all possible transfer directions for all of the classes resulting in 2C trials. Fortunately,

133

many classification problems deal with a small number of classes. For example, 60% of the

UCR time series datasets [3] have four or less classes. Given this fact, having the 2C constant

in the complexity expression will not be an issue for many problems.

Algorithm 5.5 describes the computation of the upper bound. The algorithm loops through

all distinct split positions (line 2-3). For every split position, the algorithm transfers all of the

classes to their major partition based on the initial orderline (line 5-6) and computes the in-

formation gain to find the upper bound. Note that line 4 is “commented out” in the algorithm

which is a for loop that checks all of the 2C combinations of transfer directions. For exact

bound in the case of many-class datasets, this line should be uncommented.

To summarize, for the two-class case we have an exact and admissible pruning technique.

In the multi-class case we have a powerful heuristic that empirically gives answers that are

essentially indistinguishable from the optimal answer.

0 5 10 15
-2

-1

0

1

2

R = dist(S1,S2)

S1

τ

R R

S2

τ

Left-major Class
Right-major Class

Information Gain (S1,τ) =

5

2
log

10

2

5

3
log

10

3

2

1
log ++−

Upper Bound (S2,τ) =

S2

τ
5

4
log

10

4

5

1
log

10

1

2

1
log ++−

(a) (b)

(d)
(c)

After transfers

Before transfers

0
∞

∞

∞

0

0

Figure 5.3: (a) A sequence S1 and its orderline. (b) Distance between the sequences S1 and
S2 is R. (c) The points on the orderline within [τ −R, τ +R] are transferred to their majority
partition. (d) The computation of the information gain for (S1, τ) and upper bound for (S2, τ)

134

Algorithm 5.5 upperIG(L,R)

Require: An order line L and the candidate distance R.
Ensure: Return an upper bound of information gain.

1: maxI ← 0
2: for k ← 1 to |D| − 1 except j do
3: τ ← (Lk + Lk+1)/2
4: //for all 2C combinations of transfer directions do
5: for all points p ∈ [τ −R, τ +R]
6: move p to its majority end.
7: Count n1,i and n2,i for i = 1, 2, . . . , C.
8: Count N1 and N2 for both the partitions.
9: I ← information gain computed by definition 5.4

10: maxI ← max(maxI, I)
11: return maxI

5.2.3 The Fast Shapelet Discovery Algorithm

With the speedup techniques described in the previous section, we are now ready to plug

them into Algorithm 5.1 and build a faster version as shown in Algorithm 5.6.

In lines 5-7, the sufficient statistics are computed for the current time series Dj paired

with every other time series Dk.

The algorithm maintains a set of orderlines in the history H . For every candidate Si,l,

before committing to the expensive computation of the orderline, the algorithm quickly com-

putes upper bounds using the orderlines in the history (line 14). If any of the upper bounds

is smaller than the maximum gain achieved so far we can safely abandon the candidate (line

15).

Since the upper bound computation is based upon the triangular inequality, we are only

allowed to use the previous orderlines computed for sequences of the same length as the

135

current candidate 1. Therefore, once the search moves on to the next length the algorithm

clears the history H and starts building it up for the new length (line 9).

The size of the history H is a user-defined value and the algorithm is insensitive to this

value once it is set to at least five. To prevent our history cache in line 22 growing without

bound, we need to have a replacement policy. The oldest-first (LIFO) policy is the most

suitable for this algorithm. This is because the recent subsequences tend to be correlated

with the current candidate and, therefore, have small distances from the candidate. Note

that, we do not add all orderlines to the history. We only add the orderlines that have less

information gain (i.e. orderlines for poor shapelet candidate) than the current maxGain.

Because only poor candidates have the power of pruning similar candidates by predicting

their low information gain.

5.3 Logical-Shapelet

A shapelet is a tuple consisting of a subsequence and a split point (threshold) that attempts to

separate the classes in exactly two different groups. However, it is easy to imagine situations

where it may not be sufficient to use only one shapelet to achieve separation of classes, but a

combination of shapelets. To demonstrate this, we show a simple example. In Figure 5.4(a),

we have a two-class problem where each class has two time series. The square class contains

two sinusoidal patterns with both positive and negative peaks, while the circle class has only

1The reader may wonder why we cannot create a bound between a sequence and a shorter sequence that is
its prefix. Such bounds cannot be created because we are normalizing all sequences, and after normalizing the
distances may increase or decrease.

136

Algorithm 5.6 Fast Shapelet Discovery(D)

Require: A dataset D of time series
Ensure: Return the shapelet

1: m← minimum length of a time series in D
2: maxGain← 0,maxGap← 0
3: for j ← 1 to |D| do every time series in D
4: S ← jth time series of D
5: for k ← 1 to |D| do compute statistics for S and Dk

6: x← S, y ← Dk

7: Statsx,y ← {M,Sx,Sy,Sx2 ,Sy2}
8: for l← 1 to m do every possible length
9: clear H

10: for i← 1 to |S| do every start position
11: for w ← 1 to |H| do every candidate in H
12: (L′, S ′)← H[w]
13: R← sdist(Si,l, S

′)
14: if upperIG(L′, R) < maxGain then prune this candidate
15: continue with next i
16: for k ← 1 to |D| do since not pruned; compute distances of every time series to

the candidate Si,l
17: Lk ← sdist new(i, l, Statsx,y)
18: sort(L)
19: (τ, updated)← bestIG(L,maxGain,maxGap)
20: if updated then gain and/or gap are changed
21: bestS ← Si,l,bestτ ← τ ,bestL← L
22: add (L, Si,l) to H if maxGain is not changed
23: return (bestS, bestτ, bestL,maxGain,maxGap)

one positive or one negative peak. If we attempt to use the classic shapelet definition to

separate these classes, we find there is no way to do so. Classic shapelets simply do not

have the expressiveness to represent this concept. The reason is that every single distinct

pattern appears in both of the classes, or in only one of the time series of one of the classes.

For example, in 5.4(b) three different unary shapelets and their orderlines are illustrated, and

none of them achieved a separation between the classes.

137

To overcome this problem, we propose using multiple shapelets which allow distinctions

based on logical combinations of the shapelets. For example, if we use the first two shapelets

in Figure 5.4(b) then we can say that (S1, τ1) and (S2, τ2) separate the classes best. From now

on, we use standard logic symbols
∧

and
∨

for and and or operations. For a new instance

x, if sdist(S1, x) < τ1
∧
sdist(S2, x) < τ2 is true, then we can classify x as a member of

the square class, or otherwise the circle class. When using multiple shapelets in such a way,

chaining of logical combinations among the shapelets is possible; for example, (S1, τ1)
∧

(S2, τ2)
∨

(S3, τ3). However, for the sake of simplicity and to guard against over fitting with

too complex a model [31], we only consider two cases, only
∧

, and only
∨

combinations.

We further guard against overfitting with too flexible a model by allowing only just a single

threshold for both shapelets.

We have already seen how to create an orderline for classic

shapelets, how do we define an orderline for conjunctive or disjunctive shapelets? To com-

bine the orderlines for such cases, we adopt a very simple approach. For
∧

operation, the

maximum of the distances from the literal shapelets is considered as the distance on the new

orderline, and for
∨

the minimum is considered. Apart from these minor changes, the com-

putation of the entropy and information gain are unchanged.

For example, in Figure 5.4(d) the combined orderline for (S1

∧
S2, τ) is shown. The two

classes are now separable because both the shapelets occur together in the square class and

do not both occur together in individual instances of the circle class.

138

Given these minor changes to allow logical-shapelets, we can still avail ourselves of the

speedup techniques proposed in Section 5.2. The original shapelet algorithm just needs to

be modified to run multiple times, and some minor additional bookkeeping must be done.

When the first shapelet is found by the Algorithm 5.6, we now test to see if there is any class

whose instances are in both the partitions of the optimal split. We call such a class “broken”

(We could say “non-linearly separable,” however, our situation has a slightly different inter-

pretation). If there is a broken class, we continue to search for a new shapelet on the same

dataset that can merge the parts of the broken class. However, this time we must make sure

that new shapelet does not have a match with a subsequence in Dk that overlaps with the

matching subsequence of an already discovered shapelet. After finding the new shapelet, we

combine the orderlines and the threshold based on the appropriate logic operation. Finally,

we are in position to measure the information gain to see if it is better than our best-so-far .

If the gain improves, we test for a broken class again and continue as before. Once there is

no broken class or the gain does not increase, we recursively find shapelet(s) in the left and

right partitions.

The above approach is susceptible to overfitting. It can degenerate into (S1, τ1)
∨

(S2, τ2)∨
. . .

∨
(Sni

, τn) where ni is the number of instances in the class i and each Sj for j =

1, 2, . . . , ni is a subsequence of different instances of class i in the dataset D. In this case, all

of the instances of class i would be in the left side with zero distances. To avoid overfitting,

we can have a hard bound on the number of literals in the logic expression. In this work,

the bound is hard coded to four, however, for a very large dataset we could slowly increase

139

this number, if we carefully check to guard against overfitting. Note that the situation here is

almost perfectly analogous to the problem of overfitting in decision trees, and we expect that

similar solutions could work here.

S
3

No Separation

Good Separation

(b)

(c)
S

1
and S

2(a)
0 100 200 300 400 500 600 700 800 900 1000

-1

-0.5

0

0

0.5

1

-1

0

1

-1

0

1

0 100 200 300 400 500 600 700 800 900 1000

1

2

3

4

4

3

1

S
1

S
2

τ

A dataset

0

0

0

0

∞

∞

∞

∞

Figure 5.4: (a) Two classes of synthetic time series. (b) Examples of single shapelets that
cannot separate the classes. Any other single shapelet would fail similarly. (c) Two shapelets
connected by an and operation can separate the classes

5.4 Evaluation

We begin by noting that we have taken extraordinary lengths to make all our experiments

reproducible. As such, all code and data are available at [2], and will be maintained there

in perpetuity. Moreover, while our proposed algorithm is not sensitive to the few parameters

required as inputs, we explicitly state all parameters for every dataset at [2].

We wish to demonstrate two major points with our experiments. First, our novel speedup

techniques can be used to find both classic and logical shapelets significantly faster. Second,

140

there exist real-world problems for which logical-shapelets are significantly more accurate

than classic shapelets or other state-of-the-art techniques (see Section 5.5).

To demonstrate the speedup, we have taken 24 datasets from the UCR time series archive

[51]. For brevity the names and properties of these datasets and tables of time taken for

running the shapelet algorithms on these datasets can be found at [2]. Here we content

ourselves with a visual summary. In Figure 5.5(left), we show the speedups over the original

algorithm. Our algorithm obtained some speedup for all of the datasets with a maximum of

27.2.

The two speedup methods described in Section 5.2 are not independent of each other.

Therefore, we also measure the individual speedups for each of the techniques while deacti-

vating the other. The individual speedup factors for both the techniques are plotted in Figure

5.5(right). There is no speedup for two of the datasets (shown by stars) when only the can-

didate pruning method is active. The reason is that the amount of pruning achieved for these

datasets cannot surpass the overhead costs of computing the upper bounds for every candi-

date. However, when the technique of efficient distance computation is active, speedups are

achieved for all of the datasets including these two.

It is critical to note that our improvements in speed are not due to trivial differences in

hardware or to simple implementation optimizations, but reflect the utility of the two original

techniques introduced in Section 5.2. In particular, all experiments were done on exactly

the same environment and on the same input data files. The code for the original shapelet

discovery algorithm was graciously donated by Dr. Ye who also confirmed that we are using

141

103

104

105

106

R
u

n
n

in
g

 t
im

e
 f

o
r

O
ri

g
in

a
l
M

e
th

o
d

 (
se

c)

In this region

our method is

better

3

4

5

6

S
p

e
e

d
u

p
 f

o
r

C
a

n
d

id
a

te
 P

ru
n

in
g

101

102

100

101 102 103 104 105 106100

R
u

n
n

in
g

 t
im

e
 f

o
r

O
ri

g
in

a
l
M

e
th

o
d

 (
se

c)

Running time for the

Our Method (sec)

In this region

original method

is better
0

2 4 6 8 10 12 14 16 18

0

1

2

S
p

e
e

d
u

p
 f

o
r

C
a

n
d

id
a

te
 P

ru
n

in
g

Speedup for Efficient

Distance Computation

Figure 5.5: (left) Comparison of running times between our method and the original shapelet
algorithm. Note the log scale on both axes. (right) The individual speedup factors for both
of our proposed techniques: Candidate Pruning and Efficient Distance Computation

her code in the best possible manner. Since our technique reduced the worst case complexity

by a factor of m and has an admissible pruning technique which is not present in the original

code, we can be sure that the speedup is valid.

As described in Section 5.2.2, our linear time upper bound is not admissible for the

many-class cases. Among the 24 datasets we used for scalability experiments, 13 datasets

have more than two classes. For these 13 datasets, the average rate of computing false upper

bound is just 1.56% with a standard deviation of 2.86%. In reality, the impact of false bounds

on the final result is inconsequential because of the massive search space for shapelet. Our

algorithm rarely misses the optimal information gain in that space and has not missed in any

of the above 13 many-class datasets.

142

5.5 Case Studies

In this section we show three case studies in three different domains. In all the case studies

we demonstrate that logical combinations of shapelets can describe the difference between

the classes very robustly. We compare our algorithm to the 1-NN classifier using Dynamic

Time Warping (DTW) because a recent extensive comparison of dozens of time series classi-

fication algorithms, on dozens of datasets, strongly suggests that 1-NN DTW is exceptionally

difficult to beat [29]. Note that the 1-NN classifier using DTW is less amenable for realtime

classification of time series since it requires an O(m2) distance measure to be computed for

every instance in the dataset. In contrast, classification with shapelets requires just a single

O(n(m−n)) calculation (n is the length of the shapelet). Thus, classification with time series

shapelets is typically thousands of times faster than 1-NN DTW. We do not experimentally

show this here, since it was amply demonstrated in the original shapelet paper [115].

5.5.1 Cricket: Automatic Scorer

In the game of cricket (a very popular game in British Commonwealth countries), an um-

pire signals different events in the game to a distant scorer/book-keeper. Typically, the sig-

nals involve particular motions of the hands. For example, the umpire stretches up both the

hands above the head to signal a score of “six.” A complete list of signals can be found in

[1]. Researchers have recently begun to attempt to classify these signals automatically to

ease/remove the task of a scorer [55].

143

In [55], a dataset was collected in which two accelerometers have been placed on both

wrists of four different umpires. The umpires performed twelve different signals used in the

game of cricket at least ten times. For simplicity of presentation, we select only two classes

from the dataset that has a unique possibility of confusion. The two classes are “No Ball” and

“Wide Ball.” To signal “No Ball,” the umpire must raise one of his hands to the shoulder-

height and keep his hand horizontal until the scorer confirms the record. To signal “Wide

Ball,” the umpire stretches both of the hands horizontally at shoulder-height (see Figure 5.6).

N
o

 B
a

ll
W

id
e

 B
a

ll

-0.2

-0.1

0

0.1

50 100 150 200 250 300

-0.1

0

0.1

Right Hand Left Hand

Z X Y Z X Y

(a) Signals

50 100 150 200 250 300

-0.2

-0.1

0

0.1and Shapelet Shapelet

W
id

e
 B

a
ll

-0.2

-0.1

50 100 150 200 250 300

-0.2

-0.1

0

0.1 (b) (c)

Figure 5.6: (a)The training set of the cricket dataset by concatenating signals from every axis
of the accelerometer. (b) The two signs an umpire performs to declare two types of illegal
delivery. (c) Shapelets found by our algorithm and the original algorithm

Each accelerometer has three synchronous and independent measurements for three axes

(X,Y, and Z). For every signal performed, the six channels are concatenated to form one

time series. We append low variance white noise to each example in the dataset to make

them of length 308. The training set has nine examples as shown in Figure 5.6. The test set

has 98 examples. Note that the examples for “No Ball” are only right hand signals. This

144

Algorithms Original Test set New Test set
1-NN Euclidean distance 94.89% 56.25%

1-NN Dynamic Time Warping 98.98% 87.50%
1-NN DTW-Sakoe-Chiba 94.89% 75.00%

Shapelet 44.89% 48.43%
Logical Shapelet 95.91% 89.06%

Table 5.1: The accuracies of different algorithms on the two test sets.

is true for the test set also. To cover the left handed case and also to include examples of

different lengths, we have generated another test set using the accelerometer on a standard

smart phone. This test set contains 64 examples of length 600. Each class has an equal

number of examples in both of the training sets.

On this dataset, we performed 1-NN classification using Euclidean distance and Dynamic

Time Warping (DTW) as distance measures. We also considered DTW with the Sakoe-Chiba

band [89], as it has been shown to outperform classic DTW on many datasets [52]. The results

are shown in table 5.1. It is interesting to consider why Logical Shapelets generalize the new

data the best. We conjecture that it is the ability of Logical Shapelets to extract just the

meaningful part of the signal. In contrast, DTW and Euclidean distance must account for the

entire time series, including sections that may be unique to individual umpires idiosyncratic

motion, but not predictive of the concept.

The Computationally expensive 1-NN DTW performs well in both of the cases, but

not suitable for real-time applications. The original shapelet algorithm fails to capture the

fact that the inherent difference between the classes is in the number of occurrences of the

shapelet. Our logical-shapelet algorithm captures the sharp rises in the Z-axes for “Wide

145

Ball” from the original training set. No such “No Ball” signal can have two such rises in the

Z-axes, and therefore, classification accuracy does not decrease significantly for the new test

set.

5.5.2 Sony AIBO Robot: Surface Detection

The SONY AIBO Robot is a small, dog-shaped, quadruped robot that comes equipped with

multiple sensors, including a tri-axial accelerometer. We consider a dataset created by [106]

where measurements of the accelerometer are collected. In the experimental setting, the robot

walked on two different surfaces: carpet and cement. For simplicity we consider only the X-

axis readings. A snap shot of the data is shown in Figure 5.7(a). Each time series represents

one walk cycle. Cemented floors are hard compared to carpets and, therefore, offer more

reactive force than carpets. As such, there are clear and sharp changes in the acceleration on

the cemented floor. In addition, there is a much larger variability when the robot walks on

cement.

0 10 20 30 40 50 60 70
-4

-2

0

2

4

0 10 20 30 40 50 60 70
-4

-2

0

2

and Shapelet
0 10 20 30 40 50 60 70

-4

-2

0

2

(a) (b)

(c)

Walking on Carpet (Smooth)

Walking on Cement (Hard)

Walking on Carpet

Steps

Figure 5.7: (a) Two classes of time series from the SONY AIBO accelerometer. (b) The
and-shapelets from the walk cycle on carpet. (c) The Sony AIBO Robot

146

Algorithms Surface Detection Passgraphs
1-NN Euclidean distance 69.55% 63.36%

1-NN Dynamic Time Warping 72.55% 71.76%
1-NN DTW-Sakoe-Chiba 69.55% 74.05%

Shapelet 93.34% 60.31%
Logical Shapelet 96.34% 70.23%

Table 5.2: The accuracies of different algorithms on the passgraph trajectories and ac-
celerometer signals from SONY AIBO robot.

The test set has 20 instances of walk cycles on the two types of floors. The training set

has 601 instances. A walk cycle is of length 70 at 125 hertz. We have experimented on this

dataset and found a pair of shapelets shown in Figure 5.7(b). The shapelets are connected

by
∧

and come from the two different shifts-of-weight in the walk cycle on the carpet floor.

The pair of shapelets has a significantly higher classification accuracy compared to classic

nearest neighbor algorithms (see table 5.2).

5.5.3 Passgraphs: Preventing Shoulder-Surfers

Passgraphs are a recently proposed biometric system used to authenticate a person and al-

low her access to some resource. A grid of dots is presented to the user and she is tasked

to connect some of the dots in the grid in some specific order as a password. In contrast to

text-based passwords where the user can shield the the entered text (at an ATM for example),

Passgraphs are vulnerable to “shoulder-surfing” as it is easy for a miscreant to see and mem-

orize the connection sequence over the shoulder of the user. To prevent the shoulder-surfing

attack, [63] has proposed methods involving pen-pressure. There are also methods based on

other pen properties such as friction and acceleration.

147

In this case study, we use the data from [63] to see if logical-shapelets can classify be-

tween the same pen sequences performed by different users. We selected x-axis trajectories

of two different users drawing the same passgraph. The logical-shapelet shown in Figure

5.8 consists of tiny fragments of the three turns (peaks in the time series) in the passgraph

connected by
∨

operations. These shapelets have better accuracies than 1-NN classifier and

are promising enough to use in a real authentication system. This is because the shapelets

can be learned at training time when the user sets the password, and it is not possible for

the shoulder surfer to mimic the idiosyncratic pen path of the real user when attempting to

impersonate her. Note that,
∧

operations in this case would have imposed a harder rule for

the user to produce all instead of some of the shapelets exactly to get authenticated.

-10

-8

-6

-4

-2

0

2

4

50 100 150 200 250 300 350

Class 0

Class 1

50 100 150 200 250 300 350

or Shapelet

Class 0

(a) (b)Two Classes

Figure 5.8: (a) Two classes of X-axis trajectories drawn by different users. (b) The or-
shapelets from three different examples of class 0 showing three turns in the passgraphs

148

5.6 Conclusion

In this chapter, we introduce logical-shapelets: a new time series classification primitive with

more expressiveness than classic shapelets. We have demonstrated the existence of logical

concepts in time series datasets, and the utility of logical-shapelets in domains as diverse as

gesture recognition, robotics and user authentication. We further describe novel techniques

to efficiently find both classic and logical-shapelets. Our approach is significantly faster for

every one of the twenty-four datasets we tested.

149

Chapter 6

Conclusion

Time series data is growing rapidly. We are close to if not already in a time when data is

generated faster than the resources we have to process them. Not all of this massive corpus

of data are equally useful. Automated method to organize and extract knowledge from this

data is of prime importance now. We believe that such automated intelligent systems should

be incrementally built in a hierarchical fashion. Time series data mining system is no different

and should be built upon a set of very efficient primitives. Time series motifs and shapelets

are two such primitives. Other well known primitives include bursts, periods, outliers and so

on.

In this context, the contributions of this thesis are as follows.

• We show efficient exact algorithms for two primitives for time series data mining. The

algorithms are guaranteed to output the optimal answers and very efficient compared

to the available alternatives. The algorithms are based on the metric properties of the

150

similarity measure (i.e. the Euclidean distance) and use several computational tricks to

reduce and reuse computation.

• We show applications of our algorithms as “primitives” to classification, online com-

pression, and summarization. Our primitives increase both accuracy and efficiency of

these algorithms. We show successful applications on time series data generated from

diverse sensors such as motion capture, accelerometer, EEG, EOG, ECG and EPG.

• We extend our algorithms for various environments. We show efficient solutions for

large scale motif discovery on disk resident data. We show online algorithm for mo-

tif discovery in streaming time series. We show exact algorithm for finding logical-

shapelets to represent complex concepts that single shapelets cannot do.

This thesis have had a strong impact in the research community. There have been numer-

ous downloads of our software packages and over hundred citations to our published articles.

Our core technique (i.e. the order line and its application in search-space pruning) has been

adopted by [13][14][83]. The parallel version of the MK algorithm is proposed by [75]. On-

line MK algorithm has been extended to top-K motif discovery in [57]. [83] and [77] extend

the MK algorithm to discover motifs of variable lengths. The MK algorithm is also used to

initialize the K-means clustering for time series data [87].

Mining time series data will continue to be an important area of research in coming years

because of the growing ubiquity of time series. We can classify the future development of

time series data mining in the following major areas.

151

• Developing new primitives with solid evidences of versatility and efficiency. Examples

can be pattern association/linkage discovery, active (i.e. user assisted) pattern discov-

ery etc.

• Defining new problems that use existing primitives. Examples include rule discovery,

dictionary building, pattern visualization etc.

• Expanding to new domains e.g. historical manuscripts mining, social media mining,

sports data mining, geographic data mining etc.

• Improving the efficiency of existing primitives, possibly using modern hardwares such

as multicore processors, GPU (Graphic Processing Units) [91], FPGA (Field Pro-

grammable Gate Arrays) etc.

We expect this thesis will continue to play important roles in the future development of

time series data mining and serve the practitioners with valuable insights into this fascinating

area of research.

152

Bibliography

[1] Bbc sport — cricket — laws & equipment. http://news.bbc.co.uk/
sport2/hi/cricket/rules_and_equipment.

[2] Supporting webpage containing code, data, excel sheet and slides. http://www.
cs.ucr.edu/˜mueen.

[3] The ucr time series classification/clustering homepage. www.cs.ucr.edu/

˜eamonn/time_series_data/.

[4] H Abe and T Yamaguchi. Implementing an integrated time-series data mining en-
vironment - a case study of medical kdd on chronic hepatitis. In 1st international
conference on complex medical engineering CME2005. 2005.

[5] Hidenao Abe, Miho Ohsaki, Hideto Yokoi, and Takahira Yamaguchi. Implementing an
integrated time-series data mining environment based on temporal pattern extraction
methods: A case study of an interferon therapy risk mining for chronic hepatitis. In
New Frontiers in Artificial Intelligence, volume 4012, pages 425–435. 2006.

[6] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient similarity search in
sequence databases, volume 8958546, pages 69–84. 1993.

[7] D. Arita, H. Yoshimatsu, and R. Taniguchi. Frequent motion pattern extraction for
motion recognition in real-time human proxy. In Proceedings of JSAI Workshop on
Conversational Informatics, pages 25–30, 2005.

[8] Christian Böhm and Florian Krebs. High performance data mining using the nearest
neighbor join. In Proceedings of ICDM, pages 43–50, 2002.

[9] Philippe Beaudoin, Stelian Coros, Michiel van de Panne, and Pierre Poulin. Motion-
motif graphs. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, SCA ’08, pages 117–126, 2008.

[10] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
R*-tree: an efficient and robust access method for points and rectangles. SIGMOD
Rec., 19:322–331, 1990.

[11] Jon Louis Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23:214–
229, 1980.

153

http://news.bbc.co.uk/sport2/hi/cricket/rules_and_equipment
http://news.bbc.co.uk/sport2/hi/cricket/rules_and_equipment
http://www.cs.ucr.edu/~mueen
http://www.cs.ucr.edu/~mueen
www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/

[12] Sergei N. Bespamyatnikh. An optimal algorithm for closest pair maintenance (ex-
tended abstract). In Proceedings of the eleventh annual symposium on Computational
geometry, SCG ’95, pages 152–161, 1995.

[13] K. Bhaduri, Qiang Zhu, N.C. Oza, and A.N. Srivastava. Fast and flexible multivariate
time series subsequence search. In Data Mining (ICDM), 2010 IEEE 10th Interna-
tional Conference on, pages 48 –57, 2010.

[14] Kanishka Bhaduri, Bryan L. Matthews, and Chris R. Giannella. Algorithms for speed-
ing up distance-based outlier detection. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’11, pages
859–867, 2011.

[15] N. Bigdely-Shamlo, A. Vankov, R.R. Ramirez, and S. Makeig. Brain activity-based
image classification from rapid serial visual presentation. Neural Systems and Reha-
bilitation Engineering, IEEE Transactions on, 16(5):432 –441, 2008.

[16] A. Bulut and A.K. Singh. Swat: hierarchical stream summarization in large networks.
In Data Engineering, 2003. Proceedings. 19th International Conference on, pages 303
– 314, 2003.

[17] Jean Cardinal and David Eppstein. Lazy algorithms for dynamic closest pair with
arbitrary distance measures. In Algorithm Engineering and Experiments Workshop,
2004.

[18] B. Celly and V. Zordan. Animated people textures. In 17th International Conference
on Computer Animation and Social Agents (CASA), 2004.

[19] Varun Chandola. Anomaly Detection for Symbolic Sequences and Time Series Data.
PhD thesis, University of Minnesota, MN, USA, 2009.

[20] Edgar Chavez Gonzalez, Karina Figueroa, and Gonzalo Navarro. Effective proximity
retrieval by ordering permutations. IEEE Trans. Pattern Anal. Mach. Intell., 30:1647–
1658, 2008.

[21] S.S. Cheung and T.P. Nguyen. Mining arbitrary-length repeated patterns in television
broadcast. In Image Processing, 2005. ICIP 2005. IEEE International Conference on,
volume 3, pages III – 181–4, 2005.

[22] Bill Chiu, Eamonn Keogh, and Stefano Lonardi. Probabilistic discovery of time se-
ries motifs. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’03, pages 493–498, 2003.

[23] Richard Cole, Dennis Shasha, and Xiaojian Zhao. Fast window correlations over
uncooperative time series. In KDD, pages 743–749, 2005.

154

[24] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vassi-
lakopoulos. Closest pair queries in spatial databases. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, pages 189–200, 2000.

[25] Mark Cummins and Paul Newman. Fab-map: Probabilistic localization and map-
ping in the space of appearance. The International Journal of Robotics Research,
27(6):647–665, 2008.

[26] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31:1794–1813, 2002.

[27] Deanna K Dawson and Murray G Efford. Bird population density estimated from
acoustic signals. Journal of Applied Ecology, 46(6):1201–1209, 2009.

[28] A. Delorme and S. Makeig. Eeg changes accompanying learned regulation of 12-hz
eeg activity. Neural Systems and Rehabilitation Engineering, IEEE Transactions on,
11(2):133 –137, 2003.

[29] Hui Ding, Goce Trajcevski, Xiaoyue Wang, and Eamonn Keogh. Querying and min-
ing of time series data: Experimental comparison of representations and distance mea-
sures. In In Proc of the 34 th VLDB, pages 1542–1552, 2008.

[30] Vlastislav Dohnal, Claudio Gennaro, and Pavel Zezula. Similarity join in metric
spaces using ed-index. In Database and Expert Systems Applications, volume 2736,
pages 484–493. 2003.

[31] Pedro Domingos. Process-oriented estimation of generalization error. In Proceedings
of the Sixteenth International Joint Conference on Artificial Intelligence, pages 714–
719, 1999.

[32] Florence Duchêne, Catherine Garbay, and Vincent Rialle. Learning recurrent behav-
iors from heterogeneous multivariate time-series. Artificial Intelligence in Medicine,
39(1):25–47, 2007.

[33] M.G. Elfeky, W.G. Aref, and A.K. Elmagarmid. Periodicity detection in time series
databases. Knowledge and Data Engineering, IEEE Transactions on, 17(7):875 – 887,
2005.

[34] David Eppstein. Fast hierarchical clustering and other applications of dynamic closest
pairs. J. Exp. Algorithmics, 5, 2000.

[35] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subsequence
matching in time-series databases. SIGMOD Rec., 23:419–429, 1994.

[36] Pedro G. Ferreira, Paulo J. Azevedo, Cndida G. Silva, and Rui M. M. Brito. Mining
approximate motifs in time series. In In proceedings of the 9th International Confer-
ence on Discovery Science, pages 7–10, 2006.

155

[37] Erich Fuchs, Thiemo Gruber, Jiri Nitschke, and Bernhard Sick. On-line motif detec-
tion in time series with swiftmotif. Pattern Recogn., 42:3015–3031, 2009.

[38] Ary L. Goldberger, Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch.
Ivanov, Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and
H. Eugene Stanley. Physiobank, physiotoolkit, and physionet : Components of a new
research resource for complex physiologic signals. Circulation, 101(23):e215–e220,
2000.

[39] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. SIGMOD
Rec., 14:47–57, 1984.

[40] Thomas Guyet, Catherine Garbay, and Michel Dojat. Knowledge construction from
time series data using a collaborative exploration system. J. of Biomedical Informatics,
40:672–687, 2007.

[41] James Hafner, Harpreet S. Sawhney, Will Equitz, Myron Flickner, and Wayne Niblack.
Efficient color histogram indexing for quadratic form distance functions. IEEE Trans.
Pattern Anal. Mach. Intell., 17:729–736, 1995.

[42] Raffay Hamid, Siddhartha Maddi, Amos Johnson, Aaron Bobick, Irfan Essa, and
Charles Isbell. Unsupervised activity discovery and characterization from event-
streams. In In Proc. of the 21st Conference on Uncertainty in Artificial Intelligence
(UAI05, 2005.

[43] Jiawei Han, Guozhu Dong, and Yiwen Yin. Efficient mining of partial periodic pat-
terns in time series database. In Data Engineering, 1999. Proceedings., 15th Interna-
tional Conference on, pages 106–115, 1999.

[44] B. Hartmann and N. Link. Gesture recognition with inertial sensors and optimized
dtw prototypes. In IEEE International Conference on Systems Man and Cybernetics
(SMC), pages 2102–2109, 2010.

[45] Bastian Hartmann, Ingo Schwab, and Norbert Link. Prototype optimization for tem-
porarily and spatially distorted time series. In the AAAI Spring Symposia, 2010.

[46] Magnus Lie Hetland. Ptolemaic indexing. CoRR, abs/0911.4384, 2009.

[47] J. Vitolo I. Androulakis, J. Wu and C. Roth. Selecting maximally informative genes
to enable temporal expression profiling analysis. In Proceedings of Foundations of
Systems Biology in Engineering, 2005.

[48] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang. idistance:
An adaptive b+-tree based indexing method for nearest neighbor search. ACM Trans.
Database Syst., 30:364–397, 2005.

[49] S. Kaffka, B. Wintermantel, M. Burk, and G. Peterson. Protecting high-yielding sug-
arbeet varieties from loss to curly top, volume 1. November 2000.

156

[50] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for segmenting
time series. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International
Conference on, pages 289–296, 2001.

[51] E. Keogh, X. Xi, Wei L., and C. A. Ratanamahatana. The UCR Time Series Classifi-
cation/Clustering Homepage:. www.cs.ucr.edu/∼eamonn/time series data/.

[52] Eamonn Keogh. Exact indexing of dynamic time warping. In Proceedings of the 28th
international conference on Very Large Data Bases, VLDB ’02, pages 406–417, 2002.

[53] Eamonn Keogh, Li Wei, Xiaopeng Xi, Sang-Hee Lee, and Michail Vlachos. Lb keogh
supports exact indexing of shapes under rotation invariance with arbitrary representa-
tions and distance measures. In Proceedings of the 32nd international conference on
Very large data bases, pages 882–893, 2006.

[54] Jon Kleinberg. Bursty and hierarchical structure in streams. In Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pages 91–101, 2002.

[55] Ming Hsiao Ko, G. West, S. Venkatesh, and M. Kumar. Online context recognition
in multisensor systems using dynamic time warping. In Intelligent Sensors, Sensor
Networks and Information Processing Conference, 2005., pages 283 – 288, 2005.

[56] Nick Koudas and Kenneth C. Sevcik. High dimensional similarity joins: Algorithms
and performance evaluation. IEEE Trans. on Knowl. and Data Eng., 12:3–18, 2000.

[57] H T Lam, N D Pham, and Toon Calders. Online discovery of top-k similar motifs in
time series data. SIAM Conference on Data Mining, SDM ’11, 2011.

[58] Te-Won Lee, Mark Girolami, and Terrence J. Sejnowski. Independent component
analysis using an extended infomax algorithm for mixed subgaussian and supergaus-
sian sources. Neural Computation, 11:3–18, 1999.

[59] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Pranav Patel. Finding motifs in
time series. In Proc. of 2nd Workshop on Temporal Data Mining at KDD, pages 53–
68, 2002.

[60] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uwave:
Accelerometer-based personalized gesture recognition and its applications. Pervasive
and Mobile Computing, 5(6):657–675, 2009.

[61] Zheng Liu, Jeffrey Yu, Xuemin Lin, Hongjun Lu, and Wei Wang. Locating motifs
in time-series data. In Advances in Knowledge Discovery and Data Mining, volume
3518, pages 1–5. 2005.

[62] A.L. Loomis, E. Harvey, and G. Hobart. Disturbance patterns in sleep. J. Neurophys-
iology, 2:413–430, 1938.

157

[63] Behzad Malek, Mauricio Orozco, and Abdulmotaleb El. Saddik. Novel shoulder-
surfing resistant haptic-based graphical password. In In the Proceedings of the Euro-
Haptics conference, 2006.

[64] Holger Holst Mb, Mattias Ohlsson, Carsten Peterson, Lars Edenbrandt, and Holger
Holst. A confident decision support system for interpreting electrocardiograms. Clin
Physiol., 19:410–418, 1999.

[65] Amy McGovern, Derek Rosendahl, Rodger Brown, and Kelvin Droegemeier. Identi-
fying predictive multi-dimensional time series motifs: an application to severe weather
prediction. Data Mining and Knowledge Discovery, 22:232–258, 2011.

[66] Jingjing Meng, Junsong Yuan, Mat Hans, and Ying Wu. Mining motifs from human
motion. In EUROGRAPHICS, 2008.

[67] D. Minnen, T. Starner, M. Essa, and C. Isbell. Discovering characteristic actions
from on-body sensor data. In Wearable Computers, 2006 10th IEEE International
Symposium on, pages 11–18, 2006.

[68] David Minnen, Charles L. Isbell, Irfan Essa, and Thad Starner. Discovering mul-
tivariate motifs using subsequence density estimation. In AAAI Conf. on Artificial
Intelligence, 2007.

[69] Dalia Motzkin and Christina L. Hansen. An efficient external sorting with mini-
mal space requirement. International Journal of Parallel Programming, 11:381–396,
1982.

[70] Abdullah Mueen, Eamonn J. Keogh, Qiang Zhu 0002, Sydney Cash, and M. Brandon
Westover. Exact discovery of time series motifs. In SDM, pages 473–484, 2009.

[71] Abdullah Mueen, Eamonn J. Keogh, and Nima Bigdely Shamlo. Finding time series
motifs in disk-resident data. In ICDM, pages 367–376, 2009.

[72] Abdullah Mueen, Suman Nath, and Jie Liu. Fast approximate correlation for massive
time-series data. In SIGMOD Conference, pages 171–182, 2010.

[73] K. Murakami, S. Doki, S. Okuma, and Y. Yano. A study of extraction method of
motion patterns observed frequently from time-series posture data. In Systems, Man
and Cybernetics, 2005 IEEE International Conference on, volume 4, pages 3610–
3615, 2005.

[74] Alexandros Nanopoulos, Yannis Theodoridis, and Yannis Manolopoulos. C2p: Clus-
tering based on closest pairs. In Proceedings of the 27th International Conference on
Very Large Data Bases, VLDB ’01, pages 331–340, 2001.

[75] Ankur Narang and Souvik Bhattacherjee. Parallel exact time series motif discovery. In
Euro-Par 2010 - Parallel Processing, volume 6272, pages 304–315. Springer Berlin /
Heidelberg, 2010.

158

[76] Ernst Niedermeyer and Fernando L. da Silva. Electroencephalography: Basic Princi-
ples, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, 5th
edition, 2004.

[77] P. Nunthanid, V. Niennattrakul, and C.A. Ratanamahatana. Discovery of variable
length time series motif. In Electrical Engineering/Electronics, Computer, Telecom-
munications and Information Technology (ECTI-CON), 2011 8th International Con-
ference on, pages 472 –475, 2011.

[78] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim Gray, and Dave Lomet. Alphasort:
a cache-sensitive parallel external sort. The VLDB Journal, 4:603–628, 1995.

[79] A. M. Odlyzko and E. M. Rains. On longest increasing subsequences in random
permutations. In Amer. Math. Soc., Contemporary Math., volume 251, pages 439–
451, 2000.

[80] Y. Ogras and Hakan Ferhatosmanoglu. Online summarization of dynamic time series
data. The VLDB Journal, 15:84–98, 2006.

[81] Themistoklis Palpanas, Michail Vlachos, Eamonn Keogh, Dimitrios Gunopulos, and
Wagner Truppel. Online amnesic approximation of streaming time series. In Proceed-
ings of the 20th International Conference on Data Engineering, ICDE ’04, 2004.

[82] Spiros Papadimitriou and Philip Yu. Optimal multi-scale patterns in time series
streams. In Proceedings of the 2006 ACM SIGMOD international conference on Man-
agement of data, SIGMOD ’06, pages 647–658, 2006.

[83] Dhaval Patel, Wynne Hsu, Mong Lee, and Srinivasan Parthasarathy. Lag patterns in
time series databases. In Database and Expert Systems Applications, volume 6262,
pages 209–224. 2010.

[84] Pranav Patel, Eamonn Keogh, Jessica Lin, and Stefano Lonardi. Mining motifs in mas-
sive time series databases. In Proceedings of the 2002 IEEE International Conference
on Data Mining, ICDM ’02, 2002.

[85] Debprakash Patnaik, Manish Marwah, Ratnesh Sharma, and Naren Ramakrishnan.
Sustainable operation and management of data center chillers using temporal data min-
ing. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’09, pages 1305–1314, 2009.

[86] Vincenzo Penteriani. Variation in the function of eagle owl vocal behaviour: territorial
defence and intra-pair communication? Ethology Ecology Evolution, 14(1988):275–
281, 2002.

[87] Le Phu and Duong Anh. Motif-based method for initialization the k-means clustering
for time series data. In AI 2011: Advances in Artificial Intelligence, volume 7106,
pages 11–20. 2011.

159

[88] Simona Rombo and Giorgio Terracina. Discovering representative models in large
time series databases. In Flexible Query Answering Systems, volume 3055, pages
84–97. 2004.

[89] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken
word recognition. Acoustics, Speech and Signal Processing, IEEE Transactions on,
26(1):43–49, 1978.

[90] Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. Braid: Stream mining
through group lag correlations. In SIGMOD Conference, pages 599–610, 2005.

[91] Doruk Sart, Abdullah Mueen, Walid Najjar, Vit Niennattrakul, and Eamonn J. Keogh.
Accelerating dynamic time warping subsequence search with gpus and fpgas. In
ICDM, pages 1001–1006, 2010.

[92] Jin Shieh and Eamonn Keogh. isax: indexing and mining terabyte sized time series.
In Proceeding of the 14th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 623–631, 2008.

[93] Jin Shieh and Eamonn J. Keogh. Polishing the right apple: Anytime classification also
benefits data streams with constant arrival times. In ICDM, pages 461–470, 2010.

[94] C. A. Stafford and G. P. Walker. Characterization and correlation of dc electrical pen-
etration graph waveforms with feeding behavior of beet leafhopper, circulifer tenellus.
Entomologia Experimentalis et Applicata, 130(2):113–129, 2009.

[95] Bojana Stefanovic, Wolfram Schwindt, Mathias Hoehn, and Afonso C Silva. Func-
tional uncoupling of hemodynamic from neuronal response by inhibition of neuronal
nitric oxide synthase. J Cereb Blood Flow Metab, 27(4):741–754, 2006.

[96] John M. Stern and Jerome Engel Jr. Atlas of EEG patterns. Lippincott Williams &
Wilkins, 2004.

[97] R. L. Rivest T. H. Cormen, C. E. Leiserson and C. Stein. Introduction to Algorithms,
2nd Edition. The MIT Press, McGraw Hill Book Company, 2001.

[98] Yoshiki Tanaka, Kazuhisa Iwamoto, and Kuniaki Uehara. Discovery of time-series
motif from multi-dimensional data based on mdl principle. Mach. Learn., 58:269–
300, 2005.

[99] Heng Tang and Stephen Shaoyi Liao. Discovering original motifs with different
lengths from time series. Know.-Based Syst., 21:666–671, 2008.

[100] Sandeep Tata. Declarative Querying For Biological Sequences. The University of
Michigan, 2007.

160

[101] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael Stone-
braker. Load shedding in a data stream manager. In Proceedings of the 29th interna-
tional conference on Very large data bases - Volume 29, VLDB ’2003, pages 309–320,
2003.

[102] A. Torralba, R. Fergus, and W.T. Freeman. 80 million tiny images: A large data
set for nonparametric object and scene recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 30(11):1958 –1970, 2008.

[103] Vladimir Trifa, Lewis Girod, Travis Collier, Daniel T Blumstein, and Charles E.
Taylor. Automated wildlife monitoring using self-configuring sensor networks de-
ployed in natural habitats. In International Symposium on Artificial Life and Robotics
(AROB07), 2007.

[104] K. Ueno, Xiaopeng Xi, E. Keogh, and Dah-Jye Lee. Anytime classification using the
nearest neighbor algorithm with applications to stream mining. In Data Mining, 2006.
ICDM ’06. Sixth International Conference on, pages 623–632, 2006.

[105] Alireza Vahdatpour, Navid Amini, and Majid Sarrafzadeh. Toward unsupervised activ-
ity discovery using multi-dimensional motif detection in time series. In Proceedings
of the 21st international jont conference on Artifical intelligence, IJCAI’09, pages
1261–1266, 2009.

[106] Douglas Vail and Manuela Veloso. Learning from accelerometer data on a legged
robot. In In Proceedings of the 5th IFAC/EURON Symposium on Intelligent Au-
tonomous Vehicles, 2004.

[107] Michail Vlachos, Suleyman Serdar Kozat, and Philip S. Yu. Optimal distance bounds
on time-series data. In SDM, pages 109–120, 2009.

[108] Michail Vlachos, Christopher Meek, Zografoula Vagena, and Dimitrios Gunopulos.
Identifying similarities, periodicities and bursts for online search queries. In Proceed-
ings of the 2004 ACM SIGMOD international conference on Management of data,
pages 131–142, 2004.

[109] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis and per-
formance study for similarity-search methods in high-dimensional spaces. In Pro-
ceedings of the 24rd International Conference on Very Large Data Bases, VLDB ’98,
pages 194–205, 1998.

[110] Li Wei, Nitin Kumar, Venkata Nishanth Lolla, Eamonn J. Keogh, Stefano Lonardi, and
Chotirat (Ann) Ratanamahatana. Assumption-free anomaly detection in time series.
In SSDBM, pages 237–240, 2005.

[111] D. Randall Wilson and Tony R. Martinez. Reduction techniques for instance-
basedlearning algorithms. Mach. Learn., 38:257–286, 2000.

161

[112] Zhengzheng Xing, Jian Pei, Philip Yu, and Ke Wang. Extracting interpretable features
for early classification on time series. In the Proceedings of SDM, 2011.

[113] Dragomir Yankov, Eamonn Keogh, Jose Medina, Bill Chiu, and Victor Zordan. De-
tecting time series motifs under uniform scaling. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD
’07, pages 844–853, 2007.

[114] Dragomir Yankov, Eamonn J. Keogh, and Umaa Rebbapragada. Disk aware discord
discovery: Finding unusual time series in terabyte sized datasets. In ICDM, pages
381–390, 2007.

[115] Lexiang Ye and Eamonn Keogh. Time series shapelets: a new primitive for data min-
ing. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD, pages 947–956, 2009.

[116] Cui Yu, Bin Cui, Shuguang Wang, and Jianwen Su. Efficient index-based knn join
processing for high-dimensional data. Inf. Softw. Technol., 49:332–344, 2007.

[117] Jesin Zakaria, Sarah Rotschafer, Abdullah Mueen, Khaleel Razak, and Eamonn
Keogh. Mining massive archive of mice sounds with symbolized representations.
SDM, 2012.

[118] Xin Zhang. Fast Algorithms for Burst Detection. PhD thesis, Courant Institute of
Mathematical Sciences, New York University, USA, 2006.

162

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Time Series Motif
	Time Series Shapelet

	Exact Discovery of Time Series Motifs
	Definitions and Background
	The MK Algorithm
	The Intuition behind MK
	A Formal Statement of MK

	Experiments
	Performance Comparison
	Choosing the number of reference points
	Why not use other lower bounding techniques?
	z-Normalizing the time series
	Extension to Multidimensional Motifs
	Discussion and Interpretation of Results

	Experimental Case Studies
	Finding Repeated Insect Behavior
	Automatically Constructing EEG Dictionaries
	Motif-based Anytime Time Series Classification

	Prior and Related Work
	Conclusion

	Extension to Disk Resident Time Series
	Related Work
	DAME: Disk Aware Motif Enumeration
	A Detailed Intuition of Our Algorithm
	A Formal Description of DAME
	Correctness of DAME

	Scalability Experiments
	Sanity Check on Large Databases
	Performance for Different Block Sizes
	Performance for Different Motif Lengths
	In-Memory Search Options

	Experimental Case Studies
	Motifs for Brain-Computer Interfaces
	Detecting Near-Duplicate Images
	Discovering Patterns in Polysomnograms

	Conclusion

	Extension to Streaming Time Series
	Notation and Background
	Why is this Problem Hard?

	Related Work
	Online Monitoring of Motif
	The First Solution
	Reducing Space and Time Complexity

	Online MK Algorithm
	Performance Evaluation
	Extending Online MK
	Adapting to Variable Data Rate
	Monitoring Multidimensional Motifs

	Applications of Online Motifs
	Online Summarization/Compression
	Acoustic Wildlife Management
	Closing the Loop Problem

	Conclusion

	Exact Discovery of Time Series Shapelets
	Definition and Background
	Brute-force Algorithm

	Speedup Techniques
	Efficient Distance Computation
	Candidate Pruning
	The Fast Shapelet Discovery Algorithm

	Logical-Shapelet
	Evaluation
	Case Studies
	Cricket: Automatic Scorer
	Sony AIBO Robot: Surface Detection
	Passgraphs: Preventing Shoulder-Surfers

	Conclusion

	Conclusion
	Bibliography

