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Abstract

Head pose estimation is critical in many applica-
tions such as face recognition and human-computer in-
teraction. Various classifiers such as LDA, SVM, or
nearest neighbor are widely used for this purpose; how-
ever, the recognition rates are limited due to the limited
discriminative power of these classifiers for discretized
pose estimation. In this paper, we propose a head
pose estimation method using a Cluster-Classification
Bayesian Network (CCBN), specifically designed for
classification after clustering. A pose layout is defined
where similar poses are assigned to the same block.
This increases the discriminative power within the same
block when similar yet different poses are present. We
achieve the highest recognition accuracy on two public
databases (CAS-PEAL and FEI) compared to the state-
of-the-art methods.

1. Introduction

Head pose estimation, the process of inferring the
orientation of the human head, is critical in many appli-
cations such as face analysis and human-computer inter-
action. The human head is often considered as a rigid
object; thus, three degree-of-freedoms (pitch, yaw, roll)
need to be identified in order to describe the orientation
of the head pose. The pitch and yaw angles describe the
out-of-the-plane rotation and the roll angle accounts for
the in-plane rotation.

The first type of head pose estimation methods is ap-
pearance based. Given an image with unknown pose, it
is compared to a set of labeled data and the pose is de-
termined by measuring the similarity between the im-
age and the labeled data. Earlier works used normal-
ized cross-correlation at different resolutions to deter-
mine the head pose. Gabor features [7] are also used
to highlight the oriented features and perform pose es-
timation. In recent years, inspired by the success in
pedestrian detection, Histogram of Oriented Gradients
(HOG) has been widely used for head pose estimation.
In [8] supervised local subspace learning is used to learn
a local linear model from HOG features of the train-
ing data. Dong et al. [3] proposed a new image de-
scriptor called Covariance of Oriented Gradients (COG)
and reported higher recognition rates compared to other

HOG based approaches. The advantage of an appear-
ance based method is that only positive examples are
required in the labeled data and the dataset can be eas-
ily extended.

Another approach is to employ a 3D model [2]. Due
to the high computational cost to build the 3D model
and the requirement for accurate detection and regis-
tration of facial features, this type of approach is less
preferred compared to the appearance based methods.
In [4] random forests are utilized to solve head pose es-
timation from 3D depth data and it is formulated as a
regression problem.

In recent years, manifold embedding methods such
as `1 graph regularization [9] have also attracted much
interest. In these methods, it is assumed that the high-
dimensional image sample lies on a low-dimensional
manifold with the possible pose variations as con-
straints.

Being treated as a classification problem, the dis-
criminative power of a classifier directly affects the
classification accuracy. When the number of discrete
poses becomes larger, the commonly used classifiers
such as Linear Discriminant Analysis (LDA) and Sup-
port Vector Machine (SVM) cannot achieve sufficiently
high performance to perform tasks such as face analy-
sis.

In this paper, we introduce the Cluster-Classification
Bayesian Network (CCBN) as part of a novel head pose
estimation algorithm. The proposed CCBN is a hier-
archical Bayesian network specifically designed to per-
form classification after clustering. The poses with sim-
ilar appearance are first clustered into different blocks.
Then a Bayesian network is built. Given a testing face,
its pose is inferred from the Bayesian network. By as-
signing similar poses into the same block, the discrim-
inative power is increased within the same block when
similar yet different poses are present. We test the pro-
posed method on two public datasets; CAS-PEAL [6]
and FEI [1]. Our approach achieves the highest recog-
nition accuracy on both datasets compared to the state-
of-the-art methods.

In the rest of this paper, Section 2 discusses the tech-
nical approach. Experimental results are reported in
Section 3, and the conclusions are drawn in Section 4.
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2. Technical Approach

Bayesian networks graphically represent and factor
joint probability distributions effectively. This impor-
tant property makes them suitable for classification pur-
poses. A Bayesian network is defined as a directed
acyclic graph G = (V,E) where the nodes repre-
sent random variables and the edges symbolize the di-
rect dependencies between the random variables. For
a Bayesian network with n nodes X1, X2, . . . , Xn the
full joint distribution is defined as:

p(x1, x2, . . . , xn) = p(x1)× p(x2|x1)× . . .

×p(xn|x1, x2, . . . , xn−1) =

n∏
i=1

p(xi|x1, . . . , xi−1).

(1)
A node in a Bayesian network is only conditional on its
parent’s values; thus,

p(x1, x2, . . . , xn) =

n∏
i=1

p(xi|parents(Xi)), (2)

where p(x1, x2, . . . , xn) is an abbreviation for p(X1 =
x1 ∧ . . . ∧Xn = xn). In other words, a Bayesian net-
work models a probability distribution if each variable
is conditionally independent of all its non-descendants
in the graph given the value of its parents.

In this paper, we introduce the CCBN, a modified
Bayesian network with a specific structure capable of
performing classification after clustering. Say we have
m poses P1, P2, . . . , Pm, each with a unique ID (each
pose corresponds to a class). Initially, we define a lay-
out L for the m poses such that similar poses are lo-
cated in neighboring positions. Depending on the im-
ages, the layout can be one, two, or three dimensional.
Thereafter, the layout is partitioned into blocks where
each block holds similar poses. The layout L is not
unique and the partitioning may be performed using
systematic or heuristic methods. A simple way to de-
fine the blocks is to group the poses based on their vi-
sual similarity by just looking at the data. The number
of blocks, m, are predetermined (similar to k-means).
Each pose is a member of at least one block. Let’s clar-
ify this with an example. Say 11 poses are available
and the blocks are determined as B1 = {1, 2, 6, 7, 11},
B2 = {3, 8}, B3 = {4, 5, 9, 10}, B4 = {1, 2, 3, 4, 5},
and B5 = {6, 7, 8, 9, 10, 11}. Figure 1(a) illustrates this
layout. Pruning can be used to optimize the CCBN and
reduce the computational complexity without changing
the probability distributions on the variables of inter-
est. A corresponding CCBN is generated after the pose
blocks are defined. Figure 1(b) presents the CCBN cor-
responding to the layout in Figure 1(a).

A CCBN is a hybrid hierarchical Bayesian network
with three different types of nodes:

1. Class node. This is the top layer node and holds
the probabilities of the data belonging to each

(a) Pose layout L (b) Corresponding CCBN

Figure 1. Sample pose layout and CCBN

class. The class node is a discrete node with a node
size equal to the number of classes (poses). This
node is represented by the random variable C.

2. Features node. This is the bottom layer node and
corresponds to the feature vector representing the
data. Depending on the data, the feature node can
be discrete or continuous. The node size is equal
to the dimensionality of the data. This node is rep-
resented by the random variable F .

3. Block nodes. These nodes are discrete, binary, and
define the middle layer. Each block node repre-
sents a block on the pose layout. A block node
Bi determines the membership probability of the
data to block i vs. all the other blocks. The
block nodes are represented by random variables
B1, B2, . . . , Bm.

To validate the CCBN structure in Figure 1(b),
we use the K2 algorithm described in [5] to deter-
mine a sub-optimal structure (learning the best struc-
ture/topology takes exponential time and a sub-optimal
structure is a good approximation here). K2 is a greedy
algorithm that incrementally adds parents to a node ac-
cording to a score function. In this paper we use the
Bayesian Information Criterion (BIC) function as the
scoring function.

By utilizing such a classification-after-clustering
structure, similar yet different poses have dissimilar
probability distributions over the block node they be-
long to; thus, the discriminative power is increased
within the same block by assigning similar poses into
the same block.

The block nodes in a CCBN can be combined to cre-
ate cluster nodes using join tree algorithms. This is done
to improve efficiency of computing posterior probabil-
ities for all random variables in a BN. We avoid doing
so because we do not require computing the posterior
probability for all nodes; our goal is to compute

maxclassP (C|F ), (3)

which represents the class label with the highest proba-
bility.
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From Equation (2) the joint probability distribution
for a given CCBN with class node C, feature node F ,
and block nodes B1, B2, . . . , Bm is defined as:

P (C,B1, . . . , Bm, F ) =

P (C)× P (F |B1, . . . , Bm)×
m∏
i=1

P (Bi|C). (4)

All CCBN parameters on the right hand side of Equa-
tion (4) are computed during training of the CCBN.
Thereafter, inference is performed where a probability
distribution over the set of pose classes is assigned to the
feature vector representing a face image and the class
with the highest posterior probability is selected as the
classification result. The probability of a given data f
being from class ck is formulated as:

P (C = ck|F = f) =
P (C = ck, F = f)

P (F = f)
, (5)

where

P (C = ck, F = f) =
∑

B1,...,Bm

P (C = ck)

×
m∏
i=1

P (Bi|C = ck)P (F = f |B1, . . . , Bm) (6)

and

P (F = f) =
∑

C,B1,...,Bm

P (C)

m∏
i=1

P (Bi|C)

× P (F = f |B1, . . . , Bm).

3. Experimental Results

We use face images from the FEI [1] and the CAS-
PEAL [6] databases. For our experiments, we use 2200
images from the FEI database representing 200 indi-
viduals under 11 different poses from full profile left
to full profile right, and 4200 images from the CAS-
PEAL of 200 individuals under 21 various poses. The
CAS-PEAL images were selected according to the ex-
perimental set up in [3, 10] for the purpose of fair com-
parison. The CAS-PEAL poses have IDs 1 to 21, and
FEI database poses have IDs 1 to 11. All images are re-
sized to 32×32 and aligned. Each image is divided into
8× 8 blocks and there are 15 bins in each histogram for
each block, resulting in a 240 dimensional HOG feature
vector. k-fold cross validation is used to evaluate the
performance with k=10. For each fold, 150 individuals
are used for training and 50 individuals for testing.

3.1. Pose Layouts

Figure 2 presents the pose layouts for both CAS-
PEAL and FEI databases. Each pose layout is overlaid
on sample images from its corresponding database.

(a) CAS-PEAL samples with pose layout

(b) FEI samples with pose layout

Figure 2. Pose layout and samples for
CAS-PEAL and FEI databases

The CCBN structure for the CAS-PEAL pose layout
has ten block nodes B1, . . . , B10 (Figure 3), and for the
FEI pose layout five block nodes B1, . . . , B5.

Figure 3. CCBN structure for CAS-PEAL
pose layout

3.2. Comparison with other methods

Results on CAS-PEAL database: Table 1 presents
pose estimation accuracy for different methods on the
CAS-PEAL database. To show how CCBN compares to
other classifiers, we report the accuracy for 4 other clas-
sifiers: Nearest Neighbor (NN), SVM (linear), LDA,
and Naive Bayes (NB). Three representative feature de-
scriptors are used for each classifier: Local Binary Pat-
terns (LBP), HOG , and GaFour [10]. The results show
that using CCBN improves the accuracy compared to
the NN, LDA and SVM classifiers for all the three de-
scriptors. CCBN with the HOG descriptor achieves the
highest accuracy 96.91% compared to all other classi-
fiers and descriptors reported in Table 1. In this case,
HOG successfully encodes the head poses. To the best
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of our knowledge, the highest recognition rate on the
same CAS-PEAL database is reported as 95.33% in [3]
using Covariance of Oriented Gradients (COG) features
and Nearest Centroid (NC) classifier. This is inferior to
the performance of CCBN+HOG.

Table 1. Accuracy percentages compari-
son

Classifier→ NN LDA SVM NB CCBN
Descriptor↓

LBP 84.67 86.12 87.20 86.44 89.74
HOG 86.85 91.86 95.04 91.27 96.91

GaFour [10] 82.96 88.29 92.76 89.81 94.33

Results on FEI database: Based on the results in
Table 1, we choose to use HOG as the feature descriptor
for the experiments on the FEI database. Table 2 shows
the pose estimation results of each pose for CCBN, NN,
LDA, and SVM on the FEI database. CCBN has greater
accuracy than the other three classifiers for 9 out of
the total 11 poses. The average accuracy for CCBN
is 3.48% more than SVM, 5.81% more than LDA, and
11.21% more than NN.

Table 2. Accuracy percentage comparison
for CCBN vs. NN, LDA, and SVM

Pose↓ NN LDA SVM This paper
1 81.41 91.43 94.65 97.63
2 86.68 88.67 95.76 95.34
3 83.22 88.70 90.88 95.04
4 85.20 91.21 92.06 94.69
5 83.91 92.44 92.46 95.93
6 85.61 93.09 95.20 94.99
7 83.80 89.67 92.44 98.93
8 85.98 91.37 94.40 98.04
9 86.48 90.84 88.90 96.96

10 88.42 87.13 92.29 96.93
11 84.61 90.12 91.35 95.40

avg. 85.03 90.43 92.76 96.24

Figure 4 presents the Receiver Operating Character-
istic (ROC) curves for all of the four classifiers from Ta-
ble 2. The results show how each classifier performs on
the FEI database using HOG as the descriptor. Clearly,
CCBN outperforms NN, LDA, and SVM.

4. Conclusions

In this paper, we introduced a novel pose estimation
method using a Cluster-Classification Bayesian Net-
work (CCBN). Before defining the CCBN, a pose lay-
out is generated where similar poses are grouped in
blocks. Given a face, the class label is determined as

Figure 4. Performance ROC plot

the one with the highest probability conditioned on the
feature descriptor. By clustering similar poses into the
same block, the trained classifier is more discriminative
in these similar poses. The CCBN is tested on two pub-
lic datasets CAS-PEAL and FEI. The comparisons are
made among different classifiers and different features.
The experimental results show that the CCBN improves
the classification accuracy compared to the other classi-
fiers. Also, the CCBN classifier with HOG as the fea-
ture descriptor provides the best performance.
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