
Automating UNIX Log Monitoring
Miguel Rodriguez: miguelr@cs.ucr.edu: University of California, Riverside

Abstract

We present a methodology for the maintenance and
use of UNIX log files with the Perl scripting language.
We begin with defining UNIX logs then continue with
our motivations and goals. Other applications exist for
these purposes. We compare these with our own and
discuss any differences. The technical details, along
with the motivations, of our approach are then ex-
plained. Our results show that a systematic approach
to the handling of UNIX files is essential for successful
system administration.
Keywords: UNIX, logs, Perl, scripting, SWATCH.

Introduction

UNIX logs are an integral part of a UNIX system. They
record events that occur, each with a different priority.
Some may be errors, warnings, emergencies, or they
may simply be a notice or message of what has oc-
curred. It is important to note that these logs record
what has happened and not what is or what will be
happening. However, it is possible to notice trends.
An experienced System Administrator should be able
to anticipate what will happen based on the current
entries in the log files.

These logs can be useful for troubleshooting and di-
agnosing problems, such as network failures, SPAM,
unauthorized access, exceeded disk space, etc. They
can also be used to monitor the activity of authorized
users and enforce any policies or rules that are in place.
The benefits are numerous. To further exemplify the
importance of UNIX log files, consider the nonexistence
of these files. How would a System Administrator mon-
itor their system? Assume that the administrator does
indeed care to see their system in good “health.” To
monitor activity, he or she would have to perform the
logging manually...for everything! Every service, every
daemon, every request, etc. This will get very tire-
some, very quickly. Perhaps to decrease the workload,
say that a few more administrators were hired. This
would make things slightly better for the first admin-
istrator, however this would increase the cost for their
employer. As a result, more man power is clearly not
the solution to the tediousness of manual logging. So we
return to having a single administrator. Now consider
the amount of time required to perform the logging.

Assuming the system is always online, our poor admin-
istrator will never be done with the logging! There will
always be an event to log. Additionally, note that dur-
ing the time required to create a log entry, there may
have occurred many other events that require logging,
which in effect, create a log queue. Therefore, we can
see that the amount of time required for manual logging
increases indefinitely (as does the log queue). Thus, we
conclude that manual logging is not only impractical,
it is also infeasible.

Of course, this is not situation that exists in real-
ity. UNIX logs implement automatic logging, which
relieves the System Administrator of this tedious task
and allows them to focus on other important duties.
Problem solved? Not quite. We still have the next task
after the logging is done, which is to look at them and
identify anything that might be of concern. First we
must understand where these log files are kept. With-
out going into detail describing the UNIX System Log
Facility (1), we will simply point out the most logs are
stored in the directory /var/log. There are many log
files that serve different purposes and services. Further-
more, they do not all conform to the same format. This
and their sheer size contribute to the dullness of hav-
ing to sift through them by hand. The amount of time
required for this is also significant. Again, this leaves
less time for other, possibly more important, tasks that
must be performed. As we can see, the monitoring of
log files is also tedious. The solution is to somehow
automate this log monitoring process, which was the
solution for the manual logging problem.

Our project aims to solve the problem of manual
UNIX log monitoring. Such a solution would greatly
increase a System Administrator’s ability to serve other
tasks and personnel. It also cuts the cost for their em-
ployer because it eliminates the need for additional ad-
ministrators. As an overview, their are two steps to our
project. The first and most important is to research and
identify the types of situations and events that an ad-
ministrator would like to monitor. The first step would
be to identify an even of interest, view the appropriate
log file and take note of the types of entries and their
meanings. If their meaning is not initially clear, take
steps to learn what information the entry is record-
ing. The second and easier step is to write a script or
scripts that extract(s) the desired information and re-
ports some statistics from this information. Step one is



a prerequisite for step two. In truth, there is actually
a third step to this process, but it is not strictly a part
of our project. The third step is to take any action if
necessary. This is left as a responsibility for the admin-
istrator and our goal is to make this responsibility easy
to fulfill.

Related Work

As mentioned earlier, their are similar projects that
address the problem of manual log monitoring. Sim-
ple WATCHer, or SWATCH (2), is one of the more
notable projects. It is a Perl script that monitors a
specified log file with a configuration file that defines
what patterns to look for and what actions to execute
when a pattern is found. This is the first difference be-
tween SWATCH and our script. Our script does not
execute any actions like SWATCH does. We simply
report information and statistics. The actions are as-
sumed to be taken by the administrator. Another dif-
ference is SWATCH’s configuration file and our lack
of such a file. It’s configuration file is highly flexible.
The patterns are defined by regular expressions, which
are extremely powerful in describing sets of strings or
patterns. The pattern is then followed by the action
that is to be performed when pattern is matched. The
following is an example entry: watchfor /failed/ echo
bold mail addressess=root,subject=Failed Authentica-
tion Given a log file, say sulog, SWATCH will try to
match the string “failed” in each line in the file. When
it finds a match, it will send an email to root. Ob-
serve that, given the pattern and input file (sulog), this
implies that we are interested in all the failed authen-
tication attempts (also indicated by the subject field).
This demonstrates the first step in our process, which
is to identify and understand the event of interest. Step
two is to use a script, in this case, SWATCH to auto-
mate the log monitoring. The more impressive feature
about SWATCH is that it also does the third step -
take action. This makes SWATCH a good tool for the
administrator. It automates log monitoring and any
necessary actions that must be performed. We are still
left with step one, though, which is to identify what
we are interested in. This is, inherently, a problem
suited for humans to solve...at least until we see fur-
ther advancements in artificial intelligence. Neverthe-
less, SWATCH does a good job of automating both log
monitoring and the actions required, which leaves the
administrator with only having to decide what to look
for. The bulk of our efforts focus on this aspect.

Technical Details

To solve the problem of manual UNIX log monitoring,
we first broke it up into subproblems. The first being to
obtain useful and realistic data in the form of log files.
We first considered creating dummy logs but found it to
take a significant amount of time. We looked at the logs
on our Linux box, but discovered them to be of little
use. First of all, there is only one user on this box and
second of all, the file sizes are too small to be useful.
Another reason why dummy logs would be impractical
is because we would have to learn all the formats that
log files take and we would have to learn the meaning
of the content of each entry in each file. Additionally,
suppose we introduced some invalid entries, that is, log
entries that would otherwise never occur. This would
clearly invalidate any of our results and conclusions. As
a result, we endeavored to obtain large amounts of real
data.

We were able to obtain several log files from the
Graduate Sun Lab in the Department of Statistics. The
two that we will consider are sulog and authlog with
sizes of 32K and 4.6M, respectively. The file sulog logs
all successful and unsuccessful attempts of the su com-
mand and the file authlog logs all authentication at-
tempts. Clearly, we could very well use any or all the
logs for our project, but for the sake of brevity, we will
only consider these two log files. The methods we de-
scribe can similarly be applied to any log file of interest.

The next subproblem is to identify the patterns or
events that we wish to look for in these log files. This
quickly becomes the most time consuming part. To
learn what to look for, we first must view the files.
Immediately, one would be overwhelmed by the size
of the file. Where should we start? Starting and the
beginning of the file is essentially pointless, depending
on the life span of the file. If it has many months worth
of data, the entries at the beginning would be of little
use for us at the present. At the very least, this would
tell us when a problem began to occur. A better place
to start perusing the file would be at the end. This
is the closest point to the present. It tells us what
recently happened (good or bad). From here, we can
work backwards and if we were to find a problem, we
could trace backwards to find where the problem began.
This is the process we will adhere to.

The entries in sulog contain the following informa-
tion: the command su, date, time, whether or not the
attempt was successful, denoted by a “+” or “-”, port,
the user, and the new user the user attempted to su
to. An example entry looks like: SU 04/28 15:09 +
pts/3 mrodr008-root. For simplicity, we only consider
the entries in which a user attempts to su to root since
this is the most important user id and the one in which
requires the most security. This is a rather simple log
to understand, which is why we will begin with it. We



have identified what we wish to look for and our next
step is to write a Perl script that will do this task for
us. For the System Administrator, this should be no
problem. We omit the details of the Perl script and re-
fer the interested reader to the references for resources
on Perl (3). In our script, we take the sulog as input
and output the users who successfully and unsuccess-
fully su’d to root, along with their count. To do this,
we test for a match for the string “root” at the end of
each line in the file. We also output a time distribution
which tells us the hour when attempts to su root oc-
curred. This distribution spans all the users who made
such attempts. If desired, one could instead output a
time distribution for each user.

In contrast to sulog, the file authlog contains a larger
variety of log entries. As a result, a lot of time was
spent researching their meanings. Again, for simplic-
ity, we continue our quest to detect any unauthorized
root logins. In this case, we are concerned with ssh at-
tempts to root. In our script, we check for the following
log entries: May 27 14:24:05 s local@statserv.ucr.edu
sshd[23991]: [ID 800047 auth.info] Failed password for
root from 138.23.5.156 port 53250 ssh2. To achieve
this, we use Perl’s regular expression capability and try
to match the string “Failed password for root”. For
each match, we then extract the IP address and run
the program “traceroute” on it to find out where the
attempt originated from. Alternatively, you could in-
stead use the program “whois”, which would give more
detailed information. Then one would parse out the
location. At this point, we are at step three now - take
action. It is now the administrator’s responsibility to
decide whether these ssh to root attempts are malicious
or not and take the appropriate action.

Results

We now present the results of our methods, which we
will use to support our claims. After obtaining the log
data and identifying our interests (looking for root ac-
cess attempts), we wrote the appropriate Perl scripts
and then put them to work. Each file was not modi-
fied in any way. From sulog, we obtained the following
information:

Successful su root attempts

billdbrk 77
gaston 73
ggonzale 286
mikek 1
mrodr008 8
njames 123
root 2
russ 1
sgeadmin 1

Unsuccessful su root attempts

atristan 4
billdbrk 143
gaston 15
ggonzale 84
mikek 1
mrodr008 2
njames 35
russ 3

Time Distribution

00 5
01 6
02 3
03 1
04 0
05 0
06 1
07 11
08 33
09 69
10 74
11 75
12 108
13 106
14 99
15 111
16 60
17 39
18 21
19 9
20 10
21 7
22 1
23 10

Upon inspection, we find that all of these user id’s
are known to us except for “njames”. The others we
know to be either administrators of Statistics or other
employees of UCR C&C. It may be that “njames” is
also a part of C&C. We would have to look into it.

From the tables, we see that there have been no unau-
thorized root access attempts. This is good to see.
There also appears to be nothing too unusual in the
access times and most of them took place after lunch,
with some Night Owls as well.

From authlog, we obtained the following:
IPs that failed to ssh to root

87.194.33.69 London city residential static 2 service
203.24.211.3 WebCafe-AU
168.167.21.90 Botswana Telecommunications Corporation
138.23.5.156 UCR Computing & Communications



Based on this information, three of the four IPs are,
in all likelihood, unauthorized ssh to root attempts.
The fourth one is nothing to worry about...unless we
have corrupt employees. Next we have to decide what
action to take. We could do nothing, since the bad IPs
were unsuccessful in their attempts and assume that
this will continue to be the case. Or we could con-
tact these organizations from the information provided
in the output of the “whois” command. However, we
expect this to do little good. If they indeed have mali-
cious intent, would they really reply back? Not likely.
A better action would be to further strengthen the root
password because we anticipate these types of events to
re-occur.

Conclusion

In this paper, we have presented and discussed the
motivation for a systematic procedure for monitoring
and analyzing UNIX log files. We first showed how
the UNIX System Log Facility eliminates the need to
perform manual logging. Then we discussed how man-
ual log monitoring is very time consuming for a System
Administrator to perform, thus demonstrating the need
for an automatic alternative. Our method consists of
two steps, followed by an assumed third step to be per-
formed by the administrator. First, after gathering the
desired data, identify what events or trends to look for.
Second, write scripts that look for the patterns of in-
terest and report the results and statistics. The third
step is to perform the appropriate action in response to
the results of the analysis. System administrators shall
benefit from these procedures in many ways. First, they
will obtain more time to perform other important sys-
tem administration tasks, such as performing hardware
or software upgrades, updating policies, or dealing with
his or her users in person, etc. Another benefit is the
faster way in which they will learn of any problems oc-
curring on their system. This would help to minimize
any down time that would occur. If we had to sum up
our project in one sentence, it would be: “Look at your
logs, learn what to look for, respond accordingly.”

To further improve on our results and methods,
we will implement more advanced functionality in our
scripts. As noted before, it is rather simple to tailor our
scripts to work with the many other UNIX logs that are
available. Ideally, we would want them to work with
all UNIX logs. Furthermore, setting up our scripts as a
cron job would be even more beneficial as it would let
the administrator not have to initialize the log moni-
toring processes manually. We refer to this as “true”
automatic log monitoring. Thus, we can see that the
process of automating UNIX log monitoring is multi-
faceted. Current methods, together with ours, allows
for any administrator to efficiently perform their job.

References

[1] Garfinkel, S., and Spafford, G. Practical
UNIX & Internet Security. 2nd Edition (1996),
Ch. 10.5.

[2] Atkins, T. SWATCH homepage
http://swatch.sourceforge.net SWATCH man
page http://linux.die.net/man/1/swatch Version
3.1 (2004)

[3] Wall, L., Christiansen, T., and Orwant, J.
Programming Perl. 3rd Edition (2000)


