
Speculative Parallelization on GPGPUs

Min Feng Rajiv Gupta Laximi N. Bhuyan

University of California, Riverside

{mfeng, gupta, bhuyan}@cs.ucr.edu

Abstract

This paper overviews the first speculative parallelization technique
for GPUs that can exploit parallelism in loops even in the pres-
ence of dynamic irregularities that may give rise to cross-iteration
dependences. The execution of a speculatively parallelized loop
consists of five phases: scheduling, computation, misspeculation
check, result committing, and misspeculation recovery. We per-
form misspeculation check on the GPU to minimize its cost. We
optimize the procedures of result committing and misspeculation
recovery to reduce the result copying and recovery overhead. Fi-
nally, the scheduling policies are designed according to the types of
cross-iteration dependences to reduce the misspeculation rate. Our
preliminary evaluation was conducted on an nVidia Tesla C1060
hosted in an Intel(R) Xeon(R) E5540 machine. We use three bench-
marks of which two contain irregular memory accesses and one
contain irregular control flows that can give rise to cross-iteration
dependences. Our implementation achieves 3.6x-13.8x speedups
for loops in these benchmarks.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – compilers

General Terms Performance

1. Introduction

Dynamic irregularities have been widely studied for high perfor-
mance computing on General-Purpose Graphics Processing Units
(GPGPUs or GPUs for short) [3–5]. Existing works have focused
on optimizing the performance in the presence of such irregulari-
ties. However, in this work, we consider a new class of dynamic
irregularities in loops that may cause cross-iteration dependences
at runtime. Thus, presence of such dynamic irregularities prevents
existing techniques from parallelizing the loops for GPUs. In par-
ticular, we have identified two types of dynamic irregularities that
may dynamically cause cross-iteration dependences to arise. Next
we illustrate them using examples.

Dynamic irregular memory accesses refer to memory ac-
cesses whose memory access patterns are unknown at compile
time. They may result in infrequent cross-iteration dependences at
runtime. Figure 1(a) shows an example, where each iteration of the
loop reads A[P [i]] and writes to A[Q[i]]. The memory access pat-
terns of A[P [i]] and A[Q[i]] are determined by the runtime values
of the elements in arrays P and Q. It is possible that an element in

Copyright is held by the author/owner(s).

PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.

ACM 978-1-4503-1160-1/12/02.

for (i=0; i<n; i++) {
. . . = A[P[i]];
A[Q[i]] = . . .;

}

for (i=0; i<n; i++) {
. . . = A[i];
if (A[i]) A[i+1] = . . . ;

}

(a) Irregular memory access (b) Irregular control flow

Figure 1. Examples of dynamic irregularities that cause cross-
iteration dependences.

array A is read in one iteration and written in another at runtime,
which results in a dynamic cross-iteration dependence. Since the
memory access patterns are unknown at compile time, it is not pos-
sible to identify the dynamic dependences at that time. Therefore,
the loop cannot be parallelized by any existing GPU compiler.

Irregular control flows are introduced by conditional state-
ments, which may cause execution of paths that may give rise to
cross-iteration dependences at runtime, as illustrated in Figure 1(b),
where each iteration of the loop usually only reads A[i]. In the loop,
there is a conditional branch that guards a write to A[i+1], which is
to be read in the next iteration. The outcome of branch condition is
determined by the runtime value of A[i]. If the condition is true in
the current iteration, a cross-iteration dependence occurs between
the current iteration and the next iteration. Since the value of A[i]
is unknown at compile time, there is no way to know at compile
time in which iteration the branch condition will be true. There-
fore, like the previous example, this loop cannot be parallelized by
any existing GPU compiler.

In this paper, we propose a speculative execution framework
for GPU computing. It is used to parallelize loops that may con-
tain cross-iteration dependences caused by dynamic irregularities.
The execution of a speculative parallel loop consists of five phases:
scheduling, computation, misspeculation check, result committing,
and misspeculation recovery. For efficiency, we develop a schedul-
ing policy that is optimized for different types of cross-iteration
dependences to reduce the misspeculation rate. We reduce the run-
time overhead by performing misspeculation check on the GPU and
utilizing its massive number of stream processors. We optimize the
result committing procedure to reduce the size of data transferred
between the CPU and GPU. Recovery is performed on the CPU for
as few iterations as possible to minimize its runtime overhead.

Our preliminary evaluation was conducted on an nVidia Tesla
C1060 hosted in a Intel(R) Xeon(R) E5540 machine. We used
three benchmarks, where two benchmarks have loops with irreg-
ular memory accesses and one have loops with irregular control
flows. Our implementation achieves 3.6x-13.8x speedup for the
parallelized loops in these benchmarks.

2. Overview

Figure 2 gives the overview of executing a speculative parallel loop
using GPUs. The procedure consists of five phases: scheduling,
computation, misspeculation check, result committing, and mis-

Benchmark Description Function LOC Irregularities % of time Speedup

ocean Boussinesq fluid layer solver ftrvmt 150 irregular memory accesses 45% 3.62

trfd two-electron integral transformation intgrl 37 irregular memory accesses 6% 5.43

mdg water molecule simulator interf 208 irregular control flows 94% 13.76

Table 1. Benchmark summary. From left to right: benchmark name, name of the function where the loop is located, lines of code in the
function, type of irregularities that cause cross-iteration dependences, percentage of total execution time taken by the loop, and speedup of
the loop.

��� ���

��������	
��

�������	������

����������	
�����

�����

������	
��

���������

����������	
�����

��������

��������

!��

"�

Figure 2. Execution framework of a speculative parallel loop with
GPUs.

speculation recovery, among which computation and misspecula-
tion check are performed on the GPU. The five phases are repeated
until the entire loop is finished. We briefly describe the five phases
as follows.

Scheduling. Upon entering a speculatively parallelized loop, the
CPU needs to determine the proper number of iterations that will be
executed on the GPU in the next phase. Assigning large number of
iterations to the GPU may cause excessive misspeculations while
assigning small number of iterations may limit performance while
leaving the GPU under-utilized. Our scheduling policy adaptively
adjusts the size of each assignment to minimize the misspeculation
rate while keeping each assignment large enough to make full use
of the massive parallel architecture on GPUs.

Computation. After scheduling, the GPU executes the iterations
in parallel by speculating on the absence of cross-iteration depen-
dence. To enable speculative execution, we need to track the irreg-
ular memory accesses and control flows during the computation.

Misspeculation check. Misspeculation check consists of two
steps: detection and localization. Misspeculation detection is used
to determine whether the iterations have been executed correctly.
If misspeculation is detected, the misspeculation localization step
is used to identify the iterations that were executed incorrectly. In
addition, for speculative execution on GPUs, we need to identify
the correct part of the results, which must be copied back to the
CPU memory. To make misspeculation checks efficient, they are
performed in parallel on the GPU. Since there is data parallelism
in misspeculation checks, executing them on the GPU can lead to
better performance.

Result committing. After misspeculation checks, we need to
copy the results from the GPU memory to the CPU memory. For
better performance, our runtime only copies the correct results us-
ing the information obtained through misspeculation check.

Misspeculation recovery. We need to re-execute the iterations
where misspeculation occurs. We should re-execute on the CPU as

few iterations as possible to minimize the recovery overhead. Exe-
cuting more iterations on the GPU will get us better performance.
Therefore, our runtime only re-execute on the CPU the misspec-
ulated iterations on which other misspeculated iterations depend.
Other misspeculated iterations will be executed on the GPU in the
next assignment.

3. Preliminary Evaluation

This section presents our preliminary evaluation of the proposed
speculative parallelization framework. We have developed a pro-
totype implementation of our framework, whose core components
consist of: a source-to-source translator and a runtime library. The
source-to-source translator is based on OpenMPC [3], which is an
OpenMP-to-CUDA compiler. The runtime library implements the
core steps of our technique, i.e. scheduling, misspeculation check,
result committing, and misspeculation recovery. We used an nVidia
Tesla C1060 as the experimental platform. The device is connected
to a host system consisting of Intel(R) Xeon(R) E5540 processors.
The machine has CUDA 3.0 installed.

We evaluated our speculative parallelization framework on three
benchmarks shown in Table 1. These benchmarks were obtained
from the test benchmark suites for PIPS [1] and LLVM [2]. We
selected them because they contain dynamic irregularities that may
cause cross-iteration dependences at runtime. These benchmarks
cannot be parallelized without speculation because all of them may
have dynamic cross-iteration dependences due to irregularities.

The rightmost column of Table 1 shows the speedups of the
speculative parallel loops in the three benchmarks. The baseline
is the execution time of the sequential loops on the host system.
Numbers higher than 1 indicate speedup. Overall, the speedups are
between 3.62x and 13.76x, with 7.6x on average. The speedups
demonstrate the effectiveness of our framework for employing
GPUs on irregular loops that may contain cross-iteration depen-
dences.

Acknowledgments

This research is supported by NSF grants CCF-0963996 and CCF-
0905509 to UC Riverside.

References

[1] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural
parallelization: An overview of the PIPS project. In ICS, 1991.

[2] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, 2004.

[3] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: a compiler
framework for automatic translation and optimization. In PPoPP, pages
101–110, 2009.

[4] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU compiler for
memory optimization and parallelism management. In PLDI, pages
86–97, 2010.

[5] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-the-fly
elimination of dynamic irregularities for GPU computing. In ASPLOS,
pages 369–380, 2011.

