FERMI: A Femtocell Resource Management System for Interference Mitigation in OFDMA Networks

Mustafa Y. Arslan University of California, Riverside marslan@cs.ucr.edu Jongwon Yoon University of Wisconsin, Madison yoonj@cs.wisc.edu Karthikeyan Sundaresan NEC Labs America, Inc. Princeton, NJ, USA karthiks@nec-labs.com

Srikanth V. Krishnamurthy University of California, Riverside krish@cs.ucr.edu Suman Banerjee University of Wisconsin, Madison suman@cs.wisc.edu

ABSTRACT

The demand for increased spectral efficiencies is driving the next generation broadband access networks towards deploying smaller cells (femtocells) with sophisticated air interface technologies (Orthogonal Frequency Division Multiple Access or OFDMA). The projected dense deployment of femtocells however, makes interference and hence resource management both critical and extremely challenging. In this paper, we design and implement one of the first resource management systems, FERMI, for OFDMA-based femtocell networks. As part of its design, FERMI (i) provides resource isolation in the frequency domain (as opposed to time) to leverage power pooling across cells to improve capacity; (ii) uses measurement-driven triggers to intelligently distinguish clients that require just link adaptation from those that require resource isolation; (iii) incorporates mechanisms that enable the joint scheduling of both types of clients in the same frame; and (iv) employs efficient, scalable algorithms to determine a fair resource allocation across the entire network with high utilization and low overhead. We implement FERMI on a prototype four-cell WiMAX femtocell testbed and show that it yields significant gains over conventional approaches.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless communication

General Terms

Algorithms, Experimentation, Performance

MobiCom'11, September 19–23, 2011, Las Vegas, Nevada, USA. Copyright 2011 ACM 978-1-4503-0492-4/11/09 ...\$10.00.

1. INTRODUCTION

The demand for higher data rates and increased spectral efficiencies is driving the next generation broadband access networks towards deploying smaller cell structures (called femtocells) with OFDMA [1]. Femtocells are installed indoors (e.g. enterprises, homes) and operate using the same spectrum and access technology as macrocells (traditional cell towers), while connecting to the core network through cable or DSL backhaul. In addition to the increased user throughput from short ranges, the smaller size of femtocells increases the system capacity via increased spatial reuse. This allows mobile broadband service providers to (i) improve coverage and service quality, (ii) effectively balance load by offloading traffic from macrocells to femtocells, and (iii) reduce operational expenses and subscriber churn.

To retain the aforementioned benefits, femtocells have to interoperate with and use the same access technology as macrocells. Hence, resource management solutions for femtocells cannot be designed from scratch. Although there are methods proposed to alleviate the macro-femto interference [2], interference mitigation *between* femtocells has not drawn much attention and thus forms the focus of this work. There are several key aspects that make the resource management problem both challenging and unique in OFDMA femtocells. We articulate these aspects below.

Femtocells versus Macrocells: Typical femtocell deployments are significantly more dense compared to the well-planned deployments of macrocells. Hence, while interference is localized at cell edges in macrocells, it is less predictable and more pervasive across femtocells. This renders Fractional Frequency Reuse (FFR) solutions (proposed for macrocells) inadequate in mitigating interference between femtocells.

Femtocells versus WiFi: In femtocell networks, OFDMA uses a synchronous medium access, on a licensed spectrum. In contrast, WiFi stations access the spectrum in an asynchronous manner. This affects resource management (interference mitigation) in the two systems in a fundamental way. In a typical WiFi system, interfering cells are either tuned to operate on orthogonal channels or use carrier sensing to arbitrate medium access on the same channel. In an OFDMA femtocell system, there is no carrier sensing. Interfering cells can either operate on orthogonal parts (called sub-channels) of the spectrum, or directly project interference on the clients of each other. Further, in OFDMA, transmissions to different clients of a single cell are multiplexed in each frame. Since every client of a cell may not need spectral isolation (for purposes of interference

^{*}Mustafa Arslan and Jongwon Yoon interned in the Mobile Communications and Networking department at NEC Laboratories America Inc, Princeton during this work.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

mitigation), blindly operating adjacent cells on orthogonal parts of the spectrum comes at the cost of underutilization of the available capacity. In other words, resource isolation in OFDMA femtocells needs to be administrated with care. In a WiFi system, since an access point transmits data to a single client at a time (using the entire channel assigned to it), this challenge does not arise.

Our contributions in brief: We design and implement one of the first resource management systems, FERMI, for OFDMA-based femtocell networks. FERMI decouples resource management across the network from scheduling within each femtocell and addresses the former. This allows resource allocation across femtocells to be determined by a central controller (CC) at coarse time scales. Frame scheduling within each femtocell can then be executed independently on the allocated set of resources. The four key cornerstones of FERMI's resource management solution include:

- *Frequency Domain Isolation:* It isolates resources for clients in each femtocell, in the frequency domain (as opposed to the time domain). This allows for *power pooling* to jointly mitigate interference and increase system capacity (discussed later).
- Client Categorization: It employs proactive, measurementdriven triggers to intelligently distinguish clients that require just link adaptation from those that require resource isolation with an accuracy of over 90%.
- *Zoning:* It incorporates a frame structure that supports the graceful coexistence of clients that can reuse the spectrum and the clients that require resource isolation.
- Resource Allocation and Assignment: It employs novel algorithms to assign orthogonal sub-channels to interfering femtocells in a near-optimal fashion.

We have implemented a prototype of FERMI on an experimental four-cell WiMAX femtocell testbed. FERMI provides a complete resource management solution while being standards compatible; this enables its adoption on not only experimental platforms but also on commercial femtocell systems. To the best of our knowledge, we report the first resource management solution implemented on an actual OFDMA femtocell testbed. Comprehensive evaluations show that FERMI's resource management yields significant gains in system throughput over conventional approaches.

The rest of the paper is organized as follows. We describe background and related work in §2. Experiments that motivate FERMI's design are in §3. The building blocks of FERMI are described in §4. In §5, we describe the resource allocation algorithms that are part of FERMI. We evaluate FERMI in §6 and we conclude in §7.

2. BACKGROUND AND RELATED WORK

In this section, we describe relevant related work. We then provide brief background on WiMAX femtocell systems.

Macrocellular Systems: While broadband standards employing OFDMA (WiMAX, LTE) are relatively recent, related research has existed for quite some time [3]. There are studies that address problems pertaining to single cell [4] and multi-cell [5] OFDMA systems. Several efforts have looked at the interference between macrocells and femtocells [2, 6] leveraging the *localized* interference coupled with *planned* cell layouts of macrocells. However, the interference *between* femtocells still remains in question since femtocells lack the desired features of localized interference and planned deployments. There have been some recent studies [7] that address interference among femtocells via distributed mechanisms

Figure 1: Illustration of the WiMAX frame structure.

but are restricted to theoretical studies with simplifying assumptions that prevent their adoption in practice. In contrast, we implement a centralized resource management system to mitigate interference among femtocells; our system is tested on real OFDMA hardware and maintains standards compatibility for easy deployment on commercial femtocell systems.

Spectrum Allocation: In addition to the studies in the cellular domain, there have been studies addressing resource allocation using graph coloring for WiFi systems (e.g. [8, 9, 10]). The main objective in these studies is to allocate a minimum number of orthogonal contiguous channels to each interfering AP. Instead, our objective is to realize a weighted max-min fair allocation while utilizing as many sub-channels (fragments of the spectrum) as possible. In addition, resource allocation is just one component of our study; we implement a novel, complete resource management system with several enhancements specifically tailored to OFDMA. There have also been approaches that allocate spectrum fragments to contending stations (e.g. [11, 12]). However, these studies rely on asynchronous random access and associated sensing capabilities. We address a more challenging problem in OFDMA synchronous access systems and satisfy requirements that are specific to OFDMA femtocells.

2.1 WiMAX Preliminaries

While our study applies to multi-cell OFDMA femto networks in general, our measurements are conducted on a WiMAX (802.16e [13]) femtocell testbed. In WiMAX, the spectrum is divided into multiple tones (sub-carriers) and several sub-carriers are grouped to form a sub-channel. Specifically, distributed grouping (PUSC [13]) is the grouping mode of our choice since it is mandatorily supported. Interference from the same source could be different on different sub-channels if frequency selectivity is taken into account. However in PUSC, the subcarriers composing a sub-channel are picked randomly from the spectrum subject to specific permutations. This, in turn, averages the effect of frequency selectivity and interference on a given sub-channel, thereby giving a uniform effect across sub-channels. A WiMAX frame is a two-dimensional template that carries data to multiple mobile stations (MSs) across both time (symbols) and frequency (sub-channels). The combination of a symbol and a sub-channel constitutes a tile (the basic unit of resource allocation at the MAC). Data to users are allocated as rectangular bursts of tiles in a frame.

In OFDMA femtocells, frame transmissions are synchronized in time both between the BS¹ and MSs as well as across BSs (by virtue of synchronizing to the macro BS [14]). An example of a WiMAX TDD (time division duplexing) frame is shown in Fig. 1; the transmissions from the BS to a MS (downlink) and those from the MS to the BS (uplink) are separated in time. The frame consists of the preamble, control and data payload. While the preamble is used by the MS to lock on to a particular BS, the control consists of FCH (frame control header) and MAP. MAP conveys the location of the data burst for a MS in a frame and consists of both the downlink

¹We use the terms femtocell, BS, cell interchangeably.

Figure 2: The deployment of our testbed (a) and alternative resource isolation strategies (b).

and uplink MAPs. A BS schedules the use of tiles both on the downlink and the uplink. The DL-MAP indicates where each burst is placed in the frame, which MS it is intended for, and what modulation level (MCS as shown in Fig. 1) decodes it. Similarly the UL-MAP indicates where the MS should place its data on the uplink frame. The uplink frame also has dedicated sub-channels for HARQ which is used by the MSs to explicitly acknowledge (ACK / NACK) the reception of each burst sent by the BS.

3. DESIGN ASPECTS OF FERMI

To derive the right design choices for interference mitigation, we perform extensive measurements on our femtocell testbed. Our testbed consists of four femtocells (cells 1-4) deployed in an indoor enterprise environment at NEC Labs (Fig. 2(a)). We use PicoChip's [15] femtocells that run 802.16e (WiMAX). Our clients are commercial WiMAX USB dongles (with unmodifiable, proprietary source code [16]) plugged into laptops running Windows XP. All cells operate on 8.75 MHz bandwidth with the same carrier frequency of 2.59 GHz. For this frequency, we obtained an experimental license from FCC to transmit WiMAX signals on the air.

We consider downlink UDP traffic (generated by *iperf*) from the cells to the clients. The traffic rate is set large enough to saturate the available tiles in the frame. We call a triplet $\{cl, bs, int\}$ an interference topology, where cl is the location of client whose throughput is being measured, bs is the cell that the client is associated to and int is the set of other BSs that interfere with the data reception of cl. Each measurement point corresponds to an interference topology and is obtained by running an experiment for 7 minutes, measuring the throughput and averaging it over several such runs. We generate different interference topologies by mainly varying the locations of the clients (along the path shown in Fig. 2(a)). Moving the clients provides a finer control and variability on the interference magnitude received from other BSs, as opposed to changing the locations of the interfering BSs. More importantly, note here that we only need to account for whether or not a client of a BS is interfered by other BSs. This is unlike in WiFi, where in dense deployments, an AP can preclude the transmissions of a nearby AP due to carrier sensing. In other words, in an OFDMA setting where there is no carrier sensing, the locations of the clients (rather than the BSs) and whether they are subject to interference are important. Thus, we believe that our setup captures a reasonable set of scenarios that could arise in practical femtocell deployments.

The baseline strategy for our measurements is one where a BS operates on the entire spectrum, while performing an ideal link adaptation (MCS selection) for its clients. We want to decouple the effect of a particular choice of rate adaptation mechanism from our measurements. With this in mind, we run the experiment for each data point over all MCS levels and record the one that deliv-

Figure 3: Benefits of FDI over TDI.

ers the highest throughput. Since we conduct the experiments in a slowly-varying indoor environment, we observe that the above choice for link adaptation is robust enough. The throughputs between experimental runs do not exhibit significant variations for a specific interference topology.

3.1 Coping with Interference

There are two approaches to coping with interference in OF-DMA. Switching to a lower MCS via link adaptation (rate control) could suffice if the received signal quality is above the threshold required by the lower MCS level. With strong interference (typical in dense deployments), the received SINR could be even lower than that required for the lowest MCS operation. Isolating the resources (tiles) utilized by interfering cells helps alleviate the effects, but it results in a reduced set of tiles in each cell. Clearly, the choice between link adaptation and resource isolation must be made depending on the nature of interference. In a two-dimensional WiMAX frame, the tiles can be isolated among BSs either in time (symbols) or in the frequency (sub-channels) domain as depicted in Fig. 2(b). Time domain isolation (TDI) isolates tiles by leaving empty (guard) symbols to prevent collisions; frequency domain isolation (FDI) allocates orthogonal sets of sub-channels to different BSs for their transmissions.

Our goal is to answer: *Does link adaptation alone suffice in coping with interference or is resource isolation needed? If needed, should resource isolation be performed in time or in frequency?* Towards this, we experiment with three strategies: (a) the baseline strategy where BSs operate using all tiles, (b) TDI and (c) FDI where BSs operate using half of the (orthogonal) available set of symbols and sub-channels, respectively, in each frame (Fig. 2(b)). All strategies employ link adaptation via cycling through MCS levels. We first consider cells 1 and 2, and present the CDF (over the client locations) of the aggregate throughput in Fig. 3(a). We see that resource isolation provides significant gains over the baseline and that FDI outperforms TDI in aggregate throughput by about 20%. We repeat these experiments with cells 1, 2 and 3. Each cell now operates on a third of the resources with TDI or FDI. In Fig. 3(b), we observe that the median percentage throughput gain

Figure 4: Motivation for zoning (a) and calibrating measurements for categorization (b).

of FDI over TDI increases from about 17% for two cells to about 60% for three cells.

This interesting observation is due to what we refer to as *power pooling*, which is only possible with FDI. The energy transmitted by a BS is split over its constituent sub-channels in OFDMA. With a smaller subset of sub-channels, the average power per sub-channel increases, potentially allowing the cell to operate using a higher MCS. As more cells are activated in an interference domain, the number of (orthogonal) sub-channels available per cell decreases; this however, increases the average power and hence the throughput *per* sub-channel. Eventually, the higher per sub-channel throughput in each cell contributes to the higher network throughput capacity. Digging deeper into our results, we noticed that the MCS supported by client 1 was indeed higher with FDI than TDI. The average MCS difference between FDI and TDI was one level in the two-cell topology and almost two levels for three cells.

3.2 Accommodating Heterogeneous Clients

As discussed earlier, for clients in close proximity to their BS, link adaptation alone may be sufficient to cope with interference. Invoking resource isolation for such clients will underutilize tiles in the frame. Given that OFDMA multiplexes data to multiple clients in a given frame (to fill the available tiles), it becomes necessary to accommodate clients with heterogeneous requirements (link adaptation vs. resource isolation) in the same frame. Towards achieving this, we propose to use zoning, where an OFDMA frame is divided into two data transmission zones². The first zone operates on all sub-channels and is used to schedule clients that need just link adaptation (hereafter referred to as the reuse zone). The second zone utilizes only a subset of sub-channels (determined by FDI) and here, the clients that require resource isolation are scheduled (referred to as the resource isolation zone). Link adaptation is also performed for clients in this zone albeit only within the restricted subset of sub-channels.

We perform an experiment with two cells to understand the benefits of zoning. Cell 2 causes interference while cell 1 transmits data to its clients. Cell 1 schedules data for two clients: one by reusing all sub-channels (the reuse client) and the other one by isolating resources (from cell 2). The reuse client is moved from the proximity of cell 1 towards cell 2; the other client is static. We compare the throughput that cell 1 delivers (aggregate throughput of both clients) against a scheme where there is no reuse (i.e. both clients are scheduled by isolating resources). As one might expect, as long as the reuse client does not experience appreciable interference from cell 2, reusing sub-channels provides a throughput gain over the pure resource isolation scheme. We plot this throughput gain in Fig. 4(a) as a function of the reuse client's distance from cell 1. Interestingly, significant gains (at least 20%) from reusing sub-channels can be availed even when the client is at 40% of the

Figure 5: The building blocks of FERMI.

distance between the interfering cells. Beyond this distance, the interference from cell 2 starts degrading the throughput. We revisit zoning when we describe the algorithms in FERMI in §5.

Although zoning holds promise, it only dictates how to accommodate heterogeneous clients; it does not provide a complete resource management solution. Several challenges remain in achieving this goal. Specifically, for each cell, we need to (a) determine the size (in symbols) of the reuse zone (b) determine the subset of sub-channels allocated to the resource isolation zone, and (c) adapt both these zones to the dynamics of the network in a scalable manner. FERMI incorporates novel algorithms to address these challenges.

4. BUILDING BLOCKS OF FERMI

Before we give further details, we first depict the relationship between the blocks of FERMI in Fig. 5. In a nutshell, the categorization of clients allows each BS to determine how the frame should be divided into zones, from its perspective (block 1). Each BS then determines the set of BSs that cause interference on those of its clients that require resource isolation. This information, along with cellspecific load parameters, is then fed to the central controller (CC), which then constructs an interference map (block 2). Using the interference map (i.e., conflict graph), the CC computes the network wide sub-channel allocation and zoning parameters (details in §5). It disseminates this information back to the BSs, which use these operational parameters until the next resource allocation update. Note that the CC is similar to the notion of a self-organizing network (SON) server [14] maintained by the service provider. Next, we explain the client categorization and the interference map generation components.

4.1 Client Categorization at the BS

The first building block categorizes clients into two classes; the first needs just link adaptation (class 1) while the second needs resource isolation together with link adaptation (class 2). To understand how clients are to be categorized as either class 1 or class 2, we perform calibration experiments. We consider two cells each with a single client. We experiment over a large set of client locations to generate a plurality of scenarios. We first consider a cell in isolation (i.e., no interference). At each client location, we experiment by sequentially allocating two spectral *parts* (of equal size) of the frame to the client. Since, the fading effects on the two sets of assigned sub-channels are likely to be different, the client will receive different throughputs with the two different allocations. *We notice however, that the difference between the two allocations is at most 25 % in more than 90 % of the considered client locations* (Fig. 4(b)). We now repeat the experiment, but with interference.

²A zone in OFDMA is a dedicated portion of the frame in which one or more bursts can be scheduled.

Figure 6: Client Categorization Components (a-b) and Accuracy Results (c-d).

In one of the allocations (i.e., parts), the second cell projects interference on the client; in the other, the operations are without interference (via resource isolation). We observe that in this case, there is a throughput difference of over 25 % (in many cases, significantly higher) in more than 80 % of the topologies.

These results suggest that the throughput (per unit resource) difference at a client between an interference-free allocation and an allocation with interference can be used to categorize it as class 1 or class 2. If this difference is less than a threshold (referred to as α later), link adaptation suffices for this client. However, if it is larger than the threshold, one cannot immediately determine if the client needs resource isolation. This is because the above experiments were done by allocating equal number of tiles to the client in the settings with and without interference. If such a client is categorized as class 2 and allocated a smaller set of isolated resources (based on cell's load), the throughput it achieves may in fact only be similar to what it would achieve by being a class 1 client. Unfortunately, it is difficult to know the cell loads a priori and hence one cannot make a clear determination of whether to categorize these clients as class 1 or class 2. Thus as a design choice, FERMI takes a conservative approach and categorizes all of such clients as class 2. We find that this helps accommodate fluctuations in the load and interference patterns.

Although a BS does not have access to the throughput at a client, it is informed about the reception of each burst via ACKs and NACKs on the uplink. We define Burst Delivery Ratio (BDR) to be the ratio of successfully delivered bursts to the total number of transmitted bursts by the BS. The BS can estimate BDR by taking the ratio of the number of ACKs received to the total number of feedbacks (ACKS + NACKS) received from the clients. Since the feedback itself might practically get lost on the uplink, this is an estimate of the actual BDR. We perform experiments to understand if the BDR estimate at the BS can provide an understanding of the throughput at the client. Fig. 6(a) plots a sample result showing that indeed the BS can very accurately *track* the client throughput using the BDR estimates. We find that, as per the WiMAX standard, the feedback channels on the uplink modulate data using robust QPSK modulation. This helps in reducing the probability of a feedback being received in error by the BS and makes the BDR estimate accurate. Similar notions of uplink feedback channels are also enabled in other OFDMA standards such as LTE.

To achieve categorization in practice, FERMI introduces two measurement zones in the frame as depicted in Fig. 6(b), namely the *occupied* and *free* zones. Every BS operates using all subchannels in the *occupied* zone. Scheduling a client in this zone enables the BS to calculate the BDR in the presence of interference from other cells. Scheduling a client in the *free* zone to calculate the BDR without interference is slightly more involved. Given a set of interfering BSs, all BSs but for one must leave the *free* zone empty in any frame. Allowing only one of the interfering BSs to schedule its clients in the *free* zone, will enable it to measure BDR without interference at its clients. Hence, a random access mechanism with probability $\frac{\gamma}{n}$ is emulated to decide access to the *free zone*, where n is the number of interfering BSs and $\gamma \geq 1$ is a constant parameter set by the CC. Note that clients associate with BSs at different instants and hence it is unlikely that all interfering BSs will categorize their clients at the same time. Hence, γ is used to increase the access probability to the free zone. FERMI schedules regular data bursts in the measurement zones to calculate the BDR, thereby keeping the process transparent to clients and retaining standards compatibility. While the occupied zone can be used as an extension to the reuse zone when categorization of the clients is completed, this is not possible for the *free* zone, whose utility is towards categorization in other cells. Here, the central controller that keeps track of client (dis)associations, triggers the use of the free zone (cast as a data zone) solely for the purpose of categorization in relevant parts of the network and disables it to minimize overhead once the procedure is complete.

The accuracy of client categorization is evaluated in Figs. 6(c) and 6(d). We again consider two cells; clients 1 and 2 belong to the two cells, respectively. We generate multiple topologies by varying the location of client 1 in the presence of interfering cell 2. First, the throughput of client 1 is measured for both zones (free and occupied) to identify the ground truth at each location; here leveraging our calibration measurements, we conclude that if the throughput difference is less than 25%, client 1 is at a location where it only needs link adaptation. Otherwise, the particular scenario is deemed as one that needs resource isolation. After the ground truth is established, cell 1 collects BDR samples from both measurement zones to decide on the client category. The decision is made based on these samples: if the average free zone BDR is at least α % higher than the average occupied zone BDR, then the client category is class 2. Here, arbitrating the access to the free zone is a factor that reduces the accuracy of estimation. If two BSs schedule their clients in this zone at the same time, rather than getting a BDR sample without interference, they both could get a sample that indicates interference. We use the BDR average over multiple samples to alleviate such inaccuracy.

The categorization accuracy when the ground truth is (a) resource isolation and (b) link adaptation is plotted in Figs. 6(c) and 6(d), respectively. In corroboration with our measurement based inference, it can be seen that increasing α beyond 0.25 decreases the accuracy of detecting resource isolation but conversely it increases the accuracy of detecting link adaptation. Further, while increasing the number of samples over which α is measured can help improve accuracy, the benefits are not significant. Hence, it pays to use fewer samples to categorize clients (towards reducing overhead). Thus, FERMI uses an α of 1 with 25 frame samples to obtain an accuracy greater than 90%.

4.2 Interference Map Generation

The CC in FERMI generates an interference (conflict) map that not only captures point-to-point but also cumulative interference experienced by the clients. Note that interference is client dependent and since multiple clients are scheduled in tandem in each OFDMA frame, the interference patterns between BSs vary from one frame to another. This makes it impossible for any practical resource management scheme to gather schedule-dependent interference information, determine an allocation and disseminate it to the BSs for execution in every frame (sent every 5ms in WiMAX). Hence, the goal of the resource management scheme in FERMI is to allocate resources at a coarser time scale (over hundreds of frames) by collecting *aggregate* interference statistics from each BS. This decouples resource allocation from frame scheduling in each BS, thereby allowing a conflict graph approach to adequately capture interference dependencies for our purpose.

In addition to client categorization, the measurement zones in FERMI also help in deciphering interference relations. If a BS causes interference to the clients of another BS so as to require resource isolation, then an edge is added between the two BSs in the conflict graph. Note that the interference relations need to be determined only for class 2 clients. FERMI uses the measurements in the *occupied* zone as the basis to categorize a client as class 2. Note however that all BSs operate in this zone and thus, the client experiences the cumulative interference from all interfering BSs. Adding an edge to each of these neighboring cells in the conflict graph would be overly conservative; some of them may only project weak levels of interference on the client. Hence, we need to determine the minimum set of interference edges that need to be added in the conflict graph to eliminate interference through resource isolation. Towards this, we use the following procedure following the initial categorization.

Consider a femtocell A and a class 2 client cl of A. cl passively measures the received power from neighboring BSs (available during handover between BSs). If the power from a neighboring BS (B) exceeds a threshold, then B is added to cl's list of strong interferers. cl reports this list to A, which then consolidates it and reports the set of conflict edges (for each strong interferer) that must be added to the conflict graph, to the CC. The CC uses this information for making the initial resource allocation decision. While this accounts for point-to-point interference, some clients may not see any individual strong interferer but the cumulative power from a subset of neighbors could be strong enough to require resource isolation. Such clients will continue to see interference after the initial resource allocation. These clients can be identified by comparing the BDR achieved on the assigned sub-channels with that seen in the *free* zone. We adopt an iterative approach to further refine the conflict graph to isolate such clients. To illustrate, let us consider one such client. We consider all the interfering cells for this client and add an edge in the conflict graph to the cell that causes the highest (in power) interference subject to a filtering based on the initial allocation. If the BDR for the client is sufficiently improved and is now within $\alpha\%$ of what is observed in the *free* zone, the process is complete. If not, the next strongest interfering BS is added to the conflict graph (again subject to filtering based on the previous allocation) and so on. We elaborate on this process in a technical report [17].

Why Dedicated Measurements?: One could argue that using only the passive received power measurements from interfering BSs is an easier approach to categorize clients. Here, if a client receives a signal from an interfering BS that is higher than a threshold, it is categorized as class 2; otherwise, it is a class 1 client. However, for this method to work well in practice, a lot of calibration is needed to find accurate, often scenario dependent, threshold values. In addition, the received power does not necessarily give an indication of the throughput observed at the clients. To avoid these practical issues, FERMI relies on highly accurate direct measurements for client categorization, which allows it to have coarse thresholds for identification of strong interferers.

Having categorized the clients and identified the interference dependencies between femtocells, we are now ready to present the resource allocation algorithms executed by the CC.

5. ALGORITHMS IN FERMI

The goal of resource management at the CC is to determine for each femtocell (i) the size of the *reuse* zone and, (ii) the specific subset of sub-channels for operations in the *resource isolation* zone, to obtain an efficient and fair allocation across femtocells. While the joint determination of parameters for both the zones is the optimal approach, this depends on throughput information that changes in each frame, thereby coupling resource allocation with per-frame scheduling decisions. Since, as discussed in §4, per-frame resource allocation is infeasible due to practical constraints, FERMI performs resource allocation at coarser time scales.

Each femtocell reports two parameters to the CC to facilitate resource allocation: (i) load (number of clients) in its resource isolation zone, and (ii) desired size (in time symbols) of its reuse zone. Alternative definitions for load can be adopted but the number of clients is sufficient for our purposes (as in [8]). Note that a femtocell does not have the complete picture of interference dependencies across cells; it only has a localized view. Thus, it simply provides the load in its resource isolation zone and expects the CC to allocate resources proportional to its load. Each femtocell determines the desired size of its reuse zone based on the relative load in the two zones. Since class 2 clients will be scheduled immediately after the reuse zone (see Fig. 6(b)), if two interfering cells have different sizes for their reuse zones, then the cell with the larger reuse zone will cause interference to the class 2 clients of the other cell. Hence, an appropriate size for the reuse zone of each cell also needs to be determined by the CC based on the reported desired values. Next, we present the algorithm at the CC to determine the sub-channel allocation and assignment to each femtocell, followed by the selection of their reuse zone sizes.

5.1 Allocation and Assignment

The goal of sub-channel allocation is to allocate and assign subchannels to the resource isolation zone in each femtocell so as to maximize the utilization of sub-channels in the network subject to a weighted max-min fairness model. The reasons for the choice of the weighted max-min fairness are two fold: (i) weights account for variations in load across different cells; and (ii) max-min allows for an almost even split of sub-channels between cells in a contention region, which in turn maximizes the benefits from power pooling (see §3). Thus, given the load for the resource isolation zone from each femtocell along with the conflict graph constructed, the CC's goal is to determine a weighted (load-based) max-min allocation of sub-channels to femtocells (i.e. vertices in the graph).

THEOREM 1. The sub-channel allocation and assignment problem in FERMI is NP-hard.

We omit the proof due to space limitations. The interested reader can consult [17].

While the allocation problem may seem similar to multi-coloring at the outset, this is not the case. In fact, multi-coloring can only provide an assignment of sub-channels for a specified allocation.

Figure 7: Illustration of A^3 algorithm for 20 sub-channels in the spectrum. The vertex loads are included in parentheses.

Algorithm 1 Allocation and Assignment Algorithm: A	3
--	--------

- 1: **Triangulate:** A^3 first transforms the given conflict graph G into a chordal graph G' by adding a minimal set of virtual interference edges to G = (V, E).
- 2: Allocate and Assign: A^3 computes a provably weighted maxmin fair allocation on the chordal graph G'.
- 3: **Restore:** A^3 removes the virtual edges from G' and updates the allocation to the vertices carrying the virtual edges to account for under-utilization on the original graph G.

However, in FERMI, we are also interested in determining a weighted max-min allocation in addition to the assignment, which makes the problem much more challenging. Further, every contiguous set of sub-channels allocated to a cell is accompanied by an information element in the control part of the frame (MAP), describing parameters for its decoding at the clients. This constitutes overhead, which in turn increases with the number of discontiguous sets allocated to a cell. Therefore, our goal is to *reduce* overhead due to discontiguous allocations, while ensuring an efficient allocation of sub-channels.

Overview of FERMI's resource allocation: Any resource allocation algorithm attempts to allocate shared resources between entities in a contention region subject to a desired fairness. Each contention region corresponds to a maximal clique in the conflict graph. However, a given femtocell may belong to multiple contention regions and its fair share could vary from one region to another. This makes it hard to obtain a fair allocation, for which it is necessary to identify all maximal cliques in the graph. However, there are an exponential number of maximal cliques in general graphs with no polynomial-time algorithms to enumerate them. Hence, we propose an alternate, novel approach to resource allocation in A^3 (outlined in Algorithm 1), which runs in polynomial-time and provides near-optimal fair allocation with minimal discontiguity (overhead).

Chordal Graphs: A *chordal* graph does not contain cycles of size four or more. Chordal graphs have significant applications in sparse matrix computations and have been extensively studied. Algorithms for important problems such as maximum clique enumeration can efficiently be applied on chordal graphs [18]. The key idea in A^3 is to leverage the power of chordal graphs in obtaining a near-optimal allocation. In the interest of space, we do not present the details of some aspects of the algorithm, whose solutions exist in literature; the reader can peruse the cited references. We now present details of the three steps in A^3 along with a running example in Fig. 7.

Triangulation: The process of adding edges to chordalize (triangulate) a graph is known as *fill-in*. Since adding edges to the conflict graph would result in a conservative allocation than is required, the goal is to add the *minimum* number of edges needed Algorithm 2 Weighted Max-min Fair Allocation Algorithm

- 1: **INPUT:** G' = (V, E') and load $\ell_i, \forall v_i \in V$
- 2: Allocation:
- 3: Un-allocated vertices $\mathcal{U} = V$, Allocated vertices $\mathcal{A} = \emptyset$
- 4: Determine all the maximal cliques $C = \{C_1, \ldots, C_m\}$ in G' using perfect elimination ordering
- 5: Resource: $R_j = N$, Net load: $L_j = \sum_{i:v_i \in C_j} \ell_i, \forall C_j$
- 6: Determine tuples: $s_i = \max_{j:v_i \in C_j} \{L_j\},\ t_i = \sum_j \mathbb{1}_{v_i \in C_j}, \forall v_i$

: Determine initial allocation:

$$A_i = \min_{j:v_i \in C_j} \left| \frac{\ell_i R_j}{\sum_{k:v_k \in C_j} \ell_k} + 0.5 \right|, \forall v_i \in \mathcal{U}$$

- 8: while $\mathcal{U} \neq \emptyset$ do
- 9: Pick un-allocated vertex with maximum lexicographic rank: $v_o = \arg \max_{i:v_i \in \mathcal{U}} (s_i, t_i)$
- 10: Allocate A_o sub-channels to $v_o; \mathcal{U} \leftarrow \mathcal{U} \setminus v_o,$ $\mathcal{A} \leftarrow \mathcal{A} \cup v_o$
- 11: Update remaining resource: $R_j = R_j A_o$, $\forall j : v_o \in C_j$
- 12: Remove v_o from cliques: $C_j \leftarrow C_j \setminus \{v_o\}, \forall j : v_o \in C_j;$ Update $L_j \forall j$ and $(s_i, t_i) \forall v_i \in U$
- 13: Update allocation:

$$A_i = \min_{j:v_i \in C_j} \left\lfloor \frac{\ell_i R_j}{\sum_{k:v_k \in C_j} \ell_k} + 0.5 \right\rfloor, \forall v_i$$

14: end while

for triangulation. While this is a NP-hard problem in itself, A^3 employs a maximum cardinality search based algorithm [19] that is guaranteed to produce a *minimal* triangulation and runs in time O(|V||E|)), where V is the set of vertices and E is the set of edges in the graph. Fig. 7 depicts a fill-in edge between vertices A and C. As we shall subsequently see, the restoration (third) step in A^3 is used to alleviate the under-utilization introduced by the triangulation.

Allocation: A^3 uses Algorithm 2 to determine the weighted max-min allocation on the triangulated graph G'. Once the graph is triangulated, all its maximal cliques are listed in linear time (O(|V|))by determining a perfect elimination ordering (PEO) [19]. A^3 determines the net load on each maximal clique (step 5) and for every un-allocated vertex (cell, v_i), it determines a tuple (s_i, t_i) , where s_i indicates the highest load in the cliques that v_i belongs to and t_i is the number of cliques that it belongs to (step 6). A^3 then determines a vertex's weighted fair share in each of the maximal cliques that it belongs to and determines its minimum (rounded) share amongst all its member cliques (step 7). It picks the vertex (v_o) with the highest lexicographic rank and allocates the computed share of sub-channels to it (vertex C is picked first with $s_c = 5$ and $t_c = 3$). v_o is then removed from the list of un-allocated vertices (steps 8-10). The allocated vertex is also removed from the cliques that it is a member of, and the clique loads, resource and vertex tuples are correspondingly updated (steps 11,12). The weighted share for the remaining set of un-allocated vertices in each of the maximal cliques that v_o belongs to is updated based on the remaining resources in those cliques (step 13). The process is repeated until all vertices receive allocation and runs in time $O(|V|^2)$.

Assignment: After the vertices get their weighted max-min allocation, the next step is to provide an actual assignment of subchannels to satisfy the allocations. A^3 leverages clique trees for this purpose. A clique tree for a chordal graph G is a tree whose nodes are maximal cliques in G. Further, it satisfies some useful properties (as we show later).

 \overline{A}^3 generates a clique tree for the chordal graph G' (depicted in Fig. 7) in linear time by building on top of a PEO or by constructing a maximum spanning tree [18]. It picks an arbitrary node in the clique tree as its root and starts sub-channel assignment proceeding from the root to its leaves. At every level in the tree, it assigns sub-channels to un-assigned vertices in each of the nodes (maximal cliques) based on their allocation (vertex D is assigned first with sub-channels [1:5]). When assigning sub-channels to a vertex, it picks a contiguous set of sub-channels that is disjoint with existing assignments to other vertices in the same clique. When contiguous assignment is not possible, A^3 makes the assignment to minimize fragmentation (e.g. vertex B is assigned two fragments). Since a vertex may belong to multiple maximal cliques, once its assignment is made, it is retained in all subsequent levels of the tree. We establish later that the above procedure that runs in O(|V|) can vield a feasible assignment of sub-channels (i.e. proper coloring of G') to satisfy the allocation.

Restoration: Fill-in edges could result in conservative (underutilized) allocation of resources. While the triangulation in A^3 attempts to reduce the addition of such edges, we still need a final step to restore potential under-utilization. A^3 re-visits vertices that carry fill-in edges and removes such edges one by one. When a fill-in edge is removed, the removal of a conflict may free up some sub-channels at each of the vertices carrying the edge. If so, the largest set of such sub-channels (that do not conflict with the assignment of neighbor vertices) are directly assigned to those vertices (for vertex A, sub-channels [12:19] are freed after the conflict removal with C and can be re-assigned to A). This can be done in O(|V|).

To summarize, given the exponential number of cliques in the original graph, A^3 intelligently transforms the graph into a chordal graph with only a linear number of cliques and optimally solves the allocation and assignment problem. A^3 keeps the potential underutilization due to virtual edges to a minimum with its triangulation and restoration components. Thus, it provides near-optimal performance for most of the topologies with a net running time of O(|V||E|). We now establish two key properties of A^3 .

PROPERTY 1. A^3 produces a weighted max-min allocation on the modified graph G'.

PROPERTY 2. A^3 always produces a feasible assignment of subchannels for its allocation.

Proofs omitted due to space limitations. We encourage the reader to consult [17]. Based on these two properties, we have the following result.

THEOREM 2. If G is chordal, then A^3 produces an optimal weighted max-min allocation.

Through our comprehensive evaluations in Section 6, we show that over 70% of the topologies are chordal to begin with for which

 A^3 is guaranteed to yield an optimal allocation. For the remaining topologies, A^3 's sub-optimality is within 10%, indicating its near-optimal allocation capability.

Other possible comparative approaches: While greedy heuristics for multi-coloring do not address our allocation problem, to understand the merits of A^3 , we propose and consider two extensions to such heuristics that also perform allocation and assignment (coloring). These simpler heuristics do not need to operate on a complete list of maximal cliques as we describe next.

The first heuristic is *progressive* (labeled *prog*); here, the allocations and assignments are made in tandem one sub-channel at a time. The vertex with the smallest weighted allocation ($\frac{\text{allocation}}{\text{load}} = \frac{A_i}{\ell_i}$) is chosen and assigned the smallest indexed sub-channel that is available in its neighborhood. By assigning sub-channels one at a time, this heuristic is able to achieve reasonable fairness. However, its running time is $O(|V|^2N)$, where its dependence on N (number of sub-channels) makes it pseudo-polynomial, thereby affecting its scalability. Further, it results in a highly fragmented assignment of sub-channels to vertices, which in turn increases the control overhead in frames.

Another heuristic that can avoid the pseudo-polynomial complexity, is *interference-degree* based (labeled *deg*). The share to every vertex is determined based on its weight and the remaining resources (after removing allocated vertices) in its interference neighborhood and is $\left(\frac{\ell_i(N-\sum_{j:(v_i,v_j)\in E,v_j\in \mathcal{A}}A_j)}{\sum_{j:(v_i,v_j)\in E,v_j\in \mathcal{U}}\ell_j}\right)$. Then the vertex with the min. share is allocated as contiguous of a set of subchannels as possible. This heuristic runs in $O(|V|^2)$ and also keeps the overhead low. However, its fairness is significantly worse as compared to *prog*.

By adopting a greedy approach, heuristics derived from multicoloring either achieve low complexity and overhead at the cost of fairness but not both. A^3 however, deciphers interference dependencies with good accuracy to provide both near-optimal fairness and reduced complexity and overhead. Further, since the allocation and assignment is conducted on the chordal graph G', dynamics in the form of arrival/departure of clients/cells (i.e. addition/deletion of conflict edges) can be easily accommodated in a purely localized manner through incremental schemes [20]. This in turn allows A^3 to scale well to network dynamics unlike other heuristics.

Benchmarking: To understand how close A^3 is to the optimum, we need to obtain the weighted max-min allocation on the original graph G (that is not necessarily chordal). This requires listing of all the maximal cliques, which are exponential in number. However, this can be achieved in a brute-force manner with exponential complexity. Once all the maximal cliques are obtained on G, the allocation procedure of A^3 can be directly applied to obtain a weighted max-min allocation on G.

5.2 Zoning

We addressed the assignment of sub-channels to the resource isolation zone of each cell. Our next step is to determine the size of the reuse zone (in symbols) for each cell based on their desired sizes. There arise three challenges in determining the reuse zone size (referred to as s_r). (i) If two interfering cells use two different s_r 's, the one with the larger s_r will cause interference to the class 2 clients of the other cell. Hence, a common reuse zone is required among interfering cells. (ii) Since allocation and zoning are meant to operate at coarse time scales (decoupled from per-frame scheduling), the common s_r among interfering cells cannot be determined based on throughput. Hence, the choice of the common s_r is restricted to either the minimum or maximum of the desired zone sizes of the neighboring cells. (iii) If each cell belongs to a single contention

Figure 8: Illustration of zoning mechanism of FERMI.

Figure 9: Our WiMAX equipment.

region (clique), choosing the common s_r is easy. However, since cells may belong to multiple cliques, this will result in a common s_r (minimum or maximum) propagate to the entire network. Cells with a desired zone size less than the common s_r may not have sufficient data for their class 1 clients to fill up to the s_r , while cells with a larger desired zone size will have to perform isolation (without reusing sub-channels). Either case results in under-utilization, which is exacerbated when a single common s_r is allowed to propagate to the network.

FERMI addresses the above challenge as follows (illustration in Fig. 8). For each cell, the CC determines the minimum of the advertised (desired) s_r 's of all the cell's neighbors and uses that as its operational s_r (e.g. 10 symbols for BS1, 5 symbols for BS2). The cell schedules its class 1 clients in the reuse zone till the operational s_r (using all sub-channels). It continues to schedule class 1 clients in the second zone between its operational s_r and its desired s_r . However, these are scheduled only in the band allocated to the cell by A^3 (the scheduling of BS2 between the 5th and the 15th symbols). The class 2 clients are scheduled in the resource isolation zone (after the desired s_r) using the sub-channels (band) allocated by A^3 .

Introducing a *transition* zone (marked on Fig. 8) that schedules class 1 clients between the operational and desired s_r s (using the band given by A^3), provides a graceful transition between the reuse and resource isolation zones. Since the chance for underutilization is more when the operational s_r exceeds the desired s_r , FERMI uses the minimum of the desired s_r s in the neighborhood as the operational s_r for a cell. Further, since each cell computes its operational s_r only based on the desired s_r s of its neighbors and not their operational s_r s, propagation of a single common s_r in the network (and the resulting under-utilization) is avoided. As an example, this would correspond to every BS having the same s_r (i.e. global min.) of 5 symbols in Fig. 8. Using the minimum of the desired s_r s of neighbors (i.e. local min.) avoids this propagation for BS1 and allows it to have a s_r of 10 symbols. Hence, different regions of the network can have different s_r values, which

Figure 10: Implementation details of FERMI.

Figure 11: Topologies used for prototype evaluation.

increases the potential for sub-channel reuse. Further, cells that belong to multiple contention regions with different operational s_rs in the different cliques (e.g. BS2 in Fig. 8) will not suffer from interference to their class 2 clients, since the operational s_r of all their cliques will be less than their desired s_r , while they schedule only class 1 clients in the region between their operational and desired s_r . As we shall show in our evaluations, FERMI's zoning arrangement provides significant gains since the s_r values in different cliques can be decoupled (i.e. a single globally minimum desired s_r does not propagate).

6. SYSTEM EVALUATION

To evaluate FERMI, we both conduct experiments on our testbed as well as use simulations. Simulations help evaluate the scalability and the relative performance of each algorithm.

6.1 **Prototype Evaluations**

Implementation Details: Fig. 9 shows a picture of our testbed equipment. Given that we do not have a macro BS at our disposal, we use external GPS modules to achieve synchronization among femtocells. The GPS modules are placed next to windows with cables providing a 1 pulse per second (pps) signal to each femtocell (antenna and cable depicted). The clients are USB dongles connected to laptops.

FERMI is implemented on the PicoChip platform which provides a *base reference design* implementation of the WiMAX standard. The reference design does not involve sophisticated scheduling routines and provides just a *working link* between the BS and the MS. Since the clients are off-the-shelf WiMAX MSs (with no possibility of modification), it is a challenge to realize a working implementation of various components such as categorization and zoning. Some of these challenges were to keep our implementation within the *boundaries* of the rigid WiMAX frame structure and to integrate commercial clients with our experimental testbed. We significantly extend (shown as shaded components in Fig. 10) the reference design to implement FERMI. Specifically, our implementation operates as follows.

(a) When data from higher layers is passed onto the MAC, we first route the data based on what MS it is intended for and whether that MS is already categorized (as in §4) or not. (b) If the MS is already categorized, its data is packed in the relevant zone of the frame that the MS needs (reuse vs. resource isolation). If not, its

	Topology 1				Topology 2				Topology 3				Topology 4				Topology 5			
Algorithm	A^3	dist	deg	BM																
BS1 (1)	15	15	20	15	20	10	20	15	10	7	7	10	15	15	20	15	20	15	23	20
BS2 (2)	15	10	10	15	10	10	10	15	10	10	16	10	15	10	10	15	10	7	7	10
BS3 (3)	15	15	20	15	20	10	20	15	10	7	7	10	15	10	10	15	10	10	11	10
BS4 (2)	-	-	-	-	10	10	10	15	10	10	16	10	15	15	20	15	10	10	12	10
Utilization	45	40	50	45	60	40	60	60	40	34	46	40	60	50	60	60	50	42	53	50
Throughput(Mbps)	20.87	18.36	21.80	-	29.04	19.73	27.86	-	19.61	15.87	20.76	-	26.79	22.72	27.08	-	23.95	19.94	25.06	-

Table 1: Throughput and utilization of each algorithm along with individual allocations (for equal load) for the BS.

Figure 12: Fairness and Zoning Benefits of A^3 .

data is packed in the measurement (recall *free* and *occupied*) zones introduced for categorization. The burst packing component implements a rectangular alignment of the data of both MSs that have been categorized before as well as MSs that are being categorized. (c) After packing, the data is passed onto the frame controller which prepares the control payload before the frame is transmitted on the air. (d) The burst tracking component keeps an information tuple for the measurement zones for the MSs that are being categorized. It tracks the ACK status of each measurement burst. After enough BDR samples are collected, it decides on the client category and informs the burst packing component about the decision. (e) The interface with the CC leverages kernel sockets to communicate the load and conflict information to the CC via Ethernet and receives operational parameters for zoning and allocation (used by the burst packing component).

Experimental Evaluations: Next, we evaluate the performance of each algorithm using our testbed. We create five topologies as shown in Fig. 11. The dotted edge between BS1 and BS3 in Topology 2 is the *fill-in* edge introduced by A^3 (other topologies are already chordal). In generating these topologies, we leverage our WiMAX testbed (see Fig. 2(a)) by changing the client locations for each BS. We measure the fairness of each algorithm relative to the optimal allocation (benchmark) as the normalized distance to the benchmark $d = \sqrt{\sum_{i \in V} (t_i - s_i)^2} / \sqrt{\sum_{i \in V} (s_i)^2}$ [21] where t_i and s_i denote the number of sub-channels assigned to vertex i by an algorithm and the benchmark, respectively.

Throughput and Fairness: In our testbed, the cells have N = 30 sub-channels available in the spectrum. Each BS has two clients (one class 1, one class 2). When there is no zoning, we schedule both clients on the same set of sub-channels allocated to the BS. For scenarios with zoning, the specific zoning strategy determines the size of the reuse zone and the resource isolation zone. We perform experiments for each topology with the allocation determined by each algorithm (assuming equal load at each BS). Here, we introduce another heuristic (labeled *dist*) that decides the share of a vertex based on its weight and the resources in the neighborhood (without removing the allocated vertices). The share of a vertex *i* becomes $\frac{\ell_i N}{\sum_{j:(v_i,v_j) \in E^{\ell_j}}}$. It mimics a distributed degree-based allocation and helps us understand the importance of having a centralized approach.

Table 1 summarizes the number of sub-channels allocated to each BS along with utilization and aggregate throughput measurements from the experiments. We observe that *dist* has the lowest utilization and therefore the lowest aggregate throughput. This is because it over-accounts for interference by just considering the vertex degrees in allocation. deg inherently penalizes vertices with high degree and allocates more resources to the others; it slightly outperforms A^3 in utilization and throughput (albeit at the cost of fairness). Fig. 12(a) and 12(b) plot the fairness for equal load and variable load (the loads are listed next to each BS in parentheses in Table 1), respectively. It is seen that A^3 consistently outperforms the other algorithms except topology 2 (equal load case) where it requires a fill-in edge. However, the restoration step of A^3 can account for under-utilization (due to the fill-in edge) helping it achieve the same utilization as the benchmark. In all other topologies, A^3 achieves the exact allocation as the benchmark (BM in Table 1) since they are naturally chordal.

Zoning Benefits: We now present throughput measurements for A^3 - with and without zoning in Fig. 12(c). The baseline strategy is where each cell operates on all tiles with link adaptation. We observe that even without zoning, A^3 has significant gains over the baseline. The gains are further pronounced when zoning is employed, giving A^3 a throughput increase of 50% on average.

Next, we quantify the benefits of decoupling reuse zone demands in the network (local min.) against having a single reuse demand propagated to each contention region (global min.). For this experiment, we use topology 1 in Figure 11. We set equal reuse zone size demands for BS1 and BS2 (varied in each measurement) and a fixed demand of 4 symbols for BS3. Demand difference is defined as the difference between the common demands of BS1 and BS2 and the demand of BS3 (4 symbols). As we vary the demand difference from 2 to 14, we measure the aggregate throughput and present it in Fig. 12(d). It is seen that both global min. and local min. zoning result in increasing throughput as the demand difference increases. For the global min., although the operational size is the same (4 symbols), the high demands of BS1 and BS2 allow them to schedule their class 1 clients over a larger set of resources (recall the transition zone in §5). Note that since class 1 clients are likely to support a higher MCS than class 2 clients, having a large demand contributes to throughput gains (as compared to scheduling class 2 clients in the transition zone). For local min. zoning,

Figure 14: Effect of Number of Sub-channels (a-b), Effect of Zoning (c) and Overall Fairness (d).

the operational size for BS1 is significantly higher as compared to the global min. resulting in an increasing throughput gain over the global min. strategy. This shows FERMI's benefits from decoupling desired reuse zone sizes between different contention regions in the network.

6.2 Evaluations with Simulations

System Model and Metrics: We implement a simulator to evaluate FERMI in comparison to its alternatives. The simulator incorporates a channel model proposed by the IEEE 802.16 Broadband Wireless Access Working Group for femtocell simulation [22]. This model captures wireless effects such as log-distance path loss, shadow fading and penetration loss, typical of indoor deployments. The SNR from the model is mapped to a MCS using a rate table from our testbed to compute throughput. The simulation area is a 7x7grid where the distance between each grid point is 12 meters. In addition, the width and height of this area is 100 meters. We simulate a deployment by randomly choosing grid locations for each cell. We then randomly generate a client location for each cell and determine the conflict graph. We measure the overhead of each algorithm as the number of contiguous sub-channel chunks allocated per cell. In addition to overhead, we define the *fill-in edge ratio* to be the ratio of number of fill-in edges to the edges that are already present in the conflict graph. If the conflict graph is chordal, the fill-in edge ratio is 0. Next, we present our simulation results. Each data point is an average over results from 100 randomly generated topologies. We do not present throughput and utilization results here since all algorithms (including the benchmark) do not exhibit much difference ([17]).

Effect of Cell Range: Fig. 13(a) plots the effect of cell range on fairness. We observe that both heuristics (*prog* and *deg*) consistently deviate more from the benchmark as range increases. With increasing range, the number of sub-channels that a cell is assigned decreases (resources are shared among more cells). Recalling the fairness formula, a given difference in allocations (between the benchmark and the heuristics) becomes more pronounced with a smaller number of sub-channels assigned by the benchmark (s_i). Interestingly, A^3 exhibits an improvement in fairness after a particular range (while maintaining less than 0.15 distance from the benchmark). We find that the fill-in edge ratio is the main factor

that affects A^3 's fairness (plotted in Fig. 13(b)). For small ranges, the graph contains some isolated vertices (very few cycles) and A^3 does not introduce fill-in edges. As range increases, cycles start to form and A^3 adds fill-in edges to make the graph chordal. However for further ranges, increased connectivity turns in favor of A^3 since the cycles happen rarely and the fill-in edge ratio decreases again.

Effect of Number of Cells: We now fix a number of subchannels (5) and a range (20 m.) and vary the number of cells. Simulations with other fixed parameter values (number of sub-channels and range) follow similar trends but are omitted in consideration of space. From Fig. 13(c), we see that A^3 consistently outperforms the other heuristics in terms of fairness and is within 0.1 distance of the benchmark due to the rare need for fill-in edges. The distance increases with the number of cells due to an increased likelihood of cycles; the trend again follows that of the fill-in edge ratio (plotted in Fig. 13(d)). For *deg* and *prog*, the distance also increases with the number of cells because of a reduced number of sub-channels per cell (s_i), similar to the effect of cell range.

Effect of Number of Sub-channels: We now simulate 30 cells with a fixed range of 10 m and vary the number of sub-channels available in the spectrum. In Fig. 14(a), it is seen that A^3 exhibits a constant distance from the optimal. Since A^3 's performance is mainly influenced by the fill-in edge ratio, the number of sub-channels does not have a significant effect on A^3 's fairness. It is also seen that the distance for prog and deg decreases with an increased number of sub-channels due to the increase in number of sub-channels per cell (s_i) . This makes the differences in allocations (between the heuristics and the benchmark) less pronounced as compared to when there are fewer sub-channels. Fig. 14(b) shows the effect of the number of sub-channels on overhead. The overheads for A^3 and *deg* are very close to 1 and do not change with the number of sub-channels. This shows that both strategies can assign a single contiguous set of sub-channels to the cells. However, prog tends to have an increasing overhead trend. Since prog assigns a fragmented set of sub-channels, the overhead increases with an increasing number of sub-channels that can be assigned to a cell.

Effect of Zoning: In simulations with zoning, each cell has two clients: one that requires resource isolation (class 2) and one that requires just link adaptation (class 1). We simulate 40 cells with range 10 m, and a frame structure having 30 sub-channels and

30 symbols. Among the cell population, we have three different types of reuse zone demands: i) high-demand cells that randomly demand a reuse zone size between 15 and 20 symbols ii) moderate demand cells that generate a demand value between 10 and 15 symbols and iii) low-demand cells with a generated demand between 5 and 10 symbols. We experiment by varying the fraction of the high-demand cells. Fig. 14(c) shows the total throughput achieved for each zoning strategy. It is seen that as the fraction of high-demand cells increases, the throughputs for both zoning strategies increase. However, the gain of local min. over global min. is more with a higher fraction of high-demand cells. This is a natural artifact of vertices converging to a higher local demand as opposed to the global minimum value which is typically the same on average (generated by the low-demand vertices). The results reinforce FERMI's benefits of decoupling the reuse zone demands in different contention regions of the network (i.e. preventing a single demand from propagating).

Overall Fairness: Finally, we present the CDF of the distance from the optimal as a cumulative set of all previously described simulations for the three algorithms considered, in Fig. 14(d). We mainly use the results with range 10 m. and 20 m., as these represent a more realistic deployment (given the entire area is 100x100 meters). The results provide an understanding of how fair a given algorithm is in practical deployments with a large set of variables (# femtos, # sub-channels, zoning etc.). It is seen that A^3 reaches the exact same allocation as the benchmark in about 70% of the topologies, which is far superior to the performance of the other heuristics. *deg* has the worst performance and reaches the benchmark allocation in only 10% of the topologies. *prog* does better than *deg* but still significantly underperforms A^3 .

7. CONCLUSIONS

In this paper, we design and implement FERMI, one of the first resource management systems for OFDMA femtocell networks. Resource management in femtocells offers a set of unique practical challenges (posed by the requirement for standards compatibility) that - to the best of our knowledge - had not been addressed to date. FERMI provides a complete resource management solution with several unique features. It uses measurement-driven triggers to classify clients into two categories, those that need resource isolation and those that do not. It incorporates a frame zoning structure that supports the graceful coexistence of clients from both categories. For purposes of interference mitigation, it allocates orthogonal sub-channels of the OFDMA spectrum with high utilization and low overhead. We implement FERMI on our WiMAX femtocell testbed and show via both experiments and simulations that its performance is superior to other conventional methods.

Acknowledgements

The authors would like to thank Sampath Rangarajan, Ravi Kokku and Rajesh Mahindra from NEC Laboratories America Inc. for their invaluable support and suggestions during the preparation of this work. This work was partially supported by the Multi University Research Initiative (MURI) grant W911NF-07-1-0318 and National Science Foundation (NSF) awards CNS-1059306, CNS-0855201, CNS-0747177, CNS-0916955, and CNS-1040648.

8. **REFERENCES**

- [1] R. Van Nee and R. Prasad, "OFDM for Wireless Multimedia Communications," *Artech House*, 2000.
- [2] D. Lopez-Perez, G. Roche, A. Valcarce, A. Juttner, and J. Zhang, "Interference Avoidance and Dynamic Frequency

Planning for WiMAX Femtocells Networks," in *IEEE ICCS*, 2008.

- [3] 3GPP, "Technical specification group radio access networks;
 3G home NodeB study item technical report (release 8)," *TR* 25.820 V1.0.0 (2007-11), Nov 2007.
- [4] S. Kittipiyakul and T. Javidi, "Subcarrier Allocation in OFDMA Systems: Beyond water-filling," in Signals, Systems, and Computers, 2004.
- [5] T. Quek, Z. Lei, and S. Sun, "Adaptive Interference Coordination in Multi-cell OFDMA Systems," in *IEEE PIMRC*, 2009.
- [6] J. Yun and S. Kang, "CTRL: A Self-Organizing Femtocell Management Architecture for Co-Channel Deployment," in ACM MobiCom, Sept 2010.
- [7] K. Sundaresan and S. Rangarajan, "Efficient Resource Management in OFDMA Femto Cells," in ACM MobiHoc, May 2009.
- [8] T. Moscibroda, R. Chandra, Y. Wu, S. Sengupta, P. Bahl, and Y. Yuan, "Load-Aware Spectrum Distribution in Wireless LANs," in *IEEE ICNP*, 2008.
- [9] I. Broustis, K. Papagiannaki, S. V. Krishnamurthy, M. Faloutsos, and V. Mhatre, "MDG: Measurement-Driven Guidelines for 802.11 WLAN Design," in ACM MobiCom, 2007.
- [10] A. Mishra, V. Brik, S. Banerjee, A. Srinivasan, and W. Arbaugh, "Client-driven Channel Management for Wireless LANs," in *IEEE Infocom*, 2006.
- [11] L. Yang, W. Hou, L. Cao, B. Zhao, and H. Zheng, "Supporting Demanding Wireless Applications with Frequency-agile Radios," in USENIX NSDI, 2010.
- [12] K. Tan, J. Fang, Y. Zhang, S. Chen, L. Shi, J. Zhang, and Y. Zhang, "Fine-grained Channel Access in Wireless LAN," in ACM SIGCOMM, Aug. 2010.
- [13] IEEE 802.16e 2005 Part 16, "Air Interface for Fixed and Mobile Broadband Wireless Access Systems," *IEEE* 802.16e standard.
- [14] WMF-T33-118-R016v01, "Femtocells Core Specification," .
- [15] "PicoChip," http://www.picochip.com.
- [16] "Accton," http://www.accton.com.
- [17] "FERMI technical report," http://www.cs.ucr.edu/~marslan/femto-tech.pdf.
- [18] J. R. S. Blair and B. W. Peyton, "An Introduction to Chordal Graphs and Clique Trees," http://www.ornl.gov/info/reports/1992/3445603686740.pdf.
- [19] A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton, "Maximum Cardinality Search for Computing Minimal Triangulations of Graphs," in *Journal Algorithmica*, May 2004, vol. 39.
- [20] A. Berry, P. Heggernes, and Y. Villanger, "A Vertex Incremental Approch for Dynamically Maintaining Chordal Graphs," in *Algorithms and Computation*, 14th Int. Symp. (ISAAC), December 2003.
- [21] R. Jain, A. Durresi, and G. Babic, "Throughput Fairness Index: An Explanation," in ATM Forum Document Number: ATM Forum / 990045, February 1999.
- [22] S. Yeh and S. Talwar, "Multi-tier Simulation Methodology IEEE C802.16ppc-10/0039r1," 2010.