Auto-configuration of 802.11n WLANs

Mustafa Y. Arslan - Konstantinos Pelechrinis - Ioannis Broustis
UC Riverside - University of Pittsburgh - UC Riverside

Srikanth Krishnamurthy - Sateesh Addepalli - Konstantina Papagiannaki
UC Riverside - Cisco Inc. - Intel Labs, Pittsburgh

ACM CoNEXT 2010
Channel Bonding (CB)

- Goal of CB is to combine two adjacent 20 MHz channels to double the bandwidth (raw transmission rate)
Channel Bonding (CB)

- Goal of CB is to combine two adjacent 20 MHz channels to double the bandwidth (raw transmission rate)
Channel Bonding (CB)

- Goal of CB is to combine two adjacent 20 MHz channels to double the bandwidth (raw transmission rate)
Channel Bonding (CB)

• Goal of CB is to combine two adjacent 20 MHz channels to double the bandwidth (raw transmission rate)

• Fact: CB also increases interference
 ✓ Pelechrinis et. al, Shrivastava et. al.
Channel Bonding (CB)

• Goal of CB is to combine two adjacent 20 MHz channels to double the bandwidth (raw transmission rate)

• Fact: CB also increases interference
 ✓ Pelechrinis et. al, Shrivastava et. al.

• Public belief: CB always gives throughput benefits in isolation
Contributions

• Public belief: CB always gives throughput benefits.
Contributions

• Public belief: CB always gives throughput benefits.
Contributions

• CB, when blindly applied, hurts throughput!
 ✓ Extensive measurements with WARP and off-the-shelf 802.11n
 ✓ PHY and MAC observations

• User association + frequency selection
Contributions

• CB, when blindly applied, hurts throughput!
 ✓ Extensive measurements with WARP and off-the-shelf 802.11n
 ✓ PHY and MAC observations

• User association + frequency selection

• **Auto-Configuation** of 802.11n WLANs
 ✓ First system custom built for 802.11n
 ✓ 1.5x - 6x throughput gain per AP

• Public belief: CB always gives throughput benefits.
Roadmap

• CB - why and when does it fail?
 ✓ Effect on the PHY
 ✓ MAC and application layer observations

• Designing ACORN
 ✓ User association, channel selection

• Evaluation
CB at the PHY
CB at the PHY

• 20 MHz vs 40 MHz (twice OFDM subcarriers in a symbol with CB)
CB at the PHY

- 20 MHz vs 40 MHz (twice OFDM subcarriers in a symbol with CB)
CB at the PHY

- 20 MHz vs 40 MHz (twice OFDM subcarriers in a symbol with CB)

- Thermal Noise
 - $N \text{ (dBm)} = -174 + 10\log(B)$
 - 3 dB higher (twice) noise - *noise per subcarrier* is the same
CB at the PHY

• 20 MHz vs 40 MHz (twice OFDM subcarriers in a symbol with CB)

• Thermal Noise
 ✓ $N \text{ (dBm)} = -174 + 10 \log(B)$
 ✓ 3 dB higher (twice) noise - *noise per subcarrier* is the same

• Subcarrier energy
 ✓ For a given TX power, *energy per subcarrier* is halved (3 dB loss)
CB at the PHY

- 20 MHz vs 40 MHz (twice OFDM subcarriers in a symbol with CB)

- Thermal Noise
 ✓ $N \text{ (dBm)} = -174 + 10\log(B)$
 ✓ 3 dB higher (twice) noise - noise per subcarrier is the same

- Subcarrier energy
 ✓ For a given TX power, energy per subcarrier is halved (3 dB loss)

- SNR per subcarrier is 3 dB less with CB
CB at the PHY
CB at the PHY

a) without CB

b) with CB
CB at the PHY

a) without CB

b) with CB
CB at the PHY

a) without CB

b) with CB
CB at the PHY

a) without CB

b) with CB
CB at the PHY

CB increases baud error rate → increase in BER
CB at the PHY

Graph 1:
- Bit Error Ratio vs. SNR (dB)
- BER-20Mhz
- BER-40Mhz
- Theory

Graph 2:
- Bit Error Ratio vs. Transmit Power [0:63]
- BER-20Mhz
- BER-40Mhz
CB at the PHY

- For a given TX power, BER is higher when CB is employed
Roadmap

• CB - why / when does it fail?
 ✓ Effect on the PHY
 ✓ MAC and application layer observations

• Designing ACORN
 ✓ User association, channel selection

• Evaluation
CB at the MAC

- PHY observations with CB may not be exported to MAC
 ✓ Coding (FEC)
 ✓ What is the impact on PDR?

- Throughput \((T) = \text{Rate} \ (R) \times \text{PDR} \)
 ✓ \(T_{20} = R_{20} \times PDR_{20} \)
 ✓ \(T_{40} = R_{40} \times PDR_{40} = 2 \times R_{20} \times PDR_{40} \)
CB at the MAC

- PHY observations with CB may not be exported to MAC
 ✓ Coding (FEC)
 ✓ What is the impact on PDR?

- Throughput (T) = Rate (R) * PDR
 ✓ $T_{20} = R_{20} \times PDR_{20}$
 ✓ $T_{40} = R_{40} \times PDR_{40} = 2 \times R_{20} \times PDR_{40}$
CB at the MAC

- PHY observations with CB may not be exported to MAC
 ✓ Coding (FEC)
 ✓ What is the impact on PDR?

Throughput (T) = Rate (R) * PDR

- $T_{20} = R_{20} * PDR_{20}$
- $T_{40} = R_{40} * PDR_{40} = 2 * R_{20} * PDR_{40}$

$$\sigma = \frac{PDR_{20}}{PDR_{40}}$$
CB at the MAC

- PHY observations with CB may not be exported to MAC
 ✓ Coding (FEC)
 ✓ What is the impact on PDR?

- Throughput (T) = Rate (R) * PDR
 ✓ $T_{20} = R_{20} \times PDR_{20}$
 ✓ $T_{40} = R_{40} \times PDR_{40} = 2 \times R_{20} \times PDR_{40}$

$$\sigma = \frac{PDR_{20}}{PDR_{40}}$$

- $T_{20} > T_{40}$ if
 $$\sigma > 2$$
CB at the MAC

\[\sigma = \frac{PDR_{20}}{PDR_{40}} \]

- \(T_{20} > T_{40} \) if \(\sigma > 2 \)

<table>
<thead>
<tr>
<th>(\sigma \geq 2)</th>
<th>QPSK(^{3/4})</th>
<th>16QAM(^{3/4})</th>
<th>64QAM(^{3/4})</th>
<th>64QAM(^{5/6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7dB</td>
<td>3dB</td>
<td>5dB</td>
<td>8dB</td>
<td></td>
</tr>
<tr>
<td>-4dB</td>
<td>5dB</td>
<td>7dB</td>
<td>11dB</td>
<td></td>
</tr>
</tbody>
</table>

2 - 3 dB of critical region
CB at the end-user

Throughput-20Mhz (Mbits/s)

Throughput-40Mhz (Mbits/s)

UDP

TCP
CB at the end-user
CB at the end-user

CB hurts for poor links!
Summary

• CB does not always benefit
 ✓ SNR decrease
 ✓ Increased BER
 ✓ Increased PER

• Culprit for poor links
Roadmap

- CB - why / when does it fail?
 - Effect on the PHY
 - MAC and application layer observations

- Designing ACORN
 - User association, channel selection

- Evaluation
ACORN

- User association
 - Group similar quality clients in a cell
ACORN

- User association
 - Group similar quality clients in a cell

Diagram:
- AP
- Poor Client
- Good Client
ACORN

- User association
 ✓ Group similar quality clients in a cell
ACORN

- User association
 - Group similar quality clients in a cell
ACORN

- User association
 - Group similar quality clients in a cell

Diagram:
- AP
- Poor Client
- Good Client
ACORN

- User association
 - Group similar quality clients in a cell
User Association

\(\text{ATD}_i \): aggregate transmission delay of AP i
\(\text{Mi} \): channel access time of AP i (\(= 1 \) with no contention, saturated traffic)
\(\frac{\text{Mi}}{\text{ATD}_i} \): long term per-client throughput of AP i
\(K_i \): number of clients of AP i (including u)
User Association

\[\text{max. } U_{\text{asoc}}(u, i) = K_i \cdot X_{w,u}^i + \sum_{j \in A_u, j \neq i} (K_j - 1) \cdot X_{wo,u}^j \]

- \(\text{ATD}_i \): aggregate transmission delay of AP \(i \)
- \(M_i \): channel access time of AP \(i \) (\(= 1 \) with no contention, saturated traffic)
- \(\frac{M_i}{\text{ATD}_i} \): long term per-client throughput of AP \(i \)
- \(K_i \): number of clients of AP \(i \) (including \(u \))
User Association

ATD_i : aggregate transmission delay of AP i

M_i : channel access time of AP i (= 1 with no contention, saturated traffic)

$\frac{M_i}{ATD_i}$: long term per-client throughput of AP i

K_i : number of clients of AP i (including u)

aggregate throughput of AP i

max. $\mathcal{U}_{asoc}(u, i) = K_i \cdot X_{w,u}^i + \sum_{j \in A_{u,j \neq i}} (K_j - 1) \cdot X_{w_0,u}^j$
User Association

\[\text{aggregate transmission delay of AP } i \]
\[M_i : \text{channel access time of AP } i \quad (= 1 \text{ with no contention, saturated traffic}) \]
\[\frac{M_i}{ATD_i} : \text{long term per-client throughput of AP } i \]
\[K_i : \text{number of clients of AP } i \text{ (including } u) \]

aggregate throughput of AP \(i \) aggregate throughput of other APs

\[
\max. \quad U_{assoc}(u, i) = K_i \cdot X_{w,u}^i + \sum_{j \in A_u, j \neq i} (K_j - 1) \cdot X_{w_0,u}^j
\]
Channel Selection

<table>
<thead>
<tr>
<th>(V)</th>
<th>Set of Access Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ch)</td>
<td>Set of available 20/40MHz channels</td>
</tr>
<tr>
<td>(F : V \rightarrow Ch)</td>
<td>Channel assignment mapping</td>
</tr>
<tr>
<td>(f_i)</td>
<td>channel assigned at AP (i)</td>
</tr>
<tr>
<td>(X_i)</td>
<td>Throughput of AP (i)</td>
</tr>
</tbody>
</table>

\[
\max_{F} \quad Y = \sum_{i \in V} X_i(F)
\]
Channel Selection

<table>
<thead>
<tr>
<th>V</th>
<th>Set of Access Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch</td>
<td>Set of available 20/40MHz channels</td>
</tr>
<tr>
<td>f_i</td>
<td>channel assigned at AP i</td>
</tr>
<tr>
<td>X_i</td>
<td>Throughput of AP i</td>
</tr>
</tbody>
</table>

$\max_{F} Y = \sum_{i \in V} X_i(F)$

The problem reduces to graph coloring and is NP-complete

- In every iteration:
 - AP with the max. increase in aggregate throughput picks a new channel

- When there is no improvement, terminate
Channel Selection

20 MHz 40 MHz
Channel Selection

-3 dB

20 MHz ➔ 40 MHz
Channel Selection

-3 dB

20 MHz ➔ 40 MHz ➔ +3 dB
Channel Selection

-3 dB

20 MHz → 40 MHz

+3 dB

Theoretical BER

BER
Channel Selection

-3 dB

20 MHz

40 MHz

+3 dB

Theoretical BER

1 - (1 - BER)^L

BER

PER
Channel Selection

20 MHz → -3 dB → Theoretical BER → BER → I - (1 - BER)^L → PER

40 MHz ← +3 dB ←

Set of Interferers
Channel Selection

-3 dB
20 MHz
40 MHz
+3 dB

Theoretical BER
1 - (1 - BER)^L

Set of Interferers
Scale down channel access ratio by (# Interferers + 1)
Roadmap

• CB - why / when does it fail?
 ✓ Effect on the PHY
 ✓ MAC and application layer observations

• Designing ACORN
 ✓ User association, channel selection

• Evaluation
Evaluation

• 18 node 802.11n testbed - Ralink chipset

• Comparison with a legacy auto-configuration system
 ✓ Kauffmann et. al. - Infocom’07

• Legacy user association
 ✓ Minimize total ATD of all users

• Legacy channel selection
 ✓ Minimize total interference between APs
 ✓ Modified to aggressively pick 40 MHz channels
Pictorial representation of actual testbed deployment
Evaluation

Pictorial representation of actual testbed deployment
Evaluation

Pictorial representation of actual testbed deployment
Evaluation
Evaluation
Evaluation

Mid-quality client group - AP3 serves one good client
Evaluation

![Diagram showing network with AP2, AP3, AP4, AP5, and API connections]

![Throughput (Mbps) bar chart comparing Legacy and ACORN for API and AP3]
Evaluation

With ACORN, higher congestion at API

Aggregate throughput does not change!
Conclusion

• CB can hurt throughput even in isolation
 ✓ User association becomes critical

• CB increases interference
 ✓ Addressing channel selection

• ACORN performs both functions in tandem
 ✓ Trade off fairness for aggregate throughput

• Implementation on a testbed and evaluations show:
 ✓ ACORN outperforms legacy approaches agnostic to CB
THANK YOU!