
Link Homophily in the Application Layer and its
Usage in Traffic Classification

Brian Gallagher∗ Marios Iliofotou† Tina Eliassi-Rad∗ Michalis Faloutsos†
∗Lawrence Livermore National Laboratory †University of California Riverside

{bgallagher, eliassi}@llnl.gov {marios, michalis}@cs.ucr.edu

Abstract—We address the following questions. Is therelink
homophily in the application layer traffic? If so, can it be used to
accurately classify traffic in network trace data without relying
on payloads or properties at the flow level? Our research shows
that the answers to both of these questions are affirmative in
real network trace data. Specifically, we define link homophily
to be the tendency for flows with common IP hosts to have the
same application (P2P, Web, etc.) compared to randomly selected
flows. The presence of link homophily in trace data provides us
with statistical dependencies between flows that share common IP
hosts. We utilize these dependencies to classify application layer
traffic without relying on payloads or properties at the flow level.
In particular, we introduce a new statistical relational learning
algorithm, called Neighboring Link Classifier with Relaxation
Labeling (NLC+RL). Our algorithm has no training phase and
does not require features to be constructed. All that it needs to
start the classification process is traffic information on a small
portion of the initial flows, which we refer to as seeds. In all our
traces, NLC+RL achieves above 90% accuracy with less than
5% seed size; it is robust to errors in the seeds and various seed-
selection biases; and it is able to accurately classify challenging
traffic such as P2P with over 90% Precision and Recall.

I. I NTRODUCTION

Homophily, a concept from social sciences, asserts that
similar entities tend to be related to one another. This work
investigates the existence of homophily in application-layer
traffic and its use in traffic classification. Specifically, we
define link homophily to be the tendency for flows with
common IP hosts to have the same application compared to
randomly selected flows; and measure it on a network-wide
trace graph. Given a network trace, we create a graph by
representing individual IP hosts as nodes and communication
flows between hosts as links. The application of a particular
flow (e.g., P2P, SSH, Web, etc.) is then represented as a
label on that link in the graph. Figure 1 depicts a pictorial
representation of a partially labeled trace graph. Given such
a graph, we measure link homophily by iterating over the
set of links with known labels and computing the proportion
of neighboring links that have the same application. In our
experiments, we observe that link homophily exists in a variety
of real network traces. Armed with this knowledge, we utilize
the statistical dependencies between flows that share common
IP hosts to classify application layer traffic without relying
on payloads or properties at the flow level. Thisrelational
view of traffic classification treats the problem as information
dissemination over the network-wide trace graph.

A

?

?

?

P2P

?

Web

Web

P2P

P2P
Web

?

?
?

x

y

Fig. 1: Relational view of application classification. Nodes in
the trace graph represent IP hosts and links represent network
flows between hosts. The application class of some flows are
initially known (a.k.a. the seeds), while others are unknown.
Our goal is to use the initial seeds to infer the labels of all
unknown links in the graph.

We propose a relational classifier, calledNeighboring Link
Classifier with Relaxation Labeling(NLC+RL), that takes
as input a partially labeled trace graph (see Figure 1) and
accurately identifies applications for all the unknown flows.
We can obtain partial labels (a.k.a.seed information) in a
variety of ways [1]. NLC+RL is robust to small quantities of
seeds and to errors and biases in seed labels (see Section IV-B).

The main contributions of our work are as follows.(1) We
define link homophily on network-wide trace graphs, where
(on average) links with a common endpoint tend to have the
same application classes compared to randomly selected links;
and show that real trace graphs exhibit link homophily.(2) We
propose a new algorithm, NLC+RL, for traffic classification,
based on techniques from the field of statistical relational
learning.(3) We demonstrate the effectiveness of NLC+RL on
both backbone and access-link traces. Our method achieves
over 90% accuracy with fewer than 5% of flows initially
labeled; and can classify P2P traffic (a challenging task) with
over 90% Precision and Recall.(4) We show that our method
is robust to: (a) errors introduced by the initial seed flows,
achieving 80% accuracy with a seed error rate of 50% and (b)
seeding biases at the host- and application-level.

Our work in perspective.By posing the traffic classification
problem as a relational learning task on a trace graph, we
open the door for powerful tools from statistical relational
learning and graph mining, to be used for this problem.
Exploiting relational dependencies among IP hosts (such as
link homophily) enables us to overcome traffic obfuscation
and not rely on payloads or properties at flow level.

2

A

D

B

X

C

E

Fig. 2: Neighboring links of X are A, B, C, D, and E because they
share a common endpoint.

II. L INK HOMOPHILY IN APPLICATION LAYER TRAFFIC

Before defining link homophily, we need to define the term
neighboring links. We consider two links (i.e. flows) to be
neighbors if and only if they share a common node (i.e. IP
host). Figure 2 provides a pictorial view of neighboring links.

What is link homophily?The termhomophily(love of the
same) was coined in the 1950s by sociologists. In the context
of application layer traffic, we definelink homophily as the
tendency forneighboring linksto have (on average) the same
labels compared to randomly selected links. In other words,
link homophily states the following:

P (label(l1) ≡ label(l2) | neighboring links(l1, l2)) >
P (label(l1) ≡ label(l2) | random selection(l1, l2))

We measure link homophily by iterating over the set of links
with known applications in a trace graph and computing what
proportion of neighboring links have the same application.
Table I reports the pseudo-code for computing link homophily
per application on a graph.

LinkHomophily (G):
/∗ initialize homopilyPerClass array∗/
for each application classc ∈ C do

homophilyPerClass[c] = 0;
end for
/∗ compute link homophily∗/
L = G.labeledLinks;
for each labeled linkl ∈ L do

N = l.neighboringLinks;
homophily[l] = count(∀n∈N:label(l)≡label(n))

|N|
;

homophilyPerClass[label(l)]+ = homopily[l];
end for

/∗ normalize link homophily per application class∗/
for each application classc ∈ C do

homophilyPerClass[c] = homophilyPerClass[c]
count(∀l∈L:label(l)≡c)

;

end for

TABLE I: Computing link homophily on a trace graph,G.

Do real trace graphs exhibit link homophily with respect to
application layer traffic?To answer this question, we exam-
ined two internet backbone traces and two access-link traces.
The backbone traces are: (1) from a Tier-1 ISP link (PAIX) and
(2) from a transpacific link (WIDE). The access-link traces are:
(1) from the border router of an enterprise network (ENTP)
and (2) from a University in Japan (KEIO). These traces
represent a diverse set of network environments, collected

Application App PAIX WIDE ENTP KEIO
P2P 1 1 0.83 0.87
Web 0.98 0.98 0.83 0.91
DNS 0.97 0.97 0.97 0.96
Chat 0.91 0.91 0.40 0.59
Mail 0.86 0.86 0.35 0.60

SNMP 0.85 0.85 0.76 0.89
FTP 0.75 0.72 0.52 0.79
SSH 0.21 0.26 0.35 0.66

TABLE II: Link homophily per application type: Probability of a
randomApp link having a neighboring link of typeApp

Application App PAIX WIDE ENTP KEIO
P2P 0.31 0.01 0.02 0
Web 0.25 0.05 0.33 0.20
DNS 0.16 0.33 0.22 0.47
Chat 0.02 0 0.01 0
Mail 0.03 0.03 0 0.08

SNMP 0 0 0.04 0
FTP 0 0 0 0
SSH 0 0 0 0

TABLE III: Prior probability per application type: Probability of a
random link of any type having a neighboring link of typeApp

at different geographic locations and times. Section IV-A1
describes these traces in detail.

Tables II and III, respectively, report link homophily per
application type and prior probability per application type for
all four traces. In all traces (whether backbone or access-link)
and for all eight of our application types, link homophily is
much higher than prior probability. For example, in the PAIX
backbone trace the probability of a randomly selected Chat
link having a neighboring link of type Chat is 0.91, while
the probability of a randomly selected link of any traffic type
having a neighboring link of type Chat is 0.02.

What are the origins of link homophily in application layer
traffic? We discuss the origins of link homophily by dividing
the applications into two significant types: (a) client-server and
(b) collaborative. In client-server applications, we expect to see
“stars” in the graph: a server surrounded by clients. Clearly,
these flows share a node and are of the same application, thus
contributing to link homophily. In collaborative applications
(such as P2P), nodes connect with multiple collaborators since
the power of these applications rely on rich connectivity.
This behavior also supports the observed link homophily.
In addition to P2P, the same argument holds for distributed
communities, some online games, and semi-structured and
hierarchical applications such as DNS. We observed link
homophily even in hosts with many different applications.
Moreover, link homophily is often asymmetric, where one
endpoint exhibits higher value than the other endpoint.

III. U SING L INK HOMOPHILY IN TRAFFIC

CLASSIFICATION

The presence of link homophily in trace data provides us
with statistical dependencies between flows that share common

3

NLC(G):
L = G.labeledLinks; /∗ | L |> 0 ∗/
U = G.unlabeledLinks;
for each unlabeled linku ∈ U do

N = u.labeledNeighboringLinks;
Ns = u.labeledNeighboringLinksFromSrc;
Nd = u.labeledNeighboringLinksFromDst;
if (| N ′ |> 0) then

ps = count(∀n∈Ns&∀c∈C:label(n)≡c)
|Ns|

;

pd = count(∀n∈Nd&∀c∈C:label(n)≡c)
|Nd|

;
P (c|u) = 1

2
(ps + pd);

else
P (c|u) = count(∀l∈L&∀c∈C:label(l)≡c)

|L|
;

end if
end for

TABLE IV: Neighboring Link Classifier (NLC).

IP hosts. We propose a new statistical relational learning algo-
rithm, calledNeighboring Link Classifier with Relaxation
Labeling (NLC+RL), which utilizes these dependencies to
classify application layer traffic without relying on payloads
or properties at the flow level. Specifically, NLC+RL takes
as input apartially labeled trace graphand infers labels for
the unlabeled links by exploiting link homophily. NLC+RL is
an adaption of the simplest and fastest available node-based
relational classifiers [2] for the task of link classification.

The Neighboring Link Classifier (NLC) in NLC+RL
assigns a label to each unlabeled link,u, based on the class
frequencies observed in the set ofu’s neighboring links.
To prevent unduly favoring nodes with many links, NLC
calculates the neighboring class frequency for each ofu’s
endpoint nodes separately and then averages the two.

Table IV outlines the pseudo-code for NLC. For each
unlabeled link, the output of NLC is a probability distribution
over the application classes – i.e.,∀u ∈ U & ∀c ∈ C :
P (label(u) ≡ c|u), whereU is the set of unlabeled links
in the trace graph andC is the set of application classes
that we want to classify (e.g.,C = {P2P, DNS, Web, Chat,
SNMP, FTP, SSH, Mail}). To obtain a classification for an
unlabeled link, we select the application with the highest
probability on that unlabeled link:∀u ∈ U : label(u) =
argmaxc∈C(P (label(u) ≡ c|u)).

When an unlabeled linku has no neighboring links that
are labeled, NLC will end up with no label foru (because
P (label(u) ≡ c|u) = 0 for all applicationsc). In such cases,
we use the prior probability distribution observed in the initial
set of labeled links to assign application probabilities tou –
i.e.,P (label(u) ≡ c|u) = Pprior(c| initial set of labeled links)
for all applicationsc. We then select the label with the highest
probability.

NLC+RL is essentially a systematic method to repeat NLC
multiple times in order to improve classification performance
when seed information is scarce. In particular, NLC+RL
augments NLC withlinked-based collective classificationby
using therelaxation labeling(RL) algorithm [3].Linked-based
collective classification refers to the combined classification

NLC+RL (G):
L = G.labeledLinks;
U = G.uniqueUnlabeledLinks;
/∗ initialize probability estimate for labeled links∗/
for each labeled linkl ∈ L do

P0(c|l) = 1 if label(l) ≡ c;
P0(c|l) = 0 otherwise;

end for
/∗ initialize probability estimate for unlabeled links∗/
for each unlabeled linku ∈ U do

P0(c|u) =
count(∀l∈L&∀c∈C:label(l)≡c)

|L|
;

end for
/∗ update probability distributions of unlabeled links∗/
repeat

for each unlabeled linku ∈ U do
∀c ∈ C :
Pt+1(c|u) =

βt+1 ·NLC〈t,u,c〉(G) + (1− βt+1) · Pt(c|u)
end for

until (t ≡ 99)

TABLE V: Neighboring Link Classifier with Relaxation Labeling
(NLC+RL). NLC〈t,u,c〉(G) outputs the probabilityP (label(u) ≡
c|u) computed by NLC after iterationt updates on the graphG.
The simulated annealing parameters are:β0 ∈ [0, 1] and βt+1 =
βt · α, whereα is a decay constant. For our experiments, we used
the standard values ofα = 0.99 and β0 = 1; and foundt = 99
iterations sufficient for convergence.

(i.e., simultaneous inference) of a set of neighboring links.
Two types of information are utilized in linked-based collective
classification: (1) correlations between the label of linkl and
the known labels of its neighboring links, and (2) correlations
between the label of linkl and the unknown labels of its
neighboring links.

For each unlabeled link in the partially labeled trace graph,
RL maintains a current estimate of the probability distribution
over the set of application classesC that we are interested
in. Initial probability estimates are assigned as follows.For
each labeled link, RL assigns a probability of 1.0 for the
link’s (application) label and a probability of 0.0 for all
other (application) labels. For eachuniqueunlabeled link, RL
assigns the prior probability distribution observed in theinitial
set of labeled links. Then, each unlabeled link’s probability
distribution is updatedt times. On each iteration, NLC is used
to update the probability distributions of links, based on the
current assignments of their neighboring links. In other words,
RL stores probability estimates at iterationt and updates
estimates for all links at iterationt+1. Since each link in the
graph has an associated probability distribution over the set of
applicationsC (instead of a hard label assignment), NLC will
sum the probabilities of each application for each neighboring
link instead of simply counting labels of each application.To
catalyze convergence, we perform simulated annealing [2].
Table V outlines the pseudo-code for NLC+RL. Like NLC,
we obtain a classification for an unlabeled link by selecting
the application with the highest probability on that unlabeled
link: ∀u ∈ U : label(u) = argmaxc∈C(P (label(u) ≡ c|u)).

4

Backbone Traces Access Link Traces
PAIX WIDE ENTP KEIO

Application Traffic Mix
P2P 76055 893 3780 79
Web 62860 5877 88883 6868
DNS 39387 39532 58158 16498
Chat 4794 734 1953 140
Mail 6987 2973 1307 2958

SNMP 94 9 10485 52
FTP 152 46 864 2
SSH 18 2 509 7
Rest 9215 543 1942 352

Unknown 47442 68946 99954 8372
Trace Graph Information

Year 2004 2006 2007 2006
#Nodes 171641 101264 57285 24994
#Links 247004 119553 266878 35328

% in LCC 87% 90% 99% 91%
Duration 30 seconds 5 minutes 1 hour 5 minutes

TABLE VI: Summary of our backbone and access-link traces.

IV. EXPERIMENTS ONTRAFFIC CLASSIFICATION

A. Experimental Design

1) Data Sets: We evaluate NLC+RL on four real-world
traces from a diverse set of network environments, collected
between 2004 and 2007. For internet backbone traces, we have
traffic from a commercial US Tier-1 ISP link connecting San
Jose to Seattle (PAIX) and another from a transpacific link
between US and Japan (WIDE). Our access-link traces are
collected at the border router of an enterprise network (ENTP)
and from inside Keio University in Japan (KEIO).

Table VI lists the distribution of flow-types for each of
the four traces. We define a flow using the well-known 5-
tuple 〈srcIP, srcPort, dstIP, dstPort,protocol〉.
Bidirectional flows are represented as undirected links in the
trace graph and are reported as single flows in Table VI. All
our traces contain payload information, thereby enabling us to
label the flows using signature-matching techniques described
in [4] and later enhanced in [5]. For each trace, we classify
traffic into approximately 15 traffic categories. In Table VI, we
report detailed statistics for the following eight main classes:
DNS, Chat, FTP, Mail, P2P, SNMP, SSH, and Web. These
8 classes represent the majority of the known traffic as we
show in Table VI. The remaining classes (reported asRest
in Table VI) include network games and other applications
that contribute less to the overall traffic. In our evaluation, we
include all classes in the trace graph.

2) Trace Graphs: For each data set, we create a trace
graph with nodes representing hosts (IP addresses) and links
representing communications (flows) between hosts, as shown
in Figure 1. Our trace graphs allow multiple links between two
nodes (see Figure 2) given that each link represent a different
flow (i.e., uses different port numbers or protocol).

The graph sizes are listed in Table VI. The size of the
Largest Connected Component (LCC) in the graph is reported
as the percentage of flows that belong to it. From Table VI, we

see that there is one large connected component that contains
the majority of links (> 87%) in the graph. All connected
components of the graph contain a diverse mix of links from
various applications. The size of the LCC depends on the
duration of observation. We found NLC+RL’s classification
performance to be robust to changes in duration of observation.

3) Obtaining Seed Information:To start the classification
process, our method requires a small amount of seed informa-
tion (which is common in supervised learning approaches). For
our experiments, weemulatethe existence of aseed provider,
using a payload-based signature-matching method similar to
previous works [6], [4], [7]. It compares the payload of each
packet to a predefined set of signatures for application-layer
traffic such as P2P, DNS, Games, Chat, Web, Mail, etc. Traffic
that does not match the predefined set of signatures is labeled
“unknown.” It is important to note that our approach is not
tied to any particular seed provider; and is robust to biases
and errors in seed labels. For details, see [1].

4) Experimental Methodology:For all of our results, the
basic experimental setup is the same: we run 10 trials and
report the average performance. The details of our experimen-
tal methodology are as follows. For evaluation purposes only,
we need ground-truth on the flows in our trace data, which
we obtain using the payload-based signature-matching method
described in Section IV-A3. To test NLC+RL, we vary the
proportion of links that have seed labels from1% to 90% of the
total number of links in the trace graph. Only these links retain
their labels. All remaining links have their labels stripped and
are used to evaluate the classifiers’ performances. We referto
the proportion of links that have seed labels asSeed Size, s.
For each seed size, we run 10 trials and report the average
performance. For each trial and seed size, we choose a class-
stratified random sample containings% of the total links in
the graph. These links retain their labels. All other labelsare
removed. We then evaluate on all unlabeled links for which
ground truth is available. To be fair across classifiers, we use
identical labeled- and unlabeled-link splits for each classifier.
We evaluate classifier performance using Accuracy (ACC) and
F1-score (the harmonic mean of Precision and Recall).

B. Experimental Results

We conducted experiments that answer the following ques-
tions. Due to space constraints, we have omitted many details
including an in depth discussion; and refer the reader to [1].

Question#1: Can NLC+RL perform well even with limited
seed information?Answer: Yes, even with only 5% of links
labeled, NLC+RL achieves over 90% accuracy. See Figure 3.

Question #2: How is the per-class performance of
NLC+RL?Answer: NLC+RL performs very well over a large
range of application classes. Even for challenging applications,
such as P2P, it can achieve over 95% F1-score with 20% initial
seed size over all four traces.

Question#3: How sensitive is NLC+RL to errors made by
the seed provider?Answer: Even with 50% erroneous seed
links, NLC+RL can still achieve 80% classification accuracy
over the remaining links.

5

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.01 0.05 0.1 0.25

A
cc

ur
ac

y

Seed Size

PAIX WIDE ENTP KEIO

Fig. 3: Accuracy of NLC+RL over all 4 traces.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

BLINC CoralReef GBA SVM

Ac
cu

ra
cy

PAIX WIDE KEIO

NLC+RL

Fig. 4: Comparing NLC+RL with 5% seed size to CoralReef [8],
BLINC [4], and SVM [5] on the same traces. CoralReef and SVM
rely heavily on port numbers and flow-level data (which can be
obfuscated), while NLC+RL does not require such information.

Question #4: How sensitive is NLC+RL to biases in
the selection of initial seed when: (a) we know nothing for
some hosts and everything about others (host-biased seeding),
and (b) we know all the flows for some applications, e.g.,
DNS, but have only a limited knowledge for others, e.g.,
P2P (application-biased seeding)?Answer: NLC+RL’s per-
formance is robust to both types of seeding biases.

Question #5: Can NLC+RL accurately classify traffic of
hosts with multiple applications?Answer: Yes. NLC+RL rep-
resents associations at the flow-level and not at the host-level.
This allows different flows of a single host to have different
neighborhoods and be associated with different applications.

Question #6: How does NLC+RL perform compared to
other methods?Answer: NLC+RL either outperforms or is
competitive (< 4% difference) with existing approaches that
rely heavily on port numbers or flow-level data. See Figure 4.

V. RELATED WORK

Traffic classification is a well-studied problem with signifi-
cant previous work. Based on the level of observation, traffic
classification methods can be divided into four groups: (a)
packet-level [8]; (b) flow-level [9], [5]; (c) host-level [4], [10];
and (d) payload-level [6], [11], [12]. To our best knowledge,

no one has viewed the traffic classification as a relational
learning problem. Graphs have been used to represent network
traffic for other tasks besides traffic classification [13], [14],
[15], [16]. However, none of the previous works examined
link homophily, its presence in real-world trace graphs, and
its utilization for traffic classification.

VI. CONCLUSIONS

We observe link homophily in application-layer traffic of
real trace data, which provide us with statistical dependencies
between flows that share common IP hosts. We utilize these
dependencies in a relational learning algorithm, NLC+RL, to
accurately classify applications of interest in network-wide
trace graphs. NLC+RL is the first method to formulate the
traffic classification problem as a relational learning problem
and has several attractive features: (a) resistance to signature,
padding and timing obfuscation techniques; (b) robustnessto
errors and biases of the initial seed information; and (c) high
accuracy (> 90%) on application classification in real traces.

ACKNOWLEDGEMENTS

This work was performed under the auspices of the U.S.
Dept. of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344 and supported by NSF
grants No. CT-0831530, No. NETS-083206, and a CISCO gift.

REFERENCES

[1] B. Gallagher, M. Iliofotou, T. Eliassi-Rad, and M. Faloutsos, “Link
homophily in the application layer and its usage in traffic classification,”
Lawrence Livermore National Laboratory, Livermore, CA, Tech. Rep.
LLNL-TR-414362, June 2009, http://eliassi.org/papers/bjg-tr09.pdf.

[2] S. Macskassy and F. Provost, “Classification in networked data: A toolkit
and a univariate case study,”MLJ, vol. 8, pp. 935–983, 2007.

[3] A. Rosenfeld, R. Hummel, and S. Zucker, “Scene labeling by relaxation
operations,” inIEEE Transactions on Systems, Man and Cybernetics,
vol. 6, 1976, pp. 420–433.

[4] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel
traffic classification in the dark,” inACM SIGCOMM, 2005.

[5] H.-C. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and
K. Lee, “Internet traffic classificatoin demystified: Myths,caveats, and
the best practices,” inACM CoNEXT, 2008.

[6] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M.Faloutsos,
“Is P2P dying or just hiding?” inIEEE GLOBECOM, 2004.

[7] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network
identification of P2P traffic using application signatures,” in WWW,
2004.

[8] CAIDA Org., “The CoralReef Project.”
[9] T. T. Nguyen and G. Armitage, “A survey of techniques for internet

traffic classification using machine learning,”IEEE Communications
Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[10] I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci, “Unconstrained
endpoint profiling (Googling the Internet),” inACM SIGCOMM, 2008.

[11] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAS: Automated
construction of application signatures,” inACM MineNet, 2005.

[12] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker,
“Unexpected means of protocol inference,” inACM IMC, 2006.

[13] G. Tan, M. Poletto, J. Guttag, and F. Kaashoek, “Role classification
of hosts within enterprise networks based on connection patterns,” in
USENIX Annual Technical Conference, 2003.

[14] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher,S. Singh,
and G. Varghese, “Network monitoring using traffic dispersion graphs
(TDGs),” in ACM IMC, 2007.

[15] M. Latapy and C. Magnien, “Complex network measurements: Estimat-
ing the relevance of observed properties,” inIEEE INFOCOM, 2008.

[16] M. Meiss, F. Menczer, and A. Vespignani, “On the lack of typical
behavior in the global web traffic network,” inWWW, 2005.

