Link Homophily in the Application Layer and its
Usage in Traffic Classification

Brian Gallaghet Marios lliofotod Tina Eliassi-Ratl Michalis Faloutsos

*Lawrence Livermore National Laboratory fUniversity of California Riverside
{bgallagher, elias$@IInl.gov {marios, michali$@cs.ucr.edu
Abstract—We address the following questions. Is therdink O O

homophily in the application layer traffic? If so, can it be used to O\? P2pP Web O
accurately classify traffic in network trace data without relying Web ?
on payloads or properties at the flow level? Our research shosv pop ‘¢—Web—d—7 —O
that the answers to both of these questions are affirmative in Q’ P2pP 2
real network trace data. Specifically, we define link homopHy :

same application (P2P, Web, etc.) compared to randomly sefed

flows. The presence of link homophily in trace data provides s

with statistical dependencies between flows that share conon IP Fig. 1: Relational view of application classification. Neda
hosts. We utilize these dependencies to classify applicati layer the trace graph represent IP hosts and links represent rietwo
traffic without relying on payloads or properties at the flow level. fiows between hosts. The application class of some flows are

In particular, we introduce a new statistical relational learning
algorithm, called Neighboring Link Classifier with Relaxation initially known (a.k.a. the seeds), while others are unknow

Labeling (NLC+RL). Our algorithm has no training phase and Our goal is to use the initial seeds to infer the labels of all
does not require features to be constructed. All that it need to unknown links in the graph.

start the classification process is traffic information on a mall

portion of the initial flows, which we refer to as seedsIn all our

traces, NLC+RL achieves above 90% accuracy with less than

2y
to be the tendency for flows with common IP hosts to have the b b_;—b O
A

5% seed size; it is robust to errors in the seeds and various sd- We propose a relational classifier, calldgighboring Link
selection biases; and it is able to accurately classify cHahging Classifier with Relaxation LabelingNLC+RL), that takes
traffic such as P2P with over 90% Precision and Recall. as input a partially labeled trace graph (see Figure 1) and

accurately identifies applications for all the unknown flows
)]) We can obtain partial labels (a.k.aeed informationin a
Homophily a concept from social sciences, asserts thgliety of ways [1]. NLC+RL is robust to small quantities of
similar entities tend to be related to one another. This Wolgseds and to errors and biases in seed labels (see Sec@)n V-
investigates the existence of homophily in applicatioyeta The main contributions of our work are as follow4) We

traffic and its use in traffic classification. Specifically, W& afine link homophily on network-wide trace graphs, where

define ImITPhr(])mophnyhto behthe tendencly fqr flows W'thd(on average) links with a common endpoint tend to have the
common osts to have the same app ication comparec Bne application classes compared to randomly selectes] lin
randomly selected flows; and measure it on a network-wuj

Ad show that real t hs exhibit link h W
trace graph Given a network trace, we create a graph bé) show that real trace graphs exhibit link homopliay:We

na individual IP h q q) ropose a new algorithm, NLC+RL, for traffic classification,
representing individua OSts as nodes and communicatip, o4 o, techniques from the field of statistical relational

flows between hosts as links. The gpplication of a partiCUIFérarning.(i%) We demonstrate the effectiveness of NLC+RL on
flow (e.g., P2P, SSH, Web, etc,) is then represented as) &y packhone and access-link traces. Our method achieves
label on that link in the graph. Figure 1 depicts a pictoriafy e 9004 accuracy with fewer than 5% of flows initially
representation of a partially labeled trace graph. G'Vecmsulabeled; and can classify P2P traffic (a challenging task wi

a graph, we measure link homophily by iterating over th@ver 90% Precision and Recal#t) We show that our method

set Of. links _with_known labels and computing t_he _proportio,% robust to: (a) errors introduced by the initial seed flows,
of ne|_ghbor|ng links that have_z the same_appl!cau_on_ In OUfchieving 80% accuracy with a seed error rate of 50% and (b)
experiments, we observe that link homophily exists in aetgri seeding biases at the host- and application-level

of real network traces. Armed with this knowledge, we utiliz Our work in perspectivey posing the traffic classification
the statistical dependencies between flows that share Comm(r)oblem as a?elatri)onal Iegrf‘)]in ?ask on a trace araph. we
IP hosts to classify application layer traffic without relgi P 9 - graph,

on payloads or properties at the flow level. Thédational open the door for powerful tools from statistical relatibna

) . o e learning and graph mining, to be used for this problem.
view of traffic classification treats the problem as inforimat » ' :

. L . Exploiting relational dependencies among IP hosts (such as
dissemination over the network-wide trace graph.

link homophily) enables us to overcome traffic obfuscation
and not rely on payloads or properties at flow level.

I. INTRODUCTION

c Application App | PAIX | WIDE | ENTP | KEIO

—O\ B r/_ £ P2P 1 1 0.83 | 0.87

A Web 0.98 | 0.98 0.83 | 0.91

#X DNS 0.97 0.97 0.97 0.96

D Chat 0.91 0.91 0.40 0.59

_O/ Mail 0.86 | 0.86 | 0.35 | 0.60

SNMP 0.85 | 0.85 0.76 | 0.89

Fig. 2: Neighboring links of X are A, B, C, D, and E because they FTP 0.75 0.72 0.52 0.79
share a common endpoint. SSH 0.21 0.26 0.35 0.66

TABLE IlI: Link homophily per application type: Probability of a
randomApp link having a neighboring link of typépp

II. LINK HOMOPHILY IN APPLICATION LAYER TRAFFIC

Application App | PAIX | WIDE | ENTP | KEIO
Before defining link homophily, we need to define the term P2P 031 | 0.01 | 002 0
neighboring links We consider two links (i.e. flows) to be Web 0.25 | 0.05 | 0.33 | 0.20
neighbors if and only if they share a common node (i.e. IP DNS 0.16 | 0.33 | 0.22 | 047
host). Figure 2 provides a pictorial view of neighboringkin Chat 0.02 0 0.01 0
What is link homophilyZhe termhomophily(love of the Mail 0.03 | 0.03 0 0.08
same) was coined in the 1950s by sociologists. In the context SNMP 0 0 0.04 0
of application layer traffic, we definknk homophily as the g;i 8 8 8 8

tendency fomeighboring linksto have (on average) the same
labels compared to randomly selected links. In other wordBABLE I.II: Prior probability per application type: Probability of a
link homophily states the following: random link of any type having a neighboring link of typep

P(label(ly) = label(ls) | neighboring_links(ly,12)) >
P(label(l1) = label(l2) | random_selection(l1,12)) at different geographic locations and times. Section IV-Al

We measure link homophily by iterating over the set of linkdescribes these traces in detail.
with known applications in a trace graph and computing what Tables 1l and llI, respectively, report link homophily per
proportion of neighboring links have the same applicatioAPPlication type and prior probability per application ¢yfor
Table | reports the pseudo-code for computing link homqphiF‘” four traces. In all traces (whether backbone or acde&3-I

per application on a graph. and for all eight of our application types, link homophily is
much higher than prior probability. For example, in the PAIX
LinkHomophily (G): backbone trace the probability of a randomly selected Chat
I+ initialize homopilyPerClass array link having a neighboring link of type Chat is 0.91, while
for ‘;aCh a}p;;;lu;gtmglclass e_COFio the probability of a randomly selected link of any traffic éyp
end for O E assld = 0; having a neighboring link of type Chat is 0.02.
/+ compute link homophilys/ What are the origins of link homophily in application layer
L = G.labeledLinks; traffic? We discuss the origins of link homophily by dividing
for each labeled link € L do the applications into two significant types: (a) clientvsgrand
N = l.neighboringLinks, _ (b) collaborative. In client-server applications, we estde see
homophilyll] = etz “stars” in the graph: a server surrounded by clients. Cyearl

homophily PerClass[label(l)]+ = homopily[l];
end for
/x normalize link homophily per application class

these flows share a node and are of the same application, thus
contributing to link homophily. In collaborative applitans

for each application classe C do (such as P2P), nodes connect with multiple collaboratorsesi
homophily PerClass|c] = fomophilyPerClassicl . the power of these applications rely on rich connectivity.
count(VI€ L:label(l)=c)’
end for This behavior also supports the observed link homophily.
In addition to P2P, the same argument holds for distributed
TABLE |: Computing link homophily on a trace grap, communities, some online games, and semi-structured and

hierarchical applications such as DNS. We observed link
Do real trace graphs exhibit link homophily with respect tdhomophily even in hosts with many different applications.

application layer traffic?To answer this question, we examMoreover, link homophily is often asymmetric, where one
ined two internet backbone traces and two access-linkgracendpoint exhibits higher value than the other endpoint.
The backbone traces are: (1) from a Tier-1 ISP link (PAIX) and
(2) from a transpacific link (WIDE). The access-link traces: a
(1) from the border router of an enterprise network (ENTP)
and (2) from a University in Japan (KEIO). These traces The presence of link homophily in trace data provides us
represent a diverse set of network environments, collecteith statistical dependencies between flows that share @mm

IIl. USING LINK HOMOPHILY IN TRAFFIC
CLASSIFICATION

NLC (G):

L = G.labeledLinks; I+ | L |> 0 */

U = G.unlabeledLinks;

for each unlabeled link € U do
N = u.labeledNeighboring Links;
Ns = u.labeledNeighboring LinksFromSrec;
Ny = u.labeledNeighboring LinksFromDst;
if (] N’ |> 0) then

NLC+RL (G):

L = G.labeledLinks;
U = G.uniqueUnlabeled Links;
/* initialize probability estimate for labeled linkg
for each labeled link € L do
Po(cll) = 1if label(l) = c;
Py(c|l) = 0 otherwise
end for

_ count(VnEN;&VceC:label(n)=c)
Ps = N

‘ /* initialize probability estimate for unlabeled linkg
count(VnGNd&Vf:GC:label(n)Ec) .

for each unlabeled linkk € U do

bd = N4l _ count(VI€EL&VceC:label(l)=c).
P(clu) = 3(ps + pa); Folelu) = L1 ’
else end for o .
P(clu) = count(VIEL&YceCilabel(D=c). /+ update probability distributions of unlabeled links
: IZ] ' repeat
end if for each unlabeled link: € U do
end for Yee C -
Prya(clu) =
TABLE IV: Neighboring Link Classifier (NLC). Br+1 - NLC (4,0 (G) + (1 = Be1) - Pe(clu)
end for
until (¢ = 99)

IP hosts. We propose a new statistical relational learnigg-a

r|thm,_ called Ne|ghbor|ng_L|nk _C_:Iassn‘ler with Relaxatlc_)n NLC+RL). NLC(q.0.0)(G) outputs the probabilityP (label(u) =
Labeling (NLC+RL), which utilizes these dependencies t lu) computed by NLC after iteration updates on the grapty.

classify application layer traffic without relying on paglts The simulated annealing parameters aég:c [0,1] and 8,41 =

or properties at the flow level. Specifically, NLC+RL take@: - o, where« is a decay constant. For our experiments, we used

as input apartially labeled trace graphand infers labels for the standard values aof = 0.99 and 5y = 1; and foundt = 99

the unlabeled links by exploiting link homophily. NLC+RL is'terations sufficient for convergence.

an adaption of the simplest and fastest available nodedbase

relational classifiers [2] for the task of link classificatio
The Neighboring Link Classifier (NLC) in NLC+RL _ _ . . .

assigns a label to each unlabeled link,based on the class("e" smultaneous mference)_qf a _seF of neighboringink

frequencies observed in the set af neighboring links. Two types of information are utilized in linked-based cotlee

To prevent unduly favoring nodes with many links, NLd:Iassification: 1) co_rrelati_ons bgtwe_en the label of Imknd_
calculates the neighboring class frequency for each.'sf the known labels of its r_1e|ghbor|ng links, and (2) correiag
endpoint nodes separately and then averages the two. bereen_the_IabeI of link and the unknown labels of its
Table IV outlines the pseudo-code for NLC. For eacﬂe'ghborlng links.
unlabeled link, the output of NLC is a probability distrifmr For each unlabeled link in the partially labeled trace graph
over the application classes — i.&y € U & Ve € C : RL maintains a current estimate of the probability disttit
P(label(u) = clu), whereU is the set of unlabeled links over the set of application classés that we are interested
in the trace graph and’ is the set of application classesin. Initial probability estimates are assigned as followsr
that we want to classify (e.g¢' = {P2P, DNS, Web, Chat, each labeled link, RL assigns a probability of 1.0 for the
SNMP, FTP, SSH, Ma}). To obtain a classification for anlink’s (application) label and a probability of 0.0 for all
unlabeled link, we select the application with the highesther (application) labels. For eacimiqueinlabeled link, RL
probability on that unlabeled linkvu € U : label(u) = assigns the prior probability distribution observed in ithigal
argmazccc(P(label(u) = clu)). set of labeled links. Then, each unlabeled link’s probapbili
When an unlabeled linke has no neighboring links that distribution is updated times. On each iteration, NLC is used
are labeled, NLC will end up with no label far (because to update the probability distributions of links, based be t
P(label(u) = cju) = 0 for all applicationsc). In such cases, current assignments of their neighboring links. In otherdso
we use the prior probability distribution observed in thi#iah RL stores probability estimates at iteratignand updates
set of labeled links to assign application probabilitiesute- estimates for all links at iteration+ 1. Since each link in the
i.e., P(label(u) = clu) = Pyrior(c| initial set of labeled links graph has an associated probability distribution over #tes
for all applicationsc. We then select the label with the highesapplicationsC' (instead of a hard label assignment), NLC will
probability. sum the probabilities of each application for each neigimigpr
NLC+RL is essentially a systematic method to repeat NLIhk instead of simply counting labels of each applicati®o.
multiple times in order to improve classification performan catalyze convergence, we perform simulated annealing [2].
when seed information is scarce. In particular, NLC+R[Iable V outlines the pseudo-code for NLC+RL. Like NLC,
augments NLC withinked-based collective classificatiddy we obtain a classification for an unlabeled link by selecting
using therelaxation labeling(RL) algorithm [3].Linked-based the application with the highest probability on that unlable
collective classification refers to the combined classdifice link: Vu € U : label(u) = argmaz.co(P(label(u) = c|u)).

TABLE V: Neighboring Link Classifier with Relaxation Labeling

| | Backbone Traces | Access Link Traces |

see that there is one large connected component that centain
| | PAIX | WIDE | ENTP | KEIO | the majority of links & 87%) in the graph. All connected
Application Traffic Mix components of the graph contain a diverse mix of links from

p2p 76055 893 3780 9 various applications. The size of the LCC depends on the
Web 62860 5877 88883 63868 durati f ob i We f d NLC+RLs ol ificati
DNS 39387 39537 E81E8 16498 uration of observation. We found N s classification
Chat 2794 734 1953 120 performance to be robust to changes in duration of observati
Mail 6087 2073 1307 2058 3) Obtaining Seed InformationTo start the classification
SNMP 94 9 10485 52 process, our method requires a small amount of seed informa-
FTP 152 46 864 2 tion (which is common in supervised learning approaches). F
SSH 18 2 509 7 our experiments, wemulatethe existence of aeed provider,
Rest 9215 543 1942 352 using a payload-based signature-matching method sindlar t
Unknown 47442 6th4f6 99954 8372 previous works [6], [4], [7]. It compares the payload of each
Trace Graph Information packet to a predefined set of signatures for applicatioarlay
Year 2004 2006 2007 2006 . . .
traffic such as P2P, DNS, Games, Chat, Web, Mail, etc. Traffic
#Nodes 171641 101264 57285 24994 hat d h th defined fsi is thbel
ks 547004 119553 | 266878 35378 that does not match the predefined set of signatures is thbele
% in LCC 87% 90% 99% 91% “unknown.” It is important to note that our approach is not
Duration | 30 secondsl 5 minutes| 1 hour | 5 minutes tied to any particular seed provider; and is robust to biases

and errors in seed labels. For details, see [1].

4) Experimental MethodologyFor all of our results, the
basic experimental setup is the same: we run 10 trials and
report the average performance. The details of our experime
.) tal methodology are as follows. For evaluation purposeg,onl
A. Experimental Design we need ground-truth on the flows in our trace data, which

1) Data Sets:We evaluate NLC+RL on four real-world we obtain using the payload-based signature-matchingodeth
traces from a diverse set of network environments, coldectdescribed in Section IV-A3. To test NLC+RL, we vary the
between 2004 and 2007. For internet backbone traces, we hpraportion of links that have seed labels frafid to 90% of the
traffic from a commercial US Tier-1 ISP link connecting Satotal number of links in the trace graph. Only these linksiret
Jose to Seattle (PAIX) and another from a transpacific lirtkeir labels. All remaining links have their labels strippend
between US and Japan (WIDE). Our access-link traces ame used to evaluate the classifiers’ performances. We tefer
collected at the border router of an enterprise network (ENTthe proportion of links that have seed labelsSeed Size, .s
and from inside Keio University in Japan (KEIO). For each seed size, we run 10 trials and report the average

Table VI lists the distribution of flow-types for each ofperformance. For each trial and seed size, we choose a class-
the four traces. We define a flow using the well-known Sstratified random sample containin§i of the total links in
tuple (srcl P, srcPort, dstl P, dst Port, protocol). the graph. These links retain their labels. All other latsels
Bidirectional flows are represented as undirected linkshan tremoved. We then evaluate on all unlabeled links for which
trace graph and are reported as single flows in Table VI. Ajfound truth is available. To be fair across classifiers, & u
our traces contain payload information, thereby enablmtpu identical labeled- and unlabeled-link splits for each sifée.
label the flows using signature-matching techniques desdri We evaluate classifier performance using Accuracy (ACC) and
in [4] and later enhanced in [5]. For each trace, we classifyl-score (the harmonic mean of Precision and Recall).
traffic into approximately 15 traffic categories. In Table Wie _
report detailed statistics for the following eight mainssias: B- EXperimental Results
DNS, Chat, FTP, Mail, P2P, SNMP, SSH, and Web. TheseWe conducted experiments that answer the following ques-
8 classes represent the majority of the known traffic as wiens. Due to space constraints, we have omitted many detail
show in Table VI. The remaining classes (reportedR&st including an in depth discussion; and refer the reader to [1]
in Table VI) include network games and other applications Question#1: Can NLC+RL perform well even with limited
that contribute less to the overall traffic. In our evaluatioze seed informationAnswer: Yes, even with only 5% of links
include all classes in the trace graph. labeled, NLC+RL achieves over 90% accuracy. See Figure 3.

2) Trace Graphs: For each data set, we create a trace Question #2: How is the per-class performance of
graph with nodes representing hosts (IP addresses) arsl liNkLC+RL? Answer: NLC+RL performs very well over a large
representing communications (flows) between hosts, asrshawnge of application classes. Even for challenging apiidina,
in Figure 1. Our trace graphs allow multiple links between twsuch as P2P, it can achieve over 95% F1-score with 20% initial
nodes (see Figure 2) given that each link represent a differseed size over all four traces.
flow (i.e., uses different port numbers or protocol). Question #3: How sensitive is NLC+RL to errors made by

The graph sizes are listed in Table VI. The size of théhe seed providerAnswer: Even with 50% erroneous seed
Largest Connected Component (LCC) in the graph is reportiitks, NLC+RL can still achieve 80% classification accuracy
as the percentage of flows that belong to it. From Table VI, wever the remaining links.

TABLE VI: Summary of our backbone and access-link traces.

IV. EXPERIMENTS ONTRAFFIC CLASSIFICATION

0.9 r

Accuracy
o
o]
[62]
‘

o
o]
T

0.7 L L L L

0.01 0.05 0.1 0.25
Seed Size

PAIX --®- WIDE —=- ENTP —e— KEIO ——

Fig. 3: Accuracy of NLC+RL over all 4 traces.

© o o
N o o e
——

Accuracy
o
(]
T

I
0
T

o
N
T

no one has viewed the traffic classification as a relational
learning problem. Graphs have been used to represent rketwor
traffic for other tasks besides traffic classification [134]]
[15], [16]. However, none of the previous works examined
link homophily, its presence in real-world trace graphsi an
its utilization for traffic classification.

VI. CONCLUSIONS

We observe link homophily in application-layer traffic of
real trace data, which provide us with statistical depenidsn
between flows that share common IP hosts. We utilize these
dependencies in a relational learning algorithm, NLC+RL, t
accurately classify applications of interest in networikiev
trace graphs. NLC+RL is the first method to formulate the
traffic classification problem as a relational learning peab
and has several attractive features: (a) resistance tatsign
padding and timing obfuscation techniques; (b) robusttess
errors and biases of the initial seed information; and (ghhi
accuracy £ 90%) on application classification in real traces.

ACKNOWLEDGEMENTS

This work was performed under the auspices of the U.S.
Dept. of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344 and supported by NSF
grants No. CT-0831530, No. NETS-083206, and a CISCO gift.

o
w

BLINC CoralReef NLC+RL SVM

PAIX & WIDE —=— KEIO ——

[1]
Fig. 4: Comparing NLC+RL with 5% seed size to CoralReef [g],
BLINC [4], and SVM [5] on the same traces. CoralReef and SVM
rely heavily on port numbers and flow-level data (which can bﬁZ]
obfuscated), while NLC+RL does not require such infornratio

(3]

Question #4: How sensitive is NLC+RL to biases in 4]
the selection of initial seed when: (a) we know nothing for
some hosts and everything about others (host-biased sgedirld]
and (b) we know all the flows for some applications, e.g.,
DNS, but have only a limited knowledge for others, e.g.[s]
P2P (application-biased seedingdhswer: NLC+RL's per-
formance is robust to both types of seeding biases. Y

Question #5: Can NLC+RL accurately classify traffic of
hosts with multiple applications®nswer: Yes. NLC+RL rep- (8]
resents associations at the flow-level and not at the hest-le
This allows different flows of a single host to have different
neighborhoods and be associated with different applicatio [10]

Question #6: How does NLC+RL perform compared top;y;
other methods?Answer: NLC+RL either outperforms or is
competitive & 4% difference) with existing approaches that!?!
rely heavily on port numbers or flow-level data. See Figure i3

V. RELATED WORK 14
Traffic classification is a well-studied problem with signifi
cant previous work. Based on the level of observation, traffil 5]
classification methods can be divided into four groups: (
packet-level [8]; (b) flow-level [9], [5]; (c) host-level J[4[10]; [16]
and (d) payload-level [6], [11], [12]. To our best knowledge

REFERENCES

B. Gallagher, M. lliofotou, T. Eliassi-Rad, and M. Fatsus, “Link
homophily in the application layer and its usage in traffizssification,”
Lawrence Livermore National Laboratory, Livermore, CAcfie Rep.
LLNL-TR-414362, June 2009, http://eliassi.org/papgost09.pdf.

S. Macskassy and F. Provost, “Classification in netwdritata: A toolkit
and a univariate case studwILJ, vol. 8, pp. 935-983, 2007.

A. Rosenfeld, R. Hummel, and S. Zucker, “Scene labeliggdiaxation
operations,” inlEEE Transactions on Systems, Man and Cybernetics
vol. 6, 1976, pp. 420-433.

T. Karagiannis, K. Papagiannaki, and M. Faloutsos, ‘BCt Multilevel
traffic classification in the dark,” iACM SIGCOMM 2005.

H.-C. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutspand
K. Lee, “Internet traffic classificatoin demystified: Mythsaveats, and
the best practices,” iM\CM CoNEXT 2008.

T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and NFaloutsos,
“Is P2P dying or just hiding?” iHEEE GLOBECOM 2004.

S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalableetwork
identification of P2P traffic using application signatuteis, WWW
2004.

CAIDA Org., “The CoralReef Project.”

] T. T. Nguyen and G. Armitage, “A survey of techniques foternet

traffic classification using machine learnindEEE Communications
Surveys & Tutorialsvol. 10, no. 4, pp. 56—76, 2008.

I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci, ‘tdmstrained
endpoint profiling (Googling the Internet),” IACM SIGCOMM 2008.
P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAStofmated
construction of application signatures,” ACM MineNet 2005.

J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Ikee
“Unexpected means of protocol inference,” ACM IMC, 2006.

G. Tan, M. Poletto, J. Guttag, and F. Kaashoek, “Rolesgifecation
of hosts within enterprise networks based on connectiotenpes” in
USENIX Annual Technical Conferenc2003.

M. lliofotou, P. Pappu, M. Faloutsos, M. Mitzenmach&, Singh,
and G. Varghese, “Network monitoring using traffic dispemsgraphs
(TDGs),” in ACM IMC, 2007.

M. Latapy and C. Magnien, “Complex network measurerseBstimat-
ing the relevance of observed properties,”IHEE INFOCOM 2008.
M. Meiss, F. Menczer, and A. Vespignani, “On the lack gpital
behavior in the global web traffic network,” MWW 2005.

