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Abstract—Monitoring network traffic and classifying applica-
tions are essential functions for network administrators.Current
traffic classification methods can be grouped in three categ@s:
(a) flow-based (e.g., packet sizing/timing features), (b)gyload-
based, and (c) host-based. Methods from all three categogehave
limitations, especially when it comes to detecting new apjga-
tions, and classifying traffic at the backbone. In this paper we
propose the use of Traffic Dispersion Graphs (TDGs) to remedy
these limitations. Given a set of flows, a TDG is a graph with an
edge between any two IP addresses that communicate; thus TBG
capture network-wide interactions. Using TDGs, we develomn
application classification framework dubbed Graption (Graph-
based classificion). Our framework provides a systematic way
to classify traffic by using information from the network-wide
behavior and flow-level characteristics of Internet appli@tions.
As a proof of concept, we instantiate our framework to detect
P2P traffic, and show that it can identify 90% of P2P flows
with 95% accuracy in backbone traces, which are particularly
challenging for other methods.

the limitations of previous methods in more detailsiv.

In this paper, we use the network-wide behavior of an
application to assist in classifying its traffic. To modelsth
behavior, we use graphs where each node is an IP address,
and each edge represents a type of interaction between two
nodes. We use the terifraffic Dispersion Graph or TDG
to refer to such a graph [16]. Intuitively, with TDGs we erabl
the detection of network-wide behavior (e.qg., highly carted
graphs) that is common among P2P applications and different
from other traffic (e.g., Web). While we recognize that some
previous efforts [5], [8] have used graphs to detect worm
activity, they have not explored the full capabilities of GB
for application classification. This paper is an extensibm o
workshop paper [15] and the differences will be clarified in
the related work sectiorglV).

We propose a classification framework, dubkiechption
(Graph-based classifitmn), as a systematic way to combine
network-wide behavior and flow-level characteristics of-ne

An important task when monitoring and managing largeork applications. Graption firgiroupsflows using flow-level
networks is classifying flows according to the applicatibatt features, in an unsupervised and agnostic way, i.e., withou
generates them. Such information can be utilized for nétwousing application-specific knowledge. It then uses TDGs to
planning and design, QoS and traffic shaping, and securitjassify each group of flows. As a proof of concept, we
In particular, detecting P2P traffic is a potentially im@mtt instantiate our framework and develop a P2P detection rdetho
problem for ISPs that want to manage such traffic, and farhich we call Graption-P2P. Compared to other methods
specific groups such as the entertainment industry in legl ae.g., BLINC [22]), Graption-P2P is easier to configure and
copyright disputes. Detecting P2P traffic also has pasiculrequires fewer parameters.
interest since it represents a large portion of the InternetThe highlights of our work can be summarized in the
traffic, with more than 40% of the overall volume in soméollowing points:
networks [17]. « Distinguishing between P2P and client-server TDGs.

Most current application classification methods can be nat- We use real-world backbone traces and derive graph
urally categorized according to their level of observation  theoretic metrics that can distinguish between the TDGs
payload-based signature-matching methods [26], [24],-flow  formed by client-server (e.g., Web) and P2P (e.g., eDon-
level statistical approaches [9], [28], or host-level meth  key) applications. Sectiorgll-B.
ods [22], [35]. Each existing approach has its own prose Practical considerations for TDGs.We show that even
and cons, and no single method clearly emerges as a win- a single backbone link contains enough information to
ner. Relevant problems that need to be considered include generate TDGs that can be used to classify traffic. In
identifying applications that are new, and thus without a addition, TDGs of the same application seem fairly
known profile; operating at backbone links [23], [22]; and  consistent across time. Sectidjit-C.

I. INTRODUCTION

detecting applications that intentionally alter their aeior. .
Flow-level and payload-based classification methods requi
per application training and will thus not detect P2P traffic
from emerging protocols. Behavioral-host-based appresch
such as BLINC [22] can detect traffic from new protocols [22],
but have weak performance when applied at the backbone [23]»
In addition, most tools including BLINC [22] require fine-
tuning and careful selection of parameters [23]. We discuss

High P2P classification accuracy.Our framework in-
stantiation (Graption-P2P) classifies 90% of P2P traffic
with 95% accuracy when applied at the backbone. Such
traces are particularly challenging for other methods.
Section:§lll-B2.

Comparison with a behavioral-host-based method.
Graption-P2P performs better than BLINC [22] in P2P
identification at the backbone. For example, Graption-



TABLE |
Set of backbone traces from the Cooperative Association for Internet
Data Analysis (CAIDA). Statistics for the TR-ABIL trace, are reported
only for the first five-minute interval since IPs were anonymized
differently at each five-minute sample.

Name | Date/Time | Duration | Flows

TR-PAY1 | 2004-04-2¥17:59 | 1 hour | 38,808,604
TR-PAY2 | 2004-04-2¥19:00 | 1 hour | 37,612,752
TR-ABIL | 2002-09/(N/A) | 1 month | 2,057,729

P2P identifies 95% of BitTorrent traffic while BLINC
identifies only 25%. Sectior§llI-C. AT, ) o
« ldentifying the unknown. Using Graption, we identified ©
a P2P overlay of the Slapper worm. The TDG of Slapper
was never used to train our classifier. This is a promising
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Definition. Throughout this paper, we assume that packetsqz %"055&’9";1?1%
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we define the corresponding TDG to be a directed graphe® = gio%“*{q‘igi?
G(V, E), where the set of nodeE corresponds to the set <‘$°’;?°§(}’ O;?ﬂ(;%i’;:;o:i(%ic%
of IP addresses i8, and there is a linKu, v) € E from u to Q"i‘i%gé, 2290481 soisle
v if there is a flowf € S between them. o e _ o °°
In this paper, we consider bidirectional flows. We define a (b) The HTTPS TDG (client-server application).

TCP flow to start on the first packet with ti&YN-flag set and Fig. 1.
the ACK-flag not set, so that the initiator and the recipient afpplication. Largest component is with bold edges - hence the graphs
the flow are defined for the purposes of direction. For UD§e best viewed on a computer screen or a colored print-out.
flows, direction is decided upon the first packet of the flow.

Visualization Examples. In Figure 1, we show TDG ex-

Two TDG visualization contrasting a P2P with a client-server

amples from two different applications. In order to motevatlink of a commercial US Tier-1 ISP at the Palo Alto Internet
the discussion in the rest of the paper, we show the contragchange (PAIX). To the best of our knowledge, these are the
between a P2P and a client-server TDG. From the figure WSt recent backbone traces with payload that are available
see that P2P traffic forms more connected and more defiégearchers by CAIDA [4]. The TR-ABIL trace is a publicly
graphs compared to client-server TDGs. §i-B, we show available data set collected from the Abilene (Internet3)-a
how we can translate the visual intuition of Figure 1 intélemic network connecting Indianapolis with Kansas Citye Th
quantitative measures that can be used to classify TDGs th&ilene trace consists of five randomly selected five-minute
correspond to different applications. samples taken every day for one month, and covers both day

Data Set. To study TDGs, we use three backbone trac&$d night hours as well as weekdays and weekends.

from a Tier-1 ISP and the Abilene (Internet2) network. These Extracting Ground Truth. We used a Payload-based Clas-
traces are summarized in Table I. All data are IP anonymizsifier (PC) to establish the ground truth of flows for the TR-
and contain traffic from both directions of the link. The TRPAY1 and TR-PAY2 traces. Both traces contain up to 16
PAY1 and TR-PAY2 traces were collected from an OC4&ytes of payload in each packet, thereby allowing the lageli

1The authors thank CAIDA for providing this set of traffic tesc Additional

of flows using the signature matching techniques described

information for these traces can be found in the DatCatrheteMeasurement in [23]' [22]'_Running the PC ove_r the TR-PAY1 and TR-PAY2
Data Catalog [7], indexed under the label “PAIX". traces we find 14% of the traffic to be P2P, 27% Web, 7%



DNS, and the rest to belong to other applications. A detailed g} V}; };ﬁ’f
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applications. We can use port numbers for the TR-ABIL trace
since it was collected in 2002 where most P2P applications
used their default port numbers [12], [20]. We only use thidg. 2. Graphical representation of the BitTorrent TDG with 3,000 IPs,
TR-ABIL trace to verify our TDG observations over a Secona:owmg the formation of long paths connecting P2P hosts. The largest
nnected component is highlighted with darker color edges.
location in the backbone and we do not use it in the final
evaluation of our classifier. By using the month-long TR-ABI
trace, we can study the consistency of TDGs over different
times of the day and over weekdays and weekends. We utilize two other metrics that capture the directioyalit
We observe TDGs over 5-minute intervals. This intervalf the edges in the graph and the distances between nodes.
length gives good classification results and stability ofGr'D The directionality is useful since we know that pure clients
metrics over time as we show later in this section. For ea@hly initiate traffic, pure servers should never initiateffic,
TDG we generate a diverse set of metrics. Our metrics capt@®d that some P2P nodes play both roles. To capture this
various aspects of TDGs including the degree distributiogiyantitatively, we definénO to be the percentage of nodes in
degree correlations, connected components, and distasice @€ graph that have both incoming and outgoing edges.
tribution. For additional details about these metrics weeme  The distance between two nodes is defined as the length of
the reader to [16], [27]. their shortest path in the graph. The diameter of a graph is
To select the right set of metrics we use various graph visdefined as the maximum distance between all pairs of nodes,
alizations and trial and error. Finding a less ad hoc approawshich is sensitive as a metric [27]. For a more robust metric,
is beyond the scope of this work. Two TDG visualizationve use theeffective diameter (EDiam), which we define as
examples are shown in Figure 1. We see that FastTrack (P2# 90-th percentile of all pairwise distances in the graph.
has a denser graph than HTTPS, or a higharage degree ~ We show the high graph diameter of the BitTorrent P2P
where the average node degreés given byk = 2|E|/|[V|.  TDGs in Figure 2. The graph represents the BitTorrent inter-
actions between 3,000 nodes from the TR-PAY1 trace. The
TABLE Il visualization is suggestive of a spider’s web with largehpat

Application breakdown for TR-PAY1 and TR-PAY2 traces. Values in between nodes at opposite edges. This intuition is pregcisel
parenthesis show the percentage of each P2P application over the

entire identified P2P traffic (All-P2P). captured by the large value of the effective graph diameter.
In general TDG visualizations are suggestive, but the eetri

Name % in Flows | % In Bytes | % in Pakis make the intuitions precise and allow classification.
cnutella 050 78) | O.1rtLo9) 1 O.8L(0.32) From our measurements, we empirically derive the follow-
eDonkey | 2.96(21.16) | 2.22(21.17)| 2.84(22.21) _ ents, pi y der
IZSas;Er%ck 70'7565((5359422) 8(7)47158613%; gg;ggg ing two rules for detecting P2P activitRule 1: £ > 2.8 and

oribada . . . : . . ; . - :

MP2P 0_41§2_933 0.01(0.14) | 0.07(053) InO > .1%, Rule 2 InO > 1% and EDiam > 11. With
Bitl':'orrent 0.60(4.26) | 4.59(43.81)| 4.37(34.24) these simple rules, we can correctly identdlf P2P TDGs
All-P2P 13.85 9.19 12.10 i i ier-

Web(80/443) 57 a0 41.99 3E 5] from both bg_ckbone locationfAbilene backbone and T|gr
SMTP 1.65 1.10 2431 1 ISP). Intuitively, P2P hosts need to be connected with a
GDNS 8.9? 8.2‘21r 12.58846 large set of peers in order to perform tasks such as answering
ames . . . ; P ; ; ;
Unknown 0.97 198 395 content queries and sharing files, YVhICh can explalln theehngh
No-Payload 28.06 0.46 6.04 average degree compared to client-server applications. An
Rest 20.66 44.42 36.27 additional characteristic of P2P applications is the dyaif




roles, with many hosts acting both as client and server. The sor 1
duality of roles is in turn captured by the high InO value. We 261 .
further speculate that the decentralized architectureoofes w2 mn=27 ]
P2P applications (such as BitTorrrent), can explain thérhig 5% 1
diameters in some P2P TDGs. v ]

Distinguishing collaborative applications from P2Bome a;“fiﬁi , ]
well-known applications other than P2P exhibit collabiveat < g $ $ == ]
behavior, such as DNS and SMTP. This is not surprising since ~ 4r == ]
in these applications servers communicate with each otiter a 0 Gnutela Fastiiack Sorbada WX eDonkey  MPZP

with other clients (highk), and servers act both as clients and

servers (hlanO)' Thisis exaCtIy what our metrics are set OuItiig. 3. The average degree for various P2P protocols over one month

to detect. It has been reported recently [23] that port nusmben trace TR-ABIL. Candle sticks show the maximum and minimum

are fairly accurate in identifying such legacy applicasipn recorded values together with the average (horizontal line) and + the
lth h thev fail to identify P2P d oth licationghwi standard deviation. For visualization purposes, for the MP2P application

a 0“9 ey lail 1o identiry and other application I we show only the minimum value which is very high (23.73).

dynamic use of port numbers. Therefore, one could use legacy

ports to pinpoint and isolate such collaborative applaadi

and then use graph metrics on the remaining traffic. In aafditi 2.5 — ‘ ‘ ‘

to port inspection, we can also examine the payload of a flow v EDONKEY —m—

in order to verify that it follows the expected applicatizyer 2f ONUTELLA o |

interactions. As a future work, our goal is to select metifies PNTP —a

can further help to separate between collaborative agjuitsa 15F % vt
<

o MP2P

(e.g., DNS) and P2P. We discuss similar topics agaigMn

We do not claim that our thresholds are universal, but
our measurements suggest that small adjustments to thes
simple parameters allow our methodology to work on différen
backbone links.

Dyariation Range

0 100 200 300 400 500 600 700 800 900
C. Practical Considerations for TDGs Interval Length (sec)

. . . . Fig. 4. The effect of changing the interval of observation for TDGs
1) Stability of metrics over timelf thresholds derived from ranging from 5 seconds up to 15 minutes over a large set of protocols.

TDGs changed significantly with time, then the classifier muge reduce variability we can choose to use longer intervals. After 300

be trained constantly and that would detract from its valug$eonds the reduction in variability is not significant.

Fortunately this does not appear to be the case. We show the

stability of TDGs in time and space using traces from différe  2) Selecting the interval of observation: The effect of the
points in time at two different backbone locations for Abige observation interval on the graph metrid&/e observe that by
and a commercial Tier 1 ISP (Section II-B). increasing the observation interval, graph metrics areemor

To test stability over time, we measured P2P TDGs frostable across successive TDGs of an application. To show
our longest trace (TR-ABIL ) that span over one month arttiis, we measure the variation of all our graph metrics over
include samples taken over day and night hours, and bdime as a function of the interval of observation. We vary
weekdays and weekends. To the best of our knowledge stibh interval from one second up to fifteen minutes. For each
month-long traces with payload are not available. Stabiliinterval length, we generate consecutive graph snapstitits w
was also observed in all the one-hour long traces (TR-PAYAgn-overlapping time intervals. For each interval, we auotr
TR-PAY2) but more detailed results are omitted due to spattee graph and calculate the average degree, InO, and e#ecti
limitations. diameter metrics.

Figure 3 summarizes the stability study for TR-ABIL show- We examine the variability of each metric over all intervals
ing the average degree metric. As we see, average degrae takeobservation. We use the commonly-usethge metric,
values in a small range over the entire month. Soribada tendsich is the difference between the maximum and minimum
to have very small graphs ranging from 30 to 1,000 nodes aoldserved values over all intervals for each graph metric. Fo
hence the higher variability. Stability was also obsenadlie each metric, we then normalize the range by the average value
diameter and InO metric but results are not shown here duectdculated over the time series. This normalization makes t
space limitations. For this study, we used TDGs represgntirange for different metrics somewhat comparable. For each
five-minutes of traffic. In§ll-C2 we show experiments with application, we report the average range over all threehgrap
TDGs where we vary the observation interval from 5 secondsetrics, and we plot this average range versus the duration o
to 15 minutes. Note that BitTorrent is not shown in Figure the observation interval in Figure 4. Our experiments stibwe
since it was not well-known in 2002 and resulted only in &ery high range values for intervals smaller than 60 seconds
handful of flows in the TR-ABIL trace. The range shows significant decrease for intervals largar th




a minute. Increasing the interval from 5 minutes to 10 and T&ature. We consider each byte as a single categoricalréeatu
does not significantly effect the range. This trend is shawn in the range{0, 1, ..., 255}.
Figure 4, where we report the average range over all metricsThe flow grouping step comprises two substeps: cluster
for a set of our applications. Even though we have varigbiliformation and cluster merging.
in our results, there was a clear trend in all our measuresnent a. Forming ClustersGiven the set of discriminating fea-
Similar trends we observed in all our traces (Table I). Fer thures, the next step is to cluster “similar” flows togethee W
rest of our study, we use five minute intervals. use the termcluster to describe the outcome of an initial
grouping using the selected features. Clusters may be mherge
in the next function of this step to forngroups, which
The Graption traffic classification framework consists @& thproduces the final output.
following three steps. Feature-based clustering is a well-defined statisticah dat
Step 1: Flow Isolation. The input is network traffic in the mining problem. For this task we used the popi{ameans
form of flows as defined ifjll. The goal of this first optional algorithm [33]. This algorithm has been commonly used for
step is to utilize external information to isolate any flowatt unsupervised clustering of network flows [9], [26], with yer
can already be classified. This knowledge could be based good results and low computational cost. K-means operates
payload signatures, port numbers, or IP address (e.guydclwith a single parameter that selects the number of final@tast
flows from a particular domain such g®ogl e. com. (k). As we show later in our evaluation, our classifier gives
Step 2: Flow Grouping. We use similarity at the flow very good results over a large rangefof
and packet level to group flows. The definition of similarity The similarity between two flows is measured by tham-
is flexible in our proposed methodology. We can use floming[33] distance calculated over the 16 categorical features
statistics (duration, packet sizes, etc.) or payload i tisi (i.e., the payload bytes). Even though more involved sirtyla
available. Eventually, the output of this step is a set @heasures such as edit-distance (also known as Levenshtein
groups with each group ideally containing flows from a singldistance) exist, Hamming distance has been used sucdgssful
application (e.g., Gnutella, NTP, etc.). However, at th&ps before [14] and performs very well in our application.
the exact application of each group is not known. b. Cluster mergingDuring clustering, it is likely that the
Step 3: Group Classifier. For each group of flows, we same application generates multiple clusters. For example
construct a TDG. Next, we quantify each TDG using variousany P2P protocols exhibit a variety of interaction patern
metrics. The classifier uses these metrics to identify tiseich as queries (UDP flows) and file transfers (TCP flows),
application for each group of flows. For the classificatioaach with significantly different flow and packet charactics
decision, we use a set of rules which in general depend [20]. This motivates mergings clusters that we expect to
the focus of the study. belong to the same application into groups. This grouping
Although this paper focuses on P2P detection, Graptignovides a more complete view of the application and aids in
can be used for general application classification by cimgpsiunderstanding the structure of the P2P protocol, as we show
metrics and parameters appropriately. We next describe hiowgllI-B.
we specialized Graption to detect P2P traffic (Graption)P2P Cluster merging cannot be based on the chosen set of flow-
) ] ) level features that were already used to create the clusters
A. Implementation Details of Graption-P2P originally. Instead, in the case of a P2P protocol, it is reltu
Step 1: This is an optional step in our methodologyto assume that the TDGs corresponding to each cluster of the
Experiments without this step are discussed later in thiiosec same protocol would share a large number of common nodes
Recent work [23] suggests that port-based classificatiotksvo (IP addresses).
very well for legacy applications, as legacy applicatioss u Based on these observations, we use an Agglomerative
their default ports and tunneling of P2P at such ports is ngtierarchical) Clustering Algorithm that recursively rges
very common. Thus, in this study, we isolated flows with podiusters with significant similarity in IP addresses. Weduse
80 for Web, port 53 for DNS, and port 25 for SMTP. Thesthe following metric to calculate similarity between clerst:
applications turn out to be about 65% of the total number &fim(Cy,C2) = (Number of flows having their source or
flows. In our traces, the proportion of P2P actually using orteestination IPs present in both clusters) / (The number ofsflo
of these ports is as low as 0.1%. of the smaller cluster). The cluster merging process starts
Step 2: To implement flow grouping we use the fact thahierarchically merging clusters with high similarity antss
application-level headers are likely to recur across flonwsnf when the similarity between all new cluster pairs is below a
the same application. Therefore, payload similarity candsl similarity threshold (ST). As we show later in our evaluation,
to group flows. In Graption-P2P, we only use the first sixteasur classifier gives very good results over a large range of
bytes from each flow. As we show, sixteen bytes are sufficiesimilarity thresholds.
to give very good classification results. This observatigieas Step 3: The outcome of the previous step is a set of groups
with findings in [26], [24]. Even though we use the payloadf flows, with each group consisting of flows that we hope
bytes, our grouping is agnostic to application semantiss, stem from a single application. In order to classify eachugro
each byte is considered as a single independent categongalgenerate a TDG on the group in the same way as described

IIl. THE GRAPTION FRAMEWORK
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Fig. 5. Evaluating K-means: With sufficiently large k (>120) K-means  Fig. 6. Graption-P2P achieves > 90% F-Measure over a large range of
can efficiently separate the flows of different application. similarity thresholds and number of clusters (k).

in §ll. Each group yields a TDG that can be summarizedence, it is reasonable to slightly overestimate thé\s we
using graph metrics. To identify P2P TDGs, we used the ruleiow next, withk in the range 120-240 Graption-P2P has high
extracted fron§ll-B. When a group is labeled as P2P then allassification performance.
the flows of that group are classified as P2P flows. 2) Identifying P2P traffic:Using Graption-P2P, we achieve
high P2P F-Measure over a range of valuestqiK-means)
and similarity thresholds (ST). We show this in Figure 6,
To evaluate Graption-P2P, we use traces TR-PAY1 and TRhere we vary the ST from 0.01 to 1 and use a sufficiently
PAY2, where we have the ground truth using the payload cldargek (see Figure 5). All experiments are averaged over each
sifier (§11). We compute the True Positives, False Positives, amlisjoint 5 minute interval of both traces. Intuitively, bging
False Negatives. The True Positives (TP) measures how manyery large ST, the clusters of an application are not grdupe
instances of a given class are correctly classified; theeFatsgether, which results in TDGs that are harder to classify
Positives (FP) measures how many instances of other classesP2P. On the other hand, with a very small ST, clusters
are confused with a given class; and the False Negatives (Fi¢Jlonging to different applications are merged togethadiley
measures the number of misclassified instances of a classpoorer classification performance. The results in Fighre
In our comparisons, we used the following standard metricshow that we achieve good classification performancé(%
Precision (P), defined as® = TP/(TP + FP); Recall (R), F-Measure), over a large range of similarity thresholds and
defined ask = TP/(TP + FN); and theF-Measure [33], number of clustersk).
defined asF' = 2P - R/(P + R), combining P and R. In Figure 7, we compare our approach with labeling each
1) Forming Clusters: The K-means algorithm generatkés cluster using the ground truth (i.e. without merging any
clusters and assigns each flow to a different cluster. We fidtisters and labeling each cluster using the dominant &euri
test the effectiveness of K-means to fopuore clusters. A pure tic). Intuitively, for a given clustering of flows, the grodn
cluster will ideally contain flows from a single applicatiofo truth shows the best that our cluster labeling mechanism can
label the clusters, we use tldeminant heuristic [2]. In this achieve. For merging, we use a ST of 0.5. From Figure 7,
heuristic, using the ground truth of flows we label each elustwe see that Graption-P2P deviates only slightly from ladagli
as belonging to the application with the majority of flows irtlusters using the ground truth. In the same plot, we also
the cluster. All the flows of a cluster are then classified twompare Graption-P2P without the cluster merging stefh-hig
belong to this dominant application. lighting the benefit of merging clusters of the same appbcat
Using the dominant heuristic we assign clusters to applicgether.
tions and calculate the precision (P) and recall (R) foredéht Using a ST of 0.5 and: = 160, Graption-P2P achieves
values ofk. The clustering results as we incredséor both above 90% Recall and above 95% Precision over all disjoint
traces are shown in Figure 5. We observe that with suffigien® minute intervals for both traces. To apply Graption-P2P
large k (> 120) we achieve very good results witR and to other backbone links, the same selection process can be
R above 90%. By increasing, on one hand we have morerepeated to adjust the values of ST andOur experiments
“pure” clusters but on the other we make the cluster mergispow that the classification performance can degrade with a
step harder. In the extreme case, each cluster will contairbad choice of parameters. However, as shown in Figures 5,
single flow giving 100%” and R, but making cluster merging 6, and 7, for reasonable choices fbrand ST, our method
challenging. We will return to this topic later ilI-E. provides very good results. Including methods to autontege t
The Graption-P2P classifier is not sensitive to the exastlection of parameters (e.g., using a parameter freeecingt
value fork, since we do not require that each application magpdgorithm) is part of our future directions. The Graption
to exactly one cluster. Instead, we only need enough chustilamework is flexible enough to incorporate state-of-the-a
so that flows from different applications do not share a elust clustering methods.

B. Evaluating Graption-P2P
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Fig. 7. Graption-P2P compared to cluster labeling based on ground Fig. 8. The percentage of P2P traffic detected by Graption-P2P and
truth. Results are also compared with and without cluster merging. BLINC. Precision for Graption-P2P is 95% and for BLINC is 89%.

C. Comparison with BLINC [22]

We used BLINC to classify traffic for both TR-PAY1 and ) ) )
TR-PAY2 traces. BLINC was optimized after several trial and Our goal here is to answer the following questidan
error efforts to achieve its best accuracy for classifyirpP Graption identify ports used by unknown P2P applications in
traffic over these traces. A detailed description of thecsigle OUr traces?To achieve this, we configure Graption as follows.
processes for the parameters for BLINC is provided in [23[0F Step 1, we isolate legacy flows using the same approach
As reported by Kim et al. [23], tuning the 28 parameterdS i Graption-P2P. In addltlon,_we_lsolate flows from ports
of BLINC is a time consuming processes. This is becaud2dt belong to known P2P applications (e.g., port 1214 for
small changes to the thresholds have a significant effect BastTrack). Atstep 2, we cluster flows using their port numbe
the classification results. This produces one cluster for each distinct port in the trace

The Recall and Precision for BLINC are 84% and 899%0°" merging clusters, we use the same similarity threshsld a
respectively compared to 90% and 95% of our method. THethe Graption-P2P configuration. Finally, f_or classi_iyieach
classification performance per P2P protocol for both BLINEOUP (step 3) we use the same rules as in Graption-P2P. We
and Graption-P2P are shown in Figure 8. Given that bo|!l refer to this configuration as Graption-P2P-Ports.
methods do not distinguish between particular P2P prosocol By manually inspecting the TDGs that Graption-P2P-Ports
(e.g., Gnutella vs BitTorrent), it only make sense to refiogt reports as P2P, we discovered interesting behaviors in the
portion of identified traffic (recall) for each protocol. Gtan- Abilene Trace (TR-ABIL). Our simple method was able to
P2P can identify more traffic for all P2P applications teste@gtect three ports (2002, 4156, 1978) that we initially ttuu
with the exception of MP2P. We can see from Figure 3 thiere false positives. On further research, we found thatethe
MP2P has a much higher average node degree than the ofREge ports were used by the Slappeorm. Slapper has been
P2P applications which can explain the high performance &Ported to use these ports in order to form a P2P botnet
BLINC over this protocol. Going back to Figure 8, we seéVverlay for launching DDoS attacks. Even though Graption-
that BLINC has significantly lower performance for som&2P-Ports was never explicitly trained to detect the Slappe
P2P applications. For example, Graption-P2P detects 95%%¥grlay, it used the TDG profile of known P2P applications
BitTorrent traffic, while BLINC detects only 25%! In additip (€.9., €Donkey, Gnutella, etc.) to identify it. This is arvant
Graption-P2P detects 91% of the flows from the three popuf@ge of using network-wide behavior to classify traffic.

P2P applicationgBitTorrent, Gnutella, and eDonkgywhile Graption-P2P-Ports also captured an unusual behaviosof IP
BLINC detects only 73%. executingt r acer out e to each other forming a near clique.

Our experiments suggest that BLINC and possible oth8kch highly connected group of hosts was not observed in any
behavioral-host-based approaches work well when apptiedoh the P2P applications present in our traces. We speculate
the edge, where a large fraction of host flows are obsen/é@se interactions are by host performing active network
and hence enough evidence is collected to profile each nodgasurements inside the Internet2 (Abilene) backboneerGiv
However, this is not always true for backbone monitorinélis unique connection pattern, we can always isolate such
points which can explain BLINC'’s lower performance. Thesenusual behavior and distinguish it from a potentially new
observations are also supported by findings in [23]. P2P application. Besides the active measurement traffic and

We acknowledge that BLINC provides a methodology foihe flows from the Slapper worm, Graption-P2P-Ports reglorte
detecting traffic from multiple classes of applicationsg(e. only 0.3% other flows as P2P. With no payload information,
HTTP, FTP, Chat, etc.) and not only for P2P. Our results onfye Were not to able to manually match these flows to a known
show that Graption-P2P does better in P2P detection. Sejectexploit or P2P application.

TDG features that can identify other applications is ineldid
in our future work. 2http://www.cert.org/advisories/CA-2002-27.html

D. Identifying the Unknown



E. Other Graption Configurations work bridges this gap by providing a method to automatically

other system configurations assuming that access to paigoad " BLINC [22], the authors characterize the connection

limited or isolation cannot be used. We proceed by desaibiRatterns (e.g., if it behaves like using P2P) of a single host
these configurations. the Transport Layer and use these patterns to label the flbws o

Graption-P2P-NI: Without isolation. This is the same €ach host. BLINC uses graph models called graphlets to model

configuration as the Graption-P2P, but without using isatat @ NOSt's connection patterns using port and IP cardinslitie
By increasingk in K-means above 300 we achieve goodnlike TDGs, graphlets do not represemttwork-widehost
results;> 92% precision and> 85% recall. A largerk was interaction. In some sense, TDGs represent a further ldvel o
to be expected, since by including all the Web, SMTP, ar@gregation, by aggregating across hosts as well. Thus it is
DNS flows the total number of signatures increased as wdlerhaps fair to say that while BLINC hints at the benefit
Our preliminary experiments showed that by increasing tI®é analyzing the node's interaction at the “social” lev, i
number of clusters, it makes the cluster merging step mdttimately follows a different path that focuses on the heta
difficult. This observation highlights the advantage ofngsi Of individual nodes. As we show, our approach performs bette
isolation. than BLINC in our backbone traces (sgii-C).
Graption-P2P-NP: Using only flow-level features. This ~ Similar to BLINC, other host-based methods [1], [19] target
configuration is the same as the Graption-P2P, but assumifi§ identification of P2P users inside a university campaes, i
that payload and port numbers cannot be used. We achief@vork edge). Unlike Graption, in [1], [19], [22] they dotno
> 90% precision and> 88% recall over a range ok and use network-widehost interaction. In [6], the authors use a
similarity thresholds. For each flow, we extracted more thdtPrt-based method to identify P2P users, using their teaipor
40 flow features ranging from packet size information (size @PPearance and connection patterns in a trace.
first 10 packets, max/min packet size, etc.), timing infaiora ~ The most recent host profiling method is by Trestian et
(flow duration, min and max inter-packet gap, etc.), TCP flagdl- [32]. They used readily available information from thetw
total volumes in bytes, number of packets, etc. In order 8 classify traffic using the Google search engine. They show
test the relevance of each feature we applied the Informati¢ery good results for classifying flows for legacy applioati
Gain Ranking Filter [33] over various time intervals. Foisth but their results are not promising for P2P detection bezaus
configuration, we used the most prominent features: packétthe dynamic nature of P2P IP hosts. Our method can thus
size information (i.e. min, max, and the size of the first fivg€ used to complement the work in [32].
packets) and protocol (UDP or TCP). A recent work [10] also Worm detection. Graphs have been used for detecting
supports our observation that packet sizes are good feaiureWorm activities within enterprise networks [8]. Their main
cluster/classify network flows. goal was to detect the tree-like communication structure of
More detailed results are not shown here due to space liorm propagation. This characteristic of worms was alsaluse
tations. The study of Graption over a variety of configunagio for post-mortem trace analysis (for the identification oé th
and backbone traces is included in our future directions. source of a worm outbreak, the so-called patient zero) using
backbone traces [34]. More recent studies use graph tasbsiq
IV. RELATED WORK to detect hit-list worms within an enterprise network, lhse
This paper extends our 6-page workshop version [15]. tm the observation that an attacker will alter the connected
addition to the work presented in the workshop version, wesmponents in the network [5].
here include: (a) A study on practical considerations foangils  Measurements on network-wide interactions. Statistical
TDGs (se€ll-C, Figures 3 and 4). (b) We provide additionaimethods are used in [35] for automating the profiling of
details regarding our data sets and our classification teesuletwork hosts and ports numbers. The connectivity behavior
(seesll-B, §llI-E, Figure 2, and Table II). (c) We provide and habits of users within enterprise networks is the fodus o
a more detailed comparison with BLINC (se#l-C and many papers, including [31]. In [30], the authors study P2P
Figure 8). (d) We include additional experiments showingyhooverlays using passive measurements, but target mainly the
Graption can be used to detect previously unknown traffie (sprofiling of P2P hosts. The most resent work on network-wide
§l11-D). interactions in by Jin et al [18]. In their work [18], they use
Traffic classification. As an alternative to port-based methgraph-partitioning methods to extract and study the eiatut
ods, some works used payload [26], [24]. Other approactess g$ smaller communities within a TDG. None of the above
Machine Learning (ML) algorithms to classify traffic usingpapers targets P2P detection.
flow features (e.g, packet sizes). For an exhaustive list and
comparison of ML algorithms we refer the reader to [28] and
[23]. All supervised methods require per application tiegn ~ Enhancing Isolation. To improve isolation we can enforce
and will thus not detect traffic from new applications. Oupayload inspection in addition to port-based filtering. For
work has more in common with unsupervised data minirexample, we can test all DNS flows at port 53 to see if they
methods which group similar flows together. All previouslso have a DNS payload signature or if another protocol
methods [2], [25], [9] require manual labeling of clustebar is tunneling its traffic under the DNS port. If payload is

V. DISCUSSION
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