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ABSTRACT
Monitoring network traffic and detecting emerging P2P ap-
plications is an increasingly challenging problem since new
applications obfuscate their traffic. Despite recent efforts,
the problem is not yet solved and network administrators are
still looking for effective and deployable tools. In this paper,
we address this problem using Traffic Dispersion Graphs
(TDGs), a novel way to analyze traffic. Given a set of flows,
a TDG is a graph with an edge between any two IP addresses
that communicate. Thus TDGs capture network-wide inter-
actions. We start by exploring the potential of TDGs for
traffic monitoring by focusing on graph metrics instead of
features of individual flows. We then use TDGs to develop
an application classification tool dubbed Graption (Graph-
based P2P detection), which we target specifically for de-
tecting P2P traffic. Graption begins by partitioning traffic
flows into clusters based on flow-level features and without
the need for application-specific knowledge. It then builds
TDGs for these clusters, and uses graph metrics to identify
clusters that correspond to P2P applications. Finally, we au-
tomatically extract a regular expression for a new P2P appli-
cation, allowing the use of existing IDS devices and routers
to block or rate-limit the detected traffic. We describe trace-
driven experiments that show more than 90% precision and
recall for P2P detection.

1. INTRODUCTION
Peer-to-peer traffic is here and is planning to stay: what

can we do to detect it?We are witnessing a fascinating arms-
race between network administrators and developers of ap-
plications which try to evade detection. Peer-to-Peer (P2P)
protocols have fundamentally affected the business practices
of multibillion dollar industries, such as the entertainment
and telephone companies. At the same time, worms and
viruses continue to be an expensive concern with an esti-
mated cost of $17.5 billion in 2005 [44].

These facts have led to a proliferation of companies that
help ISPs detect and potentially delay or block particular ap-

plications, especially P2P traffic. As expected, the develop-
ers of these new applications have responded by obfuscating
their traffic using non-default port numbers.

In this paper we focus on the problem of detecting and
classifying P2P applications. While our methods work well
for scanning worms and viruses as well, in this paper we
focus on the detection of P2P traffic since P2P detection is
both a challenging open problem that is not as well studied
as malware detection and important to network operators and
the industry.

Currently, there still does not exist a reliable method for
identifying P2P traffic, despite significant research effort [21,
22, 25] as we explain in Section 5. As a result, there is
ongoing debate about how much P2P traffic exists on the
network [21, 22]. The challenge is that P2P traffic actively
tries to avoid detection by constantly changing aspects of
its behavior, and it is sometimes difficult to distinguish P2P
traffic from worms [49]. In addition, a practical classifica-
tion approach should ideally operate with limited a priori
knowledge and assumptions, limited manual configuration,
and flexibility to adopt to mutating behaviors and emerging
P2P protocols.

In addition, identifying P2P traffic is a real concern for
content producers, network administrators, and ISP providers.
This concern is based on several operational requirements,
legal issues, and business practices. Beyond the unautho-
rized use of system resources, P2P systems have the poten-
tial to be used for malicious purposes. For example, P2P
networks can be used to launch DDoS attacks [13].

To provide context for our work, we can group most cur-
rent monitoring tools and application classification meth-
ods according to their level of observation as follows: (a)
packet level, such as signature-based worm detection, [32,
49] (b) flow level, such as statistical approaches, [27, 55],
and (c) host level, such as host-profiling approaches [24, 23].
Each type of approach has its pros and cons without a sin-
gle method emerging as a clear winner, as we describe in
Section 5.

By contrast, our work is based on the concept of network-
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wide interaction graphs which form the natural next step in
the progression of aggregation at the packet, flow, and host
levels. More precisely, we study the “social” interaction of
the network as a whole which leads to a directed graph; each
node is an IP address, and each edge represents an interac-
tion between two nodes. We use the termTraffic Dispersion
Graphor TDG to refer to such a graph. We argue that there
is a wealth of information embedded in a TDG, which the
other classification methods do not capture. For example,
the TDGs corresponding to P2P applications are connected
and have topologies with high average degree.

The main contributions of this paper are:
a. Using TDGs to construct measurement tools:We

highlight the power of TDGs for monitoring traffic and de-
tecting new applications. Earlier work [14, 54] used TDGs
in the context of security and focused on specific tree-like
graphs formed by propagating malware. By contrast, we
study TDGs in the context of application identification at
large, which produces a richer family of graphs, and opens
up new opportunities for visualizing and characterizing net-
work traffic.

b. Identifying P2P traffic: We develop a new method-
ology based on TDGs for the automatic detection of P2P
behavior. Our tool, Graption, first clusters flows, then builds
TDGs for each cluster, and finally classifies each TDG using
graph metrics. Several advantages of Graption are rooted in
the use of TDGs. It is aplug-and-playsystem with a small
number of intuitive parameters, and does not require user
specified signatures or other hints. Graption makes detection
harder to avoid because a misbehaving node can be detected
by its connections to the “wrong crowd”, even if the node
masquerades its behavior at other levels.

c. Differentiating P2P from worms: Past work on de-
tecting malware (e.g., [49]) has often found that P2P traffic
is a common false positive when detecting worms. This is
because the propagation structure of P2P traffic resembles
that of a worm. We show, however, that P2P and worm traf-
fic can be differentiated using TDGs and a few simple new
graph measures.

d. Using Graption on backbone traces: Ideally, our
method needs multiple points of observation to capture the
TDG(s) of a network. We show, however, that TDGs contain
sufficient information even when they are generated from a
single observation point in the backbone. Backbone traces
present several challenges to TDG methodologies: for in-
stance, reverse traffic is often missing. Despite this, we show
that Graption (which only requires a few parameters) oper-
ates with over 90% precision and recall on CAIDA back-
bone traces when measured against ground truth provided
by signature-based P2P detectors (that require humans to in-
put P2P signatures).

e. Automating P2P signature extraction: Besides de-
tecting a previously-unknownP2P application, Graption also
generates a payload signature for the P2P application. This
signature can then be used by existing IDSs to drop or rate

control the application. Past work in signature extraction
([49, 26]) was in the context of malware detection and used
techniques based on finding frequently occurring strings that
could occuranywherein a packet. By contrast, Graption
uses TDGs to decide when to extract a signature and can
generate effective signatures using only thefirst 16 bytesof
payload.

In our earlier work [19], we presented TDGs as: (a) a
complementary information source for network traffic char-
acterization/modeling and monitoring; and (b) showed that
TDGs for a large set of popular network applications have
regularity and structure that remain stable over time. In the
current technical report, we greatly expand our previous ef-
forts by: (a) using backbone traces with payload from CAIDA,
(b) targeting P2P traffic detection, (c) automatic signature
extraction for P2P applications, and (d) the development of
Graption framework for traffic classification.

The rest of the paper is organized as follows. Section 2
defines TDGs formally and provides some basic examples.
Section 3 starts by presenting visualizations of the TDGs
of various applications. The section also introduces various
TDG graph measures that can be used to differentiate appli-
cations. It finally focuses on the use of TDGs for P2P de-
tection. Section 4 uses the observations of the previous sec-
tions to construct a system for automatically identifying and
extracting a signature for new P2P applications from packet
traces. Section 5 surveys related work.

2. TRAFFIC DISPERSION GRAPHS
Throughout this paper, we assume that packets can be

grouped into flows using the standard five tuple<srcIP, sr-
cPort, dstIP, dstPort, protocol>. We therefore use the terms
“group of flows” and “group of packets” interchangeably.
Given a group of flowsS, we can define the corresponding
TDG to be a directed graphG(V, E), where the set of nodes
V correspond to the set of IP addresses inS, and there is a
link (u, v) ∈ E from u to v if and only if some flow inS has
a srcIP ofu and a dstIP ofv.

In this paper, we consider bidirectional flows, and hence
direct edges more carefully. We define a TCP flow to start
on the first packet with theSYN flag set (referred to as the
SYN-packet), so that the initiator and the recipient of the flow
are defined for the purposes of direction. In the case where
we only observe theSYN/ACK-packet between nodes, the
direction of the link is reversed and set to point fromdstIP
to srcIP (as directly derived from theSYN/ACK packet).
For UDP flows, direction is decided upon the first packet of
thebidirectionalflow. If in some settings it is unclear which
node initiates an interaction, then one could consider TDGs
with undirected edges.

Given a set of collected network traffic over a fixed time
intervalT , there may be a large universe of flows, not all of
which are relevant for a given application. Anedge filterpro-
vides selection criteria to choose which flows from the uni-
verse belong to a groupS defining a TDG. Any monitored
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Name Date/Time Duration Unique IPs Flows Bytes Packets Mbps Payload
TR-OC48 2003-04-24/00:00 1 h 2,533,804 15,603,865 95 G 202.5 M 213.2 No
TR-ABIL 2004-06-01/17:30 1 h 6,346,572 23,846,500 714 G 823 M 1,726.2 No
TR-PAY1 2004-04-21/17:59 1 h 10,139,115 38,808,604 435 G 741M 1,068.8 16 bytes
TR-PAY2 2004-04-21/19:00 1 h 9,539,211 37,612,752 374 G 647M 980 16 bytes

Table 1: Set of backbone traces from, CAIDA (TR-OC48), the Abilene Backbone (TR-ABIL), and PAIX (TR-PAY1, TR-PAY2).

network could yield several TDGs, each corresponding to a
different edge filter. Each edge filter allows the correspond-
ing TDG to focus on a particular interaction and filter out
other flows as noise. For example, we can place each UDP
flow fj in a groupSi, wherei denotes the destination port of
fj . Henceforth, we refer to TDGs based on the destination
port of a flow asport-based TDGs.

TDG edge filters can use either packet-level filters or flow-
level filters. Packet level edge filters only use informationin
the current packet such as the port number. Flow-level edge
filters require the monitor to maintain state about past pack-
ets to know when to add an edge in the TDG. An example is
the filter where an edge is added between two nodes only if
a flow with more than ten packets exists between them.

Finally, TDG edges can also be annotated to provide fur-
ther information. For example, a weight could be assigned
to each edge corresponding to the total number of flows or
bytes sent between the two nodes.

Port-based TDGs offer a simple way to extract the TDG
for a well-known application (e.g., DNS). However, port-
based TDGs do not work for applications that use ephemeral
port numbers. In order to study the TDG properties of P2P
applications we used flows verified to be P2P by a signature-
based payload classifier, as we describe in Section 3. By
using the packet payload, we address the limitation of using
port-based edge filters for the study of TDGs.

In the following section, we study TDGs corresponding
to a variety of network applications, emphasizing P2P pro-
tocols. By profiling P2P traffic, we can extract the right set
of features to use in Graption (Section 4) for their detection.

Name % in Flows % in Bytes % in Packets
Gnutella 0.95(6.78) 0.17(1.59) 0.81(6.32)
eDonkey 2.96(21.16) 2.22(21.17) 2.84(22.21)
FastTrack 0.55(3.92) 0.74(7.10) 0.97(7.61)
Soribada 7.76(55.44) 0.07(0.63) 0.97(7.63)
MP2P 0.41(2.93) 0.01(0.14) 0.07(0.53)

BitTorrent 0.60(4.26) 4.59(43.81) 4.37(34.24)
All P2P 13.85 9.19 12.10

P2P Suspects 1.59 6.74 6.63
Web(80/443) 27.45 41.99 35.51

SMTP 1.65 1.10 2.431
DNS 6.65 0.32 1.586

Games 0.71 0.54 2.84
Unknown 0.97 1.98 3.22

No Payload 28.06 0.46 6.04
Rest 19.07 37.68 29.64

Table 2: Application breakdown for TR-PAY1. Values in
parenthesis show the percentage of each P2P application
over the entire P2P identified traffic.

3. TDGS AS A TOOL
In this section, we show that TDGs can provide pow-

erful visualization, enable the introduction of new metrics
and techniques for network traffic analysis, and provide new
ways for identifying applications. We then specifically steer
the discussion towards TDGs and metrics that can help us
identify P2P traffic. Throughout this section (and in the rest
of this paper) we show the applicability of TDGs using a set
of backbone traces. We start by describing these traces.

3.1 Data Set
To study TDGs, we used a variety of backbone traces from

three geographically different locations captured over differ-
ent months, years, and times of day. Our traces are sum-
marized in Table 1. In more detail, TR-OC48 is collected
from an OC48 backbone link of a Tier-1 ISP [7]. TR-ABIL
is from an OC-198c link from the Abilene backbone. Both
traces are publicly available [7], IP anonymized, and do not
contain payload. Traces TR-PAY1 and TR-PAY2, are col-
lected from an OC48 link of a Tier-1 ISP at Palo Alto Inter-
net eXchange (PAIX). These traces contain up to 16 bytes
of payload from each packet thereby allowing the labeling
of flows using signature matching techniques similar to the
ones described in [21, 24, 47]. Our traces with payload in-
formation increase the confidence of our findings compared
to using only port-based TDGs.

For the sanitized traces (TR-OC48 , TR-ABIL), we used
port-based TDGs which work surprisingly well for legacy
applications [25] such as DNS, Web, SMTP, NTP, etc. More-
over, using our payload classifier we observed that many
P2P applications were still using their default ports during
the period of when the traces were collected. P2P applica-
tions with default port numbers included eDonkey (on ports
4661,4662, 4665), Soribada (on port 22321), Gnutella (on
port 6346), and MP2P (on port 41170). FastTrack (KaZaa)
was one of the first P2P protocols to allow the user to change
its port number, and thus the majority of its flows do not
use the default port of the protocol. This observation also
agrees with findings from [21, 47]. We used port-based
TDGs (when applicable) to verify our real algorithm, and
to support our claim that the behaviors of applications do
not vary greatly at different monitoring points.

We note that if one is restricted to a single observation
point, then backbones provide a good vantage point because
of the aggregation at such a point. We also show that our
results are not very sensitive to the choice of backbone point.

Ground Truth Payload Classifier (GTPC). We used a
payload classifier to establish the ground truth of flows in
our traces. GTPC is similar to the methods described in [21,
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24, 47] where the payload of each packet is compared to
a predefined set of signatures for P2P applications, DNS,
Games, Chat, Web, Email, etc. All traffic with no match to
a signature is labeled as unknown. GTPC further classifies
a subset of the unknown flows as “P2P Suspects”: these are
flows whose source or destination node was found to have at
least one P2P flow matching a payload signature.

Traffic Mix. The results from running GTPC over the
payload traces are summarized in Table 2. While GTPC may
miss some P2P traffic if the list of signatures is incomplete,
past work has shown that the list is fairly accurate.

The breakdown by P2P application gives statistics for the
top six well-known P2P applications, which corresponds to
95% of the P2P flows in our traces. These P2P applica-
tions are: Gnutella, FasTrack (also known by its well-known
client KaZaa), Soribada, eDonkey, MP2P (Blubster), and
BitTorrent. The remaining P2P protocols, including proto-
cols such as Ares, WinMX, Goboogy, SoulSeek, PeerEn-
able, OpenNAP, Freechal, and others, are either not used
currently or contribute a small fraction of the traffic. When
we report results for all P2P applications, all the protocols
above are considered, but we report specific results only for
the top six P2P protocols described above.

3.2 TDGs as a visualization tool
An advantage of TDGs is their ability to provide visual

insight into network-wide traffic. By contrast, previous vi-
sualization of traffic in monitoring tools has largely been
limited to measures of traffic volumes on a per flow basis.
The graphs in Figure 1 show visualizations of a sample set
of TDGs corresponding to various network protocols. The
TDGs from TR-PAY1 are verified using GTPC, and for the
other traces we used port-based TDGs.

We highlight the following observations from the figure.
(i) Network protocols have different graph structures, which
gives TDGs descriptive power in classifying applications.
(ii) P2P applications (as in Figure 1(c)(f) ) appear to have
distinctive structures, as compared to client-server activity
(Figure 1(b)) and worm scanning activity (Figure 1(d),(e)).
(iii) The TDG structure of a P2P application are consistent in
different settings, as in Figures 1(c)(f), which show the same
P2P application over two different backbone links. We also
observe a similarity in scanning activities from two different
exploits at two different links in Figure 1(d)(e). We claim
that port-based TDGs are an attractive solution for capturing
the behavior of worms and other exploits since these appli-
cations often target a specific application operating at a fixed
port number.
(iv) Visualization can pinpoint abnormalities. In Figure 1(a)
we can see the effect of the appearance of abnormal scanning
activity in SMB (Server Message Block/NetBIOS applica-
tion). The resulting graph shows many disconnected star-
like components similar to graphs from worm scanning ac-
tivity, while also showing islands of legitimate activity with
groups of connected nodes. This example demonstrates how

the TDG visual profile of a standard application can be used
to detect deviant behavior in the presence of anomaly. Sim-
ilarly, if at some point the TDG for traffic at TCP Port 80
appears significantly different, it could be a new benign or
malicious application tunneling its traffic under that port, or
a change in the behavior of the traditional application.
(v) The right set of metrics is very important to achieve good
discrimination between different behaviors. As previously
explained, Figure 1(a) shows suspicious activity on the TDG
corresponding to the SMB (NetBIOS) protocol. On the other
hand, Figure 1(b) visualizes the behavior of a typical client-
server application. Though the two TDGs look alike, we will
show later that the two graphs can be distinguished using
simple graph metrics, such as the directionality of edges.

Although the main goal in the paper is the design of au-
tomatic methods to identify P2P applications, we note that
good visualization methods can often be a viable alternative
to automated methods for network monitoring. Moreover,
visualizations often pinpoint key features (e.g., the connect-
edness of a TDG), which can then be translated into quanti-
tative measures (e.g., the size of the largest connected com-
ponent).

3.3 TDGs and graph metrics
Identifying the right metrics to compare graph structures

is a challenging question that arises in many disciplines. The
idea is to use several graph metrics, each capturing some
graph characteristics, until a set of metrics is found that dis-
tinguishes the target graphs.

We now describe several graph metrics we have found
useful. The list includes metrics, such as graph diameter and
connected components, not previously used in traffic analy-
sis studies. We impose the additional constraint in the final
choice of our metrics for Graption that the chosen metrics
should be intuitive, so that setting thresholds and interpret-
ing the results is easy for network administrators.

Node degrees. We make use of thedK-series intro-
duced in [34, 33] for modeling Internet topologies. Briefly,
the0K term is the average node degree, given by2|E|/|V |;
the 1K term is the degree distribution; the2K term is the
joint-degree distribution (or JDD) and captures the proba-
bility that an edge exists between nodes of degreed1, d2;
and so forth. We have found the JDD to be very useful in
highlighting differences between various applications. For
detecting P2P traffic, we found the (simpler and more in-
tuitive) average degree measure to be sufficiently powerful,
an observation supported by the P2P TDGs visualizations of
Figure 1.

Directionality. The direction of edges (as defined in Sec-
tion 2) provides significant information about the role of
the node in its interactions with other nodes. For example,
we know that pure clients only initiate traffic, pure servers
should never initiate traffic, and that some P2P nodes play
both roles. Thus we distinguish if a node is an initiator, a
recipient, or both. To capture this quantitatively, we define
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(f) Soribada TR-OC48
Figure 1: All TDGs visualizations are from graphs with 1, 000 nodes (|V | = 1000).

Proto. Avgdeg AvginDeg AvgoutDeg VInO(%) Vsink(%) BiDir(%) GWCC Dim. (Eff.)
1 Web 2.539 2.275 2.864 0.126 55.672 0.000 44.733 19(9)
2 FTP 1.687 1.823 1.144 35.552 16.721 22.998 30.357 3(2)
3 IRC 1.549 3.132 1.029 0.000 24.727 0.000 11.636 6(4)
4 POP3 1.550 2.543 1.114 0.073 30.404 0.000 8.367 14(10)
5 HTTPs 2.013 5.742 1.219 0.101 17.424 0.000 31.803 20(8)
6 SMB 1.842 1.126 5.041 0.070 81.733 0.000 24.731 14(10)
7 MSNP 2.887 4.501 2.124 0.000 32.065 0.000 93.094 11(6)
8 SpamAs. 3.015 21.778 1.620 0.000 6.923 0.000 98.846 8(6)
9 Stream 1.503 1.795 1.198 7.003 35.831 4.449 6.678 9(4)
10 SMTP 3.118 4.529 2.202 5.291 29.153 0.140 83.783 20(8)
11 DNS 3.719 2.353 8.106 5.364 76.297 6.450 44.554 16(10)
12 Game 7.420 9.349 4.992 16.938 23.769 5.032 96.480 14(7)
13 NTP 2.266 2.289 1.995 11.050 40.662 8.539 70.365 16(10)
14 BitTorrent 1.822 2.111 1.495 5.051 38.496 1.808 54.600 27(14)
15 Gnutella 3.872 4.145 3.259 7.022 40.086 1.708 92.232 20(8)
16 FastTrack 3.390 3.468 3.068 5.095 44.238 1.854 65.644 30(13)
17 MP2P 7.489 7.282 6.931 6.537 45.415 2.039 97.182 16(7)
18 eDonkey 3.704 4.550 2.621 13.207 28.170 3.243 93.953 23(8)
19 Soribada 24.440 54.659 13.285 15.337 7.215 1.730 99.831 10(5)
20 MyDoom 1.908 1.002 19.997 0.027 95.228 0.014 3.936 10(4)
21 Bobax 2.027 1.019 196.723 0.000 99.485 0.000 96.273 15(7)
22 Slammer 1.984 1.002 99.961 0.000 99.008 0.000 73.088 14(5)

Table 3: TDG metrics from TR-PAY1. Row 1-9: client server, 10-13: collaborative protocols, 14-19: P2P file sharing applications,
20-22: port-based TDGs of worm scanning activity (MyDoom TCP/3127, Bobax TCP/5000, Slammer UDP/1434).
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InO to be the percentage of nodes that have both incom-
ing and outgoing edges. Similarly, we can measure the per-
centage of nodes that are sinks (only incoming edges) and
sources (only outgoing edges). This process partitions the
nodesV in three disjoint setsVInO, Vsnk, andVsrc.

We define two new metrics: the average in-degree for
sinks (AvginDeg = 2|E|/|Vsnk|), and average out-degree
for sources (AvgoutDeg = 2|E|/|Vsrc|). In general by using
directionality we can enrich information about degree distri-
butions to capture correlations between nodes with different
roles. This illustrates the potential of TDGs to suggest new
metrics.

Connected Components.Unlike many other real-world
complex networks, TDGs can be disconnected. To quan-
tify this graph characteristic, we call the largest weakly con-
nected component of a graph the giant weakly connected
component (GWCC), and measure the size of the GWCC as
a percentage of the total number of nodes in the graph. Here,
we use connectivity in its weak sense, ignoring the direction
of the edges. While metrics based on connected components
can be captured by high-orders ofdK-series [33], we find
that treating them separately allows for an easier presenta-
tion.

Distance Metric. We find that the shortest distance (shortest-
path) between all pair of nodes also provides an important
distinguishing feature for BitTorrent. The diameter of a graph,
defined as the maximum distance between two nodes, is some-
times sensitive as a metric [33] since the removal of a single
link can potentially significantly change it. For a more ro-
bust metric, we use theeffective diameter, which we define
as the95-th percentile of all pairwise distances in the graph.
High effective diameters where observed in P2P applications
such as BitTorrent and FastTrack.

We applied our collection of graph metrics to a variety
of different TDGs, including TDGs based on port-based fil-
tering and TDGs directly derived from the ground truth of
flows using our GTPC. In Table 3, we summarize various
measurements for TDGs from TR-PAY1 that were verified
with our GTPC. Similar measurements where derived from
TR-PAY2 but are omitted for brevity. Graphs were generated
over 5 minute bins; the choice of the length of this interval
is elaborated next in this section.

3.4 TDGs distinguish between applications
The goal in considering a variety of TDGs metrics is to

enable application classification, including the detection of
P2P traffic. Here we examine which metrics can help us
separate applications, and aim to find a small number of intu-
itive and easy to compute metrics that can allow automation
of the detection process.

3.4.1 Using TDGs for Profiling P2P

What are the characteristics we expect to see from a sam-
pled network-wide view of a P2P overlay?

From Table 3, we can see that TDGs for many P2P ap-

Low InO High InO

Low Avg Deg

IRC, BitTorrent (P2P),
POP3, SMB, FTP, NTP,

MY-PC, SNMP, News,
HTTPS, HTTP, Streaming,

NetBIOS

High Avg Deg

eDonkey, SMTP,
Spam-Assassins, MP2P, FastTrack,

Chat (MSN) Soribada, DNS,
Gnutella , Half-Life

Table 4: Grouping various applications according to their average

degree and InO features. High average degree is > 2.8 and high

InO is > 1%.

plications have a relatively high average degree compared to
TDGs of other protocols such as Streaming, FTP, SSH, etc.
A natural explanation is that P2P applications require a high
number of connections to efficiently perform tasks such as
answering content queries and sharing files. However, even
though average degree is a good metric, by itself it is not
enough to clearly distinguish P2P activity. We can observe
this from Table 3 where applications such as Spam Assas-
sin (SpamAs.) also have high average degree. Later in the
section we will show that by including other features, such
as the effective diameter of the graph, we can better isolate
P2P activity. Similarity between P2P and SMTP, DNS, and
Games will be discussed later in more detail.

Moreover, all P2P applications have a relatively high per-
centage of hosts with dual-roles (high InO), acting both as
clients and servers, as compared to most other applications.
We note FTP also has a remarkably high InO of35%. This is
due to the nature of the protocol; for the FTP control chan-
nel, the client initiates a connection to the server, and for
the file transfer itself the server initiates the connectionto
the client. Hence, besides a high InO, FTP also has a high
fraction of bidirectional links (BiDir in Table 3). Moreover,
besides FTP, bidirectional links mostly exist only between
P2P TDGs and Streaming. The Real Time Stream Control
(RTSP) protocol TDG show signs of this behavior1. As we
can see, using only a single metric is not enough to perfectly
isolate P2P behavior, but simple combinations of graph met-
rics appear to have high descriptive power.

The graph metrics of Table 3 could also be useful for de-
tecting abnormal behavior. For example, if we see a large
increase of hosts using port 80 having a high InO, then this
might indicate a P2P application tunneling portions of its
traffic under port 80.

Threshold Selection. In Table 4, we divide a large set
of Internet applications into four different groups based on
their InO and Average degree. For this separation we used
our empirically derived threshold where an application is set
to have high InO if it is larger than1% and an application is
set to have high average degree if it is larger than2.8. These
parameters were also verified using port-based TDGs from
1http://www.ietf.org/rfc/rfc2326.txt
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Figure 2: Average Degree and InO scatter plot for vari-
ous TDGs. Notation: P2P-BEH includes DNS, SMTP,and
Games; P2P-FS: includes all P2P file sharing applications.

traces TR-OC48 and TR-ABIL, but more detailed results are
not shown here because of space limitations. This is exactly
where the power of TDGs resides, in that a small number of
intuitive parameters can be used to clearly separate different
behaviors and applications.

Figure 2 better highlights our selection of metrics and
thresholds. We show a scatter plot comparing the InO and
average degree for various TDGs with the threshold values
indicated using dotted lines. To make the plot easier to read,
we removed FTP and Soribada that had much larger InO and
average degree respectively.

In Figure 2, the majority of network applications, cover-
ing more than 70% of the traffic, are concentrated in areas
with either low average degree or low InO, or both. On the
other hand, P2P applications stand out from most other ap-
plications by their high average degree and InO. These fea-
tures are, however, also shared by DNS, SMTP, and some
on-line game applications [9] (e.g., Half-Life). Note thatnot
all on-line games directly exchange packets between play-
ers. The typical game protocol architecture is based on the
client-server paradigm, where all the clients directly com-
municate only with a server. However, since there might be
many active servers for the same game, hosts usually con-
tact more than one server when joining a game room. For
the cases of DNS and SMTP, hosts in both applications can
have dual roles with DNS servers querying each other for
name resolution and SMTP servers directly connecting with
each other for mail exchanges.

Since legacy applications will continue to use their de-
fault port numbers (namely port 53 for DNS and port 25 for
SMTP), we can use their ports as a simple a heuristic, also
used in prior works [22, 25], to separate these application
from P2P traffic. As for game protocols, many network ad-
ministrators tend to lump P2P file sharing and games into the
same set of unwanted applications due to their high traffic re-
quirements. If game applications must be distinguished, this

can be done using either well known ports (if there is one)
or flow level heuristics. In particular, even though both pro-
tocols make use of UDP [22], games have UDP flows with a
large number of packets exchanged, in contrast to P2P where
UDP is commonly used for messaging and not content shar-
ing. We verified this finding in our measurements. Even
though such flow-level heuristics can be used by Graption
(Section 4), we only employed simple port-based filtering of
legacy applications in order to use as few parameters in our
system as possible.

BitTorrent Protocol (BT).The only P2P protocol with low
average degree is BT. We attribute this behavior to the unique
architecture of BT compared to the other P2P protocols. The
main difference is that BT does not use its overlay mecha-
nism for issuing queries directly among peers or for explor-
ing the network, unlike the flooding mechanism that exists
for example in Gnutella.

Although BT has a low average degree unlike other P2P
protocols, a very distinctive characteristic is BT’s high effec-
tive diameter. More than 5% of all randomly selected pairs
of nodes in a BT TDG have shortest paths longer than 14
hops. This distinctive characteristic separates BT from simi-
lar applications which have effective diameters smaller than
5. Thus we set up the threshold for effective diameter at 11.
Note that other protocols, such as the Network Time Proto-
col (NTP) which is not a P2P file sharing protocol, have also
relatively high diameter. (This is not surprising as NTP in-
ternally uses P2P-like interactions). Since NTP always uses
the default port 123, we used this feature to discriminate it
from BT.

We now summarize some interesting observations from
our measurements. P2P protocols such as Gnutella, eDon-
key, and Soribada often have a few nodes with degrees above
500 (within a 5 minute window) which can perhaps be super-
nodes or eDonkey servers. The same behavior is unlikely in
FasTrack which adopts a more distributed architecture [47].
These observations show the power of aggregating across
hosts and indicates how we can potentially use TDGs to
group the detected P2P protocols into categories according
to their architecture. Also, in TDGs where most clients com-
municate with the same set of servers (e.g., MSN and Spam
Assassins from Table 3), we can still have high average de-
gree but we can always use directionality to discriminate this
behavior from P2P applications where we have nodes with
interchanged roles communicating with each other.

Separating P2P from Worms. From our trace-driven
simulations, we found TDGs to be very effective in high-
lighting IP-range scanning activities without using an ex-
plicit per-host degree threshold, but by rather capturing the
graph level view of this activity. In Figure 1 we visually
show scanning activity by two different exploits captured
from two different backbone locations. In the same plot we
also show the TDG view of a P2P application (Firgure 1(c)),
emphasizing the difference between the two.

Some real-time worm detection efforts observe a high rate
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of false positives from various P2P protocols such as BitTor-
rent [49]. Scanners over the internet have some distinctive
characteristics: hosts with very high degree compared to the
rest, and single packet flows, usually at the port of the ex-
ploited vulnerability. Similarly, peers in P2P overlays (e.g.,
Soribada) can potentially show common behavior. For ex-
ample, in our study we found that for Soribada, most of its
flows are single-packet, commonly unidirectional, and with
super-peers having very large degrees (two orders of mag-
nitude larger than the average host). Surprisingly, just by
simply visually comparing the TDG view of the two we can
easily distinguish between scanning and P2P activity (Fig-
ure 1).

To translate the visualization into a quantitative measure,
from Table 3 we can see that worm activity has lowAvginDeg

(< 1.1) and higherAvgoutDeg(> 10) within a 5 minute
window. We verified this finding in all our traces, and it also
agrees with observation in [55].

3.4.2 Sensitivity in Time and Space

With 5 minute intervals, we found stability in our sug-
gested TDG measures over disjoint windows in our traces, as
well as very good classification results (as we show in Sec-
tion 4). Experimenting with larger intervals revealed a very
interesting observation. Specifically, P2P TDGs grow more
dense over time, with a significant increase in their average
degree. To demonstrate this behavior, we show the behavior
of eDonkey in Figure 3, calculated over 3 different backbone
links, with window intervals ranging from 5 to 60 minutes.
To contrast this with non P2P TDGs, in the same plot we
show the behavior of the average degree of HTTP. Due to
its unique architecture, BitTorrent is the only protocol that
did not show this significant increase of average degree over
time, while other protocols such as Soribada had an average
degree of 24 with a 5 minute bin and an average degree of
61 with a 60 minute bin.

Similar observations hold for the InO metric, where for
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Figure 4: Methodology Overview for Graption.

example with eDonkey in TR-PAY1, the InO of a TDG de-
rived after 5 minutes is 13%, and grows to 20% in the TDG
over 60 minutes. This indicates that the longer we monitor
hosts, the larger a percentage we see acting as clients and
servers. On the other hand, the HTTP TDG at the same trace
had 0.04% InO with 5 minute bin and ended with 0.07%
after 60 minutes of observation. Therefore, the difference
between these two TDGs at the InO metric increased even
more.

Even though increasing the time interval of observation
increases the differences between P2P applications and other
applications under our metrics, we chose to use a 5 minute
bin in our experiments since it gave good classification re-
sults and stability, while keeping the computational cost lower
and responsiveness faster.

It is also very interesting to observe that, in our experi-
ence, the TDGs of various applications do not appear to vary
substantially across different observation points at the Inter-
net Backbone. Edonkey is a typical example from our set of
P2P applications.

Given that we have a collection of features for identifying
TDGs corresponding to P2P traffic, the next goal is to find a
way to group related flows together.

4. GRAPTION: GRAPH BASED P2P TRAF-
FIC DETECTION

Some important limitations of current application classi-
fication techniques include the need for extensive training,
the need to tune various system parameters, and the dif-
ficulty of characterizing emerging applications. Currently,
when a new application is discovered, it still requires man-
ual payload analysis in order to identify application layer
signatures that characterize the application. This procedure
is even more difficult with P2P applications due to the pro-
prietary nature of their protocols and the lack of sufficient
documentation. Our methodology, Graption, can automate
or otherwise simplify this process.
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4.1 Methodology Overview
At a high level, Graption groups flows based on packet

and flow features, builds TDGs for each group, and finally
classifies each group as P2P or non-P2P TDG using graph
metrics. Several advantages of Graption are rooted in the
use of TDGs. It is aplug-n-playsystem with a small number
of intuitive parameters, and does not require user specified
signatures or other hints.

In more detail, Graption consists of the following 5 steps,
as shown in Figure 4. Although this paper focuses on P2P
detection, Graption can be used for general application clas-
sification by choosing metrics and parameters appropriately.
Thus we start by describing the 5 steps as they would be
used for general application classification, following which
we specialize the description to detecting P2P traffic.

Step 1. Pre-filtering. The input is network traffic in the
form of flows as defined in Section 2. The goal of this first
optional step is to utilize external information to excludeany
flows that can already be classified. This knowledge could
be based on packet signatures, port numbers, or the IP ad-
dress. In the last step (Step 5), we extract signatures from
our P2P classified groups. Thus we can iterate on the set of
input flows, and inspect all the traffic that was filtered at this
stage.

Step 2. Flow Grouping. We use similarity at the flow
and packet level to group flows. The definition of similarity
is flexible in our proposed methodology. We can use flow
statistics (duration, packet sizes, etc.) or payload if this is
available. However, the output of this stage will be a set
of groups that ideally contain flows that belong to a single
application.

Step 3. Traffic Summarizer. For each group, we con-
struct a TDG as defined in Section 2. Next we quantify each
TDG using the metrics described in Section 3. Optionally,
additional flow level statistics can be extracted to help in the
next step (e.g., most common packet size, or dominant port
number). The output is a set of TDGs with their metrics and
features.

Step 4. Group Classifier. We use the TDG metrics to
identify the application for each group of flows. For the clas-
sification, we use a set of rules which in general depends on
the focus of the study. In this paper, we set Graption to clas-
sify TDGs as P2P or not-P2P.

Step 5. Application Profiler. In this optional step, the
system uses the classification from the previous step to cre-
ate profiles for each type of classified application. A profile
for an application could be flow statistics, packet informa-
tion, payload signatures or any other quantities that can be
used todirectly identify application flows in a packet trace.

We evaluate the efficacy of the Graption framework using
standard techniques.

Classification Metrics:As with any classification method,
evaluation starts by computing the True Positives, False Pos-
itives, and False Negatives. The True Positives (TP) measure
how many instances of a given class are correctly classi-

fied; the False Positives (FP) measure how many instances
of other classes are confused with a given class; finally, the
False Negatives (FN) measure the number of misclassified
instances of a class.

In our comparisons, we used the following standard met-
rics: Precision (P), defined asP = TP/(TP+FP ); Recall
(R), defined asR = TP/(TP + FN); and theF-Measure,
defined asF = 2P · R/(P + R), combining Precision and
Recall.

These 5 steps represent a general framework for applica-
tion detection that can be specialized based on the target
problem and the availability of information. We now de-
scribe the specialization to detecting P2P traffic assuming
the availability of a few bytes of initial payload in the packet
traces.

4.2 Applying Graption to P2P Detection
In this section, we describe how we specialized Graption

with the goal of separating P2P from non-P2P traffic.
Step 1: Pre-filtering. Recent work [25] suggests that

port-based classification works very well for legacy appli-
cations, as legacy applications use their default ports, and
tunneling of P2P at such ports is not very common. Thus,
we eliminate flows with ports 80 and 443 for Web, port 53
for DNS, and port 25 for SMTP. These applications turn out
to be about 65% of the total number of flows. From our
measurements, the portion of P2P actually using one of our
excluded ports is as low as 0.1%. We note that we can use
the signatures extracted at the last step to revisit Step 1 ina
second iteration. This can help in capturing any P2P flows
that hide under legacy ports, if this phenomenon becomes
prevalent in the future.

Step 2: Flow Grouping.This step consists of three func-
tions: (a) feature selection, (b) clustering, and (c) cluster
merging.

a. Feature Selection.For efficient flow grouping, iden-
tifying features is critical, and especially challenging when
applied to backbone traces, where flows do not always ap-
pear in both directions [17] given that Internet routing can
be asymmetric.

For each flow, we extracted 60 flow features ranging from
packet size information (size of first 10 packets, max/min
packet size, etc.), timing information (flow duration, min
and max inter-packet gap, etc.), TCP flags, total volumes
in bytes, number of packets, etc. We also included the first
16 payload bytes of each flow using a methodology simi-
lar to [18, 32] for their extraction. All attributes were con-
sidered as numerical values with exception of the payload
where each byte was considered as a categorical value from
the set{0, 1, ..., 255}.

We used two techniques for finding the most relevant fea-
tures: Information Gain Feature Selection and Correlation
Based Feature Selection [53]. Both algorithms identified the
first 16 bytes of the payload as the most important feature by
a substantial margin. Intuitively, this is because we expect
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the first 16 bytes to contain application protocol headers that
repeat. Other prominent features include the size of the first
6 packets, and the maximum and minimum packet sizes.

Thus, in the experiments below we use the first 16 bytes
as our feature for flow grouping. As we show, they are suffi-
cient to give very good classification results. Note that even
though we use payload, our grouping is agnostic to applica-
tion semantics, as each byte is considered as a single inde-
pendent categorical feature. In other words, we do not need
a priori information about application signatures. Graption
only relies on the fact that application headers are likely to
recur; this similarity of payload can be used to group flows
into clusters that belong to the same application.

b. Forming Clusters.Given the set of discriminating fea-
tures, the next step is to cluster “similar” flows. We use the
term cluster to describe the outcome of an initial grouping
using the selected features. Clusters may be merged in the
next function of this step intogroups, which produces the
final output.

Feature-based clustering is a well-defined statistical data-
mining problem. Graption uses the populark-meansalgo-
rithm [53]. This algorithm has been recently used for un-
supervised clustering of network flows [15, 29], with very
good results and low computational cost. The similarity
between two flows is measured by the Hamming distance
calculated over the 16 categorical features (i.e., the payload
bytes). Even though more involved similarity measures ex-
ist such as edit-distance or TF-IDF, Hamming distance has
been used successfully before [18] and performs very well
in our application.

The k-means algorithm generatesk clusters. However,
the parameterk needs to be tuned to produce an appropriate
number of clusters. Graption is not sensitive to the exact
value fork, since we do not require that each application
maps to exactly one cluster. Instead, we only need enough
clusters so that flows from different applications do not share
a cluster. Hence, it is reasonable to slightly overestimatethe
number of clusters.

For evaluating the quality of our generated clusters we
used labeled flow instances extracted by the GTPC (used
as an oracle). Since we have an a priory knowledge of the
class of each instance, we will be labeling each cluster with
its dominantapplication. For example, if in a cluster the
majority of the flows are Gnutella, then the entire cluster
will labeled as such and all the non Gnutella instances will
be counted as false positives. Similarly, any instance of
Gnutella that does not belong in one of its clusters is con-
sidered as false negative.

The effect of varying the number of clusters for k-means
is shown at Figure 5(a). To find a reasonable range fork,
we varyk from 20 to 240 over each 5 minute interval for
both traces with payload (TR-PAY1, TR-PAY2). Figure 5(b)
shows the recall and precision for six main P2P applications
at k = 160. Our results suggest that withk = 160 we
have very good results with above 90% total precision and
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Figure 5: Classification Precision and Recall for various k

in k-means (TR-PAY1, TR-PAY2). In (a) we see the effect of
increasing k from 20 to 240 for both traces. In (b) we show
the precision, recall, and F-measure per P2P protocol from
trace TR-PAY1 with k = 160. Similar results are derived from
TR-PAY2.

recall over both traces. Larger values ofk do not improve the
cluster quality significantly. We also do not want to create
too many clusters, as this would make further steps more
difficult. (In the extreme case, each flow would be its own
cluster!)

c. Cluster merging.Given the intuition that clusters cor-
respond to common or similar application level headers, it
is likely that the same application generates multiple clus-
ters. For example, many P2P protocols exhibit a variety of
interaction patterns, such as queries (often small UDP pack-
ets), control packets (small TCP or UDP packets), and file
transfers (often large TCP packets), each with significantly
different flow and packet characteristics [47, 21].

This motivates the further step of cluster merging, where
we merge clusters into groups that, hopefully, belong to the
same application. Merging clusters into groups provides a
more complete view of the application, and gives more ev-
idence to help understand the structure of the P2P protocol.
Further, it is intuitive that the TDG formed by the merged
clusters has more information than each TDG taken sepa-
rately. For example, measures such as the node degree are
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Figure 6: Effect of not using any cluster merging technique
compared to using merging based on (a) hosts similarity and
(b) edge similarity. The ground truth results are after labeling
each cluster according to the application with the majority of
flows in the cluster.

likely to be more accurate in the final group than in the indi-
vidual clusters.

However, cluster merging cannot be based on the chosen
set of flow-level features because these were already used to
create the clusters in the first place. Instead, in the case of
a P2P protocol, it is natural to assume that the TDGs corre-
sponding to each cluster that the protocol generates would
share a large number of nodes (i.e., IP addresses).

Based on these observations, we used an Agglomerative
Clustering Algorithm2 that merges clusters with significant
overlap in either nodes or edges. The similarity is defined as
the number of common nodes (or edges) between two clus-
ters divided by the number of nodes (edges) of the smaller
of the two clusters respectively. Two edges are said to be
common if they share a common end host. Intuitively, edge
similarity gives higher weight to high degree nodes, since if
two clusters have a common high degree node then this will
result in higher edge similarity.

The cluster merging process starts by hierarchically merg-
ing clusters with high similarity and stops when the similar-
ity between all new cluster pairs is below a threshold. We
experimented with various similarity threshold and observed
that any value within the range 40 to 60% resulted in merg-
ing the majority of clusters belonging to the same P2P ap-
plications, without merging clusters that belong in different
applications, using ground truth as a reference. For the rest
of our experiments we fixed a similarity threshold of 50%.
We found the best results using edge-based merging as we
show below.

Step 3: Traffic Summarizer. The outcome of the previ-
ous step is a set of groups of flows, with each group con-
sisting (hopefully) of flows of a single application. In order
to classify each group, we generate a TDG on the group in
the same way as described in Section 2. Each group yields a

2Agglomerative clustering algorithms are also referred to as Hier-
archical Clustering algorithms.

TDG that can be summarized using graph metrics. We find
that using the the InO, the average degree, and the effec-
tive diameter provides sufficient information to classify the
graph successfully as P2P with high precision and recall.

Step 4: Group Classifier Based on our previously ex-
tracted thresholds (Section 3), Graption classifies a TDG as
P2P, with two rules. A TDG is classified as P2P, if either:

Rule 1:the average degree is greater than 2.8, and InO is
larger than 1%;Or

Rule 2:InO is larger than 1% and the effective diameter is
greater than 11.

Rule 1 covers most of P2P protocols except BitTorrent,
which is covered by Rule 2.

Our results show that using these simple metrics we can
classify P2P flows with 91% percision and 89% recall for
TR-PAY1 and 90% recall and 95% accuracy for TR-PAY2.

To evaluate the sensitivity to our parameters, we show in
Figure 6 the F-Measure over different values ofk for the
k-means algorithm using Rule 1 and Rule 2. The plot com-
pares using no cluster merging (△) against merging based
on node similarity (�) or edge similarity (◦) with a similar-
ity threshold of 50%.

We also show the results derived by labeling each clus-
ter using the ground truth (2) without any cluster merging
and by labeling each cluster based on the dominant applica-
tion it contained (as given by the GTPC). All values are av-
eraged over all the disjoint 5 minute intervals of TR-PAY1,
TR-PAY2. As we can see from Figure 6, by using the thresh-
olds from Section 3 and edge similarity to merge clusters, we
can achieve both high precision (>90%) and recall (>90%)
over a range of values ofk. Thus cluster merging appears
crucial to providing good classification.

Step 5: Signature Extraction. In this final step, we take
the classification from the previous step as a given, and use it
to create profiles for each group labeled as P2P. Each profile
will contain a set of payload signatures in the general form of
a regular expression. The goal of the extraction process is to
generate a signature that will minimize false negatives (high
recall), while at the same time minimizing false positives
(high precision).

This problem was previously addressed in the context of
automatically extracting signatures for network worms [49,
26]. Most current pattern based generating systems are based
on capturing repeated substrings across all payload instances
of a worm. However, in the case of P2P application, a single
application can have a variety of different protocol level op-
erations that result in different payload signatures. In addi-
tion, the labeled clusters might contain false positives from
other applications and therefore there might not be a sin-
gle signature to describe the entire set. This is similar to
the problem of detecting signatures for polymorphic worms
which was addressed by the Polygraph [42] system. We
modified the mechanisms of Polygraph to extract P2P sig-
natures.

Polygraph operates on two sets of flows: a set of innocu-
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Application Precision Recall Signatures Extracted by Graption

KaZaa 95.1% 78.1%
$\xc0.*\x28, $?xml version=”1, $\x00\x00\x00.*KaZaA,
$\x00\x00\x00\xA9/\x00-, $GET /.hash=, $\xC1.*\x18

Gnutella 98.6% 97.3%
$GND, $GNUTELLA.*\x00, $GET \x2Furi-res\x2FN2R,
$0\x82.*\x01\x01, $\x02\x01\x01\x04\x08cMm4-b4

eDonkey 97.2% 92.0%
$\xe3\x0f, $\xe3\x0e, $\xe3.*\x00\x00\x00\x01\x10,
$\xe3.*\x14, $\xe3!

Soribada 98.1% 99.9% $Q:.*\x2B, $\x10\x0b, $\x10\x0c, $\x10\x16

MP2P
$\x00\x00\x00.*\x89\x84, $\x00\x00\x00.*\x86y,

89.7% 78.7% $\x00\x00\x00\x01.*\x18, $\x00\x00.*\x18\xf4,
$\x00\x00\x00.*\x81\xad

BitTorrent 99.9% 96.6% $\x74BitTorrent\x00prot
Total 96% 90.5%

Table 5: Signature matching results for both traces TR-PAY1 and TR-PAY2. Results are shown for each of the top six P2P
applications and the Total P2P precision/recall over both traces. The ”\x” notation indicates hexadecimal character. Each
signature starts with the character $. Due to space limitations only a subset of the produces signatures are shown for some of
the protocols.

ous flows and a set of flows for which a signature is to be
extracted. For the so-called innocuous set, we chose to use
legitimate flows from HTTP, DNS, and SMTP that are used
as a benchmark to keep the false positive rate low. For the
second set, we used the flows in any group labeled as P2P
from Step 4. We will refer to this second set as the training
set of flows. The algorithms in Polygraph use tokens of byte
sequence found to be common in many flows of the training
pool. The token extraction is based on the longest common
substring and string alignment problems as described in [42].

Graption generates signatures in the form of regular ex-
pressions suitable for existing IDSes. To do so, we adopted
the token-subsequencealgorithm in [42]. The algorithm gen-
erates ordered token-subsequences that match the majority
of flows in the training set while keeping the false positive
rate low when applied to the innocuous set. The final out-
put from polygraph is a set of signatures matching the flows
from the input training set.

The differences of our work from that of Polygraph are as
follows. First, Polygraph aims to extract signatures for poly-
morphic worms while we focus on P2P detection. Second,
Polygraph assumes that the innocuous set and the training
set are provided to the system by an oracle. In our case, this
is done automatically by Step 4.

Experimental Setup:For training the algorithms we use
a set of innocuous flows which comprise of a large set of
300,000 HTTP, 100,000 SMTP, and 200,000 DNS flows. We
assert that it will always be possible to extract such train-
ing data since these applications are well documented, and
innocuous flows can be extracted by logging the legitimate
traffic to and from well known Web, DNS, and SMTP servers.

In our experiments, we used port numbers of HTTP, SMTP,
and DNS to select our set of innocuous flows from the first
5 minute of the TR-PAY1 trace. For the training set we
used signatures of a single cluster at a time. The size of
these clusters ranged from a few thousands samples to tens
of thousands of samples. Depending on the desired aggres-

siveness in higher recall or higher precision, Polygraph can
be set to extract signatures that match at leastx% of flows
in the training set while keeping the FP from the innocuous
set lower thany%. For our experiments we used Polygraph
with x = 1% andy = 0.05%.

For evaluating the extracted signatures, we first used Poly-
graph on the first 5 minute interval of the trace. Next, we
evaluated the extracted Regular Expression over the entire
TR-PAY1 and TR-PAY2 traces. The set of extracted signa-
tures for the six most popular P2P protocols matched over
the traces are summarized in Table 5. Using these traces,
our signatures were tested on more than 30 million flows by
only inspecting the first 16-bytes of each flow. The overall
P2P results on traces TR-PAY1 and TR-PAY2 exhibit 96%
accuracy and 90% recall. The number of extracted signa-
tures ranges from one in BitTorrent, to 30 for MP2P. The
large number of signatures is to be expected since some P2P
applications exhibit a high diversity of application levelin-
teraction. This diversity, especially at the UDP level (used
extensively by MP2P), can result in a large number of dis-
tinct signatures.

We found the 78% recall for some applications (Fastrack
and MP2P) to be due to flows corresponding to few rarely
used signatures that did not form a large enough cluster on
their own, and hence did not result in groups that were de-
tected as P2P in Step 4. In addition, some signatures could
not be derived while keeping the false positives at a reason-
able rate.

In one of our applications, namely MP2P, the signature
extraction technique could not extract a regular expression
that could match an MP2P signature without creating a large
number of false positives from DNS3. To improve recall
we modified our signature extraction algorithm to also use
the exact position of the signatures in the payload. We used
the following heuristic. In the case where 95% of the flows

3From signature\x00\x00\x00.*\x00\x00\x00\x00
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of the P2P application has the signature at a fixed location
and if this signature is in a different location from colliding
samples in the training set, then the regular expression is
modified to match the signatures at fixed locations. Using
this simple heuristic we achieved 88% recall for MP2P.

Other Experience:Going back and examining all the False
Positive flows for protocols such as eDonkey and KaZaa, we
observed that close to 50% of the FP flows are flows that
have at least one of its hosts identified (from our ground truth
payload classifier) as having an eDonkey flow and KaZaa
flow respectively. This means that our signatures managed
to capture flows that potentially belong to these P2P proto-
cols, but we were unable to capture them with our GTPC.

5. RELATED WORK
Traffic classification and signature extraction are well-studied

problems with significant previous work. Moreover, graphs
have naturally been frequently been used as a model in vari-
ous papers studying network traffic. We describe this previ-
ous work, and suggest how our work differs from it.

Traffic Classification. We group classification methods
according to their level of observation: (a) packet-level,us-
ing well-known port numbers [8], (b) flow-level, using su-
pervised [41, 57, 17, 25, 4] and unsupervised [3, 36, 29, 15,
16], Machine Learning (ML) techniques, (c) host-level [24,
23, 55], and (d) payload-based [21, 40, 47, 18, 32]. For an
exhaustive list and comparison of ML methods we refer the
reader to [43].

Flow-Level. These methods use flow features to train a
ML classifier using previously labeled instances for each
class. In the unsupervised case, clustering algorithms are
used in order to group flows with similar characteristics to-
gether. All methods [3, 36, 29, 15, 16] require manual la-
beling of clusters. Our work bridges this gap by providing
a method to automatically label clusters of flows based on
their network-wide behavior.

Host-Based.These methods associate a host with its flows.
The work that is most closely related to ours is BLINC [24],
which operates by characterizing the connection patterns (e.g.,
if it behaves like a P2P application) of a single host at the
Transport Layer, and use these patterns to label flows. BLINC
uses graph models called graphlets to model a host’s connec-
tion patterns using port and IP cardinalities. Unlike TDGs,
graphlets do not representnetwork-widehost interaction. In
some sense, TDGs represent a further level of aggregation,
by aggregating across hosts as well. Thus it is perhaps fair
to say that while BLINC hints at the benefit of analyzing the
node’s interaction at the “social” level, it ultimately follows
a different path that focuses on the behavior of individual
nodes.

Other host-based approaches include [22, 23]. Recent pa-
pers [2, 20], exploit additional information such as the high
number of failed connections in P2P applications compare
to Web traffic. These papers [2, 20] differ significantly from
our work in that they do not use network wide interaction

and they do not extract payload signatures.
Payload-based.Payload-based techniques were introduced

in [21, 40, 47] to detect P2P applications. Using available
documentation and manual reverse engineering, these ap-
proaches extract signatures for various P2P applications.These
early methods also support the observation that the first few
bytes (packets) are sufficient to classify flows. More recent
efforts [18, 32] use the first 64 bytes of each flow’s payload
as a feature for traffic classification. Their findings also con-
firm that the first few payload bytes are sufficient. In [18],
payload data are used to train classifiers, but the approach
did not use TDGs and did extract regular expression. Ma
et al. [32] used payload similarity to group similar flows,
thereby simplifying the process of flow labeling by a net-
work administrator. Both papers [18, 32] focus on the detec-
tion of conventional applications and not P2P applications.
With Graption, we automate the process of labeling flows us-
ing TDGs, and automate the extraction of regular expression
signatures using statistical methods from [42].

Worm Detection. Graphs have been used for detecting
worm activities within enterprise networks [50, 14]. A key
contribution of these works is the detection of the tree-like
communication structure of worm propagation. This charac-
teristic of worms was also used for post-mortem trace anal-
ysis (for the identification of the source of a worm outbreak,
the so-called patient zero) using backbone traces [54]. These
papers did not introduce the variety of graph metrics and
techniques we use here, instead focusing on worm propa-
gation characteristics such as high depth in the tree and an
increased number of hosts found at each level of the tree.
More recent studies use graph techniques to detect hit-list
worms within an enterprise network, based on the observa-
tion that an attacker will alter the connected components in
the network [10].

In the context of network security, anomalies were de-
tected using correlation among features of a set of flows. Sta-
tistical methods were used in [55] for automating the profil-
ing of network hosts and ports numbers, but they did not use
network-wide interaction graphs as we do here. Statistical
techniques are also used for anomaly detection [27] and for
detecting scanning activity by monitoring the feature distri-
bution of flows [46]. More efficient methods using sketches
are introduced in [30], targeting on-line detection. Non of
the above papers focused on P2P detection.

Communities of Interest and Host Similarity. The con-
nectivity behavior and habits of users within enterprise net-
works is the focus of many papers, including [1, 51, 35, 52].
In [51], graphs are used as a means of modeling connec-
tions and grouping similar hosts within corporate networks.
Again, these papers differ from ours in terms of how graphs
are used. We use graphs to model network-wide behavior of
Internet protocols and applications.

Trust propagation networks and other social network are
often expressed as graphs (e.g.,[56], [39]), but the problems
differ substantially from ours.
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Behavioral-based Passive Measurements.Passive mon-
itoring of P2P protocols is studied by Set et al. [48], target-
ing mainly the profiling of P2P hosts, including the mea-
surement of bandwidth usage and persistence in the overlay.
The goal of the measurement is to support traffic engineer-
ing and not for P2P detection. Topological aspects of the
overlay were highlighted as a way to improve the overlay’s
sensitivity to failures of highly connected super peers. A
similar study for large DNS traces [12] uses graphs in the
context of classifying DNS servers according to their role in
the DNS-hierarchy and for generating a space-efficient DNS
traffic summary. Neither work targets the classification of
applications.

A recent study by Latapy et al. [28], measured the evo-
lution of TDG-like graphs between all the hosts exchang-
ing a single packet of any type. Their goal was to show if
such huge graphs evolve over time at point where their basic
graph properties remain stable. The high aggregation of this
graph is very different from our separate view of the traffic
generated by different applications. Moreover, in contrast to
our work, they did not target application classification.

For the study of World Wide Web, Meiss et al. [37] used
sampled Web flows to extract statistics for the behavior of
clients and servers regarding their cardinalities and the level
of traffic exchanged between them. Their work is extended
in [38] comparing their methods with P2P applications and
providing a way to group ports based on user similarity. This
allows the grouping of all the dominant ports of a single ap-
plication together.

Preliminary work [11] attempts to detect P2P applications
using port-based methods based on the order of temporal ap-
pearance of hosts in the trace and the fact that P2P hosts use
the same port for incoming and outgoing connections. The
work has not had any recent follow-up that we know of.

Signature Extraction. Automating the extraction of pay-
load signatures has been studied for worm detection [49, 26]
and polymorphic worms [42, 31]. We are the first to utilize
such techniques for automating signature extraction for P2P
applications. In addition, Polygraph originally utilizedman-
ual insertion of worm flows (perhaps from a honey-pot, or
a scanning detection process). With Graption , we automate
the process of generating examples via TDGs and use Poly-
graph at the back end of the system. In contrast to all other
techniques, we target only the first bytes of the payload.

Recently Park et al. [45] proposed heuristics for gener-
ating application signatures from a set of flows that belong
to a particular application (e.g, MSN). Such methods can be
used in future versions of Graption in case more complicated
signature are needed. Other methods [5, 6] use application
binaries and are thus different from our approach that oper-
ates using packets seen at the network core.

6. CONCLUSIONS
The underlying theme of our work is a shift away from

monitoring packets, flows, or hosts, to monitoring a group

of nodes. We classify applications based on the behavior of
a community of nodes modeled using what we call Traffic
Dispersion Graphs. Simple graph measures allow TDGs of
P2P traffic to be distinguished from other kinds of traffic.

However, TDGs are not sufficient by themselves. Build-
ing a TDG requires a key that isolates flows of one appli-
cation from another. This is easy if applications use a fixed
port but is infeasible when applications use many ephemeral
ports, as new P2P applications do. Other features are needed
to group flows before constructing TDGs for each group.
Bacause applications use a few common headers, we found
that the first 16 payload bytes was a useful feature. The
grouping uses similarity measures without advance knowl-
edge of signatures. However, each application can fragment
into several clusters, and each cluster by itself has insuffi-
cient evidence of application behavior. To remedy this, we
merged clusters based on node similarity.

TDGs based on the merged clusters identified P2P ap-
plications with high accuracy. A useful side-effect of the
methodology is signature extraction. Our offline analysis (in
minutes) can yield signatures which can be used by a router
for P2P accounting and rate-limiting in real-time. While
TDGs are only one component of our system, we believe
that TDGs introduce a space of new metrics and techniques
for visualizing, summarizing, and analyzing network traffic.

We also developed Graption, an agnostic P2P identifica-
tion tool, which exhibits good performance in our data traces,
and has several key properties. First, the cluster merging step
allows detection through association. Nodes and flows can
be classified by their connections to an identified group in
the TDG even if the information about that node or flow is
insufficient for detection by itself. Second, because Grap-
tion makes use of information at multiple levels (packet,
flow, group) detection avoidance becomes harder: applica-
tions must obfuscate their behavior at the packet, flow, host,
and network-wide levels.

Third, Graption performs agnostic traffic classification with
a small number of intuitive parameters. Graption can detect
P2P protocols without a priori knowledge, and also gener-
ates effective packet signatures using just the first 16 first
payload bytes. Monitoring 16 payload bytes per flow is pos-
sible in the current generation of NetFlow devices, and in-
creases the memory requirement only by a small factor.

Finally, we designed Graption as a modular framework
where each component can be specialized to the detection
problem at hand. For example, we briefly showed that TDG
measures could be used to detect scanning worms (Subsec-
tion 3.4.1 ). History teaches us that new (and possibly un-
wanted) applications keep appearing. In the future, other
graph metrics besides those we examine here or other pay-
load features besides the first sixteen bytes may prove more
important for classifying these applications, but our frame-
work should still prove valuable. We hope that Graption and
TDGs will find uses that go beyond the detection of P2P
traffic.
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