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ABSTRACT

Monitoring network traffic and detecting emerging P2P ap-
plications is an increasingly challenging problem since ne
applications obfuscate their traffic. Despite recent ¢ffor

the problem is not yet solved and network administrators are

still looking for effective and deployable tools. In thisgs,

we address this problem using Traffic Dispersion Graphs
(TDGSs), a novel way to analyze traffic. Given a set of flows,
a TDG is a graph with an edge between any two IP addresse
that communicate. Thus TDGs capture network-wide inter-
actions. We start by exploring the potential of TDGs for
traffic monitoring by focusing on graph metrics instead of
features of individual flows. We then use TDGs to develop
an application classification tool dubbed Grapti@rdph-
based P2P detgon), which we target specifically for de-
tecting P2P traffic. Graption begins by partitioning traffic
flows into clusters based on flow-level features and without
the need for application-specific knowledge. It then builds

TDGs for these clusters, and uses graph metrics to identify

clusters that correspond to P2P applications. Finally,uve a
tomatically extract a regular expression for a new P2P appli
cation, allowing the use of existing IDS devices and routers
to block or rate-limit the detected traffic. We describe ¢rac

Prashanth Pappu
Conviva, Inc.
prashanth@conviva.com

George Varghese
UC San Diego
varghese@cs.ucsd.edu

Michalis Faloutsos
UC Riverside
michalis@cs.ucr.edu

Hyunchul Kim
CAIDA & SNU
hkim@mmlab.snu.ac.kr

plications, especially P2P traffic. As expected, the dgxelo
ers of these new applications have responded by obfuscating
their traffic using non-default port numbers.

In this paper we focus on the problem of detecting and
classifying P2P applications. While our methods work well
for scanning worms and viruses as well, in this paper we
focus on the detection of P2P traffic since P2P detection is
both a challenging open problem that is not as well studied

&s malware detection and important to network operators and

the industry.

Currently, there still does not exist a reliable method for
identifying P2P traffic, despite significant research ¢ff@t,
22, 25] as we explain in Section 5. As a result, there is
ongoing debate about how much P2P traffic exists on the
network [21, 22]. The challenge is that P2P traffic actively
tries to avoid detection by constantly changing aspects of
its behavior, and it is sometimes difficult to distinguishHPP2
traffic from worms [49]. In addition, a practical classifica-
tion approach should ideally operate with limited a priori
knowledge and assumptions, limited manual configuration,
and flexibility to adopt to mutating behaviors and emerging
P2P protocols.

In addition, identifying P2P traffic is a real concern for

driven experiments that show more than 90% precision and Sontentproducers, network administrators, and ISP peosid

recall for P2P detection.

1. INTRODUCTION

Peer-to-peer traffic is here and is planning to stay: what
can we do to detect it?Ve are witnessing a fascinating arms-

This concern is based on several operational requirements,
legal issues, and business practices. Beyond the unautho-
rized use of system resources, P2P systems have the poten-
tial to be used for malicious purposes. For example, P2P
networks can be used to launch DDoS attacks [13].

To provide context for our work, we can group most cur-

race between network administrators and developers of ap-€nt monitoring tools and application classification meth-

plications which try to evade detection. Peer-to-Peer P2P
protocols have fundamentally affected the business pexti
of multibillion dollar industries, such as the entertaimmne

ods according to their level of observation as follows: (a)
packet level, such as signature-based worm detection, [32,
49] (b) flow level, such as statistical approaches, [27, 55],

and telephone companies. At the same time, worms andand (c) hostlevel, such as host-profiling approaches [24, 23

viruses continue to be an expensive concern with an esti-

mated cost of $17.5 billion in 2005 [44].
These facts have led to a proliferation of companies that
help ISPs detect and potentially delay or block particutar a

Each type of approach has its pros and cons without a sin-
gle method emerging as a clear winner, as we describe in
Section 5.

By contrast, our work is based on the concept of network-



wide interaction graphs which form the natural next step in control the application. Past work in signature extraction
the progression of aggregation at the packet, flow, and host([49, 26]) was in the context of malware detection and used
levels. More precisely, we study the “social” interactidn o techniques based on finding frequently occurring strings th
the network as a whole which leads to a directed graph; eachcould occuranywherein a packet. By contrast, Graption
node is an IP address, and each edge represents an interacses TDGs to decide when to extract a signature and can
tion between two nodes. We use the téfraffic Dispersion generate effective signatures using only fingt 16 bytesof
Graphor TDGto refer to such a graph. We argue that there payload.

is a wealth of information embedded in a TDG, which the  In our earlier work [19], we presented TDGs as: (a) a
other classification methods do not capture. For example,complementary information source for network traffic char-
the TDGs corresponding to P2P applications are connectedacterization/modeling and monitoring; and (b) showed that

and have topologies with high average degree. TDGs for a large set of popular network applications have
The main contributions of this paper are: regularity and structure that remain stable over time. & th
a. Using TDGs to construct measurement tools\We current technical report, we greatly expand our previous ef

highlight the power of TDGs for monitoring traffic and de- forts by: (a) using backbone traces with payload from CAIDA,
tecting new applications. Earlier work [14, 54] used TDGs (b) targeting P2P traffic detection, (c) automatic sigratur
in the context of security and focused on specific tree-like extraction for P2P applications, and (d) the development of
graphs formed by propagating malware. By contrast, we Graption framework for traffic classification.
study TDGs in the context of application identification at ~ The rest of the paper is organized as follows. Section 2
large, which produces a richer family of graphs, and opens defines TDGs formally and provides some basic examples.
up new opportunities for visualizing and characterizinggne Section 3 starts by presenting visualizations of the TDGs
work traffic. of various applications. The section also introduces veario

b. Identifying P2P traffic: We develop a new method- TDG graph measures that can be used to differentiate appli-
ology based on TDGs for the automatic detection of P2P cations. It finally focuses on the use of TDGs for P2P de-
behavior. Our tool, Graption, first clusters flows, thendsiil  tection. Section 4 uses the observations of the previous sec
TDGs for each cluster, and finally classifies each TDG using tions to construct a system for automatically identifyimgla
graph metrics. Several advantages of Graption are rooted inextracting a signature for new P2P applications from packet
the use of TDGs. It is @lug-and-playsystem with a small ~ traces. Section 5 surveys related work.
number of intuitive parameters, and does not require user
specified signatures or other hints. Graption makesdetecti 2  TRAFFIC DISPERSION GRAPHS
harder to avoid because a misbehaving node can be detected
by its connections to the “wrong crowd”, even if the node
masquerades its behavior at other levels.

c. Differentiating P2P from worms: Past work on de-
tecting malware (e.qg., [49]) has often found that P2P traffi

Throughout this paper, we assume that packets can be
grouped into flows using the standard five tuglsrclP, sr-
cPort, dstlIP, dstPort, protocel We therefore use the terms
c ‘group of flows” and “group of packets” interchangeably.

is a common false positive when detecting worms. This is Given a group of flowsy, we can define the corresponding

because the propagation structure of P2P traffic resembles! DC {0 be a directed graphi(V. I), where the set of nodes

that of a worm. We show, however, that P2P and worm traf- V correspond to the set 9f IP addre§se§jmnd there is a
link (u,v) € Efromu tow if and only if some flow inS has

fic can be differentiated using TDGs and a few simple new
a srclP ofu and a dstIP of.

raph measures. . X e
grap In this paper, we consider bidirectional flows, and hence

d. Using Graption on backbone traces: Ideally, our ) X
method needs multiple points of observation to capture the diréct edges more carefully. We define a TCP flow to start
on the first packet with th&YN flag set (referred to as the

TDG(s) of a network. We show, however, that TDGs contain K hat the inifi dth - fthe fi
sufficient information even when they are generated from aSYNpa_c et), so thatt emmatora_n t_ereC|p|ento the flow
are defined for the purposes of direction. In the case where

single observation point in the backbone. Backbone traces
present several challenges to TDG methodologies: for in- we or_1|y observt_a th_SYN/ ACK-packet betwegn nodes, the
direction of the link is reversed and set to point frdet/ P

stance, reverse traffic is often missing. Despite this, vogish i )
that Graption (which only requires a few parameters) oper- © 57¢/ 7 (as directly derived from th&YN ACK packet).

ates with over 90% precision and recall on CAIDA back- For UDP flows, direction is decided upon the first packet of

bone traces when measured against ground truth IorOvideotheb|d|rect|onalﬂow. If in some settings it is unclear which

by signature-based P2P detectors (that require humans to innode initiates an interaction, then one could consider TDGs
put P2P signatures). with undirected edges.
e. Automating P2P signature extraction: Besides de- Given a set of collected network traffic over a fixed time

tecting a previously-unknown P2P application, Graptisoal interval T, there may be a large universe of flows, not all of

generates a payload signature for the P2P application. ThisWhiCh are relevantfor a given application. Adge filtepro-

signature can then be used by existing IDSs to drop or ratevides selection criteria to choose which flows from the uni-
verse belong to a grouf defining a TDG. Any monitored



[ Name | Date/Time [ Duration [ UniquelPs| Flows [ Bytes [ Packets | Mbps | Payload |
TR-OC48]| 2003-04-2400:00 1h 2,533,804 | 15,603,865 95G | 202.5M | 213.2 No
TR-ABIL | 2004-06-0¥17:30 1h 6,346,572 | 23,846,500] 714 G| 823 M | 1,726.2] No
TR-PAY1 | 2004-04-2717:59 1h 10,139,115| 38,808,604| 435G | 741IM | 1,068.8| 16 bytes
TR-PAY2 | 2004-04-2719:00 1h 9,539,211 | 37,612,752] 374 G| 647M 980 | 16 bytes

Table 1: Set of backbone traces from, CAIDA (TR-OC48), the Abilene Backbone (TR-ABIL), and PAIX (TR-PAY1, TR-PAY?2).

network could yield several TDGs, each correspondingtoa3. TDGS AS A TOOL

different edge filter. Each edge filter allows the correspond |, this section, we show that TDGs can provide pow-

ing TDG to focus on a particular interaction and filter out g yisualization, enable the introduction of new meric

other flows as noise. For example, we can place each UDP, techniques for network traffic analysis, and provide new

flow f; in a groupS;, where: denotes the destination portof 4y for identifying applications. We then specificallyeste

f;. Henceforth, we refer to TDGs based on the destination ye giscussion towards TDGs and metrics that can help us

port of a flow aport-based TDGs _ identify P2P traffic. Throughout this section (and in thet res
TDG edge filters can use either packet-levelfilters or flow- ¢ ihig paper) we show the applicability of TDGs using a set

level filters. Packet level edge filters only use information ¢ hackbone traces. We start by describing these traces.
the current packet such as the port number. Flow-level edge

filters require the monitor to maintain state about past pack 3.1 Data Set

ets to know when to add an edge in the TDG. An exampleis  1q study TDGs, we used a variety of backbone traces from
the f||ter_where an edge is added bet_ween two nodes only if hree geographically different locations captured ovéiedi
a flow with more than ten packets exists between them. ent months, years, and times of day. Our traces are sum-

Finally, TDG edges can also be annotated to provide fur- marized in Table 1. In more detail, TR-OC48 is collected
ther information. For example, a weight could be assigned ,om an 0C48 backbone link of a Tier-1 ISP [7]. TR-ABIL
to each edge corresponding to the total number of flows or s from an OC-198c¢ link from the Abilene backbone. Both
bytes sent between the two nodes. traces are publicly available [7], IP anonymized, and do not

Port-based TDGs offer a simple way to extract the TDG ¢ontain payload. Traces TR-PAY1 and TR-PAY2, are col-
for a well-known application (e.g., DNS). However, port-  |gcted from an OCA48 link of a Tier-1 ISP at Palo Alto Inter-
based TDGs do not work for applications that use.ephemeralnet eXchange (PAIX). These traces contain up to 16 bytes
port numbers. In order to study the TDG properties of P2P ot hayload from each packet thereby allowing the labeling
applications we used flows verified to be P2P by a signature- of flows using signature matching techniques similar to the
based payload classifier, as we describe in Section 3. Bygnes described in [21, 24, 47]. Our traces with payload in-
using the packet payload, we address the limitation of using formation increase the confidence of our findings compared
port-based edge filters for the study of TDGs. to using only port-based TDGs.

In the following section, we study TDGs corresponding oy the sanitized traces (TR-OC48 , TR-ABIL), we used
to a variety of network applications, emphasizing P2P pro- yort-pased TDGs which work surprisingly well for legacy
tocols. By proﬂlmg P2P tr(_’:\fflc, we can extract the right §et applications [25] such as DNS, Web, SMTP, NTP, etc. More-
of features to use in Graption (Section 4) for their detectio over, using our payload classifier we observed that many
P2P applications were still using their default ports dgrin

04 | 04 | 04 |
Name %inFlows | %n Bytes | %in Packets the period of when the traces were collected. P2P applica-
Gnutella | 0.95(6.78) | 0.17(1.59) | 0.81(6.32) : . )
eDonkey | 2.96(21.16)| 2.22(21.17)| 2.84(22.21) tions with default port numbers included eDonkey (on ports
FastTrack | 0.55(3.92) | 0.74(7.10) | 0.97(7.61) 4661,4662, 4665), Soribada (on port 22321), Gnutella (on
Soribada | 7.76(55.44)| 0.07(0.63) | 0.97(7.63) port 6346), and MP2P (on port 41170). FastTrack (KaZaa)
MpP2p 0.41(2.93) | 0.01(0.14) | 0.07(0.53) was one of the first P2P protocols to allow the user to change
B:ch;int 0'?%%'526) 4'52(‘113'81) 4.3172(314624) its port number, and thus the majority of its flows do not
P2P Suspects 1.59 6.74 6.63 use the default port of the protocol. This observation also
Web(80/443) 27.45 41.99 35.51 agrees with findings from [21, 47]. We used port-based
SMTP 1.65 1.10 2.431 TDGs (when applicable) to verify our real algorithm, and
DNS 6.65 0.32 1.586 to support our claim that the behaviors of applications do
Games 0.71 0.54 2.84 not var ; HAp ;
y greatly at different monitoring points.
Unknown 0.97 1.98 3.22 Wi te that if . tricted t inale ob fi
No Payload 28.06 0.46 6.04 We note that if one is restricted to a single observation
Rest 19.07 37.68 20.64 point, then backbones provide a good vantage point because
of the aggregation at such a point. We also show that our
Table 2: Application breakdown for TR-PAY1. Values in results are not very sensitive to the choice of backbonepoin
parenthesis show the percentage of each P2P application Ground Truth Payload Classifier (GTPC). We used a
over the entire P2P identified traffic. payload classifier to establish the ground truth of flows in

our traces. GTPC is similar to the methods described in [21,



24, 47] where the payload of each packet is compared tothe TDG visual profile of a standard application can be used
a predefined set of signatures for P2P applications, DNS,to detect deviant behavior in the presence of anomaly. Sim-
Games, Chat, Web, Email, etc. All traffic with no match to ilarly, if at some point the TDG for traffic at TCP Port 80
a signature is labeled as unknown. GTPC further classifiesappears significantly different, it could be a new benign or
a subset of the unknown flows as “P2P Suspects”: these aramalicious application tunneling its traffic under that port
flows whose source or destination node was found to have ata change in the behavior of the traditional application.
least one P2P flow matching a payload signature. (v) The right set of metrics is very important to achieve good
Traffic Mix. The results from running GTPC over the discrimination between different behaviors. As previgusl
payload traces are summarized in Table 2. While GTPC may explained, Figure 1(a) shows suspicious activity on the TDG
miss some P2P traffic if the list of signatures is incomplete, corresponding to the SMB (NetBIOS) protocol. On the other
past work has shown that the list is fairly accurate. hand, Figure 1(b) visualizes the behavior of a typical d¢lien
The breakdown by P2P application gives statistics for the server application. Though the two TDGs look alike, we will
top six well-known P2P applications, which corresponds to show later that the two graphs can be distinguished using
95% of the P2P flows in our traces. These P2P applica- simple graph metrics, such as the directionality of edges.
tions are: Gnutella, FasTrack (also known by its well-known  Although the main goal in the paper is the design of au-
client KaZaa), Soribada, eDonkey, MP2P (Blubster), and tomatic methods to identify P2P applications, we note that
BitTorrent. The remaining P2P protocols, including proto- good visualization methods can often be a viable alteraativ
cols such as Ares, WinMX, Goboogy, SoulSeek, PeerEn- to automated methods for network monitoring. Moreover,
able, OpenNAP, Freechal, and others, are either not usedvisualizations often pinpoint key features (e.g., the @mtn
currently or contribute a small fraction of the traffic. When edness of a TDG), which can then be translated into quanti-
we report results for all P2P applications, all the protscol tative measures (e.g., the size of the largest connected com
above are considered, but we report specific results only forponent).
the top six P2P protocols described above.

3.3 TDGs and graph metrics

3.2 TDGs as a visualization tool Identifying the right metrics to compare graph structures
An advantage of TDGs is their ability to provide visual is a challenging question that arises in many disciplinés T
insight into network-wide traffic. By contrast, previous vi idea is to use several graph metrics, each capturing some

sualization of traffic in monitoring tools has largely been graph characteristics, until a set of metrics is found tlist d
limited to measures of traffic volumes on a per flow basis. tinguishes the target graphs.
The graphs in Figure 1 show visualizations of a sample set We now describe several graph metrics we have found
of TDGs corresponding to various network protocols. The useful. The listincludes metrics, such as graph diametr an
TDGs from TR-PAY1 are verified using GTPC, and for the connected components, not previously used in traffic analy-
other traces we used port-based TDGs. sis studies. We impose the additional constraint in the final
We highlight the following observations from the figure.  choice of our metrics for Graption that the chosen metrics
(i) Network protocols have different graph structures, which should be intuitive, so that setting thresholds and intrpr
gives TDGs descriptive power in classifying applications.  ing the results is easy for network administrators.
(i) P2P applications (as in Figure 1(c)(f) ) appear to have Node degrees. We make use of thedK-series intro-
distinctive structures, as compared to client-servewigti duced in [34, 33] for modeling Internet topologies. Briefly,
(Figure 1(b)) and worm scanning activity (Figure 1(d),(e)) theOK term is the average node degree, giver2[y|/|V|;
(iif) The TDG structure of a P2P application are consistent in the 1 K term is the degree distribution; tt2d< term is the
different settings, as in Figures 1(c)(f), which show th@ea  joint-degree distribution (or JDD) and captures the proba-
P2P application over two different backbone links. We also bility that an edge exists between nodes of degtgels;
observe a similarity in scanning activities from two difat and so forth. We have found the JDD to be very useful in
exploits at two different links in Figure 1(d)(e). We claim highlighting differences between various applicationsr F
that port-based TDGs are an attractive solution for capturi  detecting P2P traffic, we found the (simpler and more in-
the behavior of worms and other exploits since these appli- tuitive) average degree measure to be sufficiently powerful
cations often target a specific application operating atesdfix ~an observation supported by the P2P TDGs visualizations of
port number. Figure 1.
(iv) Visualization can pinpoint abnormalities. In Figure 1(a) Directionality. The direction of edges (as defined in Sec-
we can see the effect of the appearance of abnormal scanningion 2) provides significant information about the role of
activity in SMB (Server Message Block/NetBIOS applica- the node in its interactions with other nodes. For example,
tion). The resulting graph shows many disconnected star-we know that pure clients only initiate traffic, pure servers
like components similar to graphs from worm scanning ac- should never initiate traffic, and that some P2P nodes play
tivity, while also showing islands of legitimate activityitly both roles. Thus we distinguish if a node is an initiator, a
groups of connected nodes. This example demonstrates howecipient, or both. To capture this quantitatively, we defin
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(a) SMB TR-PAY1

(d) MyDoom Worm TR-ABIL (e) Slammer worm TR-OC48 (f) Soribada TR-OC48
Figure 1: All TDGs visualizations are from graphs with 1,000 nodes (|V'| = 1000).

Proto. Avgdeq | AvginDeg | AVGoutDeg | Vino (%) | Viink(%) | BiDir(%) | GWCC | Dim. (Eff.)
1 Web 2.539 2.275 2.864 0.126 55.672 0.000 44.733 19(9)
2 FTP 1.687 1.823 1.144 35.552 16.721 22.998 30.357 3(2)
3 IRC 1.549 3.132 1.029 0.000 24.727 0.000 11.636 6(4)
4 POP3 1.550 2.543 1.114 0.073 30.404 0.000 8.367 14(10)
5 HTTPs 2.013 5.742 1.219 0.101 17.424 0.000 31.803 20(8)
6 SMB 1.842 1.126 5.041 0.070 81.733 0.000 24.731 14(10)
7 MSNP 2.887 4.501 2.124 0.000 32.065 0.000 93.094 11(6)
8 SpamAs. | 3.015 21.778 1.620 0.000 6.923 0.000 98.846 8(6)
9 Stream 1.503 1.795 1.198 7.003 35.831 4.449 6.678 9(4)
10 SMTP 3.118 4.529 2.202 5.291 29.153 0.140 83.783 20(8)
11 DNS 3.719 2.353 8.106 5.364 76.297 6.450 44,554 16(10)
12 Game 7.420 9.349 4.992 16.938 23.769 5.032 96.480 14(7)
13 NTP 2.266 2.289 1.995 11.050 40.662 8.539 70.365 16(10)
14 | BitTorrent | 1.822 2.111 1.495 5.051 38.496 1.808 54.600 27(14)
15 | Gnutella 3.872 4.145 3.259 7.022 40.086 1.708 92.232 20(8)
16 | FastTrack| 3.390 3.468 3.068 5.095 44.238 1.854 65.644 30(13)
17 MP2P 7.489 7.282 6.931 6.537 45.415 2.039 97.182 16(7)
18 | eDonkey 3.704 4.550 2.621 13.207 28.170 3.243 93.953 23(8)
19 | Soribada | 24.440 54.659 13.285 15.337 7.215 1.730 99.831 10(5)
20 | MyDoom 1.908 1.002 19.997 0.027 95.228 0.014 3.936 10(4)
21 Bobax 2.027 1.019 196.723 0.000 99.485 0.000 96.273 15(7)
22 | Slammer | 1.984 1.002 99.961 0.000 99.008 0.000 73.088 14(5)

Table 3: TDG metrics from TR-PAY1. Row 1-9: client server, 10-13: collaborative protocols, 14-19: P2P file sharing applications,
20-22: port-based TDGs of worm scanning activity (MyDoom TCP/3127, Bobax TCP/5000, Slammer UDP/1434).



InO to be the percentage of nodes that have both incom- Low InO High InO

ing and outgoing edges. Similarly, we can measure the per- IRC, BitTorrent (P2P),

centage of nodes that are sinks (only incoming edges) and POP3, SMB, FTP, NTP,

sources (only outgoing edges). This process partitions the| Low Avg Deg MY-PC, SNMP, News,

nodesV in three disjoint set¥7,,0, Vsnk, andVi,.. HTTPS, HTTP, Streaming,
We define two new metrics: the average in-degree for NetBIOS

sinks (Avginpeg = 2|E|/|Vink|), and average out-degree eDonkey, SMTP,

for sources Avgouipeg = 2|E|/|Vsre|)- In general by using High Avg Deg Spam-Assassing, MP2P, FastTrack,

directionality we can enrich information about degreerdist Chat (MSN) Soribada, DNS,

butions to capture correlations between nodes with differe Gnutella , Half-Life

roles. This illustrates the potential of TDGs to suggest new
metrics.

Connected Components.Unlike many other real-world
complex networks, TDGs can be disconnected. To quan-'nOis > 1%.

tify this graph characteristic, we call the largest wealdpc  plications have a relatively high average degree compared t
nected component of a graph the giant weakly connectedTpGs of other protocols such as Streaming, FTP, SSH, etc.
component (GWCC), and measure the size of the GWCC asp natural explanation is that P2P applications require & hig
a percentage of the total number of nodes in the graph. Herenumber of connections to efficiently perform tasks such as
we use connectivity in its weak sense, ignoring the directio  answering content queries and sharing files. However, even
of the edges. While metrics based on connected componentghough average degree is a good metric, by itself it is not

Table 4: Grouping various applications according to their average
degree and InO features. High average degree is > 2.8 and high

can be captured by high-orders @k -series [33], we find
that treating them separately allows for an easier presenta
tion.

Distance Metric. We find that the shortest distance (shortes
path) between all pair of nodes also provides an important
distinguishing feature for BitTorrent. The diameter of agfn,
defined as the maximum distance between two nodes, is som
times sensitive as a metric [33] since the removal of a single
link can potentially significantly change it. For a more ro-
bust metric, we use theffective diametemwhich we define
as the9s-th percentile of all pairwise distances in the graph.
High effective diameters where observed in P2P application
such as BitTorrent and FastTrack.

We applied our collection of graph metrics to a variety
of different TDGs, including TDGs based on port-based fil-
tering and TDGs directly derived from the ground truth of
flows using our GTPC. In Table 3, we summarize various
measurements for TDGs from TR-PAY1 that were verified
with our GTPC. Similar measurements where derived from
TR-PAY2 but are omitted for brevity. Graphs were generated
over 5 minute bins; the choice of the length of this interval
is elaborated next in this section.

3.4 TDGs distinguish between applications

The goal in considering a variety of TDGs metrics is to
enable application classification, including the detettd
P2P traffic. Here we examine which metrics can help us
separate applications, and aim to find a small number of intu-
itive and easy to compute metrics that can allow automation
of the detection process.

3.4.1 Using TDGs for Profiling P2P

What are the characteristics we expect to see from a sam
pled network-wide view of a P2P overlay?
From Table 3, we can see that TDGs for many P2P ap-

enough to clearly distinguish P2P activity. We can observe
this from Table 3 where applications such as Spam Assas-
sin (SpamAs.) also have high average degree. Later in the
Eection we will show that by including other features, such
as the effective diameter of the graph, we can better isolate
P2P activity. Similarity between P2P and SMTP, DNS, and
&ames will be discussed later in more detail.

Moreover, all P2P applications have a relatively high per-
centage of hosts with dual-roles (high InO), acting both as
clients and servers, as compared to most other applications
We note FTP also has a remarkably high InG&f. This is
due to the nature of the protocol; for the FTP control chan-
nel, the client initiates a connection to the server, and for
the file transfer itself the server initiates the connectmn
the client. Hence, besides a high InO, FTP also has a high
fraction of bidirectional links (BiDir in Table 3). Moreovge
besides FTP, bidirectional links mostly exist only between
P2P TDGs and Streaming. The Real Time Stream Control
(RTSP) protocol TDG show signs of this behavioAs we
can see, using only a single metric is not enough to perfectly
isolate P2P behavior, but simple combinations of graph met-
rics appear to have high descriptive power.

The graph metrics of Table 3 could also be useful for de-
tecting abnormal behavior. For example, if we see a large
increase of hosts using port 80 having a high InO, then this
might indicate a P2P application tunneling portions of its
traffic under port 80.

Threshold Selection. In Table 4, we divide a large set
of Internet applications into four different groups based o
their InO and Average degree. For this separation we used
our empirically derived threshold where an applicatioreis s
to have high InO if it is larger thah% and an application is
set to have high average degree if it is larger than These
parameters were also verified using port-based TDGs from

nttp://www. ietf.org/rfc/rfc2326.txt



can be done using either well known ports (if there is one)
or flow level heuristics. In particular, even though both-pro

20
18

O

16 | 5o | tocols make use of UDP [22], games have UDP flows with a

14 o | large number of packets exchanged, in contrast to P2P where

1 Allothers = | UDP is commonly used for messaging and not content shar-
PoonEs o | | ing. We verified this finding in our measurements. Even

10

InO (%)

though such flow-level heuristics can be used by Graption
(Section 4), we only employed simple port-based filtering of
legacy applications in order to use as few parameters in our
system as possible.

BitTorrent Protocol (BT)The only P2P protocol with low
average degree is BT. We attribute this behavior to the @niqu
architecture of BT compared to the other P2P protocols. The
main difference is that BT does not use its overlay mecha-
nism for issuing queries directly among peers or for explor-
ing the network, unlike the flooding mechanism that exists
for example in Gnutella.

Although BT has a low average degree unlike other P2P
protocols, a very distinctive characteristic is BT’s hidtee-

i tive diameter. More than 5% of all randomly selected pairs
traces TR-OC48 and TR-ABIL, but more detailed results are of nodes in a BT TDG have shortest paths longer than 14

not shown here because of space Iimitations. This is exaCtIyhops. This distinctive characteristic separates BT frani-si
where the power of TDGs resides, in that a small number of |, ' jjications which have effective diameters smallanth

intuitiye parameters_ can be used to clearly separate elifter 5. Thus we set up the threshold for effective diameter at 11.
behaviors and applications. Note that other protocols, such as the Network Time Proto-

Figure 2 better highlights our selection of metrics and .o (\TpP) which is not a P2P file sharing protocol, have also
thresholds. We show a scatter plot comparing the InO and g |aively high diameter. (This is not surprising as NTP in-

average degree for various TDGs with the threshold values o 4y \ses P2P-like interactions). Since NTP always use

indicated using dotted lines. To make the plot easier to,read the default port 123, we used this feature to discriminate it
we removed FTP and Soribada that had much larger InO andfrom BT

average degree respectively. o We now summarize some interesting observations from
In Figure 2, the majority of network applications, cover- our measurements. P2P protocols such as Gnutella, eDon-
ing more than 70% of the traffic, are concentrated in areas key, and Soribada often have a few nodes with degrees above
W':]h elr:he(rjlow avera?e d_egree or :;)W InfO, or both. (?]n the 5q (within a 5 minute window) which can perhaps be super-
other hand, P2P applications stand out from most other ap-,,jeg or eDonkey servers. The same behavior is unlikely in

plications by their high average degree and InO. These fea-gsrrack which adopts a more distributed architecture [47]
ture; are, howeve_r, a]so shared by DNS,’ SMTP, and SOMErhese observations show the power of aggregating across
on—I|ne_game appllcgtlons [9] (e.g., Half-Life). Note timatt hosts and indicates how we can potentially use TDGs to
all on-line games directly exchange.packets- between IOIay'group the detected P2P protocols into categories according
ers. The typical game protocol architecture is based on theto their architecture. Also, in TDGs where most clients com-
client-server paradigm, where all the clients directly eom municate with the same set of servers (e.g., MSN and Spam
municate.only with a server. However, since there might be Assassins from Table 3), we can still have high average de-
many active servers for the same game, hosts usually Conyee hyt we can always use directionality to discriminaige th

tact more than one server when Joining a game room. FOr hehavior from P2P applications where we have nodes with
the cases of DNS and SMTP, hosts in both applications Caninterchanged roles communicating with each other.

have dual roles with DNS servers querying each other for Separating P2P from Worms. From our trace-driven
name resolution and SMTP servers directly connecting with simulations, we found TDGs to be very effective in high-

eac_h other for malil egchgnges._ . _ lighting IP-range scanning activities without using an ex-
Since legacy applications will continue to use their de- plicit per-host degree threshold, but by rather capturirey t
fault port numbers (namely port 53 for DNS and port 25 for graph level view of this activity. In Figure 1 we visually

SMTP), we can use their ports as a simple a heuristic, alsOgp g\ scanning activity by two different exploits captured
used in prior works [22, 25], to separate these application o o different backbone locations. In the same plot we

frc_)rr_1 P2P traffic. As for game protoco_ls, many netwo_rk ad- also show the TDG view of a P2P application (Firgure 1(c)),
ministrators tend to lump P2P file sharing and games into theemphasizing the difference between the two

same set of unwanted applications due to their high traffic re Some real-time worm detection efforts observe a high rate
quirements. If game applications must be distinguishesl, th

o &8

o N A O

5 6 7 8 9
Average Degree
Figure 2: Average Degree and InO scatter plot for vari-

ous TDGs. Notation: P2P-BEH includes DNS, SMTP,and
Games; P2P-FS: includes all P2P file sharing applications.
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Figure 4: Methodology Overview for Graption.

example with eDonkey in TR-PAY1, the InO of a TDG de-
rived after 5 minutes is 13%, and grows to 20% in the TDG
over 60 minutes. This indicates that the longer we monitor
hosts, the larger a percentage we see acting as clients and
servers. On the other hand, the HTTP TDG at the same trace
had 0.04% InO with 5 minute bin and ended with 0.07%
after 60 minutes of observation. Therefore, the difference
between these two TDGs at the InO metric increased even
ore.

Even though increasing the time interval of observation
increases the differences between P2P applications aad oth
applications under our metrics, we chose to use a 5 minute
bin in our experiments since it gave good classification re-
sults and stability, while keeping the computational cosr

and responsiveness faster.

It is also very interesting to observe that, in our experi-
ence, the TDGs of various applications do not appear to vary
substantially across different observation points at thert
net Backbone. Edonkey is a typical example from our set of

3.4.2 Sensitivity in Time and Space P2P applications. _ o
With 5 minute intervals, we found stability in our sug- Given that we have a collection of features for identifying

o . ; TDGs corresponding to P2P traffic, the next goal is to find a

gested TDG measures over disjoint windows in our traces, as
e . way to group related flows together.
well as very good classification results (as we show in Sec-
tion 4). Experimenting with larger intervals revealed ayver .
interesting observation. Specifically, P2P TDGs grow more 4. GRAPTION: GRAPH BASED P2P TRAF-
dense over time, with a significant increase in their average FIC DETECTION
degree. To demonstrate this behavior, we show the behavior Some important limitations of current application classi-
of eDonkey in Figure 3, calculated over 3 different backbone fication techniques include the need for extensive training
links, with window intervals ranging from 5 to 60 minutes. the need to tune various system parameters, and the dif-
To contrast this with non P2P TDGs, in the same plot we ficulty of characterizing emerging applications. Currgntl
show the behavior of the average degree of HTTP. Due to when a new application is discovered, it still requires man-
its unique architecture, BitTorrent is the only protocatth  ual payload analysis in order to identify application layer
did not show this significant increase of average degree oversignatures that characterize the application. This pnoeed
time, while other protocols such as Soribada had an averagas even more difficult with P2P applications due to the pro-
degree of 24 with a 5 minute bin and an average degree ofprietary nature of their protocols and the lack of sufficient
61 with a 60 minute bin. documentation. Our methodology, Graption, can automate
Similar observations hold for the InO metric, where for or otherwise simplify this process.

of false positives from various P2P protocols such as BitTor
rent [49]. Scanners over the internet have some distinctive
characteristics: hosts with very high degree comparedgo th
rest, and single packet flows, usually at the port of the ex-
ploited vulnerability. Similarly, peers in P2P overlaysgye
Soribada) can potentially show common behavior. For ex-
ample, in our study we found that for Soribada, most of its
flows are single-packet, commonly unidirectional, and with
super-peers having very large degrees (two orders of mag-m
nitude larger than the average host). Surprisingly, just by
simply visually comparing the TDG view of the two we can
easily distinguish between scanning and P2P activity (Fig-
ure 1).

To translate the visualization into a quantitative measure
from Table 3 we can see that worm activity has ldwg;,, peg
(< 1.1) and higherAvgoutpeg(> 10) within a 5 minute
window. We verified this finding in all our traces, and it also
agrees with observation in [55].



4.1 Methodology Overview fied; the False Positives (FP) measure how many instances

At a high level, Graption groups flows based on packet of other classes are confused with a given class; finally, the
and flow features, builds TDGs for each group, and finally False Negatives (FN) measure the number of misclassified

classifies each group as P2P or non-P2P TDG using grap .

Hnstances of a class.
metrics. Several advantages of Graption are rooted in the

In our comparisons, we used the following standard met-
use of TDGs. Itis plug-n-playsystem with a small number ~ "iCS: Precision (P) defined ag> = T'P/(T'P+ F'P); Recall
of intuitive parameters, and does not require user specified

(R), defined ak = TP/(TP + FN); and theF-Measure,
signatures or other hints.

defined ag" = 2P - R/(P + R), combining Precision and
In more detail, Graption consists of the following 5 steps, Recall _
as shown in Figure 4. Although this paper focuses on P2p _ 1hese 5 steps represent a general framework for applica-
detection, Graption can be used for general applicatic cla tion detection that can be specialized based on the target
sification by choosing metrics and parameters appropyiatel Problem and the availability of information. We now de-
Thus we start by describing the 5 steps as they would pe SCribe the specialization to detecting P2P traffic assuming
used for general application classification, following ahi  the availability of a few bytes of initial payload in the patk

we specialize the description to detecting P2P traffic. traces.
Step 1. Pre-filtering. The input is network traffic in the _ ] ]
form of flows as defined in Section 2. The goal of this first 4.2  Applying Graption to P2P Detection

optional step is to utilize external information to exclue In this section, we describe how we specialized Graption
flows that can already be classified. This knowledge could \yith the goal of separating P2P from non-P2P traffic.
be based on packet signatures, port number_s, or the IP ad- Step 1: Pre-filtering. Recent work [25] suggests that
dress. In the last step (Step 5), we extract signatures fromfoort—based classification works very well for legacy appli-
our P2P classified groups. Thus we can iterate on the set Ofcations, as legacy applications use their default portd, an
input flows, and inspect all the traffic that was filtered as thi tunneling of P2P at such ports is not very common. Thus
stage. _ o we eliminate flows with ports 80 and 443 for Web, port 53
Step 2. Flow Grouping. We use similarity at the flow  or pNS, and port 25 for SMTP. These applications turn out
_and pz_;\cke_t level to group flows. The definition of similarity 15 pe about 65% of the total number of flows. From our
is flexible in our proposed methodology. We can use flow measurements, the portion of P2P actually using one of our
statistics (duration, packet sizes, etc.) or payload B thi  excluded ports is as low as 0.1%. We note that we can use
available. However, the output of this stage will be a set the signatures extracted at the last step to revisit Stepal in
of groups that ideally contain flows that belong to a single gocond iteration. This can help in capturing any P2P flows

application. _ that hide under legacy ports, if this phenomenon becomes
Step 3. Traffic Summarizer. For each group, we con- prevalent in the future.

struct a TDG as defined in Section 2. Next we quantify each Step 2: Flow Grouping. This step consists of three func-
TDG using the metrics described in Section 3. Optionally, tjgns: (a) feature selection, (b) clustering, and (c) @ust
additional flow level statistics can be extracted to helge t merging.
next step (e.g., most common packet size, or dominant port 5~ Feature SelectionFor efficient flow grouping, iden-
number). The output is a set of TDGs with their metrics and tifying features is critical, and especially challengingem
features. . _ applied to backbone traces, where flows do not always ap-
~ Step 4. Group Classifier. We use the TDG metrics 0 year in both directions [17] given that Internet routing can
identify the application for each group of flows. Forthe elas e asymmetric.
sification, we use a set of rl_JIes which in general erends On  For each flow, we extracted 60 flow features ranging from
the focus of the study. In this paper, we set Graption to clas- packet size information (size of first 10 packets, max/min
sify TDGs as P2P or not-P2P. _ _ packet size, etc.), timing information (flow duration, min
Step 5. Application Profiler. In this optional step, the 5,4 max inter-packet gap, etc.), TCP flags, total volumes
system uses the classification from the previous step to cre-, bytes, number of packets, etc. We also included the first
ate profiles for each type of classified application. A profile 14 payload bytes of each flow using a methodology simi-
for an application could be flow statistics, packet informa- |5 to [18, 32] for their extraction. Al attributes were con
tion, payload signatures or any other quantities that can begjqjered as numerical values with exception of the payload
used tadirectly identify application flows in a packet trace.  \\here each byte was considered as a categorical value from
We evaluate the efficacy of the Graption framework using he set{0,1, ..., 255}.
standard techniques. ) o We used two techniques for finding the most relevant fea-
Classification MetricsAs with any classification method,  yres: Information Gain Feature Selection and Correlation
evaluation starts by computing the True Positives, False PO gased Feature Selection [53]. Both algorithms identified th

itives, and False Negatives. The True Positives (TP) measur fj st 16 bytes of the payload as the most important feature by
how many instances of a given class are correctly classi- 5 gypstantial margin. Intuitively, this is because we ekpec



the first 16 bytes to contain application protocol headeas th

repeat. Other prominent features include the size of thee firs 96
6 packets, and the maximum and minimum packet sizes. o4 |
Thus, in the experiments below we use the first 16 bytes o |

as our feature for flow grouping. As we show, they are suffi-
cient to give very good classification results. Note thaneve
though we use payload, our grouping is agnostic to applica-
tion semantics, as each byte is considered as a single inde-
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88 r

86

Percentage (%)

pendent categorical feature. In other words, we do not need gaf = N ]
a priori information about application signatures. Grapti o | TR RPAY2 Reoul —m— |
only relies on the fact that application headers are likely t |  TRPAYL Recal e
recur; this similarity of payload can be used to group flows % 50 100 150 200 250
into clusters that belong to the same application. Clusters

b. Forming ClustersGiven the set of discriminating fea- i
tures, the next step is to cluster “similar” flows. We use the (a) Effect of changing:.
term cluster to describe the outcome of an initial grouping m percion
using the selected features. Clusters may be merged in the 100% 0 FMeasue
next function of this step intgroups, which produces the

final output. 0% S BN BN P

Feature-based clustering is a well-defined statistical-dat
mining problem. Graption uses the popukameansalgo-
rithm [53]. This algorithm has been recently used for un-
supervised clustering of network flows [15, 29], with very
good results and low computational cost. The similarity

80% -

70% -

Percentage(%)

60% -

between two flows is measured by the Hamming distance 80% —BitTorrent MP2P eDonkey FsiTrack Gutella Soribada  Total
calculated over the 16 categorical features (i.e., thegaaly!
bytes). Even though more involved similarity measures ex- (b) Results per P2P protocol fér= 160.

ist such as edit-distance or TF-IDF, Hamming distance has
been used successfully before [18] and performs very well
in our application.

The k-means algorithm generatesclusters. However,
the parametel needs to be tuned to produce an appropriate
number of clusters. Graption is not sensitive to the exact
value for k, since we do not require that each application
maps to exactly one cluster. Instead, we only need enough
clusters so that flows from different applications do notsha
a cluster. Hence, it is reasonable to slightly overestirttate

Figure 5: Classification Precision and Recall for various k
in k-means (TR-PAY1, TR-PAY2). In (a) we see the effect of
increasing k from 20 to 240 for both traces. In (b) we show
the precision, recall, and F-measure per P2P protocol from
trace TR-PAY1 with k£ = 160. Similar results are derived from
TR-PAY2.

recall over both traces. Larger valuesiato notimprove the
cluster quality significantly. We also do not want to create
number of clusters. too many clusters, as this would make further steps more

For evaluating the quality of our generated clusters we difficult. (In the extreme case, each flow would be its own

used labeled flow instances extracted by the GTPC (useddUSter!)

as an oracle). Since we have an a priory knowledge of the c. Cluster merging.Givgn .the intui_tion. that clusters cor- .
class of each instance, we will be labeling each cluster with respond to common or similar application level headers, it

its dominantapplication. For example, if in a cluster the is likely that the same application generates_ multiple_{:lus

majority of the flows are Gnutella, then the entire cluster ters. qu example, many P2P prqtocols exhibit a variety of
will labeled as such and all the non Gnutella instances will Nteraction patterns, such as queries (often small UDP-pa_ck
be counted as false positives. Similarly, any instance of EtS): control packets (small TCP or UDP packets), and file
Gnutella that does not belong in one of its clusters is con- tr_ansfers (often large TCP packets), .each with signifigant

sidered as false negative. dlffer_ent floyv and packet characteristics [47, 21]. _

The effect of varying the number of clusters for k-means This motivates th.e further step of cluster merging, where
is shown at Figure 5(a). To find a reasonable range:for W€ Merge _clus_ters into groups that, hopefully, belong_to the
we varyk from 20 to 240 over each 5 minute interval for S@M€ application. Merging clusters into groups provides a
both traces with payload (TR-PAY1, TR-PAY2). Figure 5(b) more complete view of the application, and gives more ev-

shows the recall and precision for six main P2P applications idence 0 h_6|9 un_derstand the structure of the P2P protocol.
atk — 160. Our results suggest that with — 160 we Further, it is intuitive that the TDG formed by the merged

have very good results with above 90% total precision and clusters has more information than each TDG taken sepa-
rately. For example, measures such as the node degree are

10



TDG that can be summarized using graph metrics. We find
that using the the InO, the average degree, and the effec-
tive diameter provides sufficient information to classifiet
graph successfully as P2P with high precision and recall.
851 Ground Truth —5— | Step 4: Group Classifier Based on our previously ex-
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g 80 | gzd: ::2::::? ; | tracted thresholds (Section 3), Graption classifies a TDG as

§ 75 | gNo Me,ging che | P2P, with two rules. A TDG is classified as P2P, if either:

2 Ao Rule 1:the average degree is greater than 2.8, and InO is

) ] larger than 1%Qr

g 65 R Rule 2:InO is larger than 1% and the effective diameter is

T s R | greater than 11.

80 100 120 140 160 180 200 220 240 Rule 1 covers most of P2P protocols except BitTorrent,
Clusters in k-means which is covered by Rule 2.

Figure 6: Effect of not using any cluster merging technique Our results show that using these simple metrics we can
compared to using merging based on (a) hosts similarity and classify P2P flows with 91% percision and 89% recall for
(b) edge similarity. The ground truth results are after labeling TR-PAY1 and 90% recall and 95% accuracy for TR-PAY2.
each cluster according to the application with the majority of To evaluate the sensitivity to our parameters, we show in
flows in the cluster. Figure 6 the F-Measure over different valueskofor the

k-means algorithm using Rule 1 and Rule 2. The plot com-

likely to be more accurate in the final group than in the indi- Pares using no cluster merging\J against merging based
vidual clusters. on node similarity @) or edge similarity ¢) with a similar-
However, cluster merging cannot be based on the choserity threshold of 50%.
set of flow-level features because these were already used to We also show the results derived by labeling each clus-
create the clusters in the first place. Instead, in the case ofter using the ground truti) without any cluster merging
a P2P protocol, it is natural to assume that the TDGs corre-and by labeling each cluster based on the dominant applica-
sponding to each cluster that the protocol generates wouldtion it contained (as given by the GTPC). All values are av-
share a large number of nodes (i.e., IP addresses). eraged over all the disjoint 5 minute intervals of TR-PAY1,
Based on these observations, we used an Agglomerativel R-PAY2. As we can see from Figure 6, by using the thresh-
Clustering Algorithnd that merges clusters with significant 0lds from Section 3 and edge similarity to merge clusters, we
overlap in either nodes or edges. The similarity is defined ascan achieve both high precisionr90%) and recall90%)
the number of common nodes (or edges) between two clus-0ver a range of values df. Thus cluster merging appears
ters divided by the number of nodes (edges) of the smaller crucial to providing good classification.
of the two clusters respectively. Two edges are said to be Step 5: Signature Extraction. In this final step, we take
common if they share a common end host. Intuitively, edge the classification from the previous step as a given, and use i
similarity gives higher weight to high degree nodes, sifice i to create profiles for each group labeled as P2P. Each profile
two clusters have a common high degree node then this will Will contain a set of payload signatures in the general fofm o
result in higher edge similarity. a regular expression. The goal of the extraction process is t
The cluster merging process starts by hierarchically merg- generate a signature that will minimize false negativegi(hi
ing clusters with high similarity and stops when the similar  recall), while at the same time minimizing false positives
ity between all new cluster pairs is below a threshold. We (high precision).
experimented with various similarity threshold and observ This problem was previously addressed in the context of
that any value within the range 40 to 60% resulted in merg- automatically extracting signatures for network worms, [49
ing the majority of clusters belonging to the same P2P ap- 26]. Most current pattern based generating systems are base
plications, without merging clusters that belong in difler ~ On capturing repeated substrings across all payload icestan
applications, using ground truth as a reference. For the res 0f a worm. However, in the case of P2P application, a single
of our experiments we fixed a similarity threshold of 50%. application can have a variety of different protocol levet o
We found the best results using edge-based merging as weerations that result in different payload signatures. Idiad
show below. tion, the labeled clusters might contain false positivesnr
Step 3: Traffic Summarizer. The outcome of the previ-  Other applications and therefore there might not be a sin-
ous Step is a set of groups of ﬂOWS, with each group con- gle Signature to describe the entire set. This is similar to
sisting (hopefully) of flows of a single application. In orde the problem of detecting signatures for polymorphic worms
to classify each group, we generate a TDG on the group in Which was addressed by the Polygraph [42] system. We

the same way as described in Section 2. Each group yields amodified the mechanisms of Polygraph to extract P2P sig-
natures.

zAgglomerative clustering algorithms are also referredstéizer- P0|ygraph Operates on two sets of flows: a set of innocu-
archical Clustering algorithms.
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Application || Precision | Recall Signatures Extracted by Graption
$\xc0.¥\x28, $?xml version="1, $00\x00\x00.*KaZaA,
Kazaa 95.1% | 78.1% $§x00\x\00\x00\xA9/\x00—,$GET/.F?;sh\=,\$<é1.*\x18
$GND, $GNUTELLA.*\x00, $GET \x2Furi-re3x2FN2R,
$0\x82.*\x01\x01, $ x02\x01\x01\x04\x08cMm4-b4
*
eDonkey 97 2% 92.0% :&gg\f\(ifm $${>>;e33!\x0e, $,xe3.%\x00\x00\x00\x01\x10,
Soribada 98.1% 99.9% | $Q:.*\x2B, $\x10\x0b, $,x10\x0c, $,x10\x16
MP2P $\x00\x00\x00.*\x89\ x84, $,x00\x00\x00.*\x86y,
89.7% | 78.7% | $\x00\x00\x00\x01.*\x18, $,x00\x00.*\x18\xf4,
$\x00\x00\x00.*\x81\xad
BitTorrent || 99.9% 96.6% | $\x74BitTorrentx00prot
Total 96% 90.5%

Gnutella 98.6% 97.3%

Table 5: Signature matching results for both traces TR-PAY1 and TR-PAY2. Results are shown for each of the top six P2P
applications and the Total P2P precision/recall over both traces. The "\x” notation indicates hexadecimal character. Each
signature starts with the character $. Due to space limitations only a subset of the produces signatures are shown for some of
the protocols.

ous flows and a set of flows for which a signature is to be siveness in higher recall or higher precision, Polygraph ca
extracted. For the so-called innocuous set, we chose to usébe set to extract signatures that match at le&stof flows
legitimate flows from HTTP, DNS, and SMTP that are used in the training set while keeping the FP from the innocuous
as a benchmark to keep the false positive rate low. For theset lower than%. For our experiments we used Polygraph
second set, we used the flows in any group labeled as P2Rwith z = 1% andy = 0.05%.
from Step 4. We will refer to this second set as the training  For evaluating the extracted signatures, we first used Poly-
set of flows. The algorithms in Polygraph use tokens of byte graph on the first 5 minute interval of the trace. Next, we
sequence found to be common in many flows of the training evaluated the extracted Regular Expression over the entire
pool. The token extraction is based on the longest commonTR-PAY1 and TR-PAY2 traces. The set of extracted signa-
substring and string alignment problems as described in [42 tures for the six most popular P2P protocols matched over
Graption generates signatures in the form of regular ex- the traces are summarized in Table 5. Using these traces,
pressions suitable for existing IDSes. To do so, we adoptedour signatures were tested on more than 30 million flows by
the token-subsequence algorithm in [42]. The algorithm gen only inspecting the first 16-bytes of each flow. The overall
erates ordered token-subsequences that match the majoritfP2P results on traces TR-PAY1 and TR-PAY2 exhibit 96%
of flows in the training set while keeping the false positive accuracy and 90% recall. The number of extracted signa-
rate low when applied to the innocuous set. The final out- tures ranges from one in BitTorrent, to 30 for MP2P. The
put from polygraph is a set of signatures matching the flows large number of signatures is to be expected since some P2P
from the input training set. applications exhibit a high diversity of application level
The differences of our work from that of Polygraph are as teraction. This diversity, especially at the UDP level @ise
follows. First, Polygraph aims to extract signatures fdypo  extensively by MP2P), can result in a large number of dis-
morphic worms while we focus on P2P detection. Second, tinct signatures.
Polygraph assumes that the innocuous set and the training We found the 78% recall for some applications (Fastrack
set are provided to the system by an oracle. In our case, thisand MP2P) to be due to flows corresponding to few rarely
is done automatically by Step 4. used signatures that did not form a large enough cluster on
Experimental SetupFor training the algorithms we use their own, and hence did not result in groups that were de-
a set of innocuous flows which comprise of a large set of tected as P2P in Step 4. In addition, some signatures could
300,000 HTTP, 100,000 SMTP, and 200,000 DNS flows. We not be derived while keeping the false positives at a reason-
assert that it will always be possible to extract such train- able rate.
ing data since these applications are well documented, and In one of our applications, namely MP2P, the signature
innocuous flows can be extracted by logging the legitimate extraction technique could not extract a regular expressio
traffic to and from well known Web, DNS, and SMTP servers. that could match an MP2P signature without creating a large
In our experiments, we used port numbers of HTTP, SMTP,number of false positives from DN& To improve recall
and DNS to select our set of innocuous flows from the first we modified our signature extraction algorithm to also use
5 minute of the TR-PAY1 trace. For the training set we the exact position of the signatures in the payload. We used
used signatures of a single cluster at a time. The size ofthe following heuristic. In the case where 95% of the flows
these clusters ranged from a few thousands samples to tens

of thousands of samples. Depending on the desired aggressgrom signaturé x00\x00\x00.*\x00\x00\x00\x00
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of the P2P application has the signature at a fixed location and they do not extract payload signatures.
and if this signature is in a different location from colldj Payload-basedPayload-based techniques were introduced
samples in the training set, then the regular expression isin [21, 40, 47] to detect P2P applications. Using available
modified to match the signatures at fixed locations. Using documentation and manual reverse engineering, these ap-
this simple heuristic we achieved 88% recall for MP2P. proaches extract signatures for various P2P applicatidmnsse
Other ExperienceGoing back and examining all the False early methods also support the observation that the first few
Positive flows for protocols such as eDonkey and KaZaa, we bytes (packets) are sufficient to classify flows. More recent
observed that close to 50% of the FP flows are flows that efforts [18, 32] use the first 64 bytes of each flow’s payload
have at least one of its hosts identified (from our groundhtrut as a feature for traffic classification. Their findings alsn-co
payload classifier) as having an eDonkey flow and KaZaa firm that the first few payload bytes are sufficient. In [18],
flow respectively. This means that our signatures managedpayload data are used to train classifiers, but the approach
to capture flows that potentially belong to these P2P proto- did not use TDGs and did extract regular expression. Ma
cols, but we were unable to capture them with our GTPC. et al. [32] used payload similarity to group similar flows,
thereby simplifying the process of flow labeling by a net-
5. RELATED WORK work administrator. Both papers [18, 32] focus on the detec-
, . i , . tion of conventional applications and not P2P applications
Traffic classification and signature extraction are welb&d ). Graption, we automate the process of labeling flows us-

Eroblems W'Itlh E|gn|f|fcant prelvuéus work.dMoreoveg gir_aphs_ ing TDGs, and automate the extraction of regular expression
ave naturally been irequently been used as a model in Va”'signatures using statistical methods from [42].

ous papers studying network traffic. We describe this previ- Worm Detection. Graphs have been used for detecting

ous wo_rk, and suggest how our work d|ff.e.rs fr.om It worm activities within enterprise networks [50, 14]. A key
Traffic Classification. We group classification methods contribution of these works is the detection of the tree-lik

accordlng to their level of observation: (a) packet—lc_aueh communication structure of worm propagation. This charac-
Ing vyell-known port numbers [8], (b) flow-level, usIng SU-_ teristic of worms was also used for post-mortem trace anal-
pervised [41' 57, 17_’ 25, 4] and un_superwsed [3. 36, 29, 15’ysis (for the identification of the source of a worm outbreak,
16], Machine Learning (ML) techniques, (€) host-level [24, 4 5o _caled patient zero) using backbone traces [54]s@he
23, 55],.and. (d) payload-bgsed [21, 40, 47, 18, 32]. For an papers did not introduce the variety of graph metrics and
exhaustive list and comparison of ML methods we refer the techniques we use here, instead focusing on worm propa-

reader to [43]. , gation characteristics such as high depth in the tree and an

FIOW-L(_eyeI. These me_thods use flow_features to train a i, creased number of hosts found at each level of the tree.
ML classifier using previously labeled instances for each ;.6 recent studies use graph techniques to detect hit-list
class. In the unsupervised case, clustering algorithms a"%yorms within an enterprise network, based on the observa-

used in order to group flows with similar Characteristics t0- tion that an attacker will alter the connected components in
gether. All methods [3, 36, 29, 15, 16] require manual la- the network [10]

beling of clusters. Our work bridges this gap by providing In the context of network security, anomalies were de-

a method to automatically label clusters of flows based On e ysing correlation among features of a set of flows. Sta

their network(—jwi;ie behavri]or(.j , h ithits f tistical methods were used in [55] for automating the profil-
Host-BasedThese methods associate a hostwith its flows. ;, o henwork hosts and ports numbers, but they did not use

Th_e work that is most C'OSG'Y related toours i_s BLINC [24], network-wide interaction graphs as we do here. Statistical
which operates by characterizing the connection pattexgs techniques are also used for anomaly detection [27] and for

if it behaves like a P2P application) of a single host at the e cting scanning activity by monitoring the featurerdist
Transport Layer, and use these patterns to label flows. BLING; iion of flows [46]. More efficient methods using sketches
uses graph models called graphlets to model a host’s CONNECZ 0 introduced in [30], targeting on-line detection. Non of
tion patterns using port and IP cardinalities. Unlike TDGs, the above papers focused on P2P detection

graphlets do not represemetwork-widehost interaction. In _ Communities of Interest and Host Similarity. The con-
some sense, TDGs represent a further level of aggregationy, ity hehavior and habits of users within enterprise ne
by aggregating across hosts as well. Thus it is perhaps fair,, ;s is the focus of many papers, including [1, 51, 35, 52].
to say that while BLINC hints at the benefit of analyzing the In [51], graphs are used as a means of modeling connec-

no(;jfefs mteractrl]onhat ';he social Ier:/elblthulnmatefly_ f(;h/sd | tions and grouping similar hosts within corporate networks
a different path that focuses on the behavior of individua Again, these papers differ from ours in terms of how graphs

nodes. _ are used. We use graphs to model network-wide behavior of
Other host-based approaches include [22, 23]. Recent Panternet protocols and applications.

pers [2, 20], exploit additional information such as thethig Trust propagation networks and other social network are

number of failed connections in P2P applications compare often expressed as araphs (e.q. 1561, [391). but the prale
to Web traffic. These papers [2, 20] differ significantly from differsutr))stantiallyfr%mpouré. -9-[561. [39), P

our work in that they do not use network wide interaction
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Behavioral-based Passive Measurement?assive mon-  of nodes. We classify applications based on the behavior of
itoring of P2P protocols is studied by Set et al. [48], target a community of nodes modeled using what we call Traffic
ing mainly the profiling of P2P hosts, including the mea- Dispersion Graphs. Simple graph measures allow TDGs of
surement of bandwidth usage and persistence in the overlayP2P traffic to be distinguished from other kinds of traffic.

The goal of the measurement is to support traffic engineer- However, TDGs are not sufficient by themselves. Build-
ing and not for P2P detection. Topological aspects of the ing a TDG requires a key that isolates flows of one appli-
overlay were highlighted as a way to improve the overlay’s cation from another. This is easy if applications use a fixed
sensitivity to failures of highly connected super peers. A port but is infeasible when applications use many ephemeral
similar study for large DNS traces [12] uses graphs in the ports, as new P2P applications do. Other features are needed
context of classifying DNS servers according to theirrale i  to group flows before constructing TDGs for each group.
the DNS-hierarchy and for generating a space-efficient DNS Bacause applications use a few common headers, we found
traffic summary. Neither work targets the classification of that the first 16 payload bytes was a useful feature. The
applications. grouping uses similarity measures without advance knowl-

A recent study by Latapy et al. [28], measured the evo- edge of signatures. However, each application can fragment
lution of TDG-like graphs between all the hosts exchang- into several clusters, and each cluster by itself has insuffi
ing a single packet of any type. Their goal was to show if cient evidence of application behavior. To remedy this, we
such huge graphs evolve over time at point where their basicmerged clusters based on node similarity.
graph properties remain stable. The high aggregationsfthi  TDGs based on the merged clusters identified P2P ap-
graph is very different from our separate view of the traffic plications with high accuracy. A useful side-effect of the
generated by different applications. Moreover, in coitt@s ~ methodology is signature extraction. Our offline analyisis (
our work, they did not target application classification. minutes) can yield signatures which can be used by a router

For the study of World Wide Web, Meiss et al. [37] used for P2P accounting and rate-limiting in real-time. While
sampled Web flows to extract statistics for the behavior of TDGs are only one component of our system, we believe
clients and servers regarding their cardinalities anddel| that TDGs introduce a space of new metrics and techniques
of traffic exchanged between them. Their work is extended for visualizing, summarizing, and analyzing network traffi
in [38] comparing their methods with P2P applications and  We also developed Graption, an agnostic P2P identifica-
providing a way to group ports based on user similarity. This tion tool, which exhibits good performance in our data teace
allows the grouping of all the dominant ports of a single ap- and has several key properties. First, the cluster merggmg s
plication together. allows detection through association. Nodes and flows can

Preliminary work [11] attempts to detect P2P applications be classified by their connections to an identified group in
using port-based methods based on the order of temporal apthe TDG even if the information about that node or flow is
pearance of hosts in the trace and the fact that P2P hosts usmsufficient for detection by itself. Second, because Grap-
the same port for incoming and outgoing connections. The tion makes use of information at multiple levels (packet,
work has not had any recent follow-up that we know of. flow, group) detection avoidance becomes harder: applica-

Signature Extraction. Automating the extraction of pay- tions must obfuscate their behavior at the packet, flow, host
load signatures has been studied for worm detection [49, 26]and network-wide levels.
and polymorphic worms [42, 31]. We are the first to utilize  Third, Graption performs agnostic traffic classificatiotwi
such techniques for automating signature extraction f& P2 a small number of intuitive parameters. Graption can detect
applications. In addition, Polygraph originally utilizetan- P2P protocols without a priori knowledge, and also gener-
ual insertion of worm flows (perhaps from a honey-pot, or ates effective packet signatures using just the first 16 first
a scanning detection process). With Graption , we automatepayload bytes. Monitoring 16 payload bytes per flow is pos-
the process of generating examples via TDGs and use Poly-sible in the current generation of NetFlow devices, and in-
graph at the back end of the system. In contrast to all othercreases the memory requirement only by a small factor.
techniques, we target only the first bytes of the payload. Finally, we designed Graption as a modular framework

Recently Park et al. [45] proposed heuristics for gener- where each component can be specialized to the detection
ating application signatures from a set of flows that belong problem at hand. For example, we briefly showed that TDG
to a particular application (e.g, MSN). Such methods can be measures could be used to detect scanning worms (Subsec-
used in future versions of Graption in case more complicatedtion 3.4.1 ). History teaches us that new (and possibly un-
signature are needed. Other methods [5, 6] use applicationwanted) applications keep appearing. In the future, other
binaries and are thus different from our approach that oper- graph metrics besides those we examine here or other pay-

ates using packets seen at the network core. load features besides the first sixteen bytes may prove more
important for classifying these applications, but our feam

6. CONCLUSIONS work should still prove valuable. We hope that Graption and
TDGs will find uses that go beyond the detection of P2P

The underlying theme of our work is a shift away from
monitoring packets, flows, or hosts, to monitoring a group

traffic.
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