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Abstract
Monitoring network traffic and detecting unwanted applica-
tions has become a challenging problem, since many applica-
tions obfuscate their traffic using arbitrary port numbers or
payload encryption. Apart from some notable exceptions, most
traffic monitoring tools follow two types of approaches: (a)
keeping traffic statistics such as packet sizes and inter-arrivals,
flow counts, byte volumes, etc., or (b) analyzing packet content.
In this work, we propose the use of Traffic Dispersion Graphs
(TDGs) as a powerful way to monitor, analyze, and visualize
network traffic. TDGs model the social behavior of hosts (“who
talks to whom”), while the edges can be defined to represent
different interactions (e.g. the exchange of a certain number
or type of packets). With the introduction of TDGs, we are
able to harness the wealth of tools and graph modeling tech-
niques from a diverse set of disciplines. First, we fully explore
the abilities of TDGs as an intuitive and visually powerful tool.
Second, we demonstrate their usefulness in application classi-
fication and intrusion detection solutions. Finally, we provide
a hardware-aware design and implementation for TDG-based
techniques. We conclude that TDGs are powerful, useful, and
can be implemented efficiently in hardware. They constitute a
promising new chapter for network monitoring techniques.

Keywords: Network Monitoring, Network Introspection, Traffic
Measurements, Host Social Behavior, Graph Mining.

1 Introduction
The fundamental problem that motivates this paper is the
need for better tools to monitor networks, that allow the de-
tection and control of undesired applications in a network.
Worms and viruses continue to be an expensive concern
given that networked services and disruptions are estimated
to have cost $17.5 billion in 2005 [1]. At the same time P2P
applications have fundamentally affected the music industry
forcing the music industry to go online. P2P has also revo-
lutionized telephone service via Skype. One consequence of
this is a proliferation of companies that help ISPs detect and
potentially delay or block Skype and other P2P traffic. How-
ever, P2P authors have responded by obfuscating their traffic.
In both the case of malcode and P2P, the standard approaches
using content signatures seems destined to fail in the face of

encryption (e.g., for P2P traffic) and polymorphism (e.g., for
worms).

These forces suggest the need for a more fundamental be-
havioral approach to characterize traffic in the face of obfus-
cation. At the same time, the field Social Network Analysis
has provided an important set of metrics and analytical tools
for researchers in fields ranging from anthropology to psy-
chology. Colloquially, social networks study “who knows
who and through who”. If we replace individuals in social
network theory with say individual IP addresses, it is natural
to ask the question: can we use social network measures to
more finely characterize applications?

Comparison with current monitoring tools: Current mon-
itoring and application classification methods can be classi-
fied by their level of observation: (a) packet level, such as
signature-based worm detection, [2, 3] (b) flow level, based
on NetFlow records such as statistical approaches, [4, 5], and
(c) host level, such as host-profiling approaches [6, 7].

Using a network wide social network graph is the natural
next step in the progression of packet, flow, and host level
monitoring as shown in the following figure. This is because
a flow aggregates a set of packets, a host aggregates a set of
flows originating and terminating at the host, and a graph ag-
gregates a group of hosts. In other words, we can analyze the
“social” interaction of the network as a whole, which leads
to a graph where each node is an IP address, and each direc-
tional edge represents an interaction between two nodes.

We use the term Traffic Dispersion Graph or TDG to
refer to this graph. We argue that there is a wealth of infor-
mation embedded in a TDG. For example, a popular website
will have a large in-degree, while DNS servers will form a
hierarchy. Despite what may appear at first, the definition of
TDGs is non-trivial, as it hinges on how we define an edge.
An edge can represent the exchange of at least one packet,
but it can also be the exchange of at least of one TCP SYN
packet, or more than, say, five packets of any type. In other
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words, a TDG can represent a particular type of interaction,
which gives them significant descriptive power, as we dis-
cuss later in detail.

Apart from some notable exceptions, TDGs have been
mostly ignored. We attribute this to two concerns, namely,
(a) whether TDGs can really capture interesting information
that we don’t already know, and (b) whether they can be use-
ful in practice since they seem to require the maintenance
of network-wide information. A few research efforts, most
of them recent, hint at the capabilities of TDGs. The first
work using graphs for intrusion detection appears in 1999
[8], without any recent follow up work. Recently, a few ef-
forts use graph-based techniques to detect worm outbreaks
and pinpoint the origin of the infection [9, 10]. Note that
these efforts focus on worms, and they do not seem to be con-
cerned with hardware implementation issues. In addition,
some companies like Mazu [11] and Arbor [12] Networks,
seem to use proprietary graph-based techniques. Here, we
build on the limited current work, but we argue that it has
not come close to exploring the full potential of TDGs.

In this paper, our main goal is to propose TDGs as a rad-
ically different way of modeling traffic behavior, and show
that they: (a) provide powerful new capabilities, and (b) can
be implemented efficiently in hardware. TDGs describe the
traffic along a new “dimension”, the network-wide social be-
havior, which complements the traffic characterization at the
packet, flow and host level. We provide preliminary evi-
dence that we can implement TDGs in hardware, potentially
at Gbps links, which can increase their impact in practice
tremendously. In fact, deployability is a running theme in
our work, and we consider it when we explore graph metrics
for TDGs.

Our contributions focus on the following questions:

• What properties do TDGs have, and do these proper-
ties lend themselves naturally to visualization or auto-
matic tools? We first show the promise of TDGs as a
visualization tool. In a qualitative way, we explore the
potential of TDGs and, at the same time, derive some
guidelines which we use later in our work. We also
show that TDGs are not just another scale-free graph,
as they have different properties (e.g. rich club connec-
tivity) compared to scale-free graphs. In fact, TDGs are
not one family of graphs with common properties. We
find that different applications have significantly differ-
ent TDGs, which is exactly what gives them descriptive
power.

• For what applications do TDGs appear immediately
useful? We show that TDGs are useful by using them
for (a) application classification and (b) intrusion detec-
tion. We identify metrics that can easily pinpoint appli-
cations effectively, and we develop compact visualiza-
tions based on pairs of carefully chosen metrics.

• Can TDGs be implemented at high speeds? Having es-
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Figure 1: Example TDG with five nodes and six directional links.

tablished that TDGs are interesting and useful, we ex-
amine their practical limitations: we show that they can
be implemented at high speeds with low memory re-
quirements. Towards this goal, we develop techniques
for sampling a TDG graph efficiently. We show how
we can implement several fundamental measures (e.g.
degree distributions) in an online fashion and with rea-
sonable hardware resources.

We envision our graph-based techniques and their efficient
implementation as the beginning of a toolset for dynamically
composable hardware functions. The different definitions of
an edge and the graph metrics can be thought of as filters,
which can be combined. For example, we can decide to iden-
tify the top-10 most active destination port numbers, and for
each one, monitor edges with TCP SYN packets, and esti-
mate the resulting degree distribution of the resulting TDG
graphs. Clearly, the TDG functionality could be synergistic
with packet-based and flow-based approaches. For example,
given a target packet signature, we can generate a TDG graph
with edges that have exchanged this packet at least once.

The outline of the rest of this paper is as follows. In Sec-
tion 2 we introduce the formal definition of a TDG, associ-
ated with a key, and the concept of edge filtering. In Sec-
tion 3, we visualize and provide a quantitative description
of TDGs. In Section 4 we show they are useful in identify-
ing concealed applications and malcode. We discuss imple-
mentation issues in Section 5. Related work is discussed in
Section 6 and, finally, we conclude the paper in Section 7.

2 Traffic Dispersion Graphs
Definition: A traffic dispersion graph is a graphical repre-
sentation of the various interactions (“who talks to whom”)
of a group of nodes. In IP networks, a node of the TDG
corresponds to an entity with a distinct IP address and the
graph1 captures the exchange of packets between various
sender and destination nodes. For example, Fig. 1 depicts
a TDG with five nodes {H1, ...,H5}. In the general case,
the directed graph is not simple since we could have an edge
(H1,H2) and an edge (H2,H1) as shown in Fig. 1. More-
over, note that a TDG, by definition, is a graph that evolves

1We want to make the distinction that the physical topology of the net-
work does not have an effect on the TDG that the nodes form. However,
given that our work will be based on measured data, our observation point(s)
will most likely not be able to capture all the interactions, but only the pack-
ets that pass through the point of observation. We discuss this issue further
in Section 3.
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Name Date/Time Type Duration Unique IPs Unique Dst. Port Numbers 5-tuple Flows Avg. Utilization Mbps (Kpkt/s)
WIDE 2006-03-03/13:00 Backbone 2 h 1,041,622 TCP=62,463 UDP=64,727 4,670,259 31.0 (9.7)
AUCK 2003-12-05/12:05 Access Link 1 h 97,982 TCP=50,251 UDP=11,370 854,417 13.0 (3.0)
OC48 2003-01-15/10:00 Backbone 1’02 h 2,945,800 TCP=65,536 UDP=55,264 22,109,681 589.0 (127.8)
UCSD Controlled Honeypot LAN 5 m 466 TCP=157 UDP=6 1470 0.389 (0.041)

Table 1: The set of publicly available trace from the WIDE Backbone, CAIDA and the University of Auckland (source: NLANR).

both in time and space as various nodes interact with each
other. Hence, the edges in a TDG have an implicit temporal
relation which is shown in Fig. 1 by labeling the edges in
the order in which the corresponding node-interactions were
observed in the network. This also means that a given static
TDG has an associated time interval over which it evolved.
We discuss the effect of the time interval on the observed
TDG properties in later sections.

Edge Filters: One of the fundamental questions in using
TDGs is the definition of an edge. This basic question can
be answered in many different ways depending on the goal
of the study. We start with the observation that the edges
in a TDG are directed because there is a clear definition of
sender and receiver in every data packet. In general, the di-
rected edges in a TDG can be used to identify the initiator
of the interaction between a pair of nodes. As we will later
see, directed edges in a TDG are very useful in identifying
various node behaviors and also in establishing their causal
relationship2.

Besides direction, it is important to define what kind or
level of interaction between a pair of nodes should be trans-
lated into an edge in the TDG. We call this process Edge
Filtering. One simple edge filter is to add an edge (u, v) be-
tween nodes u and v when the first packet is sent from u
to v in the interval of observation. Once an edge is added,
the filter ignores any further packets sent from u to v. We
call this edge filter as the Edge on First Packet (EFP), and is
mainly used for translating UDP flows between nodes into
TDG edges. Note that the EFP filter considers the sender of
the first packet as the initiator of the interactions between the
two nodes. Hence, this filter may sometimes inaccurately de-
termine the initiator of node interactions, particularly when
the interaction starts before the beginning of the time interval
of observation.

Unlike UDP flows, TCP flows have an explicit definition
of initiation of interaction between two nodes. For TCP
flows, we can choose to add a directed edge (u, v) between
two nodes u and v when the first SYN packet is sent from
u to v. We call this filter as the Edge on First Syn Packet
(EFSP) filter. While, the EFSP filter is applicable only to
TCP flows, it can accurately determine the initiator of the
interactions between a pair of nodes.

Various Types of Filters: In addition to this basic edge
filtering, we can enrich the definition of what constitutes an
edge by imposing “stricter” rules that capture different as-
pects of the interaction. For example, we can have filters for

2However, we could choose to consider undirected edges, which will
enable us to use the more extensively studied graph metrics for undirected
graphs, as discussed in later sections.

“allowing” an edge between a pair of nodes based on: (a)
the number of packets/bytes exchanged, (b) the type and se-
quence of packets (e.g., TCP three-way handshake), (c) the
transport protocol used (TCP, UDP, ICMP etc.), (d) the ap-
plication based on port number or port number range (e.g.,
Port Number 80, or Port Range 6880-6889), and finally (e)
looking at properties of the content, such as payload size or
by using deep packet inspection (e.g., generate a TDG using
all packets that match a suspicious content signature [3]).

3 Understanding TDGs
In this section, we illustrate the ability of TDGs to capture
interesting traffic phenomena and properties. We begin with
an intuitive understanding of their capabilities and then we
study and quantify some distinguishing features.
Network Traffic Traces: To study and analyze TDGs, we
use a variety of publicly available real-traffic traces as well
as a LAN trace generated in a controlled honeypot environ-
ment (Table 1). For processing and generating the statistics
we use the CoralReef [13] suite developed at CAIDA [14].
As can be seen from Table 1, the traces cover both an access
link to a large enterprise network (i.e., University of Auck-
land) as well as backbone traffic (CAIDA [15], WIDE [16]).
We verified our finding with many other traces provided by
the same online sources [16, 14, 17]. However, we chose not
to include those results for brevity. All of our traces, except
UCSD, are capture on a single bidirectional link and hence
reveal only the node interactions that cross the monitoring
point. Note that if TDGs are implemented on a firewall or
router, they will most likely see exactly that. Therefore, ana-
lyzing TDGs derived from one point of observation is closer
to a practical deployment. Clearly, the TDGs formed by such
traces are inherently bipartite. Observing all the network in-
teractions, say within an enterprise network, would provide
a more complete view of the network. We discuss this issue
later in our paper.

3.1 TDG Visualization

We argue that TDGs provide excellent visual insight into the
network traffic. So far, visualization of traffic in monitoring
tools has largely been limited to measures of traffic volumes
on a per flow basis.

TDGs lend themselves to simple yet insightful graphical
visualizations. For example, the graphs in Fig. 2 show a sim-
ple set of TDGs, where we filter the edges for distinct Port
Numbers. Throughout the paper and unless stated otherwise,
when the legacy application for a port uses TCP, we use the
EFSP edge filter on the corresponding destination port (e.g.,
Port 25 for SMTP, Port 80 for HTTP etc). When we examine
UDP interactions, we use the EFP edge filter on the desti-
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(a) All UDP flows excluding Slammer
Worm (5 sec)
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(b) All UDP flows including Slammer
worm (5 sec)
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(c) DNS (5 sec)

1

2

3 5 3

6 7 0

6 9 2

1 0 0 0

1 0 2 0

3

4

5

6

7

8

1 8

4 2

4 3

6 3

7 8

8 9

1 5 5

2 4 1

2 4 3

3 1 9

4 2 5

4 4 0

6 4 8

6 8 9

7 6 0

7 8 4

1 0 0 7

9

1 0

1 1

1 2

1 7

2 8

5 0

5 1

6 5

1 0 7

1 1 7

1 3 2

1 3 7

1 3 8

1 4 2

1 4 8

1 6 3

1 7 3

1 7 9

1 8 1 1 8 3

1 8 4

1 8 8

1 9 0

2 0 3

2 0 52 0 7

2 4 4

2 5 3

2 7 3

2 7 6

2 8 4

2 9 0

2 9 2

2 9 9

3 4 2

3 4 9

3 6 2

3 6 4

3 6 6

3 8 3

3 8 8

3 8 9

4 0 4

4 0 5

4 1 3

4 1 7

4 2 8

4 4 7

4 6 9

4 9 1

5 0 0

5 0 9

5 1 7

5 3 3

5 5 0

5 7 6

5 7 8

5 8 4

6 0 1

6 0 3

6 7 4

7 0 4

7 0 6

7 1 7

7 2 5

7 2 6

7 3 0

7 4 2

7 4 4

7 5 0

7 9 7

7 9 9

8 8 4

9 0 7

9 8 8

9 8 9

1 3

1 4

3 6

5 4

1 0 9

1 7 5

1 7 8

2 4 9

3 0 8

3 5 0

3 7 1

3 7 7

4 1 8

4 5 2

5 0 5

5 1 5

5 1 8

5 2 7

5 5 5

5 7 4

5 7 7

5 9 9

6 2 3

6 3 5

6 5 6

6 8 1

6 9 0

7 0 5

7 2 0

7 3 6

7 8 2

8 0 5

8 0 6

8 2 5

8 3 2

8 3 3

8 5 9

8 9 9

9 1 8

9 1 9

9 2 4

9 5 5

9 6 0

9 6 1

9 7 5

9 8 4

9 8 6

1 5

1 6

3 0

4 9

3 7 8

1 9

2 0

1 4 9

2 1

2 2

4 8

2 3

2 4

2 5

2 6

5 7 0

7 7 1

2 7

2 9

7 0

8 2

9 6

1 9 8

3 2 3

3 5 2

3 9 6

4 3 0

5 4 4

5 7 1

6 1 9

6 2 1

6 6 8

7 9 6

8 8 6

9 0 0

9 9 8

3 1

3 2

3 3

3 4

3 5

5 3 7

8 1 6

3 7

3 8

3 9

4 0

6 4 7

8 3 0

4 1

4 4

4 5

4 6

4 7

1 5 2

1 9 7

2 4 2

5 3 9

6 8 0

6 8 7

7 7 6

8 0 2

8 2 6

9 0 6

5 2

5 3

5 5

5 6 5 7

5 8

5 9

6 0

6 1

6 2

7 2

1 0 0

1 9 2

2 0 9

2 3 8

4 5 5

6 0 8

6 1 8

6 8 8

7 9 0

6 4

9 5 2

9 6 6

6 6

6 7

1 4 6

1 7 1

1 8 2

2 2 8

2 8 5

2 8 9

3 0 2

3 3 4

3 5 8

4 2 4

4 6 3

4 7 3

5 1 9

5 3 5

5 3 65 5 6 5 7 5

5 8 9

6 0 2

6 0 4

6 2 0

6 2 2

6 7 5

6 8 2

6 8 4

6 9 4

7 5 4

8 8 8

9 1 1

9 2 0

9 2 3

9 3 8

9 5 7

9 7 6

6 8

6 9

2 1 8

7 1

4 4 1

7 3

7 4

2 3 0

5 4 1

7 5

7 6

7 7

7 9

8 0

8 1

1 2 9

8 3

8 4

5 2 0

8 5

8 6

2 8 1

8 7

8 8

1 4 3

3 4 1

9 0

9 1

9 2

9 3

9 4

9 2 5

9 5

9 7

9 8

2 4 0

9 9

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 8

2 0 8

1 1 0

1 1 1

1 1 2

1 1 3

1 1 4

1 1 5

1 1 6

1 9 1

1 1 8

1 1 9

1 2 0

1 2 1

1 5 0

2 0 4

2 6 9

2 9 7

2 9 8

3 2 0

3 4 0

3 9 2

4 0 6

4 0 9

4 3 3

5 9 8

6 0 5

6 5 2

6 5 9

6 6 9

6 9 3

7 2 1

8 4 6

8 9 3

8 9 5

8 9 6

8 9 8

9 4 1

9 5 4

1 0 0 6 1 2 2

1 2 3

1 2 4

1 2 5

6 3 8

8 7 4

1 2 6

1 2 7

1 2 8

1 3 0

1 3 1

1 3 3

1 3 4

1 3 5

1 3 6

1 3 9

1 4 0

1 4 1

1 4 4

1 4 5

1 4 7

1 5 1

1 5 3

1 5 4

1 5 6

1 5 7

1 5 8

1 5 9

1 6 0

1 6 1

1 6 2

1 0 1 9

1 0 2 5

1 6 4

1 6 5

1 6 6

1 6 7

1 6 8

1 6 9

1 7 0

7 7 8

1 7 2

1 7 4

9 4 0

1 7 6

1 7 7

1 8 0

1 8 5

1 8 6

2 3 3

1 8 7

1 8 9

1 9 3

1 9 4

1 9 5

1 9 6

1 9 9

2 0 0

2 0 1

2 0 2

2 0 6

2 1 0

2 1 1

2 1 2

6 9 8

2 1 3

2 1 4

2 1 5

2 1 6

7 5 8

2 1 7

2 1 9

2 2 0

2 2 1

2 2 2 2 2 3

2 2 4

2 2 5

2 2 6

2 2 7

2 5 2

2 6 3

6 4 4

7 5 1

2 2 9

2 3 1

2 3 2

2 3 4

2 3 5

2 4 8

2 7 4

4 2 3

4 4 2

4 4 5

5 8 1

2 3 6

2 3 7

2 3 9

2 4 5

2 4 6

2 4 7

2 5 0

2 5 1

2 5 4

2 5 5

2 5 6

2 5 7

2 5 8

4 2 7

7 6 6

7 7 7

2 5 9

2 6 0

1 0 2 6

2 6 1

2 6 2

5 8 2

9 0 8

9 2 6

2 6 4

2 6 5

2 6 6

3 0 0

2 6 7

2 6 8

4 7 9

4 9 2

7 3 1

9 4 8

9 5 8

9 7 4

2 7 0

2 7 1

2 7 2

2 7 5

2 7 7

2 7 8

2 7 9

2 9 6

2 8 0

2 8 2

2 8 3

3 3 2

3 3 3

4 7 7

6 6 7

9 3 1

2 8 6

2 8 7

2 8 8

6 5 7

2 9 1

2 9 3

2 9 4

2 9 5

3 0 1

3 0 3

3 0 4

3 0 5

3 0 6

3 0 7

3 0 9

3 1 0

3 1 1

3 1 2

3 1 3

3 1 4

3 1 5

3 1 6

3 1 7

3 1 8

8 6 6

3 2 1

3 2 2

3 2 4

3 2 5

3 3 9

3 2 6

3 2 7

7 8 5

3 2 8

3 2 9

3 9 7

4 5 3

4 8 2

5 8 0

3 3 0

3 3 1

3 3 5

3 3 6

4 1 6

4 4 6 5 9 6

6 1 0

6 1 1

6 1 7

6 3 3

6 5 3

3 3 7

3 3 8

3 4 3

3 4 4

3 4 5

3 4 6

3 4 7

4 8 6

3 4 8

3 5 1

3 5 43 5 5

3 5 6

3 5 7

3 5 9

3 6 0

3 6 1

3 6 3

3 6 5

3 6 7

3 6 8

3 6 9

6 7 3

3 7 0

3 7 2

3 7 3

4 2 1

3 7 4

3 7 5

3 7 6

3 7 9

3 8 0

3 8 1

3 8 2

3 8 4

3 8 5

3 8 6

4 3 9

3 8 7

3 9 0

3 9 1

3 9 3

3 9 4

3 9 5

8 7 5

3 9 8

3 9 9

4 0 0

4 3 6

4 0 1

4 0 2

4 0 3

4 0 7

4 0 8

4 1 0

4 1 1

4 1 2

4 1 4

4 1 5

4 1 9

4 2 0

7 4 0

4 2 2

4 2 6

4 2 9

5 4 9

4 3 1

6 4 6

7 5 2

9 9 1

4 3 2

4 3 4

4 3 5

4 3 7

4 3 8

4 4 3

4 4 4

4 4 8

4 4 9

4 5 0

4 5 1

4 5 4

4 5 6

4 5 7

4 5 8

4 5 9

4 6 0

4 6 1

4 6 2

4 7 8

5 4 0

7 1 4

7 2 7

7 3 3

4 6 4

4 6 5

4 6 6

4 6 7

4 6 8

5 0 1

5 2 6

4 7 0

4 7 1

4 7 2

4 7 4

4 7 5

4 7 6

4 8 0

4 8 1

4 8 3

4 8 4

5 8 5

4 8 5

4 8 7

4 8 8

4 8 9

4 9 0

4 9 3

4 9 4

4 9 5

4 9 6

6 3 9

4 9 7

4 9 8

4 9 9

5 0 2

5 0 3

5 0 4

5 0 6

5 0 7

5 0 8

5 1 0

5 1 1

5 1 2

5 1 3

5 1 4

6 6 3

1 0 0 3

5 1 6

5 2 1

5 2 2

5 2 3

5 2 4

5 2 5

5 2 8

5 2 9

5 3 0

5 3 1

5 3 2

5 3 4

5 3 8

5 4 2

5 4 3

5 4 5

5 4 6

5 4 7

5 4 8

5 5 1

5 5 2

5 7 2

5 5 3

5 5 4

7 3 2

7 4 8

7 5 5

7 8 8

7 8 9

7 9 8

8 0 1

9 1 0

9 8 5

5 5 7

5 5 8

7 6 8

8 8 9

8 9 7

5 5 9

5 6 0

5 6 1

5 6 2

5 6 3

8 0 8

5 6 4

5 6 5

5 6 6

5 6 7

5 6 8

5 6 9

7 1 9

8 8 7

5 7 3

5 7 9

5 8 3

5 8 6

5 8 7

5 8 8

5 9 0

5 9 1

5 9 2

5 9 3

5 9 4

5 9 5

5 9 7

6 0 0

6 0 6

6 0 7

7 2 8

9 6 7

6 0 9

6 1 2

6 1 3

6 1 4

6 1 5

6 1 6

6 2 4

6 2 5

6 2 6

6 2 7

6 2 8

6 2 9

6 3 0

6 3 1

6 3 2

6 3 4

6 3 6

6 3 7

6 4 0

6 4 1

6 4 2

6 4 3

6 4 5

6 4 9

6 5 0

7 8 6

6 5 1

6 5 4

6 5 5

6 5 8

6 6 0

6 6 1

6 6 2

6 6 4

8 2 3

6 6 5

6 6 6

6 7 1

6 7 2

6 7 6

6 7 7

6 7 8

6 7 9

6 8 3

6 8 5

6 8 6

6 9 1

6 9 5

6 9 6

6 9 7

6 9 9

7 0 0

7 5 9

7 0 1

7 0 2

7 0 3

7 0 7

7 0 8

7 0 9

7 3 5

7 1 0

7 1 1

7 1 2

7 1 3

7 1 5

7 1 6

7 1 8

7 2 2

7 2 3

7 2 4

7 2 9

7 3 4

8 4 8

8 4 9

8 5 1

8 6 2

9 1 7

7 3 7

7 3 8

7 3 9

7 4 1

7 4 3

7 4 5

7 4 6

7 4 7

7 4 9

7 5 3

7 5 6

7 5 7

7 6 1

7 6 2

7 6 3

7 6 4

7 6 5

7 6 7

7 6 9

7 7 0

9 3 5

7 7 2

7 7 3

8 1 7

7 7 4

7 7 5

7 7 9

7 8 0

7 8 1

7 8 3

7 8 7

7 9 1

7 9 2

7 9 3

7 9 4

9 5 1

1 0 2 2

7 9 5

8 0 0

8 1 0

8 1 2

8 0 3

8 0 4

8 0 7

8 0 9

8 1 1

8 1 3

8 1 4

8 1 5

9 5 9

8 1 8

8 1 9

8 2 0

8 2 1

8 2 2

8 2 4

8 2 7

8 2 8

8 2 9

8 3 1

8 3 4

8 3 5

8 3 6

8 3 7

8 3 8

8 3 9

8 4 0

8 4 1

8 4 2

8 4 3

8 4 4

8 4 5

8 4 7

9 5 3

8 5 0

8 5 2

8 5 3

8 5 4

8 5 5

8 5 6

8 5 7

8 5 8

8 6 0

8 6 1

8 6 3

8 6 4

8 6 5

8 6 7

8 6 8

8 6 9

8 7 0

8 7 1

8 7 2

8 7 3

8 7 6

8 7 7

8 7 8

8 7 9

8 8 0

8 8 1

8 8 2

8 8 3

8 8 5

8 9 0

8 9 1

8 9 2

9 6 3

8 9 4

9 0 1

9 0 2

9 0 3

9 0 4

9 0 5

9 0 9

9 1 2

9 1 3

9 1 4

9 1 5

9 1 6

9 3 9

9 2 1

9 2 2

9 2 7

9 2 8

9 4 3

9 2 9

9 3 0

9 3 2

9 3 3

9 3 4

9 3 6

9 3 7

9 4 2

9 4 4

9 4 5

9 4 6

9 4 7

9 4 9

9 5 0

9 5 6

9 6 2

9 6 4

9 6 5

9 6 8

9 6 9

9 7 9

9 7 0

9 7 1

9 7 2

9 7 3

9 8 7

9 7 7

9 7 8

9 8 0

9 8 1

9 8 2

9 8 3

9 9 0

9 9 2

9 9 3

9 9 4

9 9 5

9 9 6

9 9 7

9 9 9

1 0 0 1

1 0 0 2

1 0 0 4

1 0 0 5

1 0 0 8

1 0 0 9

1 0 1 0

1 0 1 1

1 0 1 2

1 0 1 3

1 0 1 4

1 0 1 5

1 0 1 6

1 0 1 7

1 0 1 8

1 0 2 1

1 0 2 3

1 0 2 4

1 0 2 7

1 0 2 8

1 0 2 9

1 0 3 0

1 0 3 1

1 0 3 2

(d) HTTP (30 sec)

1

2

5 9 8

9 1 5

3

4

5 9 7

7 7 2

1 0 1 8

5

6

2 2

2 33 3

4 5

4 6

4 7

5 0

4 3 0

4 3 1

4 3 4

4 4 0

4 4 2

4 6 1

7 3 1

7 3 2

7 3 5

7 3 8

7 3 9

7 4 2

8 1 8

1 0 7 7

1 0 7 8

1 0 8 1

1 0 8 2

1 0 8 3

7

8

9

2 6

4 2

4 9

7 6

8 5

9 1

1 0 1

1 0 4

1 0 51 0 6

1 0 7

1 0 8

1 0 9

1 1 1

1 1 2

1 1 5

1 1 9

1 2 0

1 2 2

1 2 3

1 2 5

1 2 6

1 2 9

1 3 3

1 3 8

1 3 9

1 4 0

1 4 3

1 4 4

1 4 7

1 4 8

1 5 1

1 5 2

1 5 5

1 5 8

1 6 2

1 6 4

1 6 6

1 6 9

1 7 1

1 7 2

1 7 6

1 8 0

1 8 1

1 8 4

1 8 6

1 8 9

2 0 1

2 0 2

2 0 3

2 0 5

2 0 8

2 1 1

2 1 2

2 1 9

2 2 2

2 2 3

2 2 9

2 3 1

2 3 5

2 3 8

2 4 1

2 4 5

2 4 7

2 5 1

2 5 5

2 5 6

2 5 7

2 6 1

2 6 6

2 6 7

2 6 9
2 7 1

2 7 2

2 7 3

2 7 5

2 7 6

2 9 2

2 9 3

2 9 4

2 9 9

3 0 0

3 0 1

3 0 4

3 0 8

3 0 9

3 1 4

3 1 5

3 1 6

3 1 7

3 1 8

3 2 1

5 5 5

6 4 3

6 7 6

1 0

1 1

2 6 0

2 9 0

3 4 4

4 1 2

4 1 3

4 6 7

5 3 7

1 0 6 7

1 0 7 0

1 2

1 3

1 4

1 5

5 0 2

1 6

1 7

1 8

1 9

5 5

6 3

6 6

7 0

8 7

9 3

1 0 3

1 1 7

1 5 0

1 9 4

2 1 7

2 6 3

3 1 9

3 4 3

3 5 1

3 5 9

3 6 3

3 6 9

3 7 2

3 9 6

4 0 0

4 4 9

4 5 6

4 7 0

5 2 4

5 5 2

5 6 1

5 6 2

5 7 6
5 7 8

5 8 0

5 8 1

5 8 4

6 0 3

6 1 4

6 2 1

6 2 8

6 3 0

6 5 5

6 5 7

6 5 9

6 8 3

6 8 7

6 8 8

7 4 6

7 5 2
7 5 3

7 5 4

7 5 5

7 5 7

7 5 9

7 6 0

7 6 1

7 6 2

7 6 3

7 6 5

7 6 6

7 6 7

7 6 8

7 6 9

7 7 0

7 7 1

7 7 3

7 7 4

7 7 5

7 7 6

7 7 7

7 7 8

7 7 9

7 8 0

7 8 1

7 8 2

7 8 3

7 8 4

7 8 5

7 8 6

7 8 7

7 8 8

7 8 9

7 9 0

7 9 1

7 9 2

7 9 3

7 9 4

7 9 5

7 9 6

7 9 7

7 9 8

7 9 9

8 0 0

8 0 1

8 0 2

8 0 3

8 0 4

8 0 5

8 0 6

8 0 7

8 0 8

8 0 9

8 1 1

8 1 2

8 1 3

8 1 4

8 1 5

8 1 6

8 1 7

8 1 9

8 2 0

8 2 1

8 2 2

8 2 3

8 2 4

8 2 5

8 2 6

8 2 8

8 2 9

8 3 0

8 3 1

8 3 2

8 3 3

8 3 4

8 3 6

8 3 7

8 3 8

8 3 9

8 4 1

8 4 2

8 4 3

8 4 9

8 5 0

8 5 1

8 5 3

8 5 5

8 5 6

8 5 7

8 5 9

8 6 1

8 6 4

8 6 5

8 6 6

8 6 7

8 6 8

8 6 9

8 7 1

8 7 2

8 7 3

8 7 6

8 7 7

8 8 0

8 8 1

8 8 2

8 8 3

8 8 4

8 8 5

8 8 7

8 8 8

8 8 9

8 9 0

8 9 3

8 9 4

8 9 5

8 9 7

9 0 0

9 0 5

9 0 7

9 0 9

9 1 1

9 1 2

9 1 6

9 2 1

9 2 3

9 2 5

9 2 6

9 2 7

9 2 8

9 3 0

9 3 1

9 3 2

9 3 3

9 3 5

9 3 9

9 7 5

9 9 9

1 0 0 4

1 0 0 5

1 0 0 7

1 0 1 2

1 0 3 7

2 0

2 1
5 6

6 4

6 7

6 9

7 1

7 4

7 7

7 8

9 6

1 5 3 2 0 0

2 3 3
2 3 6

2 4 3
2 4 8

2 5 0

2 8 3

3 0 3

3 2 2

3 3 0

3 3 4

3 4 6

3 6 1

3 6 2

3 7 3

3 7 6

3 8 0

3 8 6

4 0 5

4 4 5

4 9 2

6 2 7

6 3 2

6 7 2

6 7 7

7 2 3

8 5 4

8 5 8

8 7 0

9 3 6

9 3 8

9 4 0

9 4 1

9 4 5

1 0 3 6

1 0 7 2

2 4

2 5

2 7

2 8

5 0 4

2 9

3 0

1 9 5

6 0 4

1 0 2 6

3 1

3 2

7 0 0

3 4

3 5

3 6

3 7

1 8 2

2 7 7

3 1 3

3 8

3 9

4 0

4 1

2 0 9

4 3

4 4

1 3 2

3 7 5

3 7 7

3 8 1

3 8 9

5 0 5

5 0 8

5 1 0

5 4 0

5 4 2

5 4 3

5 4 4

5 4 6

5 4 7

5 4 8

5 4 9

5 8 2

5 8 5

5 8 6

5 8 9

5 9 2

6 0 8

8 3 5

1 0 4 7

4 8

8 2

9 2

9 4

2 8 5

8 5 2

9 7 1

5 1

5 2

5 3

1 1 0

3 0 7

3 5 4

3 6 7

3 9 8

4 4 8

4 6 2

4 9 0

5 3 6

1 0 0 1

5 4

1 9 0

2 1 8

3 2 0

4 0 6

6 3 3

5 7

5 8

9 9 8

5 9

6 0

7 4 7

6 1

6 2

8 4

9 5

1 3 6

2 5 8

2 7 8

2 8 4

2 9 1

2 9 8

3 2 4

4 0 4

4 2 0

5 3 2

5 5 0

6 0 2

6 2 4

6 3 4

6 3 8

6 4 9

6 6 1

6 6 2

6 6 3

6 6 4

6 6 7

6 8 0

7 0 5

7 1 5

7 2 7

7 4 8

7 5 0

8 8 6

1 0 1 0

1 0 7 5

6 5

2 7 4

5 2 3

9 0 2

6 8

1 6 5

1 9 3

3 3 3

3 9 4

4 3 9

4 9 7

1 0 5 3

7 2

7 3

3 5 0

4 6 65 1 1

5 2 5

5 5 8

5 9 6

6 3 7

7 2 0

8 7 9

8 9 6

9 1 7

9 8 6

1 0 6 6

1 0 8 0

7 5

7 9

2 1 5

2 3 0

2 6 5

2 9 7

3 3 2

3 4 7

3 9 7

4 0 1

4 0 2

4 1 5

4 3 2

4 4 6

4 5 8

5 3 1

7 0 8

9 9 4

1 0 4 8

8 0

8 1

7 3 6

9 6 4

8 3

8 6

9 8 2

8 8

8 9

9 0

4 8 7

9 5 8

9 7

9 8

9 9

1 0 0

2 8 2

4 6 4

4 9 1

1 0 2

4 4 3

1 0 2 8

1 1 3

1 1 4

1 1 6

2 1 4

2 1 6

4 7 9

7 0 6

7 3 3

9 4 9

1 1 8

1 2 1

1 2 4

1 2 7

1 2 8

1 3 0

1 3 1

1 5 7

1 3 4

1 3 5

4 1 6

1 3 7

1 0 0 8

1 4 1

1 4 2

5 6 8

5 6 9

1 4 5

1 4 6

2 9 5

3 7 4

6 5 8

8 6 0

9 6 7

1 4 9

1 5 4

1 5 9

1 6 3

1 6 8

1 7 0

7 3 7

7 4 1

7 4 3

7 4 5

7 5 1

1 5 6

1 6 0

1 6 1

1 6 7

1 7 3

1 7 4

1 7 5

1 7 7

1 7 8

1 7 9

1 8 3

1 8 5

1 8 7

1 8 8

1 9 1

1 9 2

1 9 6

1 9 7

1 9 8

1 9 9

2 0 4

2 0 6

2 0 7

6 3 5

6 6 0

2 1 0

2 1 3

2 2 0

2 2 1

3 8 5

3 9 9

9 6 3
2 2 4

2 2 5

2 2 6

2 2 7

2 3 4

2 3 7

2 4 4

2 4 9

2 5 4

2 2 8

2 3 2

2 3 9

2 4 0

2 4 2

2 4 6

2 5 2

2 5 3

3 2 8

2 5 9

2 6 2

4 6 9

5 3 3

8 9 8

2 6 4

2 6 8

2 7 0

2 7 9

2 8 0

2 8 1

2 8 6

2 8 7

2 8 8

3 7 9

5 8 8

6 2 2

6 3 6

6 4 4

7 4 9

9 4 4

9 9 7

1 0 2 5

1 0 2 9

1 0 3 3

1 0 3 4

1 0 3 5

1 0 3 9

1 0 4 0

1 0 4 2

1 0 4 3

1 0 4 5

1 0 4 6

2 8 9

2 9 6

3 0 2

3 0 5

3 0 6

3 1 0

3 1 1

3 1 2

4 3 7

4 3 8

4 4 1

4 4 4

4 5 0

4 5 3

4 9 5

6 4 6

3 2 3

3 9 0

3 2 5

3 2 6

3 2 7

3 2 9

3 3 1

3 3 5

3 3 6

3 3 7

3 3 8

3 3 9

3 4 0

3 4 1

3 4 2

3 4 5

3 4 8

3 4 9

3 5 2

3 8 2

3 5 3

3 5 5

3 5 6

3 5 7

3 5 8

5 5 3

6 6 8

6 7 0

6 7 5

6 7 8

6 7 9
3 6 0

3 6 4

3 6 5

3 6 6

3 6 8

3 7 8

5 2 7

1 0 2 2

3 7 0

3 7 1

6 4 8

3 8 3

3 8 4

3 8 7

3 8 8

4 3 3

3 9 1

3 9 2

3 9 3

3 9 5

4 0 3

4 0 7

4 0 8

4 0 9

4 1 0

4 1 1

4 1 4

4 1 7

4 1 8

4 1 9

4 2 1

4 2 2

4 2 3

4 2 4

4 2 5

4 2 6

4 2 7

4 2 8

4 2 9

4 5 7

7 0 4

7 1 1

7 1 2

1 0 5 9

1 0 6 0

4 3 5

4 3 6

4 4 7

4 5 1

4 5 2

5 1 6

4 5 4

4 5 5

4 5 9

4 6 0

4 6 3

4 6 5

4 6 8

4 7 1

4 7 4

4 7 7

4 8 0

4 8 2

4 8 3

4 8 4

4 8 5

4 8 6

4 7 2

4 7 3

4 7 5

4 7 6

4 7 8

4 8 1

4 8 8

4 8 9

4 9 3

4 9 4

6 2 0

4 9 6

4 9 8

4 9 9

5 0 0

5 0 1

5 0 3

5 0 6

5 0 7

5 0 9

5 1 2

5 1 3

5 1 4

5 1 5

5 1 7

5 1 8

5 1 9

5 2 0

5 2 1

5 2 2

5 2 6

5 2 8

5 2 9

5 3 0

5 3 4

5 3 5

5 3 8

5 3 9

5 4 1

5 4 5

5 5 1

5 5 4

5 5 6

5 5 7

5 5 9

5 6 0

5 6 3

5 6 4

5 6 5

5 6 6

5 6 7

5 7 0

5 7 1

5 7 2

5 7 3

5 7 4

5 7 5

5 7 7

5 7 9

5 8 3

5 8 7

5 9 0

5 9 1

5 9 3

5 9 4

5 9 5

5 9 9

6 0 0

6 0 1

6 0 5

6 0 6

6 0 7

6 0 9

6 1 0

6 1 1

9 3 4

9 5 1

9 5 2

6 1 2

6 1 3

6 1 5

6 1 6

6 1 7

6 1 8

6 1 9

6 2 3

6 2 5

6 2 6

6 2 9

6 3 1

6 3 9

6 4 0

6 4 1

6 4 2

6 4 5

6 4 7

6 5 0

6 5 1

6 5 2

6 5 3

6 5 4

6 5 6

6 6 5

6 6 6

6 6 9

6 7 1

6 7 3

6 7 4

6 8 1

6 8 2

6 8 5 6 8 6

6 8 9

6 9 0

6 9 1

6 9 2

6 9 3

6 9 5

6 9 6

7 2 2

7 3 0

7 4 0

1 0 5 0

6 8 4

6 9 4

6 9 7

7 0 1

6 9 8

6 9 9

7 0 2

7 2 6

7 3 4

7 0 3

7 0 7

7 0 9

7 1 0

7 1 3

7 1 4

7 1 6

7 1 7

7 1 8

7 1 9

7 2 1

7 2 4

7 2 5

7 2 8

7 2 9

7 4 4

7 5 6

7 5 8

7 6 4

8 1 0

8 2 7

8 4 0

8 4 4

8 4 5

8 4 6

8 4 7

8 4 8

8 6 2

8 6 3

8 7 4

8 7 5

8 7 8

8 9 1

8 9 2

8 9 9

9 0 1

9 0 3

9 0 4

9 0 6

9 0 8

9 1 0

9 1 3

9 1 4

9 1 8

9 1 9

9 2 0

9 2 2

9 2 4

9 2 9

9 3 7

9 4 2

9 4 3

9 4 6

9 4 7

9 4 8

9 5 0

9 5 3

9 5 4

9 5 5

9 5 6

9 5 7

9 5 9

9 6 0

9 6 1

9 6 2

1 0 3 1

9 6 5

9 6 6

9 6 8

9 6 9

9 7 0

9 7 2

9 7 3

9 7 4

9 7 6

9 7 7

9 7 8

9 7 9

9 8 0

9 8 1

9 8 3

9 8 4

9 8 5

9 8 7

9 8 8

9 8 9

9 9 0

9 9 1

9 9 2

9 9 3

9 9 5

9 9 6

1 0 0 0

1 0 0 2

1 0 0 3

1 0 0 6

1 0 0 9

1 0 1 1

1 0 1 3

1 0 1 4

1 0 1 5

1 0 1 6

1 0 1 7

1 0 1 9

1 0 2 0

1 0 2 1

1 0 2 3

1 0 2 4

1 0 2 7

1 0 3 0

1 0 3 2

1 0 3 8

1 0 4 1

1 0 4 4

1 0 4 9

1 0 5 1

1 0 5 2

1 0 5 4

1 0 5 5

1 0 5 6

1 0 5 7

1 0 5 8

1 0 6 1

1 0 6 2

1 0 6 3

1 0 6 4

1 0 6 5

1 0 6 8

1 0 6 9

1 0 7 1

1 0 7 3

1 0 7 4

1 0 7 6

1 0 7 9

(e) (email) SMTP (90 sec)

1

2

6 1 7

3

4

3 4 7

5

6

4 3 1

1 1 3 7

2 0 6 4

7

8

9

1 0

2 1 2

2 7 5

1 1

1 2

4 4 9

9 1 4

1 3

1 4

2 9 0

1 1 7 7

1 5

1 6

1 0 1

4 6 4

1 0 5 1

1 7

1 8

1 9

2 0

2 1

2 2

1 5 8 0

2 32 4

2 5

2 6

2 7

2 8

7 8 1

2 9

3 0

3 1

1 2 4

4 0 0

3 2

3 3

1 8 8 0

3 43 5

3 6

3 7

5 9 9

8 2 4

3 8

3 9

4 0

3 6 9

6 3 0

6 6 5

7 1 8

4 14 2

4 34 4

4 54 6

4 7

4 8

4 9

5 0

2 8 5

5 1

5 2

1 0 2 7

1 6 3 8

2 0 0 9

5 3

5 4

5 7 5

6 0 9

7 1 1

8 1 5

8 8 1

8 9 5

1 0 4 5

1 2 1 3

1 2 3 7

1 7 1 0

1 9 1 3

1 9 1 4

2 0 3 1

2 0 3 2

2 0 5 4

5 5

5 6

5 75 8

5 9

6 0

1 8 8 8

6 1

6 2

6 3

7 4 5

1 0 5 5

1 7 6 3

6 4

6 5

8 3 3

6 6

6 7

6 8

1 2 8

6 9

7 0

7 17 2

7 37 4

7 5

7 6

7 77 8

7 9

8 0

8 1

8 2

8 3

8 4

4 7 0

8 58 6

8 7

8 8

8 9

9 0

5 5 2

1 9 7 8

9 1

9 2

1 5 4 7

9 3

9 4

1 5 4 4

1 9 2 2

9 5

9 6

7 5 5

9 3 7

9 7 5

1 0 8 5

1 3 2 2

9 7

9 8

9 91 0 0

1 0 21 0 3

1 0 4

1 0 5

1 0 6

1 0 7

1 0 8

3 7 9

4 1 8

1 0 9

1 1 0

1 8 2 9

1 1 11 1 2

1 1 3

1 1 4

9 9 6

1 3 3 3

1 5 2 1

1 1 5

1 1 61 1 7

1 1 8

1 1 9

1 2 0

2 7 9

1 5 4 9

5 4 8

1 2 1

1 2 2

1 3 4 9

1 4 1 0 1 2 3

1 2 5

1 2 6

5 1 4

1 7 8 5

1 2 7

2 1 1 7

1 2 9

1 3 0

2 0 3

8 5 5

1 3 11 3 2

1 3 3

1 3 4

1 7 1

8 3 2

1 3 51 3 6

1 3 7

1 3 8

1 1 4 3

1 5 5 7

1 9 6 9

1 3 9

1 4 0

4 9 6

7 6 6

2 0 2 5

1 4 11 4 2

1 4 3

1 4 4

2 7 3

1 4 51 4 6

1 4 7

1 4 8

5 8 0

8 9 0

1 7 2 3

1 9 2 1

2 0 7 0

1 4 9

1 5 0

1 5 1

2 5 2

1 0 7 4

1 5 21 5 3

1 5 41 5 5

1 5 6

1 5 7

5 9 0

9 0 6

1 4 8 1

1 5 8

1 5 9

1 6 0

1 6 1

8 6 3

1 6 2

1 6 3

1 6 3 6

1 6 4

1 6 5

5 5 5

1 6 61 6 7

1 6 8

1 6 9

2 0 8

5 7 2

1 4 3 0

1 7 0

1 7 2

1 7 3

1 4 1 9

1 7 4

1 7 5

1 7 6

1 7 7

1 7 81 7 9

1 8 01 8 1

1 8 2

1 8 3

1 8 4

1 8 5

4 9 8

8 5 7

8 8 3

1 3 0 61 4 5 7

1 8 6

1 8 7

5 7 8

1 1 8 4

1 6 5 8

1 8 8

1 8 9

3 7 1

7 5 0

1 9 0

1 9 1

1 9 2

7 0 2

8 1 1

1 9 3

1 9 4

1 9 5

2 9 3

7 2 4

1 4 8 0

1 9 6

1 9 7

1 0 0 9

1 2 9 0

1 4 0 2

1 9 8

1 9 9

1 3 7 8

2 0 0

2 0 1

1 0 6 0

1 0 8 8

2 0 2

2 0 42 0 5

2 0 6

2 0 7

8 7 6

5 1 3

2 0 9

2 1 02 1 1

5 0 5

1 8 1 3

2 1 32 1 4

2 1 5

2 1 6

1 4 4 4

2 1 72 1 8

2 1 92 2 0

2 2 1

2 2 2

2 2 3

2 2 4

7 3 5

5 5 6

1 5 5 5

1 9 5 2

1 9 5 3

2 2 5

2 2 6

2 2 72 2 8

2 2 9

2 3 0

2 3 1

2 3 2

1 6 2 0

2 3 32 3 4

2 3 52 3 6

2 3 7

2 3 8

2 3 9

2 4 0

9 3 6

2 4 1

2 4 2

1 8 0 3

2 4 3

2 4 4

3 3 3

3 7 0

1 6 4 8

6 3 4

2 4 5

2 4 6

2 4 7

2 4 82 4 9

2 5 0

2 5 1

3 0 8

2 5 32 5 4

2 5 5

2 5 6

1 2 4 5

2 5 7

2 5 8

1 7 0 5

2 5 9

2 6 0

1 1 7 8

2 6 1

2 6 2

4 2 2

5 2 4

2 6 3

2 6 4

9 2 1

2 6 5

2 6 62 6 7

2 6 8

2 6 9

1 6 5 3

2 7 0

2 7 1

1 4 3 2

1 7 9 3

2 7 2

2 7 4

1 8 7 1

2 7 6

2 7 7

6 8 2

2 7 8

1 1 8 5

2 8 0

2 8 1

5 0 0

2 8 2

2 8 3

1 1 1 4

2 8 4

2 8 6

2 8 7

6 1 9

2 8 82 8 9

2 9 1

2 9 2

2 9 4

2 9 5

2 9 6 2 9 7

1 3 0 9

3 7 7

2 9 8

2 9 9

1 3 9 4

2 0 5 2

3 0 0

3 0 1

3 0 2

3 0 3

3 0 4

3 0 5

1 1 1 7

2 1 0 8

3 0 63 0 7

4 1 2

9 3 2

1 6 9 1

3 0 9

3 1 0

3 1 13 1 2

3 1 33 1 4

3 1 5

3 1 6

3 1 7

3 1 8

3 1 9

3 2 0

5 4 5

7 7 2

9 0 5

1 7 7 7

3 2 1

3 2 2

3 8 2

6 0 0

6 1 8

3 2 3

3 2 4

3 2 53 2 6

3 2 73 2 8

3 2 9

3 3 0

5 0 8

5 9 7

6 2 5

1 9 9 6

2 0 5 7

2 0 5 8

3 3 1

3 3 2

3 3 43 3 5

3 3 6

3 3 7

3 3 8

3 3 9

6 8 9

9 9 5

1 6 0 8

1 7 9 4

3 4 0

3 4 1

3 4 2

8 6 7

3 4 33 4 4

3 4 53 4 6

3 4 8

8 2 1

1 2 4 6

1 8 0 9

3 4 9

3 5 03 6 8

1 6 1 9

1 8 9 2

1 8 9 4

2 1 0 2

3 5 1

3 5 2

3 5 3

7 1 4

3 5 4

3 5 5

6 0 8

3 5 63 5 7

3 5 8

3 5 9

1 5 9 2

1 7 6 4

3 6 0

3 6 1

6 5 3

8 4 2

8 6 4

1 9 3 0

1 9 6 8

3 6 2

3 6 3

1 3 4 7

3 6 4

3 6 5

7 5 4

1 6 9 6

3 6 6

3 6 7

5 3 7

7 1 5

7 3 0

3 7 2 3 7 3

3 7 4 3 7 5

3 7 6

3 7 8

3 8 0

3 8 1

1 8 4 7

3 8 3

3 8 4

9 9 4

1 8 6 6

3 8 5

3 8 6

3 8 7

3 8 8

3 8 9

4 7 1

3 9 0

3 9 1

1 3 3 0

4 3 4

6 7 7

9 1 1

1 3 9 8

3 9 2

3 9 3

1 8 9 8

3 9 43 9 5

3 9 6

3 9 7

3 9 8

3 9 9

1 2 3 1

1 6 9 0

4 0 1

4 0 2

1 0 5 2

1 1 9 2

4 0 34 0 4

4 0 5

4 0 6

4 2 1

4 0 7

4 0 8

6 2 0

4 0 94 1 0

4 1 1

1 4 0 9

1 7 2 6

1 9 7 2

4 1 3

4 1 4

4 1 5

4 1 6

1 7 2 8

4 1 7

4 1 9

4 2 0

7 2 3

4 2 3

4 2 4

1 9 3 3

4 2 5

4 2 64 2 7

4 2 8

4 2 9

7 9 9

8 5 9

4 3 0

4 3 2

4 3 3

6 6 9

4 3 5

9 7 6

1 1 4 6

1 4 4 9

4 3 6

1 3 8 7

1 6 7 0

1 9 2 9

4 3 7

4 3 8

1 5 7 6

4 3 9

4 4 0

8 1 8

1 3 2 5

1 3 6 0

4 4 14 4 2

4 4 3

4 4 4

4 4 5

1 7 0 7

6 0 1

4 4 6

4 4 7

7 5 9

1 2 5 2

4 4 8

4 5 04 5 1

4 5 2

4 5 3

4 5 44 5 54 5 64 5 7

4 5 8

4 5 9

7 6 0

4 6 0

4 6 1

6 7 0

4 6 24 6 3

5 1 7

1 1 2 7

4 6 5

4 6 6

4 6 7

4 6 8

4 6 9

6 0 6

7 9 0

1 2 5 3

4 7 24 7 3

4 7 4

4 7 54 7 6

4 7 7

4 7 8

1 1 3 0

1 5 9 8

1 8 7 4

1 8 7 5

1 9 9 0

2 0 4 5

4 7 94 8 0

4 8 1

4 8 2

4 8 3

4 8 44 8 5

4 8 6

4 8 7

4 8 84 8 9

4 9 04 9 1

4 9 24 9 3

4 9 4

4 9 5

4 9 7

4 9 9

5 0 1

5 0 2

1 6 5 0

5 0 3

5 0 4

1 5 3 2

5 0 6

5 0 7

1 5 8 7

5 8 3

5 0 9

5 1 05 1 1

5 1 2

5 1 5

5 1 6

8 7 5

1 5 0 2

6 8 3

5 1 8

5 1 9

5 2 0

1 7 0 8

2 0 9 7

2 1 3 4

5 2 1

5 2 2

6 8 6

1 1 6 0

2 0 4 6

5 2 3

5 2 5

5 2 6

5 2 7

1 0 1 6

1 5 5 8

5 2 8

5 2 9

5 3 0

5 3 1

9 9 7

5 3 2

1 5 1 3

5 3 3

5 3 4

5 3 5

5 3 6

1 2 0 8

5 3 8

5 3 9

1 3 5 8

5 4 0

5 4 1 5 4 2

5 4 3

5 4 4

1 5 7 5

1 6 1 5

5 4 65 4 7

1 6 4 3

5 4 9

5 5 0

5 5 1

6 8 0

5 5 3

5 5 4

1 2 2 1

6 9 3

1 1 2 2

5 5 7

5 5 8

5 5 9

5 6 0

1 1 8 3

5 6 1

5 6 2

9 6 0

5 6 3

5 6 4

1 0 1 7

5 6 5

5 6 6

1 1 6 6

5 6 7

5 6 8

5 6 95 7 0

9 0 4

1 7 5 1

5 7 1

2 0 4 9

5 7 3

5 7 4

1 6 3 2

1 6 4 4

5 7 6

5 7 7

7 2 6

2 0 3 0

5 7 9

5 8 1 5 8 2

1 0 2 6

1 5 0 9

1 2 9 7

5 8 4

5 8 5

8 3 0

7 9 8

1 7 8 7

5 8 6

5 8 7

5 8 85 8 9

5 9 1

5 9 2

1 0 9 1

5 9 3

5 9 4

1 2 3 4

1 7 0 0

5 9 5

5 9 6

5 9 8

1 2 0 9

8 7 9

1 4 9 7

6 0 2

6 0 3

1 0 1 5

6 0 46 0 5

6 0 7

6 1 0

6 1 1

1 0 3 9

6 1 2

6 1 3

6 1 4

6 2 1

6 1 5

6 1 6

1 4 3 1

1 5 7 7

7 0 7

1 2 2 5

1 4 1 8

6 2 2

6 2 3

6 2 4

6 2 6

6 2 7

1 4 5 0

1 5 9 5

1 6 9 5

6 2 86 2 9

6 3 1

6 3 2

1 2 8 5

6 3 3

6 3 5

6 3 6

6 3 7

6 3 8

1 0 0 2

6 3 96 4 0

6 4 16 4 2

6 4 36 4 4

6 4 5

6 4 6

6 4 76 4 8

6 4 9

6 5 0

6 5 1

1 8 0 5

6 5 2

1 1 2 4

1 2 7 4

1 3 5 7

1 3 5 9

6 5 4

6 5 56 5 6

6 5 7

6 5 8

7 2 8

1 4 6 1

6 5 9

6 6 0

6 6 16 6 2

6 6 36 6 4

6 6 6

6 6 7

6 6 8

2 0 5 3

6 7 1

6 7 2

6 7 36 7 4 6 7 56 7 6 6 7 86 7 9

6 8 1

6 8 46 8 5

6 8 7 6 8 8

1 0 2 2

1 6 9 9

6 9 06 9 1

6 9 2

6 9 4

6 9 5

6 9 6

6 9 7

1 9 1 5

6 9 8

6 9 9

1 6 9 4

7 0 0

7 0 1

9 2 8

7 0 37 0 4

7 0 5

7 0 6

7 0 8

7 0 97 1 0

7 1 2

7 1 3

1 8 5 3

7 1 6

7 1 7

9 8 5

1 2 5 8

7 1 9

7 2 0

2 0 9 2

7 2 1

7 2 2

1 0 3 5

1 3 2 1

1 7 8 2

2 0 2 3

7 2 5

7 5 6

1 8 5 8

1 8 9 7

7 2 7

7 2 9

7 3 17 3 2 7 3 37 3 4

1 4 1 6

7 3 6

7 3 7

1 0 4 9

7 7 8

7 3 8

7 3 9

7 4 0

7 4 17 4 2

7 4 3

7 4 4

7 4 6

7 4 7

9 5 5

1 3 7 2

1 6 3 1

1 9 7 0

7 4 8

7 4 9

1 3 6 8

1 0 7 5

7 5 1

7 5 27 5 3

1 1 7 5

7 5 7

7 5 8

1 1 6 5

7 6 1

1 9 5 9

7 6 2

7 6 3

7 6 4

7 6 5

7 6 7

7 6 87 6 9

7 7 0

7 7 1

7 7 3

7 7 4

7 7 5

7 7 6

7 7 7

8 6 2

1 1 2 3

7 7 9

7 8 0

1 5 2 9

8 2 8

7 8 2

7 8 3

1 1 1 8

1 4 2 4

1 9 4 5

7 8 4

7 8 5

7 8 67 8 7

7 8 8

7 8 9

1 8 4 6

7 9 17 9 2

7 9 3

7 9 4

7 9 57 9 6

7 9 7

9 4 8

8 0 0

8 0 1

8 6 8

8 0 28 0 3

8 0 48 0 5

8 0 6

8 0 7

8 0 8

8 0 9

1 1 7 9

1 9 7 4

1 6 6 3

8 1 0

8 1 2

8 1 3

1 8 0 0

8 1 4

8 1 6

8 1 7

1 0 2 5

2 1 2 0

8 1 9

8 2 0

1 1 9 3

1 4 9 6

2 0 6 3

8 2 2

8 2 3

8 2 58 2 6

8 2 7

1 8 1 2

1 8 1 9

9 7 8

1 9 0 2

8 2 9

8 3 1

8 3 48 3 5 8 3 68 3 7

8 3 88 3 9 8 4 08 4 1

8 4 3

8 4 4

1 6 1 1

8 4 5

8 4 6

1 0 1 2

8 4 7

8 4 8

8 4 98 5 0 8 5 18 5 2

8 5 3

8 5 4

8 5 6

8 5 8

8 6 0

9 5 6

8 6 1

9 8 8

8 6 5

8 6 6

8 6 9

1 1 0 4

8 7 0

1 2 5 5

8 7 1

8 7 2

8 7 3

1 9 4 4

8 7 4

8 7 7

8 7 8

8 8 0

8 8 2

1 5 5 0

1 8 0 7

8 8 4

8 8 5

2 1 3 2

8 8 68 8 7

8 8 88 8 9

8 9 1

8 9 2

8 9 3

8 9 4

8 9 6

8 9 7

8 9 8

8 9 9

9 0 0

9 0 1

9 0 2

9 0 3

9 0 79 0 8

9 0 9

9 1 0

9 1 2

9 1 3

1 5 1 7

9 1 5

9 1 6

9 1 7

1 3 1 2

9 1 8

9 1 9

9 2 0

9 2 2

9 2 3

9 2 4

9 2 5

9 2 6

2 0 3 5

9 2 7

9 2 99 3 0

9 3 1

9 3 3

9 3 4

1 3 1 3

9 3 5

1 8 2 4

9 3 8

9 3 9

1 6 2 7

9 4 0

9 4 1

9 4 2

9 4 3

9 4 4

1 0 8 1

1 3 2 9

1 8 3 7

9 4 5

9 4 6

1 2 7 9

9 4 7

9 4 9

9 5 0

9 5 19 5 2

9 5 3

9 5 4

1 5 2 4

9 5 7

9 5 8

1 4 1 7

1 7 8 1

9 5 9

9 6 19 6 2

9 6 3

9 6 4

9 6 5

9 6 69 6 7

9 6 8

9 6 9

1 5 4 1

9 7 0

1 4 4 1

1 4 4 2

1 5 9 0

1 9 9 7

9 7 1

9 7 2

1 0 6 1

9 7 3

9 7 4

9 7 7

9 7 9

9 8 0

1 0 2 0

9 8 1

9 8 2

9 8 39 8 4

9 8 69 8 7

9 8 99 9 0 9 9 19 9 2

9 9 3

1 2 9 1

9 9 8

1 3 8 6

9 9 9

1 0 0 0

1 5 6 9

1 0 0 1

1 0 0 3

1 0 0 4

1 4 0 1

1 0 0 51 0 0 6 1 0 0 71 0 0 8

1 0 1 0

1 7 9 0

1 0 1 1

1 4 4 8

2 0 3 9

1 0 1 31 0 1 4

1 0 1 8

1 0 1 9

1 0 2 1

1 0 9 7

1 7 1 5

1 8 3 2

1 8 5 42 0 6 8

1 0 2 3

1 0 2 4

1 0 2 8

1 0 2 9

1 0 3 0

1 2 0 3

1 0 3 1

1 0 3 2

1 2 1 2

1 2 4 1

1 2 4 2

1 5 4 2

1 0 3 31 0 3 4

1 0 3 6

1 0 3 7

1 0 3 8

2 0 0 2

1 0 4 0

1 0 4 1

1 5 5 1

1 0 4 2

1 0 4 3

1 7 2 2

1 0 4 4

1 5 5 9

1 0 4 6

1 0 4 71 0 4 8

1 5 7 8

1 0 5 0

1 0 5 3

1 0 5 6

1 0 5 4

1 0 5 7

1 0 5 8

1 0 9 5

2 1 2 3

1 0 5 9

1 1 3 5

1 0 6 2

1 9 3 7

1 0 6 3

1 0 6 4

1 2 0 6

1 4 2 9

1 0 6 5

1 0 6 6

1 0 6 71 0 6 8

1 0 6 9

1 0 7 0

1 4 5 8

1 0 7 1

1 3 6 4

1 0 7 2

1 0 7 3

1 8 8 5

1 0 7 6

1 0 7 7

1 0 9 6

2 0 1 7

1 0 7 8

1 0 7 9

1 2 1 6

2 0 4 7

1 0 8 0

1 0 8 2

1 0 8 31 0 8 4

1 0 8 6

1 0 8 7

1 5 9 3

1 0 8 9

1 0 9 0

1 0 9 2

1 0 9 31 0 9 4

1 0 9 81 0 9 9

1 1 0 01 1 0 1

1 1 0 2

1 1 0 3

1 9 6 7

1 1 0 5

1 1 0 6

1 1 4 0

2 0 6 9

1 1 0 7

1 1 0 81 1 0 9

1 1 1 0

1 1 1 1

1 1 1 2

1 6 5 9

1 1 1 3

1 1 1 5

1 1 1 6

1 1 4 7

1 1 1 9

1 1 2 0

1 1 2 1

1 1 2 5

1 4 0 3

1 1 2 6

2 0 8 2

1 1 2 8

1 1 2 9

1 2 3 0

1 6 3 7

1 1 3 1

1 1 3 2

1 1 3 3

1 1 3 4

1 1 3 6

1 1 6 4

1 1 3 8

1 1 3 9

1 1 4 1

1 1 4 2

1 9 5 0

1 1 4 4

1 1 4 5

1 1 6 2

1 1 4 81 1 4 9

1 1 5 01 1 5 1

1 1 5 2

1 1 5 3

1 7 9 7

1 1 5 41 1 5 5

1 1 5 61 1 5 7

1 1 5 81 1 5 9

1 1 6 1

1 9 2 4

1 1 6 3

2 1 2 8

1 1 6 7

1 1 6 8

1 5 1 2

2 0 7 1

1 1 6 9

1 1 7 0

1 1 7 1

1 1 7 2

1 1 7 3

1 1 7 4

1 1 7 6

1 1 8 0

1 1 8 1

1 1 8 2

1 6 4 2

1 1 8 61 1 8 7

1 1 8 8

1 1 8 9

1 1 9 0

1 1 9 1

1 1 9 4

2 1 2 4

1 1 9 5

1 6 4 9

1 1 9 6

1 1 9 7

1 1 9 81 1 9 9

1 2 0 01 2 0 1

1 2 0 2

1 2 0 4

1 2 0 5

1 2 0 7

1 5 9 1

1 9 7 1

1 2 1 0

1 2 1 1

1 9 4 2

1 2 1 41 2 1 5

1 2 1 7

1 2 1 8

1 2 1 9

1 2 2 0

1 2 2 2

1 2 2 3

1 2 2 4

1 2 2 6

1 2 2 7

1 5 1 8

1 2 2 8

1 2 2 9

1 2 3 21 2 3 3

1 2 3 5

1 2 3 6

2 0 2 7

1 2 3 8

1 2 3 9

1 4 5 5

1 6 7 8

1 2 4 0

1 2 4 31 2 4 4

1 2 4 7

1 2 4 8

1 9 1 6

1 2 4 91 2 5 0

1 2 5 1

1 2 5 4

1 2 5 6

1 2 5 7

1 2 5 9

1 2 6 01 2 6 1

1 2 6 2

1 2 6 3

1 2 6 4

1 2 6 51 2 6 6

1 2 6 71 2 6 8

1 2 6 9

1 9 3 6

1 2 7 0

1 2 7 1

1 2 7 2
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(f) WinMX peer-to-peer application (15
sec)

Figure 2: Visualization of TDGs that correspond to various communities of hosts from backbone packet traces. The observation intervals were
chosen so as to capture good visual details for each TDG.

nation port of interest (e.g., Port 53 for DNS). Since we use
edge filtering by port number, the TDGs capture aspects of
any application that uses these port numbers. For ease of
presentation, we will refer to each such graph with the name
of the dominant application at that port. We are fully aware
that port-based classification is not necessarily accurate [6].
However, the port-based filtering is in line with the use of
our approach as a monitoring and intrusion detection tool.
For example, if at some point, traffic at TCP Port 80 appears
significantly different, it could be: (a) a new benign or ma-
licious application tunneling its traffic under that port, (b)
a change in the behavior of the traditional application (i.e.,
Web in our example).

The graphs of Fig. 2 were drawn with the use of GraphViz
[18]; a graph visualization tool which optimizes the layout
by placing the bigger components towards the center of the
graph. Studying these TDGs (Fig. 2), we can quickly reach
the following conclusions, which are corroborated with a
plethora of other similar visualizations:

(i) TDGs are not a single family of graphs. We can see
that the TDGs present significant visual differences, which
we quantify with graph metrics in Table 2, and we discuss
later in this section.
(ii) TDGs capture many interesting patterns of node in-
teractions. We can identify several distinctive structures and
patterns in TDGs, which are indicative of the behavior of dif-
ferent applications.

Node degrees - The degrees of various nodes and their
connectivity in a TDG helps us in visually determining the
type of relationship between the nodes. In general, the TDGs
corresponding to protocols with a prevalence of client-server
interactions, such as DNS (Fig. 2(c)) and SMTP (Fig. 2(e)),
are dominated by a few high degree nodes whereas the TDG
of the popular peer-to-peer application WinMX has many
similar degree nodes (Fig. 2(f)).

Node roles - In many TDGs, the role of a node can be
inferred from the direction of its edges (not easily distin-
guishable at this visualization scale). For example, Fig. 2(d)
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(a) HTTP Vs eDonkey (b) DNS Vs WinMX

Figure 3: The empirical Complementary Cumulative Distribution Functions (CCDF) of the degrees of: (a) two EFSP generated TDGs, the
heavy-tailed HTTP and the TDG corresponding to the peer-to-peer protocol ‘eDonkey’ (TCP Port 4662). (b) EFP generated TDGs of DNS and
the peer-to-peer protocol ‘WinMX’ (UDP Port 6257). Multiple functions are derived from consecutive disjoint 300 sec time intervals of the trace.
Stability of measured distributions, across disjoint intervals, is shown by the multiple overlapping curves. All four TDGs are from the OC48 trace.

presents an HTTP TDG. This TDG uses the EFSP edge filter
and hence the directed edges accurately determine the initia-
tor of the interactions between a pair of hosts. This makes it
easy to spot Web servers for example, since they are “pointed
to” by edges (non zero in-degree). Also, note that most hosts
have either zero in-degree or zero out-degree indicating that
they act either solely as a server or solely as a client. Inter-
estingly, however, there are a few nodes with both non-zero
in-degree and out-degree, which can correspond to HTTP
proxies or Web caching systems.

Node hierarchies - Some TDGs exhibit a multi-level hier-
archy while other graphs have mostly two-level clusters (dis-
connected star-shaped subgraphs). By hierarchy, we mean
that there are few dominant nodes, which have the highest
degrees, and then we have many nodes with smaller degrees
that are connected with each other and/or to the dominant
nodes. For example, the big component at the center of the
UDP TDG in Fig. 2(a) (this graph is generated by using all
the UDP packets, irrespective of their destination port num-
ber) exhibits a distinctive hierarchy and corresponds to DNS.
Fig. 2(c) isolates and presents a magnification of this DNS
TDG. A similar hierarchy is also visible in the SMTP TDG
shown in Fig. 2(e).

Node chains - Long chains of nodes are very common in
TDGs of peer-to-peer applications like WinMX shown in
Fig. 2(f) and are mostly non-existent in the TDGs of other
applications.

Number of connected components and their sizes - We
note that there are many disjoint components in each of the
TDGs suggesting that there are many smaller communities
within a TDG. This comes in contrast to many other types of
graphs such as the Internet topology or the web-page graph
[19]. Also, the number of connected components and the size
of the largest component varies a lot across different TDGs.
Note the differences in the distribution of the sizes of various
components in the HTTP TDG which has many components

and the DNS and SMTP TDGs which are dominated by a
single component.
(iii) TDGs can be used to detect specific traffic anoma-
lies. Even in very broad communities, anomalous host be-
haviors very easily distort the expected distribution of com-
ponents and patterns in a TDG. For example, the UDP flows
in the TDG of Fig. 2(b) includes flows due to a worm scanner
(Slammer worm) and Fig. 2(a) shows the same graph with-
out the worm scanner activity. The difference is easy to spot
- the rapid scanning done by Slammer infected nodes creates
an anomalously high number of many star-shaped (a single
node with high out-degree) components of similar size in the
UDP TDG in Fig. 2(b).

Although our goal here is to visually examine the various
properties of TDGs, good visualization methods have their
own value. In fact, effective visualization and human moni-
toring can often be a more viable alternative to complicated
automated methods for anomaly detection. Many times com-
plete automation of anomaly detection is not possible3. We
conclude that appropriately created TDGs can very quickly
provide a wealth of useful information. Motivated by this ob-
servation, we attempt to quantify TDG properties with vari-
ous graph metrics.

3.2 Quantitative Description of TDG Properties

There is a plethora of sophisticated graph metrics from di-
verse disciplines that can be used in the analysis of graphs
[20, 19]. However, in this work we want to identify met-
rics that not only capture TDG properties but also lend
themselves to an efficient real-time hardware implementa-

3Anecdotal information has it that Paypal, the electronic money trans-
fer service, addressed its initial problem of fraud with a set of visualization
techniques focusing on various transactions. These visuals were monitored
by humans, who could more easily identify anomalous visual patterns and
further investigate potentially fraudulent transactions. This is considered as
a significant factor why Paypal gained a distinct advantage over its competi-
tors.
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Nodes Edges Avg. Degree In-&-Out(%) MAX Degree MAX Degree Ratio Size of GCC(%) Assortativity Coef. Avg Depth MAX Depth

AUCK-HTTP 2,738(283) 3,524(273) 2.582(0.095) 0.23(0.07) 485(73) 0.177(0.013) 77.01(7.16) -0.217(0.029) 1.004(0.005) 1.583(0.515)
AUCK-SMTP 1,397(54) 1,514(67) 2.168(0.021) 1.42(0.31) 353(11) 0.253(0.010) 98.05(0.40) -0.717(0.025) 1.103(0.121) 1.750(0.453)
AUCK-DNS 3,244(189) 5,010(324) 3.087(0.039) 10.02(0.63) 2,134(200) 0.657(0.028) 94.99(0.82) -0.456(0.010) 1.262(0.336) 2.333(0.492)
AUCK-NetBIOS 2,961(667) 3,020(733) 2.032(0.056) 0.00 (0.00) 256(0) 0.091(0.020) 21.26(13.37) -0.778(0.055) 1(0) 1(0)

OC48-HTTP 109,090(1,432) 138,301(874) 2.536(0.023) 0.09(0.01) 7,618(217) 0.070(0.002) 61.24(2.19) -0.110(0.009) 1.002(0.001) 2(0)
OC48-SMTP 6,913(76) 9,799(146) 2.835(0.027) 3.41(0.21) 350(11) 0.051(0.002) 79.92(0.96) -0.157(0.007) 1.028(0.009) 2.9(0.57)
OC48-DNS 22,025(384) 52,126(1109) 4.733(0.039) 11.00(0.21) 1,869(117) 0.085(0.004) 97.99(0.23) -0.175(0.005) 1.180(0.012) 3.5(0.53)
OC48-WinMX 8,890(225) 33,593(599) 7.560(0.171) 28.68(0.56) 315(115) 0.035(0.012) 98.99(0.16) -0.138(0.055) 1.273(0.030) 3.9(0.57)

WIDE-HTTP 10,922(10,512) 12,590(10,675) 2.389(0.102) 0.22(0.08) 3,837(10479) 0.155(0.230) 57.46(13.88) -0.224( 0.142) 1.012(0.009) 2(0)
WIDE-SMTP 2,242(61) 3,061(203) 2.732( 0.148) 4.52(0.49) 340(80) 0.152(0.0363) 91.04(1.71) -0.331(0.035) 1.132(0.062) 2.417(0.515)
WIDE-DNS 9,830(321) 18,799(613) 3.825(0.0263) 6.99(0.24) 4,242(137) 0.432(0.0058) 98.85(0.20) -0.227( 0.005) 1.243(0.049) 2.333(0.652)
WIDE-NetBIOS 3,486(887) 3,475(892) 1.993(0.0282) 0.02(0.04) 267(30) 0.081(0.0231) 9.74(2.76) -0.745(0.052) 1(0) 1.083(0.288)

Table 2: Measured features for TDGs generated within a 300 sec time window. Values in parenthesis provide the standard deviation for
the measured quantity after generating each TDG twelve times; each for every five-minute-long disjoint interval of the one hour long traces
(12x300sec=1hour).Small standard deviations suggest that TDG properties are stable over the duration of observation.

tion (Section 5). In this section we present a series of fun-
damental graph metrics computed over real-traffic TDGs. A
set of experimental results is summarized in Table 2. Graphs
are calculated over 12 consecutive, disjoint, 300 second long
observation intervals, which corresponds to an hour of moni-
tored traffic for each trace. Note that the values in parenthesis
provide the standard deviation of each metric over the twelve
intervals, and which is typically small. This suggests that (a)
the TDG properties seem very stable over the duration of ob-
servation, and (b) that 300 seconds is a reasonable interval
of observing the formation of TDGs. Someone could argue
that the observed stability is because we have the same set
of hosts interacting with each other over the duration of the
trace. Fig. 11 shows that this is not the case since the num-
ber of newly observed nodes is near linearly increasing over
time. We discuss here the different metrics of Table 2 and
their importance.

3.2.1 Scalar Graph Metrics

Average Degree: Is calculated by counting both in-coming
and out-going edges, hence is the degree of a host if we ig-
nore the directivity. Average degree indicates the popularity
of a host, i.e., how many distinct IP addresses a host inter-
acted over the observation interval. The average degree is
a first approach into quantifying the coarseness of a graph
and graphs with high average degrees tend to be tightly con-
nected [20].
Max Degree Ratio: MAX Degree is the maximum degree
in the graph and MAX Degree Ratio (MDR) is the MAX
Degree normalized by the number of nodes in the graph mi-
nus one (i.e. the maximum possible degree of a node in the
graph). Discussion: It is interesting to note in Table 2 that in
the OC48 trace, the average degree of WinMX (P2P), 7.56, is
higher than that of DNS, 4.73, while, by contrast, the max-
imum degree of WinMX, 315, is much lower than that of
DNS, 1896. This suggests that these two metrics can poten-
tially be used to distinguish the two TDGs. For Table 2 we
can see that high average degree and high MDR is distinctive
characteristics of DNS since: (a) the presence of a dominat-
ing high degree DNS server leads to high MDR and (b) the
hierarchy (Fig. 2(c)) is the reason we have high average de-
gree.
In-and-Out degree (InO) property: The InO measures the
percentage of nodes that have non-zero in-degree and non-

zero out-degree. Such nodes are both initiators and “recep-
tors” of initial communications, as we mentioned earlier and
thus act both as clients and servers. For example, in the
OC48 trace, we see that HTTP has practically zero percent
of such nodes (pure client server application), while WinMX
has 28% of nodes with “dual” role. As we will later show
in Section 4, this property seems like an excellent metric for
distinguishing client-server from peer-to-peer communities.

 1e-04

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000

Co
nn

ec
tiv

ity

Rank

DNS-TDG
Skitter

Figure 4: The Rich Club Connectivity metric of a DNS TDG. Size
of clique as fraction of the network size Vs the number of nodes (in
order of non-increasing degree) for the WIDE trace. By contrast, the
rich club connectivity of the AS Internet topology graph from Skit-
ter(CAIDA).

Size of Giant Connected Component (GCC): With the
term “component” we refer to maximally connected sub-
graphs. If we consider again the graph as undirected, we
can calculate the size of its largest connected component;
a metric which is often used in graph analysis. We report
this quantity as percentage of the total number of nodes in
the TDG. We demonstrate the usefulness of this metric in
the next section. Intuitively we expect densely connected
TDG communities, commonly found in P2P protocols and
network-gaming overlays, to have a large connected compo-
nent that concentrates the majority of participating hosts.
Assortativity Coefficient: The assortativity coefficient mea-
sures the tendency of high degree vertices to connect with
other high degree vertices. Instead of a formal definition
[20], we focus more on its meaning. The assortativity coeffi-
cient r is the Pearson correlation coefficient of the degrees at
either end of an edge and lies in the range [−1, 1]. If r = 0,
the graph appears to have random degree correlations, and
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there is no linear relationship between the degrees of adja-
cent nodes. If r > 0 then the graph is assortative, and high
degree vertices are likely to connected to other high degree
vertices. Conversely, if r < 0 then the graph is disassor-
tative, and high degree vertices are likely to connect to low
degree vertices.
Depth: For this metric, we consider the dynamic (temporal)
nature of the graph, and we consider edges and nodes in the
order of first appearance in an online fashion. We attempt to
capture the “spread” of the communication. Thus, the first
time we see a directed edge (H1,H2) , if we have not seen
node H1 before we give it a depth of zero. If H2 is a new
node to the graph then depth(H2) = depth(H1) + 1. From
the TDG example of Fig. 1, node H1 has zero depth, nodes
H2,H4 have depth of one and nodes H3,H5 have depth of
two. Note that we only set the depth of a node the first time
we encounter it. In the next section, we show how by us-
ing depth we can detect the spreading of traffic in malware
applications such as worms [9].

3.2.2 Non-Scalar Metrics

Non-scalar metrics reveal more detail structural characteris-
tics of TDGs. For example, they show that TDGs are not yet-
another family of Scale-Free(SF) graphs. In general, TDGs
are not SF graph although they can have some common prop-
erties such as heavy-tailed degree distributions. Scale-free
graphs appear in many real network topologies both in bi-
ological, social, and complex systems, such as citation net-
works, the hyperlinks of the pages on the Web [19].

Node Degree Distribution. The degree distribution of any
TDG can be represented by its corresponding marginal in-
degree and out-degree distributions. In this work, we use
the degree distribution of the undirected graph in the same
way as we discussed for average degree. The degree distri-
bution measurements of Fig. 3 indicate that: (a) many TDGs
(e.g., HTTP, DNS) exhibit skewed degree distributions. High
variability typically denotes that most nodes have low de-
gree, whereas few nodes have two to three orders of magni-
tude more edges than the average node degree, and (b) our
measured quantities are stable over the intervals of observa-
tion since the empirical distributions from various disjoint
300 sec intervals of the trace are very close together. These
plots are in double logarithmic axis to proper visualize all
data, such logarithmic plots are going to be used extensively
throughout the paper due to the high variability of measured
data.
High-Variability: In Fig. 3, the corresponding average de-
grees and their standard deviations4 are: (a) for HTTP, 2.48,
with σ = 32.96, and (b) for DNS, 4.83, with σ = 27.87.
For typical exponentially distributed data the Coefficient of
Variation5(CV) is close to 1, for large enough samples. How-

4The Standard Deviation(σ) calculated here captures the variability of
the degrees found in a single TDG and is different than the σ of the average
degree across multiple TDGs as given in Table 2.

5The Coefficient of Variation (CV) of a random variable X is given by

ever, the CVs for the HTTP and DNS TDGs are 13.3 and 5.8
respectively, indicating a significant level of variation from
the average degree. Even though this is not the case for all
our traces, the distributions of HTTP and DNS (Fig. 3) can
be closely described by a power law relationship of the form
P (X > x) = 1 − P (X ≤ x) ∼= c · x−α, with exponents
α = 1.10 for HTTP and α = 1.27 for DNS and goodness-of-
fit (R2) 0.98, 0.99 respectively. For such heavy-tailed prob-
ability distributions we know that empirical mean and vari-
ances are unreliable metrics to use (especially when these
values are derived from sampled data). A better approach is
to focus on the entire empirical distribution [22], as we do
in the following sections. For completeness, we report that
the average degree and standard deviations for WinMX and
eDonkey are 7.6 with σ = 12.2 (CVWinMX = 1.6) and 2.6
, σ = 4.6 (CVeDonkey = 1.8) respectively. Clearly, even
though not exponentially distributed, the degrees of these
two protocols exhibit much smaller variability.
Joint Degree Distribution (JDD): JDD goes one step fur-
ther than the degree distribution and reveals the probability
P (k1, k2) that a randomly selected edge will connect nodes
of degree k1 and k2. Therefore, the joint degree distribution
provides information about the directly adjacent neighbors
of nodes in the graph. An extensive discussion and defini-
tions regarding JDD can be found in [20] and [23]. The JDD
for four TDGs derived from the first 300 sec interval of the
OCS48 trace are shown in Fig. 10. Note that the contour
plots have logarithmic x- and y-axis, as well as probabilities
P (k1, k2). Example: In Fig.10, the intersection of x = 1.5
and y = 0.5 give the probability of a randomly selected edge
to connect nodes of degree 101.5 ≈ 32 and 100.5 ≈ 3. For
example, in Fig. 10(d), this region falls in the 2nd most dark
colored area and by using the corresponding colormap we
find that the probabilities are in the range: |log10P (32, 3)| ≈
(2 to 1.5) ⇒ P (32, 3) ≈ 10−2 to 10−1.5 ∼= 1% to 3.2%.

Fig.10(c) graphically illustrates the JDD of a traditional
client-server application such as HTTP. As expected, the re-
gion with the higher concentration of edges (darker region)
is for low k2 with high k1 (and vise versa due to symme-
try). The concentration of edges is gradually decreasing as
we jointly increase k1 and k2. The white colored region at
the top right corner indicates the zero probability of high
degree nodes to be directly connected with each other. On
the other hand, Fig. 10(d) quantifies what we originally ob-
served in the P2P (WinMX) visualization of Fig. 2(f), where
average degree nodes are connected with each other. This is
shown with the darker colors of the contour plot placed in
the middle of the graph, illustrating the prevalence of edges
connecting “medium” degree nodes.
Rich Club Connectivity(RCC) metric: . The rich club con-
nectivity is typically analyzed with the following procedure
[24]. We sort nodes in the order of decreasing degree (x-
axis in the plot) which we call the degree rank of the node.

the formula CV (X) =
√

V ar(X)/E[X] and is a standard empirical-
based measure for quantifying the variability of a random variable [21].
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Then, we consider the group of nodes form node 1 to node
k, and we find the number of edges that exist between these
nodes, over the maximum possible number of edges between
these nodes. In Fig.4, we plot the rich club connectivity for a
TDG graph at port 53 (which corresponds to DNS) from the
WIDE trace.

Interestingly in TDGs we have no clustering of high de-
gree nodes. The peak at connectivity is where we have so
many top nodes in the a graph that is closer to being a per-
fect clique. Always in TDGs the peak is for average degree
nodes, showing that those hosts act as the connectivity hubs
of the network. In Fig. 4 we observe a sharp spike at around
degree rank 54. This means that the top 54 high degree nodes
are not connected with each other at all. Then, when we con-
sider a few nodes of degree rank from 55 to approximately
95, connectivity increases rapidly. By contrast, the rich club
connectivity of most scale-free networks such as the Internet
AS topology exhibits a pronounced rich club phenomenon as
shown in Fig. 4 since the highest degree nodes form a clique.
We observed the same phenomena for several other TDGs.

Before we provide an intuitive explanation, we have to re-
member that the data is observed at a single link. The high
degree nodes, DNS servers, do not appear to exchange traf-
fic with each other partly because they may be using caches,
and partly because our point of observation may not be on
the path between them. On the other hand, DNS clients can
communicate with many servers, so the moment we start in-
cluding them, the connectivity of the rich club starts to in-
crease.

4 Using TDGs to Identify Concealed Applica-
tions and Malcode

We have seen that the TDGs of various applications have
distinctive patterns and properties, and these patterns can be
captured (Table 2) by various graph measures such as InO
degree property, Max Depth, and degree distribution. In
this section, we explore the next logical question: whether
TDGs can be used to identify concealed applications and
malcode. This is important because standard approaches
based on identifying payload signatures [25] are not viable in
the face of obfuscation (e.g., encrypted P2P communication
and polymorphic worms) and are also processing intensive
(to do string search at wire speeds). By contrast, applica-
tion classification using TDGs requires only the parsing of
packet headers, allowing implementation simplicity as well
as the ability to deal with obfuscated payloads.

We first describe in Section 4.1 the ability of TDG graph
measures to discriminate between applications. Next, in Sec-
tion 4.2 we show the ability of similar TDG graph measures
to detect outbreaks as well as concealed applications.

4.1 Application Identification

Given a set of TCP or UDP flows (filtered by say port num-
bers) passing through a monitoring device, the problem of
application identification requires us to determine the type of
application or protocol being used by the nodes in the com-

Figure 5: Scatter plot: Size of largest connected component versus
the number of connected components per destination-port number
for multiple intervals of the OC48 backbone trace. We show the top
10 most popular destination-ports, and speculate as to their appli-
cation of origin. The simple combination of graph metrics separates
fairly well the behavior of applications.

munity. Application identification techniques are useful, for
example, in detecting concealed P2P applications which of-
ten use random ports. We address the problem of application
identification by looking for distinguishing properties in the
TDG of the set of flows using component distributions, de-
gree distribution, and the InO property.

Characterization using Component Distributions: One
distinctive characteristic of TDGs is the formation (or not)
over time of a large connected component that concentrates
the majority of participating IP hosts. Recall that in DNS
we have a gigantic connected component that contains over
97% of the graph’s nodes. On the other hand, the HTTP
TDG has a large number of small disconnected components
containing typically two or three hosts. This suggests using
component measures to discriminate between applications.

In Fig. 5 we illustrate the discrimination afforded by com-
ponent measures using a two dimensional scatter plot. The
x-axis shows the number of disconnected component in log-
scale, while the y-axis shows the percentage of nodes con-
centrated in the largest connected component GCC of the
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TDG. On the plot, we report the TDGs for the top 10 most
active (in terms of number of generated 4-tuple flows) desti-
nation ports form our OC48 backbone trace.

In order to test our results over different time periods, we
sliced the trace into twelve disjoint consecutive 300 second
intervals. Therefore, for each of the ten TDGs we generated
twelve points, one each for a 300 second disjoint time in-
terval of the trace. It is reassuring to see that there is not
much variation among the results for the twelve 300 second
intervals because the twelve points for each port are clustered
near each other. Once again this provides confidence about
our choice of 300 sec to compute a TDG.

More importantly, the plot shows that we can approxi-
mately determine the type of the application based on its po-
sition in the scatter plot in Fig. 5. For example, the points
gathered at the top-left part of the plot correspond to ports
used by well known peer-to-peer applications [26]. No other
application falls in this region, suggesting that our appli-
cation identification technique is particularly suited for de-
tecting concealed P2P applications. Also, at the lower-right
section of the figure we see applications with many disjoint
components and no single large component. Applications
like NetBIOS (UDP Dst. Port 137) and ms-sql-s (TCP Dst.
Port 1433) fall in this region.

Degree Distributions: While discrimination based on
component measures appears promising, we will see in Sec-
tion 5 that component measures are hard to infer from sam-
pled (and hence low memory) versions of TDGs but that ap-
proximate degree distributions are easier to estimate. Fig. 2
shows similarity among DNS and SMTP TDGs, where the
majority of hosts have low degree and few nodes have very
high degrees, compared to WinMX(P2P) in which there ex-
ists a prevalence of medium degree nodes. We quantify this
observation in Fig.6 with a bin distribution of the undirected
degrees for various TDGs, demonstrating that different ap-
plications tend to have different node popularities. For exam-
ple, for WinMX the bin containing nodes with degree d > 8
contains 25% of the nodes, which is much higher than the
percentages for other popular applications (less than 10%).

Thus this information can be used to identify concealed
P2P applications. It is also interesting to observe that even
though DNS seems very similar to P2P applications with re-
spect to component size distributions in Fig. 5 we can easily
distinguish DNS and P2P using their degree distributions.
This is because in DNS the majority of the nodes are con-
nected due to some highly connected hubs (e.g., a large DNS
.com server) whereas in P2P applications, the degree distri-
bution is less skewed, with most of the peers having average
popularity (Fig. 3).

InO Property: While degree distributions are useful, the
InO property referred to earlier is also valuable for more
strongly characterizing P2P applications and outbreaks. As
with degree distribution, InO can be easily estimated from
a sampled TDG. Recall we defined the InO property as the
percentage of nodes in a TDG having both non-zero in and

out degree. Fig. 7(a) shows the InO property for various
TDGs of some the most popular destination ports of the
OC48 backbone trace. As expected, P2P applications show a
larger number of InO nodes (over 28% and 32% for WinMX
and Soribada respectively). while a very low number of InO
nodes is found in purely client-server applications such as
HTTP6.

Fig. 7(b) shows a scatter plot of the in-degree compared
with out-degree of the nodes in eDonkey TDG and HTTP
TDG respectively. Both TDGs were formed using the EFSP
filter. The prevalence of InO in eDonkey clearly distin-
guishes it from HTTP where the few nodes with the InO
property can either be Web caches or Web proxies.

We also note that the percentage of nodes having only in-
degrees or only out-degrees can be used to gain further in-
sight into the interactions of the nodes. For example, if we
observe an abnormally large number of degree one nodes,
we can use the prevalence of in-degree or out-degree to dis-
tinguish DDoS attacks (where we observe a large number of
out-degree only nodes), from worm scanning activity (where
we observe a large number of in-degree only nodes).

Example: Let us see how TDGs can help in identifying a
flow. An unclassified flow Z (with unregistered destination
port number) exists between hosts X and Y . None of the two
hosts has the InO property and they both have small degree.
However, the two hosts belong to a TDG which has 20% of
its nodes with the InO property, it also has a GCC that cov-
ers the 95% of all nodes and the majority of its nodes have
degree higher than two. As we can see from Fig. 5, such
highly connected communities with unregistered ports be-
long to P2P applications, similar conclusions can be derived
from the degree distribution (Fig. 6) and from Fig. 7 due to
high percentage of nodes with InO. Therefore, by examining
nodes X and Y in isolation, we don’t have any information
regarding flow Z, however, by correlating them with an iden-
tified as P2P TDG we have an indication regarding the type
of application that generated flow F .

4.2 TDGs for Outbreak Detection

The problem of rapid detection of Internet worms and related
address scan behavior is not new [25]. However, TDG’s
provide a good visualization mechanism to quickly identify
such outbreaks; further, the same TDG measures used for
application identification augmented with one further metric
(Max Depth) can help separate benign port scanning, infec-
tious outbreaks, and P2P applications. Note that the problem
of separating P2P applications from say worms is a difficult
one; for example, the automated worm signature scheme of
[25] cites P2P applications as some of their worst false pos-
itives. We will see that a very simple graph measure, graph
depth, accomplishes this separation. Note that the use of
graph depth for worm identification was pointed out earlier
by Ellis et al. [9] but we find that it is the combination of

6Similar results where found to hold for other traditional client-server
applications such as FTP, POP3 and IMAP.
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Figure 7: In- and Out-degree correlations. All data are from the OC48 backbone trace.

InO and graph depth that works best. Further, we go further
than Ellis et al. and show in Section 5 that both these metrics
can be estimated efficiently in hardware at 20 Gbps.

Visualizing Outbreaks: We start in Fig. 8 with a visual-
ization of the TDG of the MS-Blaster infection. The UCSD
trace was captured by a real Blaster infection in a controlled
honeypot environment. While the trace is only 150 nodes, it
is reflective of a TDG collected within an enterprise because
it shows connectivity between all nodes as opposed to the bi-
partite TDG graphs we showed for our access and backbone
traces. Also, unlike the Slammer TDGs shown earlier which
has several disconnected Star subgraphs, this trace has actual
infections and not just Slammer scanning. Notice the clear
tree like structure with a large depth and high InO.

P2P versus Outbreaks using Depth: In Table 3 we com-
pare the standard graph metrics for 3 TDGs: the first is the
WinMX TDG (P2P) from the wide area traces, the second is
the Slammer trace from the wide area traces (scanning but
no infection), and the third is the Blaster trace we described
(scanning plus infection). Notice that the Max Depth for
Slammer with scanning is 1, the Max Depth for WinMX is
4, while the Max Depth for Blaster is 8 even for a very small
TDG! Notice also the high InO for Blaster and WinMX that
separates them from Slammer scanning. Notice also the high
max degree for Slammer scanning (1248).

The Table suggests that high Depth and high InO are
strong characteristics of outbreaks. On the other hand, high
average and Max degree with small InO and very small depth
(close to 1) is characteristic of scanning. Finally, high InO
(10 to 20%), moderate depth (2 to 4), and fairly large node
degrees (> 8) is characteristic of P2P applications.

The benefit of using TDG’s over Ellis’ approach [9] is that
we use a more refined discriminator (Average Degree, InO,
Max Depth) and we calculate all of these using a single TDG
as opposed to the per node connectivity graph suggested in
[9]. Further, the same TDG can be used for application iden-

tification and not just for worm detection. Finally, we will
show in Section 5 that these metrics can be calculated ef-
ficiently without even storing the entire TDG: instead, they
can be approximated well using an order of magnitude less
storage by employing sampled TDGs.

Depth in Enterprise versus Access Link Traces: While
enterprise traces are the preferred data engine to generate
TDGs for application and outbreak identification, ISPs may
only have access to access traces. The notion of depth in an
access trace needs to be modified compared to the standard
notion in [9]. This is because the access link only sees infec-
tion attempts coming from outside the organization to inside
and vice versa. If a successful infection attempt comes in,
the access link will not see the resulting internal infection,
but can only observe the rare case when the same internally
infected node then turns around and sends an infection at-
tempt to the outside. This suggests that the Max Depth ob-
served in such access is likely to be 2 which is very different
from the numbers like 8 observed in our Blaster trace and
in [9]. We have carried out simulations that verify this and
show there will also be a significant number of nodes with
depth 2 during an infection but we omit these results for lack
of space.

5 Sampling TDGs for Hardware Implementa-
tion: Theory and Practice

A hardware implementation of TDGs must minimize the
amount of high speed memory devoted to storing TDG state.
TDGs can be large, with the number of nodes equal to the
number of IP addresses being monitored (say 64,000 in a
large enterprise). A second multiplicative factor is that sev-
eral different TDGs may need to be monitored concurrently
(e.g., for several port numbers). Bloom filter representations
can be used to compress the TDG by a constant factor of
around 3 (the space required to store a node reduces from
say 32 bits per node to around 10 bits per node [27]). For an
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Nodes Edges Avg. Degree In-&-Out(%) MAX Degree MAX Deg. Ratio Size of GCC(%) Avg Depth MAX Depth
OC48-WinMX 8,890 33,593 7.560 28.68 315 0.035 98.99 1.273 4
WIDE-Slammer 8,209 7,921 1.929 0 1248 0.0685 85.56 1 1
UCSD-Blaster 239 246 2.0587 21.56 30 0.1255 100 4.369 8

Table 3: Comparing the standard graph metrics for WinMX, Slammer(scanning) and Blaster(infection) TDGs.

order of magnitude reduction, the required graph measures
(e.g., InO, degree distribution, MaxDepth) must be estimated
accurately from a small sample of each TDG.

Unfortunately, most basic graph properties are hard to esti-
mate in the data stream setting where edges are simply pass-
ing by [28, 29]. Moreover, we require an approach that is
implementable in router hardware. We therefore propose to
use online graph sampling to reduce storage and restrict our-
selves to graph measures that can be efficiently calculated
using such sampling.

For concreteness, consider the InO property defined ear-
lier: If we can uniformly sample nodes from the TDG graph,
we can approximate the fraction of nodes which satisfy the
InO property. For example, suppose the TDG has 64,000
nodes and say 10% of the nodes have the InO property.
First, we randomly sample and store a small number of TDG
nodes; then, we watch the data stream for in-edges or out-
edges for the sample nodes, and record with one bit if in-
edges or out-edges exist. At the end of some specified pe-
riod, the algorithm can calculate the fraction of nodes in the
random sample that have the InO property. For example, if
20 nodes are found with this property in a sample of 250, a
reasonable estimate for the whole graph is 20/250. As in the
Gallup Poll, the distribution for the random sample follows a
Bernoulli distribution that tends (by the Central Limit Theo-
rem) to the normal distribution. Since the standard deviation
tends to fall off as the square root of the sample size, fairly
small samples give small confidence intervals.

Concrete results can also be obtained by using one of a
variety of standard Chernoff bounds, although with a small
number of samples they may not be sufficiently tight. For
example, if we choose m sample nodes from a graph inde-
pendently and uniformly at random and find a fraction p̂ of
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Figure 8: The tree-like structure of MS-Blaster Worm infection.

the nodes have some property, and we consider the actual
fraction p of the nodes that have that property, we find (see,
e.g., [30])

Pr(p− p̂ ≥ ε) ≤
(

e−ε/p

(1− ε/p)(1−ε/p)

)mp

. (1)

(Here we choose distinct nodes, without replacement; the
bound still holds.) For example, if at most 20 nodes out of
250 appear to be spreaders, this gives that the actual fraction
of spreaders is more than 16% with probability about than
0.2%; analysis of the Bernoulli distribution gives a stronger
bound of 0.015%. In practice, good and easy to compute ap-
proximations can also be had using normal approximations
to the binomial distribution.

We have tested the effectiveness of sampling on our traces
from both backbone and access links, calculating the frac-
tion of nodes that have the InO property for various TDGs.
We found, as expected, that results with a random sample
of approximately 1% of the nodes matched very closely the
results using the whole graph. For example, for DNS on
the OC48 trace, the InO degree fraction was 0.1097 for the
whole graph (22,710 nodes) but the estimator with 225 sam-
pled nodes was 0.1037 with a 95% confidence interval of
0.0092.

5.1 Sampling via Wegman’s Algorithm

While these results are encouraging, the really hard part, as
with the Gallup poll, is how to pick a random sample. The
problem is particularly challenging in the network setting be-
cause (a) the TDG nodes arrive in online fashion (every re-
ceived packet potentially adds an edge) (b) the size of the
TDG is unknown and can vary dramatically (c) some pack-
ets duplicate already existing nodes and edges.

Suppose one wants to keep track of 250 randomly sam-
pled nodes from a TDG. Unfortunately, the TDG may vary
in node size from say 64,000 (all to say 100. If we knew
the size was 64,000 in advance then we could pick a node
for the sample with probability 250/ 64,000. Without know-
ing the population size in advance, a simple online algorithm
that does the job is reservoir sampling [31]. Unfortunately,
reservoir sampling does not really work in a setting where
the online algorithm receives the same node multiple times.
Since no memory is kept of nodes that have already been dis-
carded, a node that has been discarded earlier can be added
again if it appears as a duplicate.

Essentially, we have a multiset of incoming values (node
IP addresses) and we wish to sample s (e.g., 250) distinct
values. Wegman [32] has proposed an elegant reservoir
algorithm to sample from multisets using close to optimal
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storage. Wegman’s algorithm uses a single reservoir and
an adaptive sampling probability. The intuition is that hash
based sampling (which suppressed duplicates) is done at
some probability p and samples are stored in the reservoir.
When the reservoir fills up, the algorithm moves to a sam-
pling probability of p/2. To make space for new incom-
ing samples, Wegman’s algorithm goes through the exist-
ing reservoir and removes all currently stored samples that
would have not been accepted had the sampling probability
been p/2.

More precisely, the algorithm samples a node with prob-
ability p = 2−l only storing node IDs X such that the last
l = log2(1/p) bits of Hash(X) are 0. A node ID X is also
stored only if X is not already in the reservoir. For example,
to sample with probability 1, we select all nodes (l = 0), to
sample with probability 1/4 we select all nodes whose hash
values end with 00 (l = 2). Initially, p = 1. At any stage
when the reservoir (say of size 250 as described above) fills
up, p is halved by incrementing l. When this happens, Weg-
man’s algorithm requires going through the reservoir and re-
moving all nodes whose last l bits are not equal to 0. Since
such nodes were in the sample because their last l − 1 bits
were 0, their l-th bit must be a 1. Since this happens with
probability half, this deletion has the effect of stochastically
splitting the sample, leaving roughly half the reservoir free
to store new samples at the new sampling probability.

The sudden halving of the sample size can leave the resul-
tant sample off by a factor of approximately 2. For example,
if the reservoir can hold 250 nodes, the algorithm may end
up with a sample of 125 (or fewer) by the halving operation
when the last distinct sample is received. This is because
the halving is done on behalf of possibly future samples, and
the algorithm, being online, cannot know that no more sam-
ples exist. Also, the halving is approximate and may some-
times remove more than half of the reservoir. Wegman [32]
proves, however, that if the reservoir size is roughly 2.5 times
the size of the required sample, then with high probability the
algorithm will end with an unbiased sample of at least the re-
quired size (which can then be subsampled if an exact size is
desired). Thus for a final sample of size 250, one has to keep
a reservoir of roughly 625.

It is worth noting the following key property of Wegman’s
algorithm that we use later: if a node is seen and not put in
the reservoir, duplicates of that node will never be put in at
a later time. Hence, in the case of an online data stream, we
know that an element in the reservoir was there since its first
appearance in the stream.

High Speed Sampling Implementation: Wegman’s al-
gorithm has two major issues for high-speed implementa-
tion. First, the reservoir must implement some form of CAM
or hash lookup to prevent the same sample X from being
stored twice. Since CAMs take at least 5 times the tran-
sistors, a hash table implementation is better. Second, the
effort required to reduce the size of the reservoir on a spe-
cific sample is much too large. Recall that we care about the

worst-case packet processing overhead.
We solve the first problem using a hash table adapted to

high speed processing. For example, d-left hashing uses d
parallel hash tables each of which has b slots in each bucket.
A new ID is hashed in parallel into a bucket in each of the
d hash tables using d independent hash functions. The ID is
stored in any vacant slot in the least loaded bucket breaking
ties to the left. Search proceeds similarly, but all slots in each
relevant bucket is searched in parallel. Although this requires
a small increase in storage (a usual loading factor would be
70%), the probability of rejecting a new entry is very small.
Because of the bounded processing and parallelism, d-left is
easy to implement in hardware and is, indeed, used in routers
today.

The second problem could be solved using a separate
garbage collection process that periodically walks through
the hash table entries marking entries that would be deleted
if the sampling probability halves. Unfortunately, these el-
ements cannot be deleted before the reservoir fills up, and
deleting them in constant time after the halving requires
marked nodes to be linked together which is problematic
with hash tables.

The alternative we propose is to modify Wegman’s algo-
rithm to do lazy deletion. When p is halved and l is in-
creased, we do nothing special. However, on any insert,
when we retrieve d buckets in parallel and search among
their slots looking for empty slots, we consider a bucket
empty even if there is an entry X in the bucket but Hash(X)
does not have the last l bits equal to 0.

The only remaining issue is knowing when to halve the
sampling probability p. Since Wegman’s algorithm does a
distinct deletion step, it can keep track of the number of dis-
tinct samples k and halve p when k > R, where R is the
reservoir size. Unfortunately, with lazy deletion, we have no
count as to the number of distinct samples. However, we can
keep track of the number of distinct samples added, say k′,
after the last probability doubling. The next doubling is done
is done in the modified algorithm when k′ > R/2.

This slightly increases the probability that the reservoir
will not be able to hold a valid incoming sample when, for
example, the last deletion step deleted less than half of the
reservoir. When an incoming sample has no space to be
stored in the d-left hash table because of d-left hashing over-
flow a new halving should be initiated. Proper sizing of the
hash table, however, avoids this problem.

We note that the factor of two waste in Wegman’s algo-
rithm can be reduced by using different downsampling fac-
tors other than 2, so that the size gap between the reservoir
before and after the change in p value is less severe. For ex-
ample, on a downsampling one could check if the next two
bits of the hash were 00, 01, or 10, reducing the sample by a
factor of 3/4. One could also use more general values of p
although this is somewhat more difficult in a bit-based hard-
ware architecture. If we store node IDs in the hash structure
this change requires no additional space in the hash table, but
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only longer hashes (in bits). However, even with the simpler
factor of 2 waste, it seems clear that one could feasibly im-
plement the modified Wedgman algorithm for around 1000
concurrent TDGs in hardware at say 20 Gbps.
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Figure 9: The modified Wegman algorithm using d-left hashing
and lazy deletion and assuming node sampling of sources. When
a packet comes in with a TDG key Key1, the key is used to find an
offset into the overall d-left hash table. If a hash H(S) of the source
has l consecutive suffix bits equal to 0, S is inserted into the sam-
ple by inserting into the d-left hash table. Lazy deletion is done on
insertion.

5.2 Graph Properties via Sampling

Fig, 9 shows an example where source S in a packet with
TDG key K (which, recall, may correspond to a destina-
tion port number or content string and allows the packet to
pass the edge filter, Section 2) is inserted into the sample.
Assume that currently l = 2 and H(S) has the last 2 bits
equal to 0. Then S is hashed using say d = 3 hash functions
H1(S), H2(S) and H3(S) and the corresponding buckets are
retrieved. Each bucket has say 3 slots to hold nodes. Since
S is not already in any slot, S should be inserted. Before
inserting S, any implicit deletions are done. We know that
if the last l bits of the hash of any node ID in any bucket
is not 0 then that node can be deleted. For example, sup-
pose H(A) = 000100,H(B) = 000111,H(C) = 101100,
and H(D) = 111011,H(E) = 111000,H(F ) = 111111,
and H(G) = 011000,H(I) = 101111,H(J) = 111101.
Then B can be deleted from the first bucket, D and F can
be deleted from the second bucket, and I and J from the
third bucket. After deletions, the least loaded buckets are the
second and third buckets. Breaking ties to the left (this is
where the phrase d-left comes from), S is inserted into the
second bucket replacing either D or F . All of these steps
can be done in parallel by reasonably sized combinatorial
logic. Notice also that the same logic can be used for all
TDG keys by dividing a large d-left hash table into subtables
for each key and using a lookup on the key to map to an off-
set. Then the offset must be added to the value returned by
the hash functions used for indexing (H1(),H2(),H3() in 9)
to retrieve the corresponding bucket for a key.

We now consider what kinds of measures can be accu-
rately determined via sampling based on Wegman’s algo-
rithm. It appears that estimating component size is hard in
the online setting; however, the other measures (Degrees,
InO, and Depth) have fairly compact implementations.

Node and Edges: Wegman’s algorithm can be used to
take a uniform random sample of distinct nodes or distinct
edges. Any property of nodes or edges that can then be de-
termined easily offline, based on the sample taken.

Node Degrees: Using Wegman’s algorithm, one can sam-
ple nodes independently and uniformly at random. Because
each node, if it is to appear in the final sample, is placed into
the sample on its first appearance, we can keep counters for
each node ID in the sample to track its in- and out-degree.
This is essentially a generalization of the approach we de-
scribed to obtain an estimate of the InO property.

We can further take advantage of the temporal nature of
the stream to correctly find the fraction of spreaders, where
a spreader sends a message out after receiving one. For this,
we assume our stream correctly arrives in temporal order;
that is, we see an edge (A,B) in the stream in the correct
relative temporal order for when node A sent a message to
node B. We then only set the out-degree bit for a node if
its in-degree bit is already set; this properly labels nodes as
spreaders if they send a message after receiving one.

Degree Distributions: With small samples as we aim for
here, attempting to determine the entire degree distribution
by sampling node degrees is impractical. We can, however,
use the sampling to obtain a coarse histogram of the node de-
grees. We start a priori with bounds a1, a2, . . . , ab for some
small b; after sampling, we determine the fraction of nodes
with degree d ≤ a1, with degree a1 < d ≤ a2, and so on. By
splitting nodes into a small number of groups, we can ensure
the Bernoulli/Chernoff bounds are meaningful in this con-
text. We have found that five groups with quickly increasing
ranges performs well in our experiments (Fig. 6).

Random Temporal Walks to Estimate Depth: To es-
timate depth, we start by sampling node temporal out-
components: choose nodes randomly, and then find all nodes
potentially reached via a sequence of messages from that
node. Keeping an entire node component is rather expensive
in terms of space. A natural substitute is to keep a random
walk from a given node. For example, when we sample a
random node A, we select uniformly a random out-neighbor
A2 of A to follow. We subsequently choose a random out-
neighbor A3 of A2 to follow, and so on. We again empha-
size that we are restricted to out-neighbors that occur in the
proper temporal order. Interestingly, we can sample such
random walks even in the limited on-line setting.

The key is to keep temporary walks as we go; these walks
may be replaced in part or in whole at any step, by using
reservoir sampling at each node in the path. For exam-
ple, suppose we have a current path from A consisting of
A,A2, A3, A4. For each node on the path, we need to know
its out-degree up to this point in time. Suppose now a node
(A2, B3) arrives in the stream. According to reservoir sam-
pling we should replace the edge (A2, A3) in the path by
(A2, B3) with probability 1/(out-degree(A2) + 1); if this
occurs, we change our walk to A,A2, B3, deleting the final
edge.
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Note that for this to work using reservoir sampling, we
must take care; for example, it seems we should keep a list
of out-edges from each node in the path, to avoid problems
caused by the same edge appearing multiple times. (Weg-
man’s algorithm is highly inefficient for keeping a single
sample, so we cannot use it effectively here.) A better al-
ternative is to keep edges adjacent to any node ever made
part of a path in a global Bloom filter; then there is some
chance that a new edge is not included in a walk because of
false positive, but as the scheme is already randomized and
approximate the noise introduced by this should be small.
Note that the space used by this filter is not proportional to
the size of the complete graph, but just to the much smaller
number of edges we have to track through this process.

We may think of sampling random temporal paths as a
way of getting some insight into the depth of the graph, start-
ing at certain nodes. While the paths are a fairly weak substi-
tute, it is difficult to approximate depth or related graph prop-
erties in small amounts of space. If one is interested in the
depth from certain nodes, instead of considering the depth of
the final random walk, one could consider the largest depth
found from a node during this process. Alternatively, one
could consider other replacement rules (in order to lessen
the chance of shortening a currently long path, for instance).
Also, if one is interested in depth, it is best not to choose a
starting node uniformly at random. For example, consider a
complete binary tree on a levels. A random node is likely to
be near the bottom of the tree, yielding a short path; starting
near the root, one will obtain a path of length nearly a.

For example, in the Blaster TDG, while only a few nodes
have depth 8, roughly 60% of the nodes had depth 5. While
a random walk technique is highly unlikely to find a depth
of 8, our simulations over the UCSD Blaster trace, show it is
very likely to find many nodes with depth within the range
2-5. However, we omit these results for lack of space. Thus
the sampled TDG estimate of depth can be used but the value
of depth used to discriminate outbreaks from say P2P traffic
must be set lower. Once again, this suggests why it is so use-
ful to obtain additional evidence from other measures such
as InO and degree distributions.

Implementation Summary: Overall, other than compo-
nent size and assortativity, all the other metrics described for
application and outbreak in Section 4 can be estimated by
storing only a very small amount of samples (say 250 nodes)
for a TDG. Assuming a factor of 2 increase in storage for
the hash table and Wegman implementation, and 64 bits per
node (32 bits ID, 32 bits of state), this is roughly 32K bits
per TDG. Assuming 10 Mbits of high speed memory, this
provides space for monitoring 320 TDGs concurrently using
3 parallel memory accesses per packet. This can easily be
implemented at 20 Gbps.

6 Related Work
We present an overview of related literature and compare it
with our work. The overview highlights the most relevant
work and indicative efforts across the different areas that our

paper brings together.
Application classification and abnormality detection.

Early efforts focused on classifying network flows using the
well-known7 port numbers [13]. However, recent studies
show that such methods fail in correctly classifying new ap-
plications, like P2P protocols, that use ephemeral port num-
bers [33, 34]. In order to overcome this problem, deep packet
inspection approaches were used in order to capture the in-
variant signatures of network applications [35, 36, 2]. High
processing overhead, sensitive privacy issues and failure in
the presence of payload encryption are the main disadvan-
tages of this approach.

To increase classification accuracy more information re-
garding each flow must be extracted. By grouping pack-
ets into flows, metrics such as: packet interarrivals, average
packet length, total bytes transferred and flow duration can
be additionally used. This level of aggregation was utilized
by a plethora of Machine Learning (ML) classification meth-
ods such as [37, 38, 39, 40, 41, 42] and the references therein.
The most important challenge of these approaches is to iden-
tify the right set of attributes that will provide robust results
in low computational cost. In general ML methods suffer
from high processing overhead which renders them imprac-
tical for real-time classification at Gigabit speeds.

User behavior profiling gives an additional level of aggre-
gation by grouping the set of flows belonging to a particular
end host. BLINC [6] works by characterizing the “social
behavior” of hosts at the Transport Layer, and henceforth ac-
cordingly labeling their flows. For example, if a host is found
to participate in a P2P application, then all its flows that fol-
low a particular behavior-profile are characterized as carry-
ing P2P traffic. In order to achieve that, BLINC uses graph
models called graphlets to capture the behavior of a single
node. A fundamental difference with our work is that, in
graphlets, port numbers appear as nodes in the graph. Thus,
graphlets do not represent network-wide host interaction as
we use them here. We emphasize that BLINC hints at the
benefit of analyzing the node interaction at the “social” level,
but it ultimately follows a different path focusing on the be-
havior of one node at a time.

Other related work towards the direction of host behav-
ior profiling are [26, 5, 7]. In [5] clusters of interest are first
extracted from multidimensional flow records and later mod-
eled so as to represent various behaviors. To summarize, the
basic concept of these approaches advocate towards the in-
crease of classification accuracy, by using prior knowledge
regarding the behavior of an end-host, when trying to clas-
sify its flows.

Our Approach: Our approach goes one step further than
the host-based granularity and operates on aggregated sets
(graphs) of related nodes. This allows us to extract informa-
tion such as the popularity distribution of the set, the compo-
nent distribution and all other features described in Section 3.
After an edge filter (Section 2) is defined, the TDG can be

7For example, Port 80 denotes Web traffic.
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constructed and then characterized. For example, Sumeet
et al. in their evaluation of EarlyBird [3] automatic worm-
signature extraction system, reported that a large number of
false positives was caused by the BitTorrent P2P application.
Our approach can be used to mitigate this number of false
positive. In order to achieve that, we can first generate the
TDG using as edges all packets carrying the derived signa-
ture of BitTorrent. An automated IDS can then characterize
the derived TDG and assert if the observed behavior (abnor-
mal content prevalence) is due to a worm outbreak or a be-
nign application (e.g., BitTorrent).

Another advantage of our approach is that by monitoring a
group of nodes, even if the behavior and characteristics of an
individual node changes over a new window of observation,
the behavior of the community as a whole will in general
remain stable. Therefore, our proposed level of aggregation
also deals with the variability of monitoring a single node’s
behavior at a time.

Network Monitoring and Visualization of high dimen-
sional network data. Network monitoring, based on visual-
ization of high dimensionality traffic data, is becoming of in-
creasing importance for network management solutions. The
problem is due to the huge volume of packets and flows that
traverse today’s IP networks making it computationally im-
possible to process, keep state and provide information for
millions of connections. Thankfully, practice shows that the
majority of connections carry benign content and most of
the time the global traffic behavior is “normal”. Therefore,
the focus of network monitoring solutions is now shifted in
filtering-out regular traffic behaviors and be able to spot and
visualize abnormalities, like the Autofocus tool [43].

Yin et al. [44] presents a tool for near-real-time visualiza-
tion of network NetFlow data. The grouping of nodes in the
graph is performed based on the traffic volumes exchanged
between them. In [45], the authors use manifold learning to
visualize, in low dimension scatter plots (2-D or 3-D), very
high-dimensional NetFlow traffic measurements. A plethora
of works aiming at visualization of network data can also be
found in the same paper [45]. The work in [46] belongs to
the family of graph visualization literature presenting a visu-
ally friendly methodology of projecting individual nodes to
a low dimensional (2-D) scatter plot. All these works can be
used in parallel to our approach in order to enhance and com-
plement the visual (e.g., Fig.2) articulation of our scheme.

Worm and virus detection. Although there has been a lot
of work on worm and virus detection [47], most such work
relies on the identification of signatures in the content of the
worm, and thus differs significantly from the work here.

An earlier approach to use graph-based methods was pro-
posed in 1996 [48, 8]. This early effort inspired the most
relevant work to our effort [49]. Ellis et al. [49] em-
ployed host interaction graphs for worm detection within
an enterprise network. By assuming global knowledge of
packets exchanged, they constructed host interaction graphs
where nodes consisted of local (intra-enterprise) end-hosts

and links between nodes were formed upon fulfillment of
some link predicate. Their key contribution is based on re-
vealing the importance of a three-like communication struc-
ture, formed by a self propagating code, in the detection and
containment of such threat.

The original work of [49] was later continued in [9] with
the designing of a software Intrusion Detection System (IDS)
aiming at real-time detection of any worm-generated tree-
form structure. In contrast to our work, the authors in [9]
only consider the case where global knowledge of all packets
between all hosts is known and they focused their work on
detection of worm activities. Namely, they did not generalize
any findings in the concept of traffic monitoring, or applica-
tion specific social profiling. In [50], the authors provide
preliminary results illustrating the importance of the tempo-
ral appearance of hosts in a trace, for identifying P2P com-
munities. However, none of these work uses the diversity of
graph metrics we introduce nor they have hardware primi-
tives taken under consideration.

Identifying the origin of the attack. Post-mortem trace
analysis for the identification of a worm outbreak and the
discovery of its origin was the focus of study in [51] and later
in [10]. Both works exploit the tree-like structure of a propa-
gating worm, but they only focus on offline forensic analysis
while they explicitly target worm detection. Tolle et al. [52]
also reveal the importance of host communication graphs in
network monitoring and intrusion detection. In [52], they
extract patterns from the traffic matrix of an enterprise net-
work and then use clustering to group intra-communicating
node in order to visualize the inter-cluster-graph. Again, no
hardware primitives were introduced and only a simple link
predicate of “A sends an IP packet to B” was used.

Communities of Interest in Data Networks. The study of
Community of Interests (CoI) in data networks [53, 54] tar-
gets on capturing historical communication patterns of hosts,
and then use them to build a model for “normal behavior”.
Deviations from normal can then be used to trigger an alarm.
Another main focus of CoI is to achieve automatic extrac-
tion of significant communities from a set of communicating
hosts (e.g., within an enterprise network). If the extraction
step leads to meaningful communities, that follow a great
deal of regularity and structure, then this information can be
used to form parsimonious models which can constitute the
foundation of a management policy [53].

These basic concepts were used in [55] for the design of
a CoI based enterprise security scheme. In [55], the profile
of users is derived together with thresholds that control the
allowed deviation from “normal” host behavior. This ulti-
mately makes it harder for a malware to exploit vulnerabili-
ties in the enterprise. These methods are quite different from
our approach. In our work, we first extract the communica-
tion graph of hosts, based on some edge-filter, and then use
graph metrics in order to characterize the nature of the net-
work application being used (e.g., if is a peer-to-peer or a
client-server application).
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Research in social network and other disciplines. Social
graph analysis has drawn the attention of a plethora of re-
searchers in social and business studies, and datamining. An
exhaustive survey can be found in several books and recent
articles [19] [56]. In [57], communication patterns of call-
graphs, from a cellular telephony company, are analyzed in
view of profiling the behavior of customers. The authors in
[58] mine the inner structure of the Web graph8 that can be
further used for devising better crawling and browsing strate-
gies. Social graph methodologies were also studied in busi-
ness interaction graphs [59], where customer communication
patterns are used in order to increase the profitability an or-
ganization. Similarly, graph mining teachings are used in
[60] for the extraction and understanding of complex pur-
chase behaviors by consumers. The herein referenced works
cover some of the latest publications in the otherwise enor-
mous context of social graph analysis.

The communication graph of e-mail users is studied in
[61] as well as in other works referenced therein. Drineas et
al. [61] present a brief study of the spectral characteristics of
an e-mail graph revealing the message exchange patters from
a small community of university users. Their work support
similar finding as in [53] where the social behavior of hosts
is found to be stable over time. However, Drineas used e-
mail log files ranging across multiple days and is therefore
different from our study of packet level behavior of hosts.

Finally, note that TDGs, as defined here, are significantly
different than trust propagation networks. The problem there
is to identify intruders in social networks, which represent
trust relationships as discussed in the recent work of Sybil-
Guard [62]. For example, the solution there relies heavily on
the fact that in trust relationships a “bad” guy cannot have
many trust edges with good guys, which is true in trust net-
works, where nodes are humans, like ebay sellers. However,
this is not true when nodes are IP machines. By contrast,
an edge in a TDG can be an unsolicited transmissions of a
packet

7 Conclusions
Two essential features in a network monitoring tool dealing
with vast amounts of network data are aggregation and the
ability to spot patterns. TDGs represent a natural extension
of previous approaches that have aggregated at the packet,
flow, and host levels by aggregating across nodes. The ag-
gregation across nodes also reveals patterns of social inter-
action across nodes that are specific to applications. These
interaction patterns or graph structures can then be used to
visually and quantitatively monitor existing applications and
detect concealed applications and malcode.

Our paper has the following major findings. First, TDGs
are interesting as objects of study in their own right, with de-
gree distributions and rich club connectivity that is very dif-
ferent from other scale-free graphs such as Internet topology.

8Nodes are web pages and the directed links between pages are hyper-
links connecting them.

Second, TDGs can provide a visualization perspective that
complements other perspectives (such as the visualization of
flow data in tool such as Plonka’s FlowScan). Third, TDGs
of different applications and malcode can be effectively dis-
criminated using a small number of metrics such as average
and max degree, InO, max depth, and the number and size
of components. Fourth, many of these metrics (component
sizes being a notable exception) can be computed at high
speeds using very small samples of a TDG. Fifth, it is diffi-
cult to extrapolate results from offline sampling of graphs to
online sampling; for example, assortativity is easy to com-
pute offline but is difficult to estimate online. Despite this,
the metrics that can be efficiently estimated (degree distri-
butions, InO, and max depth) suffice to discriminate many
interesting features such as P2P behavior and both dormant
(scanning) and active infections.

Ultimately, these measures could be input as features to
a learning algorithm that could be implemented offline in a
management station based on data from sampled TDGs sup-
plied by routers. The algorithm could be trained with the
features of known applications to then predict concealed ap-
plications. Such an algorithm could help move beyond the
visual appeal of TDGs to a more rigorous science for moni-
toring and detecting applications.
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(a) DNS (client-server and peer-to-peer).
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(b) eDonkey (peer-to-peer).
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(c) HTTP (client-server).
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(d) WinMX (peer-to-peer).

Figure 10: Joint Degree Distribution(JDD): P (k1, k2) gives the probability of a randomly selected edge to connect nodes of degree k1 and k2.
Same-colored areas in the contour plots, give regions where an edge is equal likely to exists. A dark colored region shows the areas with the
higher concentration of edges, and white intricate areas with no edges. All probability matrices have white regions at the top right parts of the
figures, showing that nodes with the highest degrees are not directly connected with each other. Note: The contour plots are symmetric in that
P (k1, k2) = P (k2, k1). All TDGs are derived from the first 300 sec of the OC48 trace.
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Figure 11: Cumulative plot of the number of encountered hosts versus time, (for four representative TDGs) over the one hour duration of each
of the three traces. Note that the two y-axis (left and right) correspond to different TDGs due to size differences. The SYN TDG is calculated by
using the EFSP filter with all destination port numbers and the UDP TDG is calculated with the use of EFP filter on every UDP packet irrespective
of its destination port number. Observation: The number of new nodes increases near linearly over the duration of the trace.
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