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Abstract. We study the complexity and approximation of the problem of 
reconstructing haplotypes from genotypes on pedigrees under the Mendelian 
Law of Inheritance and the minimum recombinant principle (MRHC). First, we 
show that MRHC for simple pedigrees where each member has at most one mate 
and at most one child (i.e. binary-tree pedigrees) is NP-hard. Second, we present 
some approximation results for the MRHC problem, which are the first 
approximation results in the literature to the best of our knowledge. We prove 
that MRHC on two-locus pedigrees or binary-tree pedigrees with missing data 
cannot be approximated (the formal definition is given in section 1.2) unless 
P=NP. Next we show that MRHC on two-locus pedigrees without missing data 
cannot be approximated within any constant ratio under the Unique Games 
Conjecture and can be approximated within ratio O(         ). Our L-reduction for 
the approximation hardness gives a simple alternative proof that MRHC on 
two-locus pedigrees is NP-hard, which is much easier to understand than the 
original proof. We also show that MRHC for tree pedigrees without missing data 
cannot be approximated within any constant ratio under the Unique Games 
Conjecture, too. Finally, we explore the hardness and approximation of MRHC 
on pedigrees where each member has a bounded number of children and mates 
mirroring real pedigrees.  

Keywords: Haplotyping, pedigree, recombinant, SNP, complexity, approxima- 
tion, L-reduction, positive result, negative result, bounded number, children, 
mates. 

1   Introduction and Definitions 

The secret mechanism behind phenotypic variation and inheritance has intrigued the 
study of genetic markers. With the discovery of genetic markers such as microsatellite 
DNA sequences and Single Nucleotide Polymorphisms (SNPs), it is now possible to 
provide a unique genetic map to track the variation and inheritance of genetic markers. 
The international HapMap project launched in October 2002, aims to discover the 
haplotype structure of human beings and examine the common haplotypes among 
populations [17].  
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Homologous recombination, the combination of genetic material between 
chromosome pairs during meiosis, is essential in diploid organisms such as humans [7]. 
Unfortunately, the diploid structure of humans makes it very expensive to collect 
haplotype data directly to display the recombination events. In a large-scale sequencing 
project, genotype data instead of haplotype data are collected. However, haplotype data 
are required in many genetic marker applications, such as linkage disequilibrium 
analysis and disease association mapping to name a few [12,13]. Therefore, 
combinatorial algorithms and statistical methods to reconstruct haplotypes from 
genotypes (i.e. the haplotype phasing or inference problem) are urgently needed. 

The input data for this problem can be SNP fragments from an individual, genotype 
data in a population or genotype data in a family [8,9,10,11,15]. There are many 
combinatorial [1,2,14,16] and statistical ways [11,19] of tackling the phasing problem. 
They are usually quite computationally demanding.  

Some of the commonly used combinatorial methods [1,2,14,16] take advantage of 
the availability of pedigree data. In other words, given a pedigree and the genotype 
information, they reconstruct a haplotype configuration for each individual in the 
pedigree by trying to solve the Minimum Recombinant Haplotype Configuration 
(MRHC) problem [1]. During the process of reconstruction, the minimum recombinant 
criterion is used as the objective function. Because this objective attempts to reduce the 
number of candidate haplotype configurations, it naturally preserves common 
haplotype structures.  

All the existing methods to the MRHC problem are time and space consuming for 
realistic applications. For example, a Pentium IV computer with 256MB RAM is used 
to solve MRHC on an input pedigree with 29 members and 51 SNP markers. An 
effective combinatorial algorithm ILP takes about 5 hours to find an exact solution, 
whereas a well-known statistical approach SimWalk2 takes even more than 6 days to 
find a haplotype configuration with the maximum likelihood [21]. While over 5 
millions of SNPs have been identified in the public database dbSNP [17], there is a 
great need for efficient algorithms that could scale up to the whole genome level. This 
difficulty motivates us to analyze the hardness and approximability of MRHC problems 
from a theoretical point of view.  

1.1   Formal Definition of the MRHC Problem 

In this subsection, we give a formal definition of the MRHC problem as well as the 
issue of pedigree representation and biological background. We follow the conventions 
in [1]. 

Definition 1. A pedigree graph is a connected directed acyclic graph (DAG) G={V, E}, 
where V= M∪F∪N, M represents the male nodes, F represents the female nodes, N 
represents the matting nodes, and E= { (u, v): u∈M∪F and v∈N or u∈N and v∈M∪F}. M
∪F is called individual nodes. The in-degree of each individual node is at most one. 
The in-degree of a mating node must be two, with one edge starting from a male (called 
the father) node and the other edge from a female node (called the mother) and the 
out-degree of a mating node must be larger than zero.   

In a pedigree, the individual nodes outgoing from a mating node are called the 
children. The individual nodes with zero in-degree are called the founders. The induced 
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subgraph by the father, the mother and one child adjacent to the same mating node is 
called a family trio. If there are two node-disjoint paths between two mating nodes in 
the pedigree graph, this pedigree has a mating loop. A pedigree without mating loops is 
called a tree pedigree. A pedigree where each member has at most one mate and at most 
one child looks like a binary tree, so this kind of pedigree is called a binary-tree 
pedigree. Fig. 1 demonstrates an example pedigree drawn in both the formal and 
conventional ways. In the conventional way, the mating nodes are omitted. For 
convenience, we use conventional drawings of pedigrees throughout this paper. 

(a) (b) (c)
 

Fig. 1.  (a) A pedigree drawn in the formal way. (b) The pedigree drawn in the conventional way. 
(c) A pedigree with a mating loop. 

A genetic marker is a short non-redundant discriminative DNA sequence that can be 
used to trace inheritance. Some common genetic markers are microsatellite DNA 
sequences or SNP data. Each polymorphism state of a genetic marker is called an allele. 
Different kinds of markers have different numbers of alleles. For instance, a 
microsatellite marker has multiple possible alleles occurring at a locus, which is called 
multi-allelic. An SNP marker commonly has only two possible alleles occurring at a 
locus, which is called bi-allelic. We will mostly be interested in bi-allelic markers 
because they are becoming the most popular markers in practice. Bi-alleles can be in 
exactly one of the two alternative states, such as 1 or 2. If an allele is missing at some 
locus, it is denoted as a “*”. 

In diploid organisms, because chromosomes come in pairs, at each locus there is a 
pair of alleles, which is referred to the genotype of this locus. If these alleles are the 
same, the genotype at this locus is homozygous; otherwise, the genotype is 
heterozygous. The alleles on the same chromosome form a haplotype. Each individual 
has a pair of haplotypes. 

If there is no genetic mutation in a meiosis process, the child inherits one haplotype 
from the mother and the other one from the farther. This is the well-known Mendelian 
law of inheritance. The haplotype inherited from the mother is called the maternal 
haplotype while the one from the father is called the paternal haplotype. Given a pair of 
haplotypes of an individual, if it is known which one was inherited from his (or her) 
father and which was from his (or her) mother, the haplotypes and the inheritance 
information together are called a haplotype configuration (i.e. a configuration in short); 
otherwise, the haplotypes without inheritance information form a haplotype grouping 
(i.e. a grouping in short).  
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Usually, an entire haplotype of the mother’s (or father’s) haplotype pair is passed 
onto the child during meiosis. However, crossover between the haplotype pair might 
occur, where the haplotype pair gets shuffled and one of the mixed haplotypes is passed 
onto the child. This crossover is called a recombinant.  

A PS (or phase) value represents the paternal or maternal information about the 
alleles at a locus. The PS value can take the values 0 or 1, where 1 means that the allele 
with the smaller identification number is from the mother and the allele with the larger 
identification number is from the father, and 0 otherwise. Thus, the reconstruction of 
haplotype configuration for an input pedigree can be viewed as assigning PS values to 
each locus of every member of the pedigree. 

Now, the MRHC problem is defined as follows: 
 

Definition 2 (MRHC [1]). Given a pedigree and genotype information for each 
member of the pedigree, find a haplotype configuration of the pedigree that obeys the 
Mendelian law of inheritance and requires the minimum number of recombinants. 

1.2   Variants of MRHC and Some Related Problems 

We give the definitions of the variants of MRHC and list the related problems that are 
going to be discussed later in the paper. 

 
Definition 3. MRHC(k, j) is defined the same as MRHC except that each member in the 
pedigree has at most k mates and at most j children with each mate. Binary-tree-MRHC 
is defined as MRHC on a binary-tree pedigree. Binary-tree -MRHC* is defined the 
same as binary-tree-MRHC except it is allowed to have missing alleles. 2-locus-MRHC 
is MRHC on a two-locus pedigree without missing data. 2-locus-MRHC* is defined the 
same as 2-locus-MRHC except it is allowed to have missing data. Tree-MRHC is 
MRHC on a pedigree without mating loops or missing data. 

 
In order to discuss the hardness and approximation of the variants, we are going to 

make use of some related problems or properties, such as the Min UnCut [5] (i.e. 
2-Linear-Equations Mod 2 [4]), Min UnCut(k) (the same definition as Min UnCut 
except that each variable occurs at most k times), Min 2CNF Deletion [4, 5] problems, 
consistency and satisfiablility property. The Min UnCut and Min 2CNF Deletion 
problems are known to be NP-hard [5]. We will show that the Min UnCut(k) problem is 
also NP-hard in this paper. 

For any NP-hard minimization (or maximization) problem, if there is some 
polynomial time algorithm to give a solution with the objective value no more (or less, 
respectively) than f(n)·OPT (or OPT/f(n), respectively), where f(n) can be any function 
of the input size n, the problem can be approximated within ratio f(n); otherwise, the 
problem cannot be approximated. 

1.3   Previous Complexity Results on MRHC 

Qian and Bechmann proposed a ruled-based algorithm to reconstruct haplotype 
configurations based on six rules [16]. Their algorithm is a heuristic without theoretical 
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analysis. Li and Jiang first proved that MRHC on two-locus pedigree is NP-hard [1]. 
Doi, Li and Jiang further proved that MRHC on tree pedigrees is also NP-hard in the 
general case [2], even though MRHC can be solved by dynamic programming 
algorithms when the number of members or loci in the input pedigree is bounded by a 
constant. However, the NP-hardness proof requires pedigrees containing individuals 
with an unbounded number of mates or children. It was left as an open question if the 
proof can be improved to work for tree pedigrees where every individual has a bounded 
number of mates and children. 

Consistency checking of the Mendelian law of inheritance (i.e. the Mendelian law 
checking problem) is closely related to the MRHC problem. The purpose of Mendelian 
law checking is to determine whether the given genotype data obey the classic 
Mendelian law of inheritance. Mendelian law checking usually needs to be done ahead 
of phasing haplotype configurations. Aceto et al. showed that the Mendelian law 
checking problem is NP-hard in general, although checking the consistency on 
pedigrees with bi-allelic data or with no mating loops [3] can be done in polynomial 
time. 

In this paper, we consider a simple variant of MRHC, which involves pedigrees with 
members that has at most one mate and one child (i.e. binary-tree-MRHC). It is an open 
question if binary-tree MRHC is NP-hard. A polynomial-time algorithm for it, if exists, 
could be useful for solving the general-case MRHC problem. Another important 
question is whether a good approximation algorithm exists for MRHC. Here, in terms 
of computing the minimum-recombinant haplotype, the accuracy is sacrificed to 
improve the efficiency. Previously, there is no known polynomial-time approximation 
algorithm for MRHC with guaranteed ratio. 

Table 1. The known hardness results of the Mendelian law checking and MRHC problems 

        Pedigree
 Problem

Loop? Multi-allelic? Hardness

Yes Yes NP-hard [3]

Yes No NP-hard [1]

No   P  [3]

No   P  [3]

Unbounded
number of loci?

No
No No No   P  [2]

Unbouned number
of  members?

Yes
Yes

No No Yes No   P  [2]

No No Yes Yes NP-hard [2]

Mendelian law
checking

M R H C

 

1.4   Our Results 

We will consider pedigrees with bi-allelic genotype data throughout this paper. First, 
we reduce ≠3SAT to the binary-tree-MRHC problem and show that this problem is 
NP-hard, which answers an open question in [2]. Second, we study the approximability 
of MRHC on pedigree data with the following restrictions: (I) 2-locus genotype data 
with missing alleles, (II) binary tree pedigrees with missing alleles, (III) 2-locus 
genotype data without missing alleles, and (IV) tree pedigrees without missing alleles. 
These four restricted cases of MRHC are NP-hard problems shown either in the 
literature [1,2] or in this paper. We demonstrate that for MRHC in the former two cases 
I and II cannot be approximated unless P = NP. We also prove that it is NP-hard to 
approximate problems III and IV within any constant ratio under the Unique Games 
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Conjecture [4]. Moreover, we show that problem III can be approximated with ratio  
O(           ) in polynomial time by reducing it to the Min 2CNF Deletion problem, Fin- 
ally, we discuss the approximation of MRHC on pedigrees where each member has a 
bounded number of children and mates, mirroring pedigrees in real applications. 

1.5  Organization of the Paper 

The paper is organized as follows. We briefly give definitions of the MRHC problem 
and other closely related problems, introduce the related biological background in 
section 1. We prove binary-tree-MRHC is NP-hard and state the approximatability of 
MRHC on pedigrees with missing data in section 2. We show the approximation lower 
bound of MRHC on pedigrees without missing data and the approximation upper 
bound of 2-locus-MRHC in section 3. In section 4, we tentatively explore the 
approximation hardness of MRHC on the pedigrees where each member has a bounded 
number of mates and children. We organize our hardness results and conclude this 
paper with a few remarks in section 5. Due to space limitations, the proofs are omitted 
in the main text and are given in the full version [22]. 

2   Approximation of MRHC on Pedigrees with Missing Data 

In this section, we prove the hardness of approximating MRHC on pedigree data with 
missing alleles. Two variants are considered. 

Lemma 1. If it is NP-hard to decide whether OPT(R)=0 for a minimization problem R, 
R cannot be approximated unless P=NP. 

2.1   Hardness and Approximation of Binary-Tree-MHRC(*)  

Theorem 2. Binary-tree-MRHC is NP-hard. 

Theorem 3. It is NP-hard to decide whether OPT(binary-tree-MRHC*)=0. 

Corollary 4. Binary-tree- MRHC* cannot be approximated unless P=NP. 

2.2   Approximation of 2-Loop-MHRC* 

Theorem 5. It is NP-hard to decide whether OPT(2-locus-MRHC*)=0 
 

Corollary 6. 2-locus-MRHC* cannot be approximated unless P=NP. 

3   Approximation of MRHC on Pedigrees Without Missing Data 

In this section, we consider the approximability of the same variants of MRHC without 
missing data. In order to show the negative result, we need to use some gap-introducing 
reduction (or gap-preserving reduction) for MRHC. We will use the concept of 
L-reduction proposed by Papadimitriou and Yannakakis [18]. 

)log(n



376 L. Liu et al.  

 

3.1   Approximation of Tree-MRHC  

Lemma 7. There is an L-reduction from Min UnCut to tree-MRHC that transforms a 
set of Boolean constraints φ to a tree pedigree ξ such that:  

(i) OPTMin UnCut(φ) = OPTtree-MRHC(ξ), and  
(ii) Given a haplotype solution for ξ with k recombinants, we can construct a solution 

for φ with at most k unsatisfied clauses. 

Theorem 8. It is NP-hard to approximate tree-MRHC within any constant ratio under 
the Unique Games Conjecture [4]. 

3.2  Approximation of 2-Locus-MRHC 

We will present a lower bound and an upper bound on the approximation ratio for the 
2-locus-MRHC problem. 

3.2.1  Negative Result for Approximating 2-Locus-MRHC 
Lemma 9. There is a polynomial-time L-reduction from Min UnCut to 2-locus-MRHC 
that transforms a Boolean constraints set φ to a pedigree ξ such that  

(i) OPT Min UnCut(φ) = OPT2-locus-MRHC(ξ), and  
(ii) Given any haplotype solution for ξ with k recombinants, we can find in 

polynomial time a truth assignment for φ with at most k unsatisfied constraints. 

Theorem 10. It is NP-hard to approximate 2-locus-MRHC within any constant ratio 
under the Unique Games Conjecture [4]. 

3.2.2  Positive Result for Approximating 2-Locus-MRHC 
We first would like to reduce an instance of 2-locus-MRHC so that each member of the 
pedigree can be described by one Boolean variable. Since only two loci are involved, 
there are three types of members in a pedigree: (I) both loci are homozygous, (II) one 
locus is homozygous, and (III) both loci are heterozygous. A type I (or II) member has 
a fixed haplotype grouping. A type III member has a variable haplotype grouping.   

Agarwal and Charikar recently presented a randomized polynomial-time O(       ) 
approximation algorithm for the Min 2CNF Deletion problem [5], where n is the 
number of variables in the input 2CNF constraints.  

Theorem 11. There is a randomized polynomial-time O(        ) approximation algo- 
rithm for 2-locus-MRHC, where n is the number of members in the input pedigree. 

Observe that the results in this section show that, in terms of approximability, the 
2-locus-MRHC problem is easier than the Min 2CNF Deletion problem and harder than 
the Min UnCut problem. Also, Lemma 9 presents an alternative proof that 
2-locus-MRHC is NP-hard, which is much easier to understand than the original proof 
in [1]. 

4   Approximation of MRHC(k, j)  

The proof of Lemma 7 uses a pedigree that contains members with a variable number of 
children, although every member in the pedigree has only one mate. Can we get the 

)log(n
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same hardness result for tree-MRHC if we bound the number of mates instead of the 
number of children? In addition, the pedigrees in the proofs of Theorem 5 and Lemma 9 
contain members with a variable number of children or mates. Another question is 
whether MRHC on two-locus pedigrees with a bounded number of children and mates 
leads to the same hardness result. In this section, we discuss the approximation of 
MRHC on pedigrees with bounded number of children and mates. For the convenience 
of comparison, we state strengthened versions of the previous theorems in the order 
they appear in this paper. We use u to present an integer variable. 

First, we refine Theorem 5. The hardness result in this theorem holds for 
2-locus-MRHC(u,1), because some member might appear in every clause gadget and 
every member has at most one child in the proof of Theorem 5. 

Theorem 12. 2-locus-MRHC*(4,1) cannot be approximated unless P=NP. 
 

Next, let us look at Lemma 7. This lemma actually works for tree-MRHC(1,u). It is 
natural to consider tree-MRHC on pedigrees where members have a bounded number 
of children with each mate. In order to decrease the number of children and mates in the 
pedigree, we need a bounded version of Min UnCut like the one for Max 3SAT.  

In fact, there is an L-reduction from Min UnCut to Min UnCut(15) that transforms a 
Boolean constraints set φ to another Boolean constraints set ψ such that  

(i) OPTUnCut(φ) = OPTUnCut(15) (ψ), and  
(ii) Given any truth assignment for ψ with k unsatisfied constraints, we can find in 

polynomial time a truth assignment for φ with at most k unsatisified constraints.  
This L-reduction from Min UnCut to Min UnCut(15) can be constructed using the 

same idea as the L-reduction that transforms Max 3SAT to Max 3SAT(29) in [6] with 
just a few minor modifications. The details of this L-reduction are omitted here. Based 
on the property of this L-reduction, we know that it is NP-hard to approximate Min 
UnCut(15) within any constant ratio under the Unique Games Conjecture [4]. 

 
Theorem 13. It is NP-hard to approximate tree-MRHC(u,1) within any constant ratio 
under the Unique Games Conjecture [4]. 

Finally, we consider Lemma 9. The hardness result actually holds for 
2-locus-MRHC(u, u), because neither the number of mates nor the number of children 
for a member is bounded by any constant.                                   

 
Theorem 14. It is NP-hard to approximate 2-locus-MRHC(16,15) within any constant 
ratio under the Unique Games Conjecture [4]. 

5   Discussion and Conclusion 

The results presented in this paper are organized in Table 2. First, we showed that 
binary-tree-MRHC is NP-hard. Binary-tree-MRHC is a simplest variant of MRHC 
because one mate and one child are the minimum requirement to express the 
inheritance of human beings. Second, we showed some approximability results 
concerning the MRHC problem. With the presence of missing data, it is NP-hard to tell 
if an instance of 2-locus-MRHC* and binary-tree-MRHC* requires any recombinant. 
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This gives an interesting contrast to the results in [1] where the problem of finding a 
zero-recombinant haplotype solution for MRHC was shown to be solvable in 
polynomial time. This result also implies that 2-locus-MRHC* and 
binary-tree-MRHC* is not approximable in polynomial time. Without the presence of 
missing data, 2-locus-MRHC can be approximated with the ratio O(       ). In add- 
ition it is NP-hard to approximate 2-locus-MRHC and tree-MRHC within any constant 
ratio under the Unique Games Conjecture [4]. Our final results concern the 
inapproximability of MRHC on pedigrees where each member has a bounded number 
of mates and/or a bounded number of children with each mate. 

Table 2. Our hardness and approximation results for MRHC with bi-alleles 

Loop
?

Lower bound
of approx.

ratio

Yes Any f(n)

No

 Miss-
 ing
 data?

No

Yes

No Yes Any f(n)

 Unbounded
number of
members?

Yes

Yes

Yes

Yes No Yes Any constant

Assumption

 P≠ NP

 P≠ NP

 P≠ NP,
the Unique Games

Conjecture

Unbounded
Number of

loci?

Yes

No

Yes

No

Binary-tree-
MRHC

2-locus-MRHC*

Binary-tree-
MRHC*

2-locus-MRHC

Hardness

NP

Tree-MRHC No No Yes Yes Any constant
 P≠ NP,

the Unique Games
Conjecture

Upper bound
of approx. ratio

O (               )

The lower bound
holds for

2-locus-MRHC*
(4,1)

Binary-tree-
MRHC*

2-locus-MRHC
(16,15)

Tree-MRHC(1,u)
Tree-MRHC(u,1)

)log(n
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