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Abstract—Polony technology is a low-cost, high-throughput
platform employed in several applications such as DNA sequenc-
ing, haplotyping and alternative pre-mRNA splicing analysis.
Owing to their random placement, however, overlapping polonies
occur often and may result in inaccurate or unusable data.
Accurately identifying polony positions and sizes is essential
for maximizing the quantity and quality of data aquired in an
image; however, most existing identification algorithms donot
handle overlapping polonies well. In this paper, we presenta
novel polony identification approach combining both a Gaussian
Mixture Model (GMM) and the Expectation-Maximization (EM)
algorithm. Experiments on simulated and real images of highly
overlapping polonies show that our algorithm has a 10% to 20%
increase in recall compared with the existing algorithms, while
keeping precision at the same level.

Index Terms—polony identifification; EM; Gaussian Mixture
Model;

I. I NTRODUCTION

A polony, or “polymerase colony,” consists of a large num-
ber of identical copies of a single DNA molecule generated
through solid-phase PCR or bridge amplification [5][10]. Since
first being developed in 1999 [14], polony technologies have
been employed in several important applications, including
genotyping and haplotyping [15], alternative pre-mRNA splic-
ing analysis [27] and DNA sequencing [22][21].

In solid-phase PCR experiments, polonies are formed by
first mixing sample DNA molecules into a gel matrix and
then thinly casting the mixture onto a glass slide. After the
gel has hardened, PCR reagents are added to a sealed chamber
surrounding the gel and the slide is subjected to thermocyling.
During thermocycling, the DNA is exponentially amplified
but its lateral movement is somewhat inhibited by the gel.
Thus, polonies grow slowly outward and are centered at the
randomly-placed DNA molecule from which they originated.
Once formed, polonies can be interrogated in various ways
depending on the application, but all involve the use of
florescence that allow the polonies to be imaged with a laser-
scanner or similar device (see the leftmost image of Fig. 1 as
an example).

Similar techniques, which use bridge amplification, appear

in high-throughput sequencing (HTS) technologies, including
Solexa/Illumina, 454 pyrosequencing, SOLiD, etc [13]. HTS
technologies can generate 1-2 orders of magnitude more data
than traditional Sanger sequencing platforms and do so faster
and less expensively [19]. The emergence of such technologies
is revolutionizing many sequencing-related research areas such
as genome resequencing, SNP discovery, small RNA sequenc-
ing, etc [20]. In high-throughput sequencing protocols such
as these, the identification of polonies (also called “clusters”)
from greyscale images is a required and critical step for
gathering data accurately.

Several algorithms have been applied to identify polonies
in greyscale images, including edge detection [6][11][16],
thresholding [22], watershed segmentation [24][11], etc.In
[11], a LoG (Laplacian of Gaussian) filter is applied first for
thresholding, followed by a watershed segmentation step to
identify potential polonies. Reference [6] detects edges in the
image by thresholding the magnitude of the image gradient
and then employs a circular Hough Transform to identify
circular polonies. Also, [6] uses an exponential function model
to calculate polony positions and sizes (see Section II for more
details).

The recent HTS technologies often generate hundreds of
thousands of greyscale images in a single sequencing project,
each of which typically millions of pixels in size. To iden-
tify polonies from these images efficiently, “Swift” [25] and
“Firecrest” [4] adopt a simple thresholding strategy, together
with many pre- and post-processing steps. All of these al-
gorithms work well for isolated polonies (i.e., polonies that
do not overlap with each other), as in the case of HTS
applications. However, when polony density increases and
polonies start to overlap with each other, as in the case of our
target application of the polony technology in oligonucleotide
fingerprinting of ribosomal RNA genes (OFRG) [23], these
algorithms often estimate polony positions inaccurately,and
miss dim polonies completely (see Fig. 1).

In this paper, we present a novel Expectation-Maximization
(EM) polony identification algorithm based on a Gaussian
Mixture Model (GMM). The intensity of a polony in the image



Fig. 1. An image of many overlapping polonies (left), and a zoom-in part
of the image (top right). We implemented two different polony identification
algorithms published in the literature, and their results on this image are shown
in dashed circles (bottom right). The method based on edge detection and the
circular Hough transform [6] misses two polonies (A and B) due to their
non-circular edges and identifies a spurious polony (D) due to a circular edge
formed by neighboring polonies B, C and F. The thresholding method in [22]
misses three dim polonies (B, E and F).

is simulated by a Gaussian distribution, and the interaction of
multiple polonies is modeled through a GMM. The parameters
of the GMM are determined by maximizing a log-likelihood
objective function using EM, which is an iterative algorithm
for solving maximum likelihood problems with latent variables
[7][3]. EM has been widely applied to many areas concerning
probabilistic estimations, including image processing [12],
haplotype inference [17], speech recognition [8], etc. Experi-
mental results on simulated and real images containing highly
overlapping polonies from our OFRG [23] project demonstrate
that the GMM-based EM algorithm is able to achieve a higher
recall than the existing polony identification methods in the
literature while maintaining the same precision.

The rest of this paper is organized as follows. In Section
II, we propose the idea of using Gaussian distributions to
represent polony intensities, and using EM to maximize the
log-likelihood objective function. Section III compares the
experimental results of several polony identification methods,
while Section IV concludes the paper.

II. M ETHODS

A. The exponential function model of polony intensity

Theoretical analysis [1] and empirical observation [6] of
polonies indicate that the shape of a polony can be simulated
by an exponential function. As a result, for a polonyP
positioned at(µ1, µ2) in the image and having a radiusr,
[6] introduces the following function to model the intensity
I(x) at pixelx = (x1, x2) aroundP :

I(x) = C +A exp{−[(x1 − µ1)
2 + (x2 − µ2)

2]/2r2} (1)

whereC ≥ 0 represents the “background intensity” nearP ,
and A > 0 is the “signal intensity” ofP . If there areK

poloniesP1, . . . PK around pixelx, the value ofI(x) can be
represented as

I(x) = C +

K
∑

k=1

Ak exp{−[(x1 − µk1)
2 + (x2 − µk2)

2]/2r2k}

(2)
where(µk1, µk2), rk andAk are the center, radius and signal
intensity of polonyPk, respectively.

To calculate these parameters, [6] uses an iterative search
algorithm to minimize the following sum of square errors
between predicted and true intensities:

{C∗, A∗

k, µ
∗

k, r
∗

k} = min
C,Ak,µk,rk

M
∑

m=1

(I(xm)− I ′(xm))2 (3)

where there areM pixels around these polonies, each of
which xm has the true intensity valueI ′(xm) in the image,
and I(xm) is the predicted intensity using (2). The search
algorithm first extracts an initial guess of(µk1, µk2) and rk
for all k = 1, 2, · · ·K using edge detection and circular
Hough transform, then uses a linear least squares approach
to find outC andAk with fixed values of(µk1, µk2) andrk.
After that, (µk1, µk2) andrk are re-evaluated using conjugate
gradient descent to minimize (3). Both stages are repeated until
convergence or hitting some other stop criteria.

This approach suffers from three drawbacks. First, since
two levels of iterations are used, the algorithm converges
slowly. Second, the number of polonies (K) must be provided
as a parameter before computation; however, if there are
many overlapping polonies, it is difficult to accurately estimate
K. Finally, the linear least squares approach may assign
(nonsensical) negative values toC or Ak.

B. The GMM model and EM algorithm

1) The Gaussian Mixture Model of polony intensity:We
use a Gaussian Mixture Model (GMM) to model the intensity
distribution of pixels aroundK polonies P1, · · ·PK , due
to the intuition that the Gaussian distribution has a similar
exponential form to (1). The intensityI(x) at pixel x is
proportional to the probability densityp(x), which in the
GMM is a mixture ofK Gaussian distributions:

p(x) =

K
∑

k=1

P (x ∈ Pk)P (x|x ∈ Pk)

=

K
∑

k=1

πkN
(

x|µk, r
2
kI

)

(4)

whereN(x|µk, r
2
kI) is a two-dimensional Gaussian distribu-

tion with meanµk and inverse covariance matrixr2kI, and
πk = P (x ∈ Pk) is the prior probability thatx comes from
the kth Gaussian distribution.

The background distribution can be simulated by a Gaussian
distribution with a larger value. For a small area around
these overlapping polonies, this can be approximated using
a uniform distributionU :



p(x) = π0U +

K
∑

k=1

πkN
(

x|µk, r
2
kI

)

(5)

where πk (k = 0, 1, · · ·K) must satisfy πk ≥ 0 and
∑K

k=0 πk = 1.
2) EM optimization of the GMM model:Since the in-

tensity of each pixelI(x) is proportional to the probabil-
ity density p(x), we are able to drawN random samples
X = (x1, . . . xn, · · ·xN ) from the image according to this
probability distribution, wherexn = (xn

1 , x
n
2 ) is the coordinate

of one sample in the image, and the value ofN can be set
as the sum of all pixel intensities:N =

∑M
m=1 I

′(xm). The
log-likelihood of theseN samples is defined as follows:

ln p(X |{πk, µk, r
2
k})

=

N
∑

n=1

ln

{

π0U +

K
∑

k=1

πkN(xn|µk, r
2
kI)

}

(6)

Maximizing (6) could be easily done using the EM algo-
rithm. The EM algorithm iterates between theE step and the
M step: in theE step, the posterior probability of each sample
xn coming from polonyPk is calculated as

γnk = P (xn ∈ Pk|πk, µk, r
2
k)

=
πkN(xn|µk, r

2
kI)

π0U +
∑K

k=1 πkN(xn|µk, r2kI)
(7)

for k 6= 0. For k = 0, we have

γn0 =
π0U

π0U +
∑K

k=1 πkN(xn|µk, r2kI)
(8)

And in theM step, maximizing (6) leads to

µk =
1

Nk

N
∑

n=1

γnkx
n, k = 1 · · ·K (9)

rk =
1

2Nk

N
∑

n=1

γnk[(x
n
1 − µk1)

2 + (xn
2 − µk2)

2], (10)

k = 1 · · ·K

πk =
Nk

N
, k = 0 · · ·K (11)

where

Nk =

N
∑

n=1

γnk, k = 0 · · ·K (12)

3) Preprocessing:The sizes of the image are usually very
large (for example2968× 4400 in our experiments), making
it impractical for EM input directly. Instead, we use the
watershed algorithm [24] to first split the image into smaller
fragments, which EM can process more efficiently. If a frag-
ment is too small it is merged into a neighboring fragment. The
parameters for the watershed algorithm are set up empirically
such that each fragment includes approximately 1-5 polonies.
We then pass the initial estimates of the positions and radiiof
polonies to EM by first applying edge detection and circular
Hough transform as described in [6].

4) Choosing the best number of polonies:As the number
of polonies (K) increases, the log-likelihood value of (6) will
also increase. To choose a proper value ofK, we follow [26]
to use theminimum message lengthcriterion [9]:

K∗ = argmax
k∈[Ke−D,Ke+D]

L(K = k,X)

= lnP (X |K = k)−
1

2

k
∑

i=0

ci log

{

Nπi

12

}

−
k

2
log

N

12
−

∑k
i=0(ci + 1)

2
(13)

wherelnP (X |K = k) is the maximum value of log-likelihood
function (i.e., (6)) obtained from EM by settingK = k, andci
is the number of free parameters for each Gaussian distribution
(ci = 1 for i = 0, andci = 3 for i 6= 0).

The range ofK is set to[Ke −D,Ke +D], whereKe is
the number of polonies identified in the edge detection and
circular Hough transform steps, andD is a value chosen by
the user.

III. E XPERIMENTS

A. Real and simulated images

Seven real images from polony PCR experiments in our
ongoing OFRG [23] project and 15 simulated images are used
to evaluate three different polony identification algorithms.
Pertinent statistics of these images, and the images used in
[6], are shown in Table I for comparison. Compared with
the images in [6], we use images with much higher polony
density to evaluate the performance of different algorithms
mainly on overlapping polonies. In the seven real images, the
polony density is5-26 times higher than those in [6]; and the
simulated images have polonies with densities17-44 times
higher than those in [6].

The polony positions in the seven real images were manu-
ally labeled; in the simulated images, the positions of polonies
are uniformly distributed. We also add some large “polonies”
(whose radii are 30-50 times bigger than those of real polonies)
to simulate the variation of background intensities.

TABLE I
STATISTICS OF THE IMAGES USED FOR EVALUATION IN OUR EXPERIMENTS

AND IN [6].

Source Image size Polony Density1

Images in [6] 1726×2485 about 250 5.8×10−5

Real images
400×400

300-500 3.7-16×10−4

-1000×1000
Simulated images 600× 800 500-1300 1.0-2.7×10−3

1Measured in terms of the average number of polonies per pixel.

B. Polony identification

We compare the results of three different polony identifi-
cation algorithms: Expectation-Maximization (EM ) proposed
before, Edge detection followed by circular Hough Transform
(EHT ) proposed in [6], and a naı̈ve approach of identifying
Local-Maximum pixels (LM ). A local-maximum pixel is



defined as a pixel whose intensity is greater than all eight
of its neighbor pixels. The results of thresholding [22] and
watershed [11] methods are not included here, since they both
perform worse than EHT and LM in terms of precision and
recall on all of our test images.

The Precision-Recall curve (PR curve) and the Area Under
PR curve (AUPR) are used to evaluate and compare each
algorithm’s ability to identify polonies. The PR curve is drawn
from severalprecision-recallvalue pairs of each algorithm.
Theprecisionandrecall of an algorithm are defined as follows:
if there areM true polonies, and that algorithm identifiesN
polonies,K of which are true polonies, thenprecision = K

N
,

andrecall = K
M

.

The left plot of Fig. 2 shows the PR curve for the highest
density real polony image, and the middle and right plots
of Fig. 2 show the AUPR values plotted for all 7 real
and 15 simulated polony images, respectively. As can be
seen from Fig. 2, all three algorithms perform well on low
density images (density less than0.6×10−3), with recall over
80% and precision over 90%. But when polony densities are
above0.6× 10−3, EM outperforms the other two approaches
decisively.

It may seem surprising that the performance of the naı̈ve LM
approach can be so close to the more sophisticated EHT and
EM algorithms at lower densities. Perhaps equally surprising
is that the LM approach performs as well as EHT at higher
densities. The reason for this is that the identifying charac-
teristics of non-overlapping polonies used by the LM and
EHT algorithms change during overlap events; local maximum
pixels are shifted towards each other and often merge, and
polony edges diverge from a perfect circle. The LM approach
may fail when a shifted or merged local maximum is no longer
a polony center. EHT may fail by identifying a circular edge
coincidentally formed by a group of overlapping polonies as
a (spurious) polony (such as the polony D in Fig. 1), or
overlooking real polonies that induce non-circular edges (such
as the polonies A and B in Fig. 1).

EM is superior to both LM and EHT because its underlying
assumption - that polonies have intensity profiles which follow
a Gaussian distribution - is more valid during overlap events
than the assumptions of the other two algorithms due to the
nature of polony growth.

All three algorithms are implemented as separate plugins of
ImageJ [18][2], a JAVA based open-source image processing
tool developed by the National Institutes of Health (NIH). We
ran the three algorithms on a laptop with Intel Core2 Duo 2.4
GHz CPU and 1.5 GB memory, and the average processing
time per polony is 4ms for LM, 12ms for EHT and 1010ms
for EM, respectively. We see that the superior performance of
EM does not come without a price: it takes on average 84
times as long as EHT for processing each polony. Each of the
complete images in our real data experiments (consisting of
up to 2968×4400 pixels) takes approximately 1-2 hours for
EM to process.

TABLE II
COMPARISON OF THE EXPONENTIAL FUNCTION MODEL AND THEEM

MODEL.

Model Average time Average MSE of
per polony distance polony radii

Edge detection
12ms 3.12 7.21& Hough transform

Exponential function 585ms 2.70 5.55
& the algorithm in [6]

GMM 261ms 2.72 3.85& fixed-K EM
GMM 1010ms 2.68 4.37& automatic-K EM

C. Parameter estimation

Both the exponential function model (i.e., (1)) and the GMM
model (i.e., (5)) are able to estimate polony positions and
radii with sub-pixel accuracy. We use 15 simulated images to
compare both models. Signal and background estimations are
not compared because both models handle them so differently
in relation to polony signal (Ai in the exponential function
model andπi in the GMM model) and background intensity
(C in the exponential function model andπ0 in the GMM
model).

Table II shows the comparison of both models, including the
comparison of the average processing time of each polony,
the average distance between true and predicted polonies,
and the mean squared error (MSE) for polony radii. Table II
also includes the result of edge detection and circular Hough
transform, which is the initial estimate of polony positions
and radii for both EM and the search algorithm in [6]. We
use two variations of EM, “fixedK” and “automaticK”:
the “fixed K” version of EM will assign K=Ke, where
Ke is the number of polonies found by edge detection and
circular Hough transform. In the “automaticK” version of
EM, different K values between[Ke − 3,Ke + 3] are tried
and the bestK value is selected using theMML criterion (see
(13)).

From Table II, we see that both models need much more
time than the iteration-free edge detection and circular Hough
transform approach, but achieve much higher precisions in
parameter estimation, especially in estimating polony radii.

Both models achieve similar precisions on polony positions
and radii, although the exponential function model estimates
polony radii slightly worse than EM. With a fixed value of
K, EM only requires a half of the execution time needed by
running the search algorithm in [6]. This is because EM has an
analytical solution to minimize the objective function (i.e., (6))
with known latent variable (γ). For the exponential function
model however, even with fixedAi andC in (2), minimizing
the objective function (i.e., (3)) still needs a conjugate gradient
descent loop.

If the number of polonies is unknown, EM needs approx-
imately twice as long as the running time of the search
algorithm based on the exponential function model, since EM
is executed several times with differentK values. However,
EM is able to identify more polonies while maintaining the
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Fig. 2. Precision-Recall curve of the highest density real polony image (left), and the AUPR values plotted for all sevenreal polony images (middle) and 15
simulated images (right). Plotted results are from the Expectation-Maximization (EM ), Edge detection/circular Hough Transform (EHT ) and Local-Maximum
(LM ) algorithms.

same estimated precision of the other two algorithms.

IV. CONCLUSION

In this paper we use a Gaussian Mixture Model (GMM)
to model the interaction of overlapping polonies, and the
Expectation-Maximization (EM) algorithm to identify polony
positions and sizes. Compared with the previous exponential
function model and the search algorithm [6], we show that this
approach increases the recall by 10% to 20% while attaining
the same level of precision. When the number of polonies (K)
is fixed, EM is twice as fast as the search algorithm in [6].

However, EM suffers from its slow execution speed com-
pared with the local-maximum and edge detection/circular
Hough transform approaches, especially when the number
of polonies needs to be determined computationally. This
prevents it from being used in high-throughput sequencing
(HTS) images, where hundreds of thousands of images need
to be processed quickly. For this reason, [25] uses a simple
thresholding strategy to identify polonies, which needs on
average only 5 milliseconds processing time for each polony.
Note that such a simple method would work well for HTS
images because their polonies are generally isolated, but
will not be able to handle images from applications such
as oligonucleotide fingerprinting of ribosomal RNA genes
(OFRG) [23], which is our target application, that may contain
many overlapping polonies.

Further improvements in polony identification would be to
find a faster and/or more accurate way of determining the
number of polonies (K) when overlap occurs, for instance, by
leveraging the additional information contained in subsequent
images of a base-by-base sequencing reaction.
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