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Abstract—Polony technology is a low-cost, high-throughput in high-throughput sequencing (HTS) technologies, inicigd
platform employed in several applications such as DNA seque-  Solexa/lllumina, 454 pyrosequencing, SOLID, etc [13]. HTS
ing, haplotyping and alterative pre-mRNA splicing analyss. ocnnologies can generate 1-2 orders of magnitude more data

Owing to their random placement, however, overlapping polaies " .
occur often and may result in inaccurate or unusable data. than traditional Sanger sequencing platforms and do serfast

Accurately identifying polony positions and sizes is esséial ~and less expensively [19]. The emergence of such techreslogi
for maximizing the quantity and quality of data aquired in an is revolutionizing many sequencing-related researchsasaeh

image; however, most existing identification algorithms donot gg genome resequencing, SNP discovery, small RNA sequenc-

handle overlapping polonies well. In this paper, we presenn F ko ;
novel polony identification approach combining both a Gausisn ing, etc [20]. In high-throughput sequencing protocolshsuc

Mixture Model (GMM) and the Expectation-Maximization (EM) &S these, the identification of polonies (also called “@rss)

algorithm. Experiments on simulated and real images of higly from greyscale images is a required and critical step for
overlapping polonies show that our algorithm has a 10% to 20% gathering data accurately.

increase in recall compared with the existing algorithms, \kile Several algorithms have been applied to identify polonies
kelep('jng ‘%rec's'on alt the.ja":.‘?.fl.ev?' CEM: Gaussian Mixt in greyscale images, including edge detection [6][11][16]
Mogel?x erms—polony dentiification, » -aussian Mixture thresholding [22], watershed segmentation [24][11], étc.
[11], a LoG (Laplacian of Gaussian) filter is applied first for
thresholding, followed by a watershed segmentation step to
identify potential polonies. Reference [6] detects edgethée
A polony, or “polymerase colony,” consists of a large numimage by thresholding the magnitude of the image gradient
ber of identical copies of a single DNA molecule generateghd then employs a circular Hough Transform to identify
through solid-phase PCR or bridge amplification [5][10h&i circular polonies. Also, [6] uses an exponential functicodel
first being developed in 1999 [14], polony technologies hate calculate polony positions and sizes (see Section Il forem
been employed in several important applications, inclgdirdetails).
genotyping and haplotyping [15], alternative pre-mRNAiGpl  The recent HTS technologies often generate hundreds of
ing analysis [27] and DNA sequencing [22][21]. thousands of greyscale images in a single sequencing projec
In solid-phase PCR experiments, polonies are formed bwch of which typically millions of pixels in size. To iden-
first mixing sample DNA molecules into a gel matrix andify polonies from these images efficiently, “Swift” [25] dn
then thinly casting the mixture onto a glass slide. After thirecrest” [4] adopt a simple thresholding strategy, tibge
gel has hardened, PCR reagents are added to a sealed chamitiermany pre- and post-processing steps. All of these al-
surrounding the gel and the slide is subjected to thermogyli gorithms work well for isolated polonies.€., polonies that
During thermocycling, the DNA is exponentially amplifieddo not overlap with each other), as in the case of HTS
but its lateral movement is somewhat inhibited by the gedpplications. However, when polony density increases and
Thus, polonies grow slowly outward and are centered at thelonies start to overlap with each other, as in the case of ou
randomly-placed DNA molecule from which they originatediarget application of the polony technology in oligonudide
Once formed, polonies can be interrogated in various wafisgerprinting of ribosomal RNA genes (OFRG) [23], these
depending on the application, but all involve the use efigorithms often estimate polony positions inaccuratatyd
florescence that allow the polonies to be imaged with a lasemiss dim polonies completely (see Fig. 1).
scanner or similar device (see the leftmost image of Fig. 1 asin this paper, we present a novel Expectation-Maximization
an example). (EM) polony identification algorithm based on a Gaussian
Similar techniques, which use bridge amplification, appebtixture Model (GMM). The intensity of a polony in the image

I. INTRODUCTION
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’ £ algorithm to minimize the following sum of square errors
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Fig. 1. An image of many overlapping polonies (left), and amein part m=

of the image (top right). We implemented two different pglddentification where there areM pixels around these polonies, each of

algorithms published in the literature, and their resuftshis image are shown ; m ; ; my i ;
in dashed circles (bottom right). The method based on edgetim and the which Im h_as the true. mten.SIty va_\lué((:c_ ) in the image,
circular Hough transform [6] misses two polonies (A and Bedo their and I(x™) is the predicted intensity using (2). The search

non-circular edges and identifies a spurious polony (D) due tircular edge algorithm first extracts an initial guess Ofix1, 1r2) andry
formed by neighboring polonies B, C and F. The thresholdireghod in [22] foral k¥ = 1.2.--- K using edge detection and circular
misses three dim polonies (B, E and F). » .
Hough transform, then uses a linear least squares approach
to find outC and A, with fixed values of(uy1, tk2) andry.

is simulated by a Gaussian distribution, and the interaatip After that, (1, pr2) andry are re-evaluated using conjugate
multiple polonies is modeled through a GMM. The parametegéadient descent to minimize (3). Both stages are repeaidd u
of the GMM are determined by maximizing a log-likelihoodOnvergence or hitting some other stop criteria. =~~~
objective function using EM, which is an iterative algorith 1 NiS approach suffers from three drawbacks. First, since
for solving maximum likelihood problems with latent variap WO levels of iterations are used, the algorithm converges
[7][3]. EM has been widely applied to many areas concernirtPWly- Second, the number of poloniesY must be provided
probabilistic estimations, including image processing][1 @ @ parameter before computation; however, if there are
haplotype inference [17], speech recognition [8], etc. d&kp many_overlappmg_ polonies, it is difficult to accuratelyiestte _
mental results on simulated and real images containingynigh* - Finally, the linear least squares approach may assign
overlapping polonies from our OFRG [23] project demonstrafnonsensical) negative values @or Ay.

that the GMM-based EM algorithm is able to achieve a highg, The GMM model and EM algorithm

recall than the existing polony identification methods ie th 1) The Gaussian Mixture Model of polony intensitye

literature while ”_‘a'”ta'”'”_g the Same precision. . use a Gaussian Mixture Model (GMM) to model the intensity
The rest of this paper is organized as follows. In Sectiofjciibtion of pixels aroundK polonies P, -- - Py, due

Il, we propose the idea of using Gaussian distributions {8 the intuition that the Gaussian distribution has a simila

represent polony_ intgnsities, .and using EM to maximize ﬂé?(ponential form to (1). The intensity(x) at pixel = is
log-likelihood objective function. Section Ill compareket proportional to the probability density(z), which in the

experimental results of several polony identification et GMM is a mixture of X' Gaussian distributions:
while Section IV concludes the paper. '

Il. METHODS K
. . . . = P PP P
A. The exponential function model of polony intensity p(@) ; (v € Py)Plxlz € Py)
Theoretical analysis [1] and empirical observation [6] of K
polonies indicate that the shape of a polony can be simulated = ZwkN (:C|,uk, r,%[) 4)
by an exponential function. As a result, for a polo®y k=1

positioned at(uu1,2) in the image and having a radius \where N'(xz|u;, 21) is a two-dimensional Gaussian distribu-
[6] mtrod_uces the following function to model the intewsit +ion with meany;, and inverse covariance matr'»ﬁ], and
I(x) at pixelz = (z1,22) aroundP: mr = P(z € Py) is the prior probability thatr comes from
the kth Gaussian distribution.
2 2 2 The background distribution can be simulated by a Gaussian

[w) = O+ Aespi={(@r = )" + (w2 —p2)l/27} (1) distribution gWith a larger value. For a small arga around
whereC' > 0 represents the “background intensity” ngdr these overlapping polonies, this can be approximated using
and A > 0 is the “signal intensity” of P. If there are X a uniform distributionU:



4) Choosing the best number of poloniess the number

K of polonies () increases, the log-likelihood value of (6) will
_ 2 ' ;
p(x) =mU + > mN (alun, ri1) ®)  also increase. To choose a proper valugsofwe follow [26]
k=1 to use theminimum message lengthiterion [9]:
where 7, (k = 0,1,---K) must satisfyr, > 0 and
ZkK—O P K*= argmax L(K =k X)

2) EM optimization of the GMM modelSince the in- he[HKe=D,KetD]

tensity of each pixell(x) is proportional to the probabil 1L N;

ity density p(x), we are able to drawV random samples =l PX|K = k) - 52@ log{ 12 }

X = (2%,...2",---2") from the image according to this & =0

probability distribution, where™ = (27, z%) is the coordinate _k log N M (13)
of one sample in the image, and the value/dfcan be set 2 12 2

as the sum of all pixel intensitiesy = Zﬁf:l "(z™). The whereln P(X|K = k) is the maximum value of log-likelihood
log-likelihood of theseV samples is defined as follows: function (.e., (6)) obtained from EM by settingd = k, andc;

In p(X | {e, i, 72}) is the number of free parameters for each Gaussian distibut
PR Tk (c; =1fori=0, andc; = 3 for i # 0).
N K n 9 (6) The range ofK is set to[K. — D, K. + D], where K, is
:z:lln molU + I;W’“N(x e, 71 ) the number of polonies identified in the edge detection and

circular Hough transform steps, ardd is a value chosen by
Maximizing (6) could be easily done using the EM algothe user.

rithm. The EM algorithm iterates between tkestep and the

M step: in theE step, the posterior probability of each sample [1l. EXPERIMENTS
2™ coming from polonyP; is calculated as A. Real and simulated images
Yk = P(x™ € Py|mg, pig, 73) Seven real images from polony PCR experiments in our
N (2" |, r21) ongoing OFRG [23] project and 15 simulated images are used

= 174 (7) to evaluate three different polony identification algamith
moU + > 1 N (27| g, 721) : o . : .
0 k=1"k Fks T Pertinent statistics of these images, and the images used in

for k # 0. For k = 0, we have [6], are shown in Table | for comparison. Compared with
U the images in [6], we use images with mL_Jch higher pplony
Tno = " - 5 (8) density to evaluate the performance of different algorghm
moU + 3y melN (27|, 751 mainly on overlapping polonies. In the seven real images, th
And in theM step, maximizing (6) leads to polony density ish-26 times higher than those in [6]; and the
LN simulated images have polonies with densitigs44 times
_ noq._ higher than those in [6].
- bt k=1 K 9 L ,
K Ng ;’Y . ®) The polony positions in the seven real images were manu-
| X ally labeled; in the simulated images, the positions of piEs
T =—— Z Yok (2 — pr1)? + (25 — p2)?],  (10) are uniformly distributed. We also add some large “poldhies
2Ny, n—1 (whose radii are 30-50 times bigger than those of real pe&ni
k=1---K to simulate the variation of background intensities.
Ny
M=y k=0-K (11) TABLE |
STATISTICS OF THE IMAGES USED FOR EVALUATION IN OUR EXPERIMENS
where N AND IN [6].
Ny = Z Tk, k=0--- K (12) Source | Image size | Polony [  Density}
n=1 Images in [6] 1726x2485 | about 250] 5.8x10~°

3) Preprocessing:The sizes of the image are usually very Real images | _ 1‘})%%‘;%%0 300-500 | 3.7-16x 104
!ar_ge (for _examplé2968 X 4400 i_n our experiments), making Simulated images| 600 x 800 | 500-1300 | 1.0-2.7x10-7
it impractical for EM input directly. Instead, we use the TMeasured in terms of the average number of polonies per.pixel
watershed algorithm [24] to first split the image into snalle
fragments, which EM can process more efficiently. If a frag- _ o
ment is too small it is merged into a neighboring fragmene Tﬁg- Polony identification
parameters for the watershed algorithm are set up empyrical We compare the results of three different polony identifi-
such that each fragment includes approximately 1-5 pafonieation algorithms: Expectation-MaximizatioBN1) proposed
We then pass the initial estimates of the positions and cddii before, Edge detection followed by circular Hough Transfor
polonies to EM by first applying edge detection and circuldEHT) proposed in [6], and a naive approach of identifying
Hough transform as described in [6]. Local-Maximum pixels M). A local-maximum pixel is




. . . - . TABLE Il
defined as a pixel whose intensity is greater than all eightcomparison oF THE EXPONENTIAL FUNCTION MODEL AND THEEM

of its neighbor pixels. The results of thresholding [22] and MODEL.
watershed [11] methods are not included here, since théy bot _

. .. Average time | Average MSE of
perform worse than EHT and LM in terms of precision and Model per polony | distance | polony radii
recall on aII. (?f our test images. . Eﬂﬁghdfrfﬁ;'ﬁﬂm o 312 .

The Precision-Recall curve (PR curve) and the Area Under Exponential function
PR curve (AUPR) are used to evaluate and compare eachg the algorithm in [6] 585ms 2.70 5.55
algorithm’s ability to identify polonies. The PR curve isagm ~GMM 261ms 272 385
from severalprecision-recallvalue pairs of each algorithm. &f'xg‘,jv'lﬁ EM
Theprecisionandrecall of an algorithm are defined as follows: g automatic/ EM 1010ms 2.68 4.37
if there areM true polonies, and that algorithm identifiés
polonies,K of which are true polonies, thewrecision = %
andrecall = £ C. Parameter estimation

The left plot of Fig. 2 shows the PR curve for the highest Both the exponential function modéld., (1)) and the GMM
density real polony image, and the middle and right plotaodel {.e, (5)) are able to estimate polony positions and
of Fig. 2 show the AUPR values plotted for all 7 realadii with sub-pixel accuracy. We use 15 simulated images to
and 15 simulated polony images, respectively. As can Bempare both models. Signal and background estimations are
seen from Fig. 2, all three algorithms perform well on lowmot compared because both models handle them so differently
density images (density less theus x 10~?), with recall over in relation to polony signal 4; in the exponential function
80% and precision over 90%. But when polony densities afigodel andr; in the GMM model) and background intensity
above0.6 x 10~3, EM outperforms the other two approachegC in the exponential function model and, in the GMM
decisively. model).

It may seem surprising that the performance of the naive LM Table_ Il shows the comparison of bc_>th models, including the
approach can be so close to the more sophisticated EHT &9gnparison of the average processing time of each polony,
EM algorithms at lower densities. Perhaps equally surpgisi the average distance between true and predlcte_q polonies,
is that the LM approach performs as well as EHT at high&nd the mean squared error (MSE) for polony radii. Table Il
densities. The reason for this is that the identifying chara@So includes the result of edge detection and circular iHoug
teristics of non-overlapping polonies used by the LM anfjansform, which is the initial estimate of polony position
EHT algorithms change during overlap events; local maximufftd radii for both EM and the search algorithm in [6]. We
pixels are shifted towards each other and often merge, df®f two variations of EM, “fixedk™ and “automatic K™
polony edges diverge from a perfect circle. The LM approadhe ‘fixed K" version of EM will assign K=K, where
may fail when a shifted or merged local maximum is no longdf« iS the number of polonies found by edge detection and
a polony center. EHT may fail by identifying a circular edg&ircular Hough transform. In the “automati™ version of
coincidentally formed by a group of overlapping polonies d8M. different K values betweenk. — 3, K. + 3] are tried
a (spurious) polony (such as the polony D in Fig. 1), gnd the besk value is selected using théML criterion (see

overlooking real polonies that induce non-circular edgesi (13))-
as the polonies A and B in Fig. 1). From Table Il, we see that both models need much more

. time than the iteration-free edge detection and circulangdto

EM is superior to both LM and EHT because its underlying,storm approach, but achieve much higher precisions in
assumption - that polonies have intensity profiles whiclofel parameter estimation, especially in estimating polonyi.rad

a Gaussian distribution - is more valid during overlap esent g i+ models achieve similar precisions on polony positions

than the assumptions of the other two algorithms due to tgﬁd radii, although the exponential function model estanat
nature of polony growth. polony radii slightly worse than EM. With a fixed value of
All three algorithms are implemented as separate plugins &%, EM only requires a half of the execution time needed by
ImageJ [18][2], a JAVA based open-source image processinmning the search algorithm in [6]. This is because EM has an
tool developed by the National Institutes of Health (NIH)e Wanalytical solution to minimize the objective functidre(, (6))
ran the three algorithms on a laptop with Intel Core2 Duo 2uith known latent variable«). For the exponential function
GHz CPU and 1.5 GB memory, and the average processimgdel however, even with fixed; andC in (2), minimizing
time per polony is 4ms for LM, 12ms for EHT and 1010mshe objective functionife., (3)) still needs a conjugate gradient
for EM, respectively. We see that the superior performarice descent loop.
EM does not come without a price: it takes on average 84If the number of polonies is unknown, EM needs approx-
times as long as EHT for processing each polony. Each of timeately twice as long as the running time of the search
complete images in our real data experiments (consisting alforithm based on the exponential function model, since EM
up to 29684400 pixels) takes approximately 1-2 hours fois executed several times with differeit values. However,
EM to process. EM is able to identify more polonies while maintaining the



Precision vs Recall AUPR of three algorithms with images of different densities

AUPR of three algorithms on simulated images

So - - "%

Recall

= © = LM, AUPR=0.7405
% EHT, AUPR=0.74175 0.65
—m@— EM, AUPR=0.868

Fig. 2. Precision-Recall curve of the highest density redbipy image (left), and the AUPR values plotted for all seveal polony images (middle) and 15
simulated images (right). Plotted results are from the Etgi®n-Maximization EM), Edge detection/circular Hough Transfor@HT) and Local-Maximum

(LM) algorithms.

same estimated precision of the other two algorithms.

IV. CONCLUSION

In this paper we use a Gaussian Mixture Model (GMM)[2]
to model the interaction of overlapping polonies, and th

Expectation-Maximization (EM) algorithm to identify paigp

positions and sizes. Compared with the previous exporienti
function model and the search algorithm [6], we show that thi
approach increases the recall by 10% to 20% while attaining]
the same level of precision. When the number of poloni€p (
is fixed, EM is twice as fast as the search algorithm in [6].
However, EM suffers from its slow execution speed com{t]
pared with the local-maximum and edge detection/circular
Hough transform approaches, especially when the numbgg
of polonies needs to be determined computationally. This
prevents it from being used in high-throughput sequencin
(HTS) images, where hundreds of thousands of images ne
to be processed quickly. For this reason, [25] uses a simple
thresholding strategy to identify polonies, which needs o
average only 5 milliseconds processing time for each polony
Note that such a simple method would work well for HTS
images because their polonies are generally isolated, Bt
will not be able to handle images from applications sughy;
as oligonucleotide fingerprinting of ribosomal RNA genes
(OFRG) [23], which is our target application, that may camta

many overlapping polonies.

Further improvements in polony identification would be to
find a faster and/or more accurate way of determining tl'[\ﬁ]
number of polonieskK’) when overlap occurs, for instance, by

leveraging the additional information contained in sulossy
images of a base-by-base sequencing reaction.
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