Dynamic Access Distance Driven Cache Replacement

MIN FENG, CHEN TIAN, CHANGHUI LIN, and RAJIV GUPTA, University of California,

Riverside

In this paper, we propose a new cache replacement policy that makes the replacement decision based on
the reuse information of the cache lines and the requested data. We present the architectural support and
evaluate the performance of our approach using SPEC benchmarks. We also develop two reuse information
predictors: a profile-based static predictor and a runtime predictor. The applicability of each predictor is
discussed in this paper. We further extend our reuse information predictors so that the cache can adap-
tively choose between the reuse information based replacement policy and an approximation of LRU policy.
According to the experimental results, our adaptive reuse information based replacement policy performs
either better than or close to the LRU policy. Our experiments show that L2 cache misses are reduced by
12.32% and 19.95% using the profiling-based static and runtime adaptive predictors respectively.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—cache memories; B.3.3
[Memory Structures]: Performance Analysis and Design Aids—simulation

General Terms: Design, Performance
Additional Key Words and Phrases: Cache Replacement Policy, L2 Cache, Value Prediction

ACM Reference Format:

Feng, M., Tian, C., Lin, C., and Gupta, R. 2011. Dynamic Access Distance Driven Cache Replacement ACM
Trans. Architec. Code Optim. 9, 4, Article 39 (March 2010), 31 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Because of the huge speed gap between processor and memory, the cache performance
is a key factor which affects the execution speed of applications. The LRU replacement
policy and its variants (e.g., the pseudo-LRU policy) are currently the industry stan-
dard for cache replacement policy and have been widely used for many decades. The
LRU policy was designed for workloads with high temporal locality. For the workloads
that have a cyclic memory reference pattern and a working set larger than the cache
size, the LRU policy gives poor performance. Therefore many techniques have been
proposed to improve the performance of the LRU policy on the low-locality workloads
[Qureshi et al. 2007; Etsion and Feitelson 2007; Wang et al. 2002; Wong and Baer
2000]. However, the performance of most techniques relies heavily on the data access
patterns of the specific workloads. Thus, many of them do not adapt to different appli-
cations or even different phases of the same application. This paper aims to design a
cache replacement policy that performs well for wide range of workloads.

In order to work well for different kinds of workloads, a cache replacement policy
must be able to make the replacement decisions based on the data access patterns of
those workloads. Since the reuse information reveals the data access patterns of the

Author’s address: M. Feng, C. Tian, C. Lin and R. Gupta, Computer Science and Engineering Department,
University of California, Riverside.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2010 ACM 1544-3566/2010/03-ART39 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 Min Feng et al.

workloads, it is a powerful basis for guiding cache replacement. In this paper, we pro-
pose a reuse information based cache replacement policy that keeps the higher-locality
data in the cache and bypasses the cache when the lower-locality data is referenced.
The new cache replacement policy makes the replacement decision based on the reuse
information of the cache lines and the requested data. To realize this policy, the cache
is required to maintain the reuse information of each cache line and the reuse informa-
tion of each data access needs to be predicted by the processor. We present the archi-
tectural modifications required to support our cache replacement policy and evaluate
its performance.

Our cache replacement policy requires the reuse information of each data access. In
this paper, we develop two reuse information predictors: a static predictor that predicts
the reuse information based on the profiling runs and then passes the information on
to the processor by encoding it in form of cache hints associated with memory instruc-
tions; and a dynamic predictor that makes the prediction for a memory instruction
based on its reuse history. Each of the predictors has its own advantages. The static
predictor requires minimal hardware support. Thus it has low hardware design cost
and saves power at runtime. It is suitable for low-end computer systems, such as em-
bedded systems. On the other hand, the dynamic predictor requires extra hardware
logic and storage but does not require any compiler support. Therefore, commercial
computer systems (e.g., personal computers) can benefit from the dynamic predictor
without worrying about backward compatibility.

In this paper, we also present a method for reuse information prediction that allows
our replacement policy to approximate the LRU replacement policy. Our experiments
show that the difference between the LRU policy and our approximation of the LRU
policy is insignificant. We then extend our static and dynamic predictors to enable
them to adaptively choose between our access distance driven cache replacement policy
and our approximate LRU policy. When the prediction accuracy for a program is low,
the approximation of LRU can be used to avoid the cache performance degradation
due to low prediction accuracy. This extension to the predictors does not require any
extra hardware overhead. Our experiments show that L2 cache misses are reduced
by 12.32% and 19.95% using profiling-based static and the runtime adaptive predictors
respectively.

Specifically, we make the following contributions in this paper. First, we propose a
reuse information based cache replacement policy and its architectural support. Sec-
ond, we develop two reuse information predictors: a profiling-based static predictor
and a runtime predictor. Finally, we extend our reuse information predictors so that
the cache can adaptively choose between the reuse information based replacement pol-
icy and an approximation of LRU policy.

The remainder of the paper is organized as follows. In section 2 we first present the
design of our cache replacement policy and then propose two predictors that provide
the reuse information for the cache at runtime. In section 3, we evaluate the perfor-
mance of our reuse information based cache. Section 4 discusses the related work and
section 5 concludes this paper.

2. ACCESS DISTANCE BASED CACHES

Intuitively, a good cache replacement scheme needs to keep the data with high tempo-
ral locality in the cache while evicting the data that will not be accessed in the near
future [Belady 1966; Mattson et al. 1970; Gu et al. 2008; Wang et al. 2002]. Reuse
information is often used for analyzing the data access patterns of programs. Reuse
information reveals the temporal locality of the data used by the programs. Therefore,
it can be used to guide cache replacement for better cache performance.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:3

In this paper, we define the forward access distance of a memory access as the num-
ber of memory reference between the current and the next reference to the same data
block. Note that this is different from the definition of forward reuse distance that
only counts distinct data blocks. Our forward access distance counts multiple accesses
to the same data element. For example, in the access sequence “Id a,1d b, Id ¢, 1d b, 1d
a” (where a, b, and ¢ are mapped into the same cache set), the forward access distance
for the first instruction is 3 (instead of 2 when only distinct elements are counted).
We do not use the original reuse distance definition since counting distinct data blocks
requires significant hardware overhead for recording data access history.

ce 0

PFAD | Tag | Data |DFAI) |
i .

Miss

Replace
Decision

Fig. 1. Dynamic access distance based cache.

Fig. 1 shows the overview of our access distance based cache. In our scheme, when a
memory instruction is issued, the processor also predicts the expected forward access
distance for the data access. In addition, the expected forward access distance of each
cache line is also maintained at runtime. If the requested data causes a cache miss,
the replacement decision is based on the forward access distances of the data accesses
and the related cache lines such that the temporal locality of the data in the cache is
maximized. For brevity, we denote the Dynamic Forward Access Distance of a cache
line as DFAD and the Predicted Forward Access Distance of a data access as PFAD.

In the above scheme, there are two main design issues. First, the cache replacement
policy must be devised. Second, mechanisms must be designed for the prediction of the
forward access distances. In the following sections, we present our solutions to these
two problems in detail.

2.1. Cache Replacement Policy

2.1.1. Direct Mapped Cache. The objective of our cache replacement policy is that when
a cache miss occurs, we keep the data block with higher temporal locality in the cache.
If the requested data block is reused earlier than the data stored in the cache, we
replace the block in the cache with the requested data block; otherwise, the requested
data access bypasses the cache and the old data block is retained in the cache.

PFAD. A memory access instruction in a program may have various forward access
distances along different execution paths. These forward access distances can be used
to characterize the data access pattern of the memory instruction. Short forward ac-
cess distances imply that the data block requested by the memory instruction exhibits
good temporal locality. In our replacement policy, when a memory access instruction
is executed, the CPU also generates its Predicted Forward Access Distance (PFAD) for
making the replacement decision. In this section, we will assume that the processor

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

394 Min Feng et al.

somehow knows the ideal PFAD of the executed memory instruction. However, in the
next section we will present our techniques for PFAD generation.

DFAD. Similar to the forward access distance of the data block accessed by a mem-
ory access, the dynamic forward access distance (DFAD) of a cache line in the cache is
defined as in how many memory accesses the cache line is going to be accessed again.
A cache line’s DFAD indicates its next usage time. Our replacement policy makes the
replacement decision based on the PFAD of the executed memory instruction and the
DFADs of the cache lines in the cache. For ease of presentation, we first describe our
replacement policy for direct mapped caches and later show how it is extended for set
associative caches.

Data replacement. When a memory access instruction is executed, the processor
first looks for the requested data in the cache. In the direct mapped cache structure, the
requested address is uniquely mapped to a cache line. If the cache line does not contain
the requested data, a cache miss occurs and thus the data needs to be accessed from
the main memory. If the PFAD of the executed memory instruction is smaller than
the DFAD of the corresponding cache line, it means that the requested data will be
accessed first after this access. Therefore, we replace the cache line with the requested
data. On the other hand, if the DFAD of the cache line is smaller that the PFAD of the
data access, it means that the data in the cache line will be accessed first after this
access. In this case the requested data is sent directly to the processor thus bypassing
the cache.

Please note that the DFAD of the relevant cache line may be zero when a cache miss
takes place. In this special case, the cache line was predicted to be used by this data
access but is actually not accessed, i.e. the prediction was wrong. Since we do not know
when the cache line will be accessed again and it is impossible to keep it in the cache
forever, we replace the cache line with the requested data block simply according to
the LRU policy.

DFAD maintenance. The DFAD of each cache line in the cache needs to be main-
tained at runtime. Whenever a cache line is hit or replaced, we set its DFAD value
to the PFAD value of the accessing instruction. Moreover, after every data bypass,
the relevant cache line’s DFAD must be decremented since its next usage is one step
closer. Fig. 2 summarizes our cache replacement scheme. The DFAD of each cache line
is implemented using a saturating up-down counter.

CacheAccess(instr, line)
Input:
The accessing instruction instr,
and the accessed cache line line.
Begin
if (cache miss)
if (DFAD(line) = 0 or DFAD(line) > PFAD(instr))
replace line with the requested data;
DFAD(line) < PFAD(instr);
else
bypass the data access;
DFAD(line) «— DFAD(line) - 1;
endif
else // cache hit
DFAD(line) +— PFAD(instr);
endif
End

Fig. 2. Cache access procedure.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:5

Load Sequence PFAD 1-way 2-way

Id a; 3 [a3] [aB3] |

Id b; 1

B
v |:| & =k
< -

Id b; 2 [b:2] [a0]b:2]
~- ==
Id a; 2 | b1 | |a:2 | b1 |

Id c; 2 b:0 |a1 b:0

(a) (b)

Fig. 3. Examples of our cache replacement policy in 1-way and 2-way cache. z : n in each block indicates
the DFAD of = is n.

Fig. 3(a) shows an example of our replacement policy in a direct mapped cache. Each
block shows the cache state at the end of the data access. After the first data access, a
is brought into the cache and its DFAD is updated to be 3 at the end of the data access.
At the second data access, since “Id b” has smaller PFAD, « is replaced by b. Later on,
b is kept in the cache all the time because its next reuse is always earlier than those
of other data accesses. In this example, our cache replacement policy incurs one fewer
miss than the traditional LRU cache replacement policy.

CPU
l Address

PFAD
Block _,|Pata Data
Block address offset in out
| PFAT]
LD |

Tag ‘ Index |

Valid Tag Data DFAD

"
3

=
[=
*

Write
buffer

‘ Lower level memory ‘

Fig. 4. Cache design.

Fig. 4 presents the design of hardware support for our cache replacement policy. For
each cache line, we add several bits to hold the DFAD value. To transfer the PFAD
from the memory access instruction to the corresponding cache line, we need extra bus
lines connecting the processor and the cache. A simple subtractor is attached to the
cache in order to update the DFAD after each data access. The DFAD maintenance

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 Min Feng et al.

can be done at any time during or after the memory access is executed. Therefore we
can easily hide its overhead by conducting it in parallel with the data access.

2.1.2. Extension for Set Associative Caches. For set associative caches, our cache replace-
ment policy must decide not only when to bypass the cache but also which set element
to evict when replacement is required. We extend our cache replacement for set asso-
ciative cache as follows.

Data placement. When a cache miss occurs in a set associative cache, we first check
the corresponding cache set to see if there is any cache line having 0 as DFAD. If so, we
replace that cache line with the requested data. Otherwise, we compare the PFAD of
the memory access instruction with the largest DFAD in the cache set. If the PFAD of
the memory access instruction is larger, we directly send the data to the processor thus
bypassing the cache. Otherwise, we select the cache line that has the largest DFAD in
the set for replacement.

Finding the largest DFAD in a cache set takes time. Therefore to make this simple,
we continuously track the largest DFAD and maintain a pointer that always points
to the cache line with the largest DFAD in a cache set. Since the pointer must al-
ways point to the cache line with the largest DFAD, whenever a cache line’s DFAD is
updated, the new value is compared with the DFAD of the cache line pointed by the
pointer. If the new value is larger, the pointer is updated to point to the updated cache
line. In this approach, only a single comparison is required during each DFAD update
to maintain the pointer to the largest DFAD cache line in the set.

DFAD maintenance. Like the DFAD maintenance for direct mapped cache, when
a bypassing decision is made, all the cache lines in the related cache set need to decre-
ment their DFADs. Besides, the DFAD of a cache line must be decremented when
another cache line in the same cache set is hit or replaced since the access distance is
defined with respect to the entire cache set.

Fig. 3(b) shows an example of our replacement policy in a 2-way cache. Each block
shows the cache state at the end of the data access. After the first two data accesses,
a and b are brought into the cache. At the third data access, “Id ¢” is bypassed since
its PFAD is larger than a and b. The load sequence in this example visits three data
elements repeatedly while the size of the cache set is only 2. Our cache replacement
policy keeps a and b from the beginning to the end which prevents thrashing among a,
b, and c.

2.1.3. Improvement with an Ideal Predictor. In this section, we show the potential of our
access distance based cache replacement policy and discuss how many bits are needed
to represent the DFAD for each cache line. Before presenting the data, we first briefly
describe our experimental methodology.

Configuration. We conduct our experiments using Flexus [Hardavellas et al. 2004],
which is a cycle-accurate full-system simulator built on Virtutech Simics [Magnusson
et al. 2002]. Flexus models the SPARC ISA and allows commercial applications and
operating systems to be executed without any modification. The configuration used in
our experiments is summarized in Table I. We run the Solaris 10 operating system
on the simulated processor. We use the LRU policy as the baseline when we show
performance results.

Benchmarks. The SPEC CPU2006 benchmarks are used in our experiments. We
also use a SPEC CPU2000 benchmark — art, which is a memory-intensive application.
All benchmarks are executed using the reference inputs. For every benchmark, we use
the SMARTS sampling approach [Wunderlich et al. 2003] to measure the cache misses
and IPC for the complete execution. The sample size for each benchmark is 10000, the
sample unit size is 1000 instructions, and the detailed warmup for each sample unit is

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:7

Table I. System parameters.

Processor single-core, SPARC v9 ISA, 8-stage pipeline,
out-of-order execution, 256-entry ROB,
8-wide dispatch, 32-entry store buffer
L1 Caches Split ID, 64KB 2-way, 2-cycle latency,
2 ports, 32 MSHRs, 16-entry victim cache
L2 Shared Cache 1IMB 16-way, 64B lines, 24-cycle latency,
1 port, 32 MSHRs, 16-entry victim cache
Main Memory 4GB total memory, 200-cycle access time

2000 instructions. According to [Wunderlich et al. 2003], this setting gives 99.7%+0.3%
confidence. Table II shows the characteristics of each benchmark under the LRU policy.

Table 1l. Benchmark summary. From left to right: accesses
per 1000 instructions, misses per 1000 instructions, and
percentage of compulsory misses out of total misses.

Name APKI | MPKI | Compulsory Misses
hmmer 4.69 2.44 0.01%
sphinx3 18.44 | 14.19 0.01%

Tbm 41.30 | 26.96 0.39%
art 29.27 | 22.24 0.53%
libquantum | 14.78 | 14.78 0.72%

dealll 4.44 0.76 1.06%
leslie3d 19.23 6.39 1.34%

bzip2 22.44 8.67 1.57%

mcf 49.56 | 39.12 1.86%
xalancbmk | 13.10 | 10.24 2.51%
milc 17.62 11.62 3.52%

gee 6.59 1.25 4.00%
bwaves 21.29 5.04 5.16%
perlbench 12.60 0.75 8.43%
h264ref 2.35 0.72 9.47%
omnetpp 39.50 | 31.08 10.03%
GemsFDTD | 42.95 9.03 25.57%

gobmk 4.46 | 0.36 25.92%
zeusmp 14.59 2.12 26.98%
soplex 5.04 0.64 30.77%

gromacs 8.54 0.22 33.85%
cactusADM | 8.37 4.53 48.07%

namd 10.44 0.05 56.59%

gamess 3.27 0.17 61.01%
wrf 7.60 0.02 70.56%
calculix 6.29 1.19 75.88%

tonto 7.94 0.13 76.12%

sjeng 1.31 0.33 78.35%

astar 8.98 0.79 89.92%
povray 10.72 0.05 98.28%

Potential for Improvement. To measure the potential of our replacement policy,
we assume that we have an ideal access distance predictor that can precisely predict
the forward access distance of each memory instruction instance. To achieve this, we
execute each benchmark twice. We first scan the trace of each benchmark to collect
the actual forward access distances and then use them to simulate our access distance
based cache. With the ideal access distance predictor, our access distance-based cache
policy equals the optimal cache replacement policy described in [Mattson et al. 1970].

Fig. 5 and Fig. 6 show the potential of our replacement policy in L2 MPKI com-
pared to the LRU replacement policy. Given an ideal predictor, our replacement policy
on average reduces the L2 cache misses by 34% across these benchmarks. Among the

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8

L2 MPKI

art

bzip2

cactusADM

Fig.

Reduction in L2 MPKI

6.

IPC

Min Feng et al.

L2 MPKI

o =

o (5] L o

T T T

calculix EE—

gobmk [E==

h264ref [Empm—
hmmer

namdft
zeusmp|

E 3 Ev e 8 % % 5 u-m © —m
8 @ 2 EE © £ 3§ 55w L5 @
= e £ © E 235 g
8 S E 2 g © 38
Q w. 5 o S > o
2 E 5
Fig. 5. L2 MPKI achieved by an ideal predictor.
80% LI L L L e |
TO% g B
60% - -l B
son--M---m00kW1 e B
PROASE] SEREE EEN | EESEEN TEESTEEEN SRS [EEEEN SRR | B B
LODYSE SRR SRR | B BN RSN 1 B [S SR | B
20%- M-l - 1L H 1 [| BaEe B N % B
HOD&UK_ “““““ [11] _‘_:‘ _ | :‘_ _ _Y
oo\nD r,_m - W n h, < ! X O
REg SRR S 8 E e g R EL0EooREsEL
0 83NI30EPSETIESLEEERSRG528E5553
[:9%3°8 9SKE & cEL3PgE= 23
2 2 z6 @ 5< L3 5% @ G N
@ I 2 e 2
o 8 =
Reduction in L2 MPKI achieved by an ideal predictor.

I

bzip2
h264ref

o L N N
GemsFpTDjm—_ ?
art ——— ;

astgr e :
bwaves—, .
cactusADM ===, |
calculix === !
deal|| r— .
gamesdE——
gcc :

gobmk ., .
gromacs/ e —,

——

hmmer

Ipm =, :
leslie3q e,
mcf =L, .
milc f— .
nam(EE————
omnetpp ==, .
perlbenchE— .
povray [——
xalanchmkE———, .
zeusmpE—— i

libquantum

sjeng

soplex
tonto
wrf

)
<
£
<
[
@

Fig. 7. IPC achieved by an ideal predictor.

25 benchmarks, the cache performance of dealll is improved the most, where nearly
75% of cache misses are eliminated. In the figure, three of the benchmarks do not
have large potential (< 1% reduction) for improvement. This is because they have very

high percentage of compulsory misses (> 75%

compulsory misses). Overall, the huge

reduction in cache misses shows our replacement policy has substantial potential for
improving the L2 cache performance. We also measured the potential of our replace-
ment policy for reducing L1 cache misses, which appears to be insignificant. This is
because the LRU replacement policy works very well for L1 caches due to the data
locality in the benchmarks. However, L2 caches only get the data requests that are

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:9

100% T 1T
BOY [l B
S 80Ul f
o
17
(3
Q
O a0% | B SERE EREREREE B
20% s W | B SR RN & B
O%I \! III!IIaIIIIL - E\I I\lxg
S R R A
0 B8N 30EPSEIESLEEERT 523555892
™ 205308 96&QE @a CEQSURET 27
a a 3 o 9=¢%c o3 ET a S8
£ g8° ° g 58 ° g
o 8 = <
Fig. 8. Speedup achieved by an ideal predictor.
25 . 25
M Ideal
20 el | 2 W |3 s-bitoraD ||l
[6-bit DFAD
[7-bit DFAD
E] R e | |/ EEEErREr | |/EEEEE | R S LB [8-bit DFAD
= z
N
= 10f-eee - - e S U
S’Nmmmm m | "H " JLW 777777777777777 Ml
0 il “ﬂ"ﬂﬁﬂ m "H"ﬂm
Es5832eg858<28% ¢ s =83 =8%8525 25t £
o T N < 2 £ & EE ¢ £ 8§ S5 ¢ 9 Ec S EE2SEEE
= R 2 < s 5 2 3 @ E s g 3 s ¢ 2 2 a
[8 =1 o 3 £ Z g s ° & S 5§ Q Ec o @ g 3
£ 5 = T S = 8) > 8 8 =] e
8 g 2 . =

Fig. 9. L2 MPKI by an ideal predictor with various bits of DFAD.

missed in L1 caches. Therefore, the workloads for L2 caches have relatively low local-
ity and the LRU policy in L2 caches has relatively poor performance. Fig. 7 and Fig. 8
show the potential of our replacement policy in IPC improvement in comparison to the
LRU replacement policy. Given an ideal predictor, our replacement policy on average
increases IPC by 16.0% across these benchmarks. Among these benchmarks, there are
three benchmarks that have very little IPC improvement potential (< 1%). This is be-
cause they have very high percentage of compulsory misses (> 75% compulsory misses)
under the LRU policy. We remove these benchmarks from subsequent experiments and
focus our attention on memory-intensive benchmarks.

Limiting Range of DFAD. In a realistic design of our access distance based cache
we have to limit the range of DFAD values so that they can be stored in a few bits.
Fig. 9 shows the L2 MPKI achieved by the ideal predictor when a limited number of
bits are used to store DFAD for each cache line. When the PFAD given by the ideal
predictor exceeds the range of the DFAD counter, the maximum possible value is set
in the DFAD counter. We can see that 7 bits are enough to hold the DFAD for each
cache line since the performance under 7-bit DFAD is nearly as good as the ideal per-
formance. The reason is that the access distances in the benchmarks are rarely over
127. Moreover, almost every data access that has a PFAD of greater than 127 gets by-
passed according to our replacement policy. Therefore, when a PFAD is greater than
127, its value rarely influences the replacement decision. For the benchmark deallI,
the L2 MPKI increases with the number of bits in the DFAD counter. This is because
some data blocks with long access distances (more than 127) are brought into the cache
during execution of dealII. Due to the limit on DFAD length, the DFADs of these data

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 Min Feng et al.

blocks can be set to at most 127. When their DFADs decrement to zero, these data
blocks are found not to have been reused. Therefore, the cache resources taken by
these data blocks are wasted. With more bits of DFAD counter, more cache resources
are wasted since these data blocks spend more time in the cache.

25 2.5 I B

B ideal
Py O Power-2 ...

] RRRARLELEEEEEEEE | B EEEE R R

20

15

L2 MPKI
L2 MPKI

10 RN | UURROURRUURIIY | R

art

bzip2
cactusADM
mcf

namd }

o

o (4]

T

dealll ™8

gobmk:

h264ref =

perlbenchg

sjeng

soplex ==

zeusm

L L L

Ibm
leslie3d
milc
omnetpp|
sphinx3
gamess®
gce

3
£
a
3]
<
K
]
<

hmmer

calculix

£
2
1=
IS
S
=3
2

Fig. 10. Comparison of the an ideal predictor and a power-2 predictor.

To make our replacement policy work, we need to obtain the PFAD for each data ac-
cess. However, it is very difficult to predict the exact PFAD for each data access since
it is impossible to exactly know when a data block will be accessed again as it depends
upon future execution path taken by the program. Therefore, we must use approxi-
mate PFADs instead of the exact PFADs in the replacement policy. An approximate
PFAD is defined as the nearest larger power of 2 of the actual forward access distance.
For very short access distance, the approximate PFAD is close to the exact PFAD. But
the difference between the approximate and exact PFADs becomes larger with the in-
crease of access distance. Fig. 10 compares the cache performance of an ideal predictor
and a power-2 predictor. A power-2 predictor provides the nearest larger power of 2
of the actual forward access distance as the PFAD for each data access. From the Fig.
10, the performance of the power-2 predictor is nearly the same as the ideal perfor-
mance, which means that the scaling of PFAD to the nearest larger power of 2 does
not cause significant loss in the accuracy of the access distance information. There-
fore, the approximate PFAD is a good replacement for the exact PFAD. Furthermore,
the approximate PFAD can be represented by its logarithm [log:(PFAD + 1)], which
takes much less storage space compared to the exact PFAD.

2.2. Access Distance Estimation

Our cache replacement policy needs the access distance information to help make the
replacement decision. In this section, we present two access distance prediction tech-
niques: a profile-based static technique and a runtime technique.

2.2.1. Static Access Distance Prediction. Static access distance prediction technique cal-
culates the PFAD for each memory access instruction through profiling and then, at
compile time, the PFAD is stored in the cache hint segment of each memory instruc-
tion. When a memory access instruction is executed, the processor retrieves the value
from its cache hint segment and sends it to the cache to assist our cache replacement
policy. The cache hint extension for memory access instructions was proposed in EPIC
(explicitly parallel instruction computing) [Schlansker and Rau 2000] architectures in
order to reduce the number of data cache misses at runtime. Embedding the cache hint
extension in other ISAs may introduce some additional overhead. Each cache hint is
a few bits attached to a memory access instruction. It is originally designed to specify

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:11

whether the instruction has temporal locality at a given cache level. Our technique
uses the cache hint segment to hold the PFAD computed via profiling for each memory
access instruction.

Our static prediction technique specifies the PFAD for each memory instruction
based upon its observed forward access distances in the profiling runs. By profiling,
we can easily collect all the forward access distances of a memory instruction during
a program execution. However, it is difficult to precisely determine the PFAD for an
instruction. Since the cache hint is specified in the instruction, each instruction can
only have one cache hint. But at runtime, a single memory instruction can generate
multiple data accesses with different forward access distances. Therefore, we set the
PFAD of an instruction to be the median of its forward access distances.

Suppose at runtime, a memory load instruction [d generates a cache miss and the
requested data is mapped into the cache line cs. We have the set of forward access
distances of Id through profiling. Let us denote the median of Id’s forward access
distances as F'AD,,(Id) and the forward access distance of the data stored in cs as
FAD(cs). Consider the cache replacement in two cases. (Case 1) If FAD,,,(Id) is smaller
than FAD(cs), at least half of the forward access distances of [d are smaller than
FAD(cs). Therefore, it is more probable (> 50%) that the forward access distance of
the current data access generated by /d will be smaller than FAD(cs). In other words,
the requested data will probably be reused before the cache data. As a consequence,
the requested data should be brought into the cache. (Case 2) If FAD,,(ld) is larger
than FAD(cs), then at least half of the forward access distance of Id are larger than
FAD(cs). The cache data will probably be reused before the requested data. Therefore,
the current data access generated by [d should bypass the cache. The above analysis
shows that the median of an instruction’s forward access distances is a good cache hint
for cache replacement optimization.

L2 MPKI

art
leslie3d
mcf

milc
omnetpp

Fig. 11. 3-bit vs. 4-bit cache hint.

As discussed in Section 2.1.3, we store [log2(PFAD + 1)] in the cache hint for each
memory instruction. Thus a 3-bit cache hint can hold the PFAD of at most 127 and
a 4-bit cache hint for at most 32767. Fig. 11 shows the impact of using 3-bit and 4-
bit cache hint. We did not examine the performance of 2-bit cache hint since it can
only support PFAD of up to 7 if the PFAD is stored as [logo(PFAD + 1)]. We used the
five benchmarks that gave the most improvement in this tuning experiment for the
static predictor — results of all benchmarks are presented later. From the figure, we
can see that the performance of 3-bit cache hint is very close to that of 4-bit cache hint.
However, using 3-bit cache hint can save 25% space compared to 4-bit cache hint. For
the remainder of the paper, we use 3-bit cache hint and 7-bit DFAD counter for our

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 Min Feng et al.

static predictor. The total space overhead taken by the DFAD counter is around 14KB
for a 1IMB cache with 64B cache lines.

2.2.2. Dynamic Access Distance Prediction. The static prediction consists of two phases:
statically calculating the PFADs of the memory access instructions by profiling and
setting the DFAD bits in the cache at runtime. The dynamic prediction follows the
same two phases, but now the two phases are both conducted at runtime. In our re-
placement mechanism, when a processor executes a memory access instruction, it si-
multaneously sends an access distance request to a dynamic predictor. The predictor
then sends the predicted access distance to the cache to assist the replacement proce-
dure. Our prediction technique is an extension of the conventional last value prediction
technique [Lipasti et al. 1996]. It does not need any software or compiler support and
is thus fully transparent to the programmers.

The access distance of a memory access instruction usually does not change much
at runtime. Given a memory access instruction, later we will show that it is safe to
assume that its next access distance is often equal to its previous access distance.
Therefore, our prediction technique uses the most recent access distance of a memory
access instruction as its predicted assess distance. To realize our predictor, we need
a history table to store the last access distances of the memory access instructions.
Instead of storing the access distance information for every memory access instruction,
the table only needs to store the frequently used access distances. To avoid outliers, the
table is only updated after a new access distance appears twice in a row.

The history table is indexed by the instruction address. Each entry of the table con-
tains the instruction address tag, the PFAD, and the usage counter of a memory access
instruction. The PFAD is stored in the form of [logo(PFAD + 1)]. The access distance
is updated using two-delta policy [Eickemeyer and Vassiliadis 1993]. In this policy, the
access distance gets updated only if a value different from the correct access distance
appears twice in a row. To implement this policy, two access distances are stored in
each entry. The first access distance stores the value used for prediction and the sec-
ond access distance stores the value calculated most recently. The first access distance
is only updated when the newly calculated access distance is equal to the second ac-
cess distance but different from the first access distance. The usage counter of each
entry is a saturating counter that is incremented after every correct prediction and
decremented after every misprediction. When a new entry needs to be created, the one
with the lowest usage counter is replaced.

To maintain the aforementioned table, our predictor needs to calculate the access
distance for each executed memory instruction. The access distance of a memory access
instruction is unknown at the time when it is executed. We can only obtain the access
distance when the same cache line is accessed again. Therefore, we record the address
of the instruction that previously accessed the line in the cache with a tag in that line.
The tag will be used to calculate the PFAD and update the access distance table.

When a processor executes a memory access instruction, it sends its instruction ad-
dress to the dynamic predictor to request its access distance. Upon receiving the re-
quest, the dynamic predictor performs two actions: predicting the access distance and
updating the history table. These two actions can be done in parallel as described be-
low.

Access distance prediction. Upon receiving the instruction address from the proces-
sor, the predictor first computes the index in the history table by hashing the instruc-
tion address. If the corresponding set of entries contain the information of the memory
instruction, the PFAD stored in the first access distance column is returned as the pre-
dicted access distance. If the history does not have the information of the memory, the

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:13

value (cache associativity - 1) is returned as default access distance — as we show later
in Section 2.2.3, this essentially approximates the LRU policy.

Access distance update. Upon receiving the requested data address, the predictor
calculates the access distance of the instruction that previously accesses the requested
data block in the following ways.

— If the requested data block is hit in the cache, the predictor can get the address
tag of the previous accessing instruction from the cache. Its new PFAD is set to the
difference between the PFAD stored in the history table and the remaining DFAD in
the cache line.

— If the requested data block is missing in the cache, the predictor can get the address
tag of the instruction that previously accesses the evicted cache line. If the DFAD
value of the evicted cache line is equal to 0, we know the cache line has not been
accessed with its PFAD. We then double its PFAD in the history table.

After we get the new PFAD, we update the record by using two-delta policy. To imple-
ment the two-delta policy, we have two access distance records for each entry in the
history table, as shown in Fig. 12. Access distance #1 is used for prediction and access
distance #2 stores the most recent access distance. We only update the access distance
#1 when the same access distance occurs twice in a row. For example, when a cache line
L is hit, we can get the remaining DFAD from the cache line. Based on the address tag
in the cache line, we can also get the access distance record of the previous accessing
instruction from the history table. The forward access distance of the previous access-
ing instruction is then calculated by subtracting the remaining DFAD from the access
distance #1 stored in the history table. If the new forward access distance is equal to
the access distance #2, we update the access distance #1 to the new forward access
distance. If they are different, we update the access distance #2 to the new forward
access distance and keep the access distance #1 unchanged. If the history table does
not contain a record for the instruction, a new record is created to take the place of the
one with the lowest usage counter.

Like the conventional value prediction techniques, the proposed access distance pre-
diction scheme can be implemented entirely in hardware. The predicted access dis-
tances are used for making the bypassing/replacement decision. In a real machine, the
requested data can be directly sent to the processor before the bypassing/replacement
decision is made. Therefore, the prediction does not have to be performed before the
memory access is executed. Since the prediction actions are not on the critical path of
a memory access, the memory access latency under the new scheme will be the same.

Imstruction Access Usage
Addr. Tag Distance Cournter
#1 HZ
26 3|33

Fig. 12. Table entry line for the history table.

Fig. 13 shows the impact of the history table size on six benchmarks that have the
highest L2 MPKI under the LRU policy — results of all benchmarks are presented
later. We use a 4-way history table in this tuning experiment. We can see that 256-
entry history table can work nearly as well as an infinitely large history table. Fig. 12
shows the size of an entry line of the history table. Each entry line of the history table
takes 35 bits and therefore the total space overhead for a 256-entry history table is
(35*%256/8)=1120B.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 Min Feng et al.

40 T T T

LRU H
Infinite

]

O
0] T R [l 512-entry}|

O

]

]

256-entry
128-entryl |

2B SRt REREEEEN! EEREES

20 -l e [

L2 MPKI

15 - N B B

10

art
Ibm
mcf

o
=3
15
c
£
S

£
2
=4
<
3
=3
2

Fig. 13. Comparison of different history table sizes.

30 T T T

Y I W Nobranch | ... |
[0 Branch-awarg

200l g 8

L2 MPKI
o «o 5 &
\ 1 1
" El
f:
i i i

Ibm
libquantum

mc
omnetpp
sphinx3

Fig. 14. Impact of branch-aware dynamic predictor.

We also compare the dynamic predictor with a branch-aware predictor. Instead of
predicting the access distance for a memory access instruction regardless of the exe-
cution path, a branch-aware predictor estimates the access distances according to the
branch history. Since the access distances of a memory access instruction may be dif-
ferent along different execution paths, the branch-aware predictor may provide more
accurate prediction. To realize the branch-aware predictor, the branch history is main-
tained in a register. When locating an access distance record in the history table, the
predictor hashes both the instruction address and the branch history into the index.

Fig. 14 compares the branch-aware dynamic predictor with the normal dynamic pre-
dictor. For libquantum and mcf, the branch-aware predictor reduces MPKI slightly
more than the normal predictor. This happens because the forward access distances
of the memory instructions in these three benchmarks are different along different
paths and thus the branch-aware predictor can provide more precise estimation. On
the other hand, the normal predictor can store more memory instructions’ PFAD infor-
mation given the same history table size. Therefore, it outperforms the branch-aware
predictor on other benchmarks.

2.2.3. Default Estimation. To fully take advantage of our cache replacement policy, the
processor has to know the access distance information for the given program. However,
sometimes it may not be possible for the processor to generate accurate information. In
this section, we introduce default access distance strategy whose behavior is very sim-

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:15

Load Sequence 1-way 2-way 3-way
e @] EL 1]
JT JU
Id b; | b:0 a:0 | b:1 | al | b2
Id c; [ec0] [e1[b0]| [a0|bi1[c2|
<11
Id d; [do] [cO[d1] [d2][b0]ect]
< L
Id a; [a0] [at]d0] [d1]a2]c0]
< J L
Id c; c0 a0 |ct| |d0]al|c2]|
4 Ll <L
Id a; [a:0] [at]e0] [d0]a2]c1]

(a) (b) ()

Fig. 15. Examples of using our cache replacement mechanism using default estimation. z : n in each block
indicates the DFAD of z is n.

ilar to the well-known LRU policy. This has an additional advantage that selectively
incorporating the default estimations into the access distance driven cache replace-
ment policy can make the cache performance better.

When the access distance information is unavailable, the default PFAD of each data
access is set to n—1 for a n-way cache. By the default estimation, our cache replacement
policy behaves exactly the same as the LRU policy in a 1-way or 2-way cache and
approximates the LRU policy in a n-way cache where n > 3.

1-way cache. Fig. 15(a) shows an example for our cache replacement policy in a 1-
way cache by setting the PFAD of each memory access instruction to be 1. Every time
a cache line is accessed, its DFAD is set to be 1. Then at the end of this cache access,
the DFAD is decreased to 0. Therefore, no bypassing will be allowed since the DFADs
on all cache lines are always 0.

2-way cache. Fig. 15(b) shows an example for our cache replacement policy in a 2-
way cache using default estimates. Whenever a cache line is accessed, the DFAD on
the other cache line in the same cache set is at most 1 since DFADs keep decreasing
if not being reset. Thus at the end of this data access, the DFAD on the other cache
line will be decreased to 0. Next time a data element needs to be brought in, the other
cache line will be replaced. This cache behavior is exactly the same as the LRU policy.

3-way or more cache. Default estimation can also be used in a n-way cache when
access distance information is unavailable. When a cache miss happens, our cache
replacement policy places the new data into a cache line which is not accessed in the
last n—1 data accesses. To explain this, we assume a cache miss happens at the i*"* data
access. During the previous n — 1 data accesses, at least one cache line is not accessed
since there are n cache lines in a set. The DFAD on that cache line must be 0 because
it keeps decreasing since the (i — n)'" data access. Therefore, our cache replacement
policy will place the new data onto that cache line which is not accessed in the last
n — 1 data accesses. Fig. 15(c) shows an example. When multiple cache lines are not
accessed in the last n — 1 data accesses, our cache replacement policy will randomly
choose one to be replaced. The cache behavior in this case is similar to the LRU policy
since our cache replacement policy keeps the most recently used data element in the
cache and evicts a relatively less recently used data element from the cache.

The above analysis shows that by setting access distances using our default esti-
mation strategy, we can closely approximate LRU policy. In other words, the classical

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 Min Feng et al.

LRU policy can be approximately seen as a particular case of our cache replacement
policy by assuming every memory access instruction has the same access distance.

Table Ill. Comparison of the LRU policy and its approximation
with default estimation.

Name LRU (MPKI) | Approximation (MPKI)
hmmer 2.44 2.46
sphinx3 14.19 14.16

Ibm 26.96 26.96
art 22.24 22.25
libquantum 14.78 14.78

dealll 0.76 0.78
leslie3d 6.39 6.35

bzip2 8.67 8.72

mcf 39.12 39.12
xalanchmk 10.24 10.24
milc 11.62 11.63

gee 1.25 1.26
bwaves 5.04 5.04
perlbench 0.75 0.75
h264ref 0.72 0.71
omnetpp 31.08 31.06
GemsFDTD 9.03 9.03

gobmk 0.36 0.39
zeusmp 2.12 2.12

soplex 0.64 0.61
gromacs 0.22 0.23

cactusADM 4.53 4.54

namd 0.05 0.05

gamess 0.17 0.17
wrf 0.02 0.02
calculix 1.19 1.18

tonto 0.13 0.13

sjeng 0.33 0.34

astar 0.79 0.78
povray 0.05 0.05

Table III shows the comparison of the LRU policy and our cache replacement policy
with default estimation. Since the L2 cache is 16-way, we use 15 as the PFAD for each
memory access instructions. We observe that the performance of our method is almost
the same as that of the LRU policy. The performance difference is within +2%.

The default estimation can be integrated into our access distance prediction tech-
niques to further enhance cache performance. When the prediction accuracy for a pro-
gram is low, the default estimation can be used to approximate the LRU policy to
avoid the cache performance degradation due to low prediction accuracy. In particular,
we extend our prediction techniques to enable them to adaptively choose between our
access distance driven cache replacement policy and the approximate LRU policy. This
extension to the predictors does not introduce any extra hardware complexity.

Adaptive static prediction. In our static prediction technique, each memory instruction
can only be tagged with one PFAD. Therefore, for those instructions that have multiple
forward access distances at runtime, our static prediction technique cannot always pro-
duce accurate prediction. The inaccurate prediction may cause a wrong replacement
decision. Based on the profiling results, it is easy to know whether a replacement deci-
sion is correct or not by comparing it with the decision generated by the ideal predictor.
We can score an access distance prediction using the percentage of correct replacement
decisions caused by this prediction. For a memory instruction, we choose between the

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:17

static prediction and the default estimation based on their scores. If the static pre-
diction has higher score, we choose it for this memory instruction since using static
prediction for it can cause more correct replacement decision. If the default estimation
has higher score, we use the default estimation to approximate the LRU policy to avoid
the performance degradation due to the low prediction accuracy.

40— T T T T ArT T T T T T T T T T T T T T
35l] B5 [e B
0l Y o | | —
_ 25 el _ 25+HR-------------------Mmee e —
g X H LRU
S 200 B R s ot - |0 static
S N [l Adaptive Static
5 B | R |/ s
0L B N1 I - PRY | SN | AR | R R
LD " > M ﬂﬂ
0o . 2 e s £ 3 £ 2o % 0 I L L T &
g 2 € G L g £ X = Q X S 5 T S o X Q.
E°"s§2s82EECLS $5e8:Ees2cE8528¢8%
s 3°% 8§ EB 5 $°8 S§s&Efs@g 3
g 3 g— o = o (=} 5 < o N
o 3 = x Q
Fig. 16. Comparison of the original static predictor and the adaptive static predictor in L2 MPKI.
Il static
[Adaptive Static
1 T 1T
50% W[- [| """"""""""""""""""""""
= L [| ﬂ s ﬂﬂﬂ_
X 0% i:l - - iy —=- 1 - e
o T T I F [
=
N
- -50% - H B A I RS AR [H AR
§=
c
e
5 -100%f-------- ¥ B it DR I R
=
o
2
-150%-------- RS RS [
74010 170] i F i
IIIIII(I’)IIlIIJIIIIIIIIIIIIIIIIx(ID.
N+ — O X Y= ko] y— T LT oXmn
Faggéc—sgog8E®Em§oggggchwt58
[a) 'N<3¢EG’_QE¢E£.G_JEEgmmmgo_.5>§.om
T S%SSs S58E 3§ ctgf0gs g3
e g° 7 To7 %3 sg o &N
] g is! o Q
O o =

Fig. 17. Comparison of the original static predictor and the adaptive static predictor in L2 MPKI reduction.
Fig. 16 shows the L2 MPKI of both the original static predictor and the adaptive

static predictor in comparison to the LRU policy. The left side includes the memory-
intensive benchmarks with MPKI larger than 4 and the right side shows the rest. Fig.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18

Min Feng et al.
Sr—rTT T
B LRU
Al O statc | ... _
[l Adaptive Static
w ... —
O
o
N
1
0 U
DraSx—0pox A% s T E « TAS OX 0 X2
S S0S3CSECSEE82EE 5205022555
_|_Q|u) < T © mvo N N © c = Q n o []
2 O S S c < QL S =) < N
e © (=2} (o o 9 <
Q I o o g
O] &) =
Fig. 18. Comparison of the original static predictor and the adaptive static predictor in IPC.
60% T 1
L]0 Ll i |EEERLEELLEELELEL -
M Static
ZI007% mull | : | Adaptive Static |
30% "W - AR |]
s
O b~ - B |- - - oo oo] B —
S 20%
)
%V. 10%—-®|- """ W R | -
NI i (SRS || N | SN i
0% o -|—| —H_ -u B —H_ L“_
-10%[§- -~ i B D i Ay M- -
4 0 e -
300l L L L 1 1 4| | Lo
0O+ oy X—HpoOX N S Ece L,OLLE DX 0 X 2
SR EBLSE8E G REEg SR EEsES
[a) N<ootE 2c3 =892 £ Ec 0 og.2ax= wm
L 0328 9258 E va S-S S a
7] =) o o92%c o35 E= & c N
e k3] [=2] o oo =
5] < o [o8 g
O] o =

Fig. 19. Comparison of the original static predictor and the adaptive static predictor in speedup.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No.

4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:19

M not covered
[incorrect
M correct

100

60

Percentage

40 -

20
||
O L]
— [aT—— o< o x x O
CENZ 2= 8 EC08ERECLEEE28REEE
o) ,:,DS“’EO'!Q S ELUOEEEQGge 58 aE>2a4g
LI RN<oYg S E0ET =g ccScowmoc o 3
0 28] < > 9N =] c= o c 0
e =) © o< =3 oo 0 S N
Q g o ©
@ & e X
©) 8] =

Fig. 20. Accuracy and coverage of the adaptive static predictor.

17 shows the reduction in L2 MPKI achieved by both predictors. In the experiment,
we used the training inputs for profiling and the reference inputs for measuring the
performance. Our original static predictor significantly reduces the L2 MPKI for five
benchmarks, where the MPKI for art is reduced by around 60%. Our original static
predictor significantly increased the MPKI of fifteen benchmarks. This is because their
data access patterns vary at runtime and therefore it is not possible for the static
predictor to set the cache hint accurately. The adaptive technique makes the static
predictor always work better than or close to the LRU policy. For the benchmarks that
are slowed down by the original static predictor, the adaptive static predictor chooses
default estimation since the static prediction makes more wrong replacement decision.
On average, the L2 MPKI across these benchmarks is reduced by around 12.32% with
the adaptive static predictor.

Fig. 18 shows the system performance of both the original static predictor and the
adaptive static predictor. Fig. 19 shows the IPC improvement over the LRU policy of
both predictors. On average, the IPC across these benchmarks is increased by 7.32%
with the adaptive static predictor. The IPC of six benchmarks art, mcf, h264ref, milc,
omnetpp, and xalancbmk is increased by more than 10%.

Fig. 20 shows the accuracy and coverage of the adaptive static predictor. For ten
benchmarks, the adaptive static predictor gives correct access distance estimations
for more than 50% instruction instances. On average, 40.6% instruction instances are
given correct estimations. The adaptive static predictor applies default estimation to
53.8% instruction instances. Only 5.6% instruction instances are given wrong estima-
tions.

Adaptive dynamic prediction. Some memory instructions’ forward access distances
keep changing at runtime. Therefore it is not possible for our dynamic predictor to es-

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 Min Feng et al.

timate their forward access distances accurately. As mentioned in Section 2.2.2, each
access distance record in the history table has a usage counter, which indicates the con-
fidence of the record. Similar to the adaptive static prediction, our adaptive dynamic
predictor returns the default estimation when receiving a request related to a record
with low confidence.

40T T T T 3T T T T T T T T T T T T T
SN e —
2 -
B0 - —
g s] R “ERR I
g ¥ B (RU
= 20 @Ml e m 7 s (I EEEEREEREEPEEPEETEE | B H |0 Dynamic
Y N I Adaptive Dynamig
ISR | EEEREEREEEE R | R | R -
PRN || N | A | R L
10 Al W
5" "“ 1L || ™ ﬁh " A
O'Q,_'w"“'u'g,_' o o < oL Dail “ .r-" . |
FFiEcEEcEEgiS zzigEserEEgite
2 N < = c 2 £ 0 38 E®S EZ ER S5 LSS
[4] _g 4 8 S E 25 L3 ©c 59 Ecgo®g 2
IS 2 = & s » 3 8 o @ 5= < 5 e N
8 . . .

Fig. 21. Comparison of the original dynamic predictor and the adaptive dynamic predictor in L2 MPKI.

B Dynamic
[Adaptive Dynamiq

60% -l
40% Q- gl

20%

o Il =3l M fr N
0% .u.ﬂ
—20% - I ------- M I --------------

—4QYp - R RRCCLETEEEEEEEE] SRR

Reduction in L2 MPKI

~60% | N R TR R R RRRERE EERRE
~80% |- Mo
—100%h - - - -

GemsFDTD[
cactusADM [~
calculix [~
gromacs
h264ref-
leslie3d -
mcf -
omnetpp-
perlbenchi-
wrf
xalancbmkf—
zeusmpl~

Fig. 22. Comparison of the original dynamic predictor and the adaptive dynamic predictor in L2 MPKI
reduction.

Fig. 21 shows the L2 MPKI of both the original dynamic predictor and the adaptive
dynamic predictor Fig. 22 shows the reduction in L2 MPKI achieved by both predictors.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:21

6r— T
B LRU
Sl | B O bynamic |77
B Adaptive Dynamig
h. ...
O
[B | ISR | () | AR | R
N
1
OD.T.S v 0 w— X O
N X =0 O X = T £ 4= T Q5 oxX oM
TwwmwwmecmmmmM%ucMmmmmmmmmm
0O TNgobLbECPSeIELLEEEGOgLREZS8 T
5 $538S§ 858ETgE "TI2NBETEG
€ < WC © o< =z S o 7 < N
() I Qo o m
O &} =

Fig. 23. Comparison of the original dynamic predictor and the adaptive dynamic predictor in IPC.

BOUo [~
TOY% -l Bl Dynamic e
[Adaptive Dynamig
T e |
BOY el
T ERRERREEEREEERERERERES | REEE 3 | EERERERERERERE
B0 8 | EEEEERERERRERE

209 [~ - R B SRR

ol dap ol WU, Mﬁgb

Speedup

=

‘

-10%

rt -

calculix - ==

gromacs==
hmmer-
Ibm
leslie3d-
libquantump—
mcf -
milc
namd
omnetpp[-

perlbench- ®
wrf -

xalancbmk™=—xx
B

gamesg-
h264ref-
zeusmpr-

GemsFDTDf
cactusADM [~

Fig. 24. Comparison of the original dynamic predictor and the adaptive dynamic predictor in speedup.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 Min Feng et al.

[not covered
[incorrect
M correct

100

80

60

Percentage

40

20

leslie3d
mcf
milc
namd

libquantum

Q
o
IS,
[}
c
IS
s}

cactusADM
calculix

Fig. 25. Accuracy and coverage of the adaptive dynamic predictor.

The original predictor reduces the MPKI by more than 10% for thirteen benchmarks.
For six benchmarks art, mcf, h264ref, hmmer, omnetpp, and dealll, the original dy-
namic predictor outperforms the LRU policy more than 20%. The average reduction in
L2 MPKI achieved by the original dynamic predictor is 14.16%. The original dynamic
predictor increases the L2 misses slightly for five benchmarks. As shown in the figure,
the adaptive technique significantly reduces the MPKIs of the benchmarks that incur
an MPKI increase with the original dynamic predictor. The adaptive dynamic predic-
tor does not increase the MPKI of any benchmark for more than 1% except for gobmk
and gromacs. On average, the L2 MPKI across the benchmarks is reduced by around
19.95% with the adaptive dynamic predictor.

Fig. 23 shows the system performance of both the original dynamic predictor and
the adaptive dynamic predictor. Fig. 24 shows the IPC improvement over the LRU
policy achieved by both predictors. On average, the IPC across these benchmarks is
increased by 10.91% with the adaptive dynamic predictor. The IPC of eight benchmarks
is increased by more than 10%.

Fig. 25 shows the accuracy and coverage of the adaptive dynamic predictor. For ten
benchmarks, the adaptive static predictor gives correct access distance estimations for
more than 80% instruction instances. On average, almost 70% of instruction instances
are given correct estimations. The adaptive static predictor applies default estimation
to 16.5% instruction instances. Only 14.4% instruction instances are given wrong esti-
mations.

Our adaptive dynamic predictor can adapt to different phases of the same applica-
tion. Fig. 26 shows the L2 miss reductions obtained by the adaptive dynamic predictor
in different phases for 4 SPEC CPU2000 benchmarks. We ran each benchmark for 60B
instructions and sampled a segment of 250M instructions from every 2B instructions

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:23

1 T T T T T

° @ sixtrack ———x---

ammp ——

_ o8t : i i Vpr %
% ?ﬁ%)@é%%x%%)@(%*)@é%)@(%%%*' mcf o
= i ; ® : 2,

R i T I N R @ T

< L ¢

s oef 1

2 |

o [

S .

o i

j0)

'

10 20 30 40 50 60
Billions of Instructions

Fig. 26. Reduction in L2 MPKI during benchmark execution.

for measurement. For sixtrack, our technique outperforms the LRU policy in all ex-
cept for the 14B-16B instruction segment. For ammp and mcf, their data access patterns
change during the execution. Our technique works better than the LRU policy on part
of the segments and approximates the LRU policy on the other segments. For vpr,
the forward access distances of most memory instructions keep changing at runtime.
Therefore, our dynamic predictor cannot estimate vpr’s access distance information
well. Therefore, due to the low prediction rate, our adaptive dynamic predictor always
uses the default estimation to approximate the LRU policy.

2.3. Hardware Cost

Table IV. Hardware cost of our access distance-based cache for 1MB cache size.

Regular Cache | w/ Sta. Est. | w/ Dyn. Est.
Space Cost (bytes) 1,048,576 +14,336 +31,840
Area (mm?) 7.3435 +0.1333 +0.3109
Dynamic energy (nd) 1.2987 +0.0262 +0.0611
Dynamic power at max freq (W) 3.1725 +0.0307 +0.0980
Standby leakage power per bank (W) 0.7618 +0.0094 +0.0203
Access Time (ns) 2.4416 +0.0179 +0.0404

We study the hardware cost of our access distance-based cache. We use CACTI
[Thoziyoor et al. 2008] to model access time, area, leakage, and dynamic power of
our cache. We model a 1MB 16-way cache with 64B linesize and 1 read/write port.
All numbers are calculated by using 45nm technology size.

Table IV compares the space/area cost, dynamic/leakage power, and access time of
our access distance-based cache with a regular cache, which only contains two SRAM
components — a data array and a tag array. Energy and power are shown in per read
port. Compared to a regular cache, our access distance-based cache needs an additional
7-bit DFAD counter for each cache line. The total storage overhead of the counters is
14KB for a 1MB cache, around 1.3% of the total cache size. This increases the hardware
area of the cache by 1.82%. The dynamic energy consumption per read port is 2.01%
more than that of a regular cache. The access time of our access distance-based cache
is slightly longer than that of a regular cache. Our access distance-based cache can
work with a dynamic access distance predictor. To enable dynamic prediction, an 8-bit
address tag of the previously accessing instruction is stored in each cache line. The
total storage cost of the address tags is 16KB. The history table takes 1120B storage
cost for a 1IMB cache. It costs 0.15mm? area, around 2% of the area of a regular cache.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:24 Min Feng et al.

A cache with a dynamic access distance predictor costs 4.7% more energy per read port.
The access time increases by 1.8% due to the additional tag on each cache line.

3. ADDITIONAL EVALUATION

In this section, we compare our techniques with other cache replacement policies. We
also evaluate our techniques with different L2 cache sizes. All the experiments are
conducted by using the adaptive predictors.

3.1. Comparison with Other Replacement Policies

In this section, we compare our techniques with other cache replacement policies. Dy-
namic Insertion Policy (DIP) [Qureshi et al. 2007] is a scheme for resolving cache
thrashing. It dynamically selects between the MRU insertion policy and the Bimodal
Insertion Policy (BIP). BIP randomly selects LRU or MRU position for inserting new
data. Access Interval Predictor (AIP) [Kharbutli and Solihin 2005] is another counter-
based cache replacement policy. We compare our techniques with these two policies.

40 3
LS e A
25|l LRU R | DA
T] N I T - [Adaptive Static
[Adaptive Dynami

P T T | I | N B - 2|0 op MR
X 0 AP
o
S 20 T e 1|
o~
-

Ibm

libquantumj
sphinx3
calculix
hmmer
zeusmp

o o 5 &
\ 1
GemsFDTDE :
bwavesE
cactusADME
IeslleBdE
mcf : : :
omnetpp|
xalancbmk%
L
L2 MPKI
o
o
T
deall ==
gamess=’
gobmkii
gromacseS
h264ref

T
@
N
~

. MPKI comparison of cache replacement policies.

Fig. 27 and Fig. 28 compare the L2 MPKI of our techniques, DIP, and AIP. AIP
outperforms both LRU and DIP for most benchmarks. On average, DIP reduces the L2
MPKI by 12.41% for these benchmarks compared to LRU and AIP reduced L2 MPKI
by 13.38%. The overall performance of our policy with the adaptive dynamic predictor
is best among all five policies. It outperforms DIP for 19 out of 27 benchmarks and
AIP for 21 out of 27 benchmarks. On average, our access distance-based cache with
the adaptive dynamic predictor reduces the MPKI by 19.95% over LRU.

Fig. 29 and Fig. 30 compare the system performance of our techniques, DIP, and AIP.
Compared to LRU, DIP improves the system performance by 7.1% while AIP improves
it by 7.2%. Our technique with the adaptive dynamic predictor outperforms the other
replacement policies for most benchmarks shown in the figure. Overall, it improves
the system performance by 10.91% for these benchmarks.

Fig. 31 and Fig. 32 show the accuracy and coverage of different cache replacement
policies. We define correct evictions as ones that agree with the optimal policy, wrong
evictions as ones that disagree with the optimal policy, and unpredicted evictions as
the optimal evictions that are not predicted. Accuracy is equal to correct evictions di-
vided by the sum of correct evictions and wrong evictions. Coverage is equal to correct
evictions divided by the sum of correct evictions and unpredicted evictions. The figures
show that on average, our adaptive static and adaptive dynamic predictors correctly
predict more evictions than DIP and AIP (71% for the adaptive static predictor, 74%

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

‘62 B4

"0T0G YIBI 298P UONRIINJ ‘6E dPPIIY ‘¥ 'ON ‘6 '[OA ‘UoHezIWdQ 9po)) PUB 8INJ003IYDIY U0 SUOLPBSUBL], NDV
‘se1[od Jueweor[dad oyoed Jo uostredwod HJ]

div [J
dia [

1uswooe|day ayoen USALI(Q 92URlISIq SS900Y dlWeUAQ

onels aAndepy [l

IPC Reduction in L2 MPKI
o [l N w N (63} (o)) |\|J N N fe2)
' ' ' ' S 2 e N N
GemsFDTD = - > > > > >
L ' ' ' ' ! I I I I
art : : : : 71 € GemsFDTDf . "E i i
bwaves — X atf
bzip2 e Z Z Z 1 a bwavesf- -
cactusADM% . bzip2 - ! =
calculix : : : - E cactusADM - =
dealll . 4 7 calculix - =
gamesE: : : — ; dealll -
gce % : : : 4 3 gamess~ . ——
gobmk : : : 4 = gcer d?' : :
gromacs : : : 1 B gobmk[- .:'_—-f
h2saref e 1 & ghrgaaci‘ pT = : :
hmmer . | ® rer . ————————
bm —=- . . : hmmer;- = :
- : : A lbmp . T
leslie3d : : : 3 . . .
. . . . i = leslie3d- =
||qua.ntUm E. - ' ' ' %- Iibquantum L :F .
mcf B : N . :
milc 5': : OOECOm| | = mcf - ; ———
(— 2o225%| | & AL o —
nam , — |T758 2 = namd- T ' '
omnetpp% ==z N = omnetppr- —
perlbench ' S ; 1 & operbencht : —F
sieng S8 | Z sjeng [re———"
soplex . . 5° . g soplexf- = ——t :
sphinx3 : —— 4 sphinx3f- ! = .
wrt = @ @ .
xalanchmkeeems : : : = xalancbmkf- =
zeusmpEe— , i i 1 zeusmp- | = i i

DiweuAq sAndepy [

G26€

39:26

Speedup

Accuracy

Min Feng et al.
80% T T T T T T T T T T T T T T T T T T T
40) S B Adaptive Static |- - - - - - o -
[0 Adaptive Dynamiq
60% - B/ DIP el .
O AP
50% [s
40% - fff -l e T
30% - WffF--cc el T
20% - Wfr---c el T
10% 0N W =
0% —y " [e (i
7 Y Y
[a — X s k=] “— TCLLE oOXM, o X2
FECEEZSg8EgCEB LB Z8RE.
032352883 LOEEEQQL gLt S
L SR ygoO 9 6 N S O G cEcaov % m. e 3
€ B S - T o9 =
O] I is! (o} m
O] o =
Fig. 30. Speedup comparison of cache replacement policies.
B Adaptive Static
[0 Adaptive Dynamig
H pirP
O AP
100% T T T T T T T T T T T T T T T T —
80% M| Wil 1 - allr s A1 - i
60% [I
40% [H
20% 1 i
oo\thSZMXI QX80 ERBEBLOTEE2EVeE S
FSCoFET0SER22EQSE2eagc@xEEE
D gReSEEOEEFESC2EESE82E552
L 22035068 968E 0a cCEon@Zs 2
n e S m (o)) o = c N [m = wn S N
(S B = - T o9 —=
[} c o o m
O] o =
Fig. 31. Accuracy of cache replacement policies.

for the adaptive dynamic predictor, and 64% for both DIP and AIP). The adaptive dy-

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:27

B Adaptive Static

[Adaptive Dynamig

B DpiP

O AP
100% T
80o% - I-n-n:at Wl WL .

. _ _ _ ik _ i
o5 Il - BHHIL: L -k M k- - UI- H

& 6% VR (9

o

>

o) !

O a0% HIII M+ il - - - i
200 I I - - - - -
O e S NS x= x5 e EB 0T 25 DXMy X 2

EFslofs508eEcl2EQs82cg2g5dxEEE
0O ENI30EPDcIELELEEEGOgRRESRQ
L 229958 95NE 9ca CELYZSE co
i 272378 Bg8E 33 ES79% R
@ & S Q g
O] o =

Fig. 32. Coverage of cache replacement policies.

namic predictor also gives the least wrong predictions (19% for the adaptive dynamic
predictor, 29% for the adaptive static predictor, 25% for DIP, and 24% for AIP).

3.2. Varying the Cache Size

We study the performance of our access distance based cache for different cache sizes.
Fig. 33 shows the impact for different cache sizes. For most benchmarks, our adaptive
predictor achieves more MPKI reduction on smaller cache. This occurs because the im-
provement potential for larger caches is smaller since they can store more data blocks.
For bzip2, our adaptive dynamic predictor can achieve more MPKI reduction for a
larger cache. The reason is that its working set is very large. Even with 4MB cache,
its cache performance still has potential for improvement. On average, our method re-
duces the cache misses by 4.9% and 3.3% with the adaptive static predictor for 2MB
and 4MB caches respectively. With the adaptive dynamic predictor, the average reduc-
tion is 5.8% and 2.3%. Although the caches will be larger in the future, the working sets
of the programs will also get larger. Thus, our method can still benefit performance in
future designs.

4. RELATED WORK

Cache Replacement Based on Reuse Information. MIN [Belady 1966] and OPT
[Mattson et al. 1970] are two optimal cache management strategies based on forward
reuse distance. Neither of them can be implemented in hardware. MIN is very costly to
implement because it requires forward scanning to find a data element with furthest
reuse when a cache miss happens. The OPT algorithm is proposed based on MIN which
has slightly lower overhead than MIN. The OPT algorithm is a two pass algorithm.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:28 Min Feng et al.

B Adaptive Static 1M
O Adaptive Static 2M
I Adaptive Static 4M
[Adaptive Dynamic 1N
[Adaptive Dynamic 2N
B Adaptive Dynamic 4N

60%

40%

20% - f| - L R | | N | EERREREn | §

. JIWLHLMFTH I 18T

Reduction in L2 MPKI

OO0 s e

20/0"""'3/7"2,,'"""""""b_
a 0 = X T he] T LS5 oOXMm =
RS ES 8 ER SEGSE2E o8t
o) %'EQSSEOQEgEQEEEEmw%.ﬁa.gggg

-~ ey c n O C

5 S5%ge5 S5fETgs CEEEVRETEg
= g ° Sk -z @ o =N
@ 3 a =3 g
O o =

Fig. 33. MPKI reduction in L2 cache with different cache sizes.

In the first pass, it computes the forward reuse distance for each data access. Then
in the second pass, it incrementally maintains a priority list based on the forward
reuse distance of every cache element. Once a cache miss happens, the requested data
element is inserted into the priority list based on its forward reuse distance. OPT
needs to have the exact forward reuse distance for each data access. This is similar
to our replacement policy with an ideal predictor. However, it is not implementable as
such information is not available in practice.

Gu et al. presented a Program-directed OPTimal cache management (P-OPT) [Gu
et al. 2008], which annotates certain accesses with bypass based on the cache access
history obtained by executing the program with OPT cache replacement policy. For
each eviction generated by OPT, P-OPT tags the last access of the evicted data as a
bypassing access. Similar to the OPT algorithm, P-OPT needs to look up the bypass tag
of each data access at runtime, which is hard to implement. Similar to P-OPT, Wang
et al. [Wang et al. 2002] proposed a set of compiler algorithms to predict whether a
data element will be reused. According to the reuse information, they set a one-bit tag,
called evict-me, for each cache line. On a cache replacement, the hardware replaces a
line where the evict-me bit is set.

Beyls and D’Hollander [Beyls and D’Hollander 2002] proposed a reuse distance-
based method for statically setting cache hint in EPIC architecture [Schlansker and
Rau 2000]. For each memory access instruction, their method picks a cache level where
the requested data will be retained for at least 90% of the accesses generated by that
instruction at runtime. Therefore, the data with smaller reuse distance will be inserted

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:29

into lower cache level while the data with larger distance will be evicted into higher
cache level. Beyls and D’Hollander [Beyls and D’Hollander 2005] later developed a
dynamic cache hint selection method based upon the polyhedral model. Their method
calculates the reuse distance for each access at runtime and then selects the memory
access instruction with the proper cache hint according to the calculated reuse dis-
tance. The dynamic method achieves lower miss rate than the static method but the
overhead of calculating the forward reuse distances can be quite large.

Kharbutli and Solihin [Kharbutli and Solihin 2005] proposed two counter-based
cache replacement algorithm. Access Interval Predictor (AIP) is similar to adaptive dy-
namic predictor. However, since AIP does not bin access distances into power-of-2 bins,
a confidence counter is only increased when the same access distance is encountered
twice. This makes it hard to increase confidence counters for the instructions that have
approximately same access distances for different execution instances. Besides, AIP re-
quires more bits to store access distance history than our dynamic predictor. Live-time
Predictor (LvP) is another counter-based algorithm, which predicts how many times a
cache line is accessed before it is evicted. It is similar to dead block prediction. Kerami-
das et al. [Keramidas et al. 2007] proposed a counter-based replacement policy, which
makes replacement decision based on two counters. One counter (ETA) records how
long the cache line is expected to be in the cache and the other counter (CD) stores
how long the cache line has been in the cache. The victim is selected between the line
with the largest ETA counter and the line with the largest CD counter.

Re-Reference Interval Prediction (RRIP) [Jaleel et al. 2010] is a recently-proposed
cache replacement technique based on the Not Recently Used (NRU) policy [HP 2002].
Instead of predicting the reuse distance of a cache block, it predicts the reference pre-
diction value, which is a M-bit value that indicates how soon the cache block is re-
referenced. When M = 1, RRIP is identical to the NRU replacement policy.

Cache Bypassing. Many research works have been done in cache bypassing and
early eviction. McFarling [McFarling 1992] recognized the common instruction refer-
ence patterns where storing an instruction in the cache actually harms performance.
He then proposed a technique for reducing direct-mapped cache conflict misses by ex-
cluding the harmful instruction. Many works [Gonzalez et al. 1995; Johnson 1998;
Tyson et al. 1995; Wang et al. 2002; Wong and Baer 2000] present techniques for by-
passing or early eviction by using locality information. The underlying idea is to bypass
the data accesses which have low reuse. Another series of publications focus on cache
optimization by predicting the last touch of a cache line [Lai et al. 2001; Lin and Rein-
hardt 2002]. By knowing the last-touch references, the cache line can be turned off
after the last touch to save energy [Kaxiras et al. 2001]. Lai et al. [Lai et al. 2001] pro-
posed to use the dead cache line to store the prefetched data. Khan et al. [Khan et al.
2010] recently proposed a new dead block prediction technique that samples program
counters to determine when a cache block is likely to be dead. Rajan and Govindara-
jan [Rajan and Ramaswamy 2007] proposed to divide the cache into two components:
a Main Cache and a Shephard Cache. The Shephard Cache is used to buffer a missing
line until a Main Cache replacement decision is made based on the data access order
after the cache miss.

Several studies have investigated the cache bypassing policy based on sampling.
Etsion and Feitelson [Etsion and Feitelson 2007] proposed a L1 cache filtering mecha-
nism based on random sampling to identify and select the frequently used data blocks.
Their method reduces the number of conflict misses by inserting only frequently used
block into the main cache. Qureshi et al. [Qureshi et al. 2007] proposed a similar tech-
nique for improving L2 cache with LRU policy. Their method selects the data access
to be placed in the LRU position based on random sampling, which prevents thrash-
ing when the workload size is greater than the cache size. Their technique was later

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:30 Min Feng et al.

extended for shared caches in multicore architectures [Jaleel et al. 2008]. The short-
coming of the sampling-based bypassing policy is that its performance heavily relies on
the data access patterns of the programs. In order to make the sampling-based bypass-
ing policy adapt to different applications, Qureshi et al. [Qureshi et al. 2007] proposed
the Set Dueling technique that samples cache sets dedicated to different replacement
policy and dynamically chooses between the LRU policy and the sampling-based by-
passing policy.

Recently, Gao and Wilkerson proposed to apply the Segmented LRU (SLRU) policy
as a processor cache replacement algorithm [Gao and Wilkerson 2010]. The SLRU
policy divides the cache lines into two lists — the referenced list and the non-referenced
list. The LRU cache line in the non-referenced list is selected first when choosing a line
for replacement. They also proposed three enhancements to the SLRU policy.

Other techniques. Alameldeen and Wood [Alameldeen and Wood 2004] proposed
a compression technique for L2 cache so that the cache can hold more data. They dy-
namically check for each cache line whether compression will eliminate a miss or incur
an unnecessary decompression overhead. Based on the results, they decide whether to
apply compression to the cache line.

5. CONCLUSION

In this paper, we proposed a dynamic access distance driven cache that makes the re-
placement decision based on the data locality. The cache consists of two parts: the ac-
cess distance based replacement policy and the access distance predictors. We evaluate
the proposed replacement policy and predictors in detail. According to the experimen-
tal results, our cache can work well in both high-locality and low-locality workloads
and adapt to different benchmarks. Our experiments show that L2 cache misses are
reduced by 12.32% and 19.95% using profiling-based static and runtime adaptive pre-
dictors respectively.

REFERENCES
ALAMELDEEN, A. R. AND W0OD, D. A. 2004. Adaptive cache compression for high-performance processors.
In ISCA.

BELADY, L. A. 1966. A study of replacement algorithms for a virtual-storage computer. IBM Systems Jour-
nal 5, 2, 78-101.

BEYLS, K. AND D’HOLLANDER, E. 2002. Reuse distance-based cache hint selection. In Euro-Par.

BEYLS, K. AND D’HOLLANDER, E. 2005. Generating cache hints for improved program efficiency. Journal
of Systems Architecture 51, 4, 223-250.

EICKEMEYER, R. J. AND VASSILIADIS, S. 1993. A load instruction unit for pipelined processors. IBM Jour-
nal of Research and Development, 547-564.

ETSION, Y. AND FEITELSON, D. G. 2007. L1 cache filtering through random selection of memory references.
In PACT.

GAO, H. AND WILKERSON, C. 2010. A dueling segmented LRU replacement algorithm with adaptive by-
passing. In JWAC.

GONZALEZ, A., ALIAGAS, C., AND VALERO, M. 1995. A data cache with multiple caching strategies tuned
to different types of locality. In ICS.

GU, X., BAl, T., GAo, Y., ZHANG, C., ARCHAMBAULT, R., AND DING, C. 2008. P-opt: Program-directed
optimal cache management. In LCPC. 217-231.

HARDAVELLAS, N., SOMOGYI, S., WENISCH, T. F., WUNDERLICH, R. E., CHEN, S., KiM, J., FALSAFI,
B., HOE, J. C., AND NOWATZYK, A. G. 2004. Simflex: a fast, accurate, flexible full-system simulation
framework for performance evaluation of server architecture. SIGMETRICS Perform. Eval. Rev. 31, 4,
31-34.

HP. 2002. Inside the Intel Itanium 2 processor. HP Technical White Paper.

JALEEL, A., HASENPLAUGH, W., QURESHI, M. K., SEBOT, J., STELLY, S., AND EMER, J. 2008. Adaptive
insertion policies for managing shared caches. In PACT.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Dynamic Access Distance Driven Cache Replacement 39:31

JALEEL, A., THEOBALD, K. B., STEELY, JR., S. C., AND EMER, J. 2010. High performance cache replace-
ment using re-reference interval prediction (RRIP). In ISCA. 60-71.

JOHNSON, T. L. 1998. Run-time adaptive cache management. PhD thesis, University of Illinois, Urbana, IL.

KAXIRAS, S., HU, Z., AND MARTONOSI, M. 2001. Cache decay: exploiting generational behavior to reduce
cache leakage power. In ISCA.

KERAMIDAS, G., PETOUMENOS, P., AND KAXIRAS, S. 2007. Cache replacement based on reuse-distance
prediction. In ICCD.

KHAN, S. M., TIAN, Y., AND JIMENEZ, D. A. 2010. Sampling dead block prediction for last-level caches. In
MICRO. 175-186.

KHARBUTLI, M. AND SOLIHIN, Y. 2005. Counter-based cache replacement algorithms. In ICCD.

LAI, A., FIDE, C., AND FALSAFI, B. 2001. Dead-block prediction & dead-block correlating prefetchers. In
ISCA.

LIN, W. AND REINHARDT, S. 2002. Predicting last-touch references under optimal replacement. Technical
Report CSE-TR-447-02, University of Michigan.

LI1PASTI, M. H., WILKERSON, C. B., AND SHEN, J. P. 1996. Value locality and load value prediction. In
ASPLOS. 138-147.

MAGNUSSON, P. S., CHRISTENSSON, M., ESKILSON, J., FORSGREN, D., HALLBERG, G., HOGBERG, J.,
LARSSON, F., MOESTEDT, A., AND WERNER, B. 2002. Simics: A full system simulation platform. Com-
puter 35, 50-58.

MATTSON, R. L., GECSEI, J., SLUTZ, D., AND TRAIGER, I. L. 1970. Evaluation techniques for storage
hierarchies. IBM System Journal 9, 2, 78-1117.

MCFARLING, S. 1992. Cache replacement with dynamic exclusion. In ISCA. 191-200.

QURESHI, M. K., JALEEL, A., PATT, Y. N., STEELY, S. C., AND EMER, J. 2007. Adaptive insertion policies
for high performance caching. In ISCA.

RAJAN, K. AND RAMASWAMY, G. 2007. Emulating optimal replacement with a shepherd cache. In MICRO.
445-454.

SCHLANSKER, M. AND RAU, B. 2000. Epic: Explicitly parallel instruction computing. Computer 33, 2, 37-45.
THOZIYOOR, S., AHN, J., MONCHIERO, M., BROCKMAN, J., AND JOUPPI, N. 2008. A comprehensive memory
modeling tool and its application to the design and analysis of future memory hierarchies. In ISCA.
TYSON, G., FARRENS, M., MATTHEWS, J., AND PLESZKUN, A. R. 1995. A modified approach to data cache

management. In MICRO.

WANG, Z., MCKINLEY, K. S., ROSENBERG, A. L., AND WEEMS, C. C. 2002. Using the compiler to improve
cache replacement decisions. In PACT.

WONG, W. A. AND BAER, J.-L. 2000. Modified lru policies for improving second-level cache behavior. In
HPCA.

WUNDERLICH, R. E., WENISCH, T. F., FALSAFI, B., AND HOE, J. C. 2003. SMARTS: Accelerating microar-
chitecture simulation via rigorous statistical sampling. In ISCA.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2010.

