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ABSTRACT

Among the various memory consistency models, the sequen-
tial consistency (SC) model, in which memory operations ap-
pear to take place in the order specified by the program, is
the most intuitive and enables programmers to reason about
their parallel programs the best. Nevertheless, processor de-
signers often choose to support relaxed memory consistency
models because the weaker ordering constraints imposed by
such models allow for more instructions to be reordered and
enable higher performance. Programs running on machines
supporting weaker consistency models, can be transformed
into ones in which SC is enforced. The compiler does this
by computing a minimal set of memory access pairs whose
ordering automatically guarantees SC. To ensure that these
memory access pairs are not reordered, memory fences are
inserted. Unfortunately, insertion of such memory fences
can significantly slowdown the program.

We observe that the ordering of the minimal set of mem-
ory accesses that the compiler strives to enforce, is typically
already enforced in the normal course of program execution.
A study we conducted on programs with compiler inserted
memory fences shows that only 8% of the executed instances
of the memory fences are really necessary to ensure SC.
Motivated by this study we propose the conditional fence
mechanism (C-Fence) that utilizes compiler information to
decide dynamically if there is a need to stall at each fence.
Our experiments with SPLASH-2 benchmarks show that,
with C-Fences, programs can be transformed to enforce SC
incurring only 12% slowdown, as opposed to 43% slowdown
using normal fence instructions. Our approach requires very
little hardware support (<300 bytes of on-chip-storage) and
it avoids the use of speculation and its associated costs.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)—Parallel processors; D.1.3
[Programming Techniques]: Concurrent Programming—
Parallel programming
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1. INTRODUCTION
With the advent of multicores, the onus is on program-

mers to write parallel programs for increased performance.
However, it is a well recognized fact that writing and de-
bugging parallel programs is no easy task. Consequently,
there has been significant research on developing program-
ming models, memory models, and tools for making pro-
grammers’ job easier. In particular, memory consistency
models which specify guarantees on values returned by data
accesses, allow programmers to reason about their parallel
program. Out of the various memory consistency models,
the sequential consistency (SC) model, in which memory op-
erations appear to take place in the order specified by the
program, is the most intuitive.

Initially flag1=flag2=0

P1                      

flag1=1;

if (flag2==0)
critical section

P2                     

flag2=1;

if (flag1==0)
critical section

Figure 1: Effect of memory model on the Dekker’s
algorithm.

Consider the code segment in Fig. 1, which is taken from
an implementation of the Dekker’s algorithm [7, 1]. This al-
gorithm is designed to allow only one processor to enter the
critical section at a time, using two shared memory variables
flag1 and flag2. The two flag variables indicate an intention
on the part of each processor to enter the critical section.
Initially, flag1 and flag2 are initialized to 0. When P1 at-
tempts to enter the critical section, it first updates flag1 to
1 and checks the value of flag2. If flag2 is 0, under the
most intuitive interpretation P2 has not tried to enter the
critical section, and it is safe for P1 to enter. However, this
reasoning is valid, only if the machine that executes the pro-
gram enforces a strong consistency model like SC. If, on the
other hand, the machine enforces a relaxed memory consis-
tency model, it is possible for P1 to first read flag2 and then
update flag1. Likewise, P2 may first read flag1 and then
update flag2. As a result, both reads may potentially return



the value of 0, allowing both P1 and P2 to enter the criti-
cal section, clearly not what the programmer intended. As
we can see from the above example, the SC model enables
programmers to understand and reason about their parallel
programs the best. In addition to this, most of the prior
work on the semantics and verification of parallel programs
assumes SC. For programmers to effectively use such tools,
it is necessary that SC is enforced.

(HW/SW approaches for high performance SC) In spite of
the advantages of SC model, processor designers typically
choose to support relaxed consistency models, as shown in
Fig. 2. This is because a straightforward implementation of
SC forces the processor to execute memory accesses in order,
which precludes a number of optimizations. For example,
write buffering cannot be directly utilized, if SC needs to
be guaranteed. However, in recent work researchers have
shown that it might be possible for architectures to support
SC at a high performance using sophisticated speculative
techniques [10, 11, 12, 22]. More recently, researchers have
proposed chunk based techniques [3, 4, 26], that efficiently
enforce SC at the granularity of coarse-grained chunks of
instructions rather than individual instructions. While the
above approaches are promising, the significant hardware
changes inherent in each of the above approaches hinder
widespread adoption.

Processor family SC enforced?

IA 32/Intel 64/AMD 64 No
ARM No
Itanium No
SPARC No
PowerPC No
MIPS R10000 Yes

Figure 2: Most processors do not support sequential
consistency.

Programs running on machines supporting weaker consis-
tency models, can be transformed into ones in which SC
is enforced [9, 14, 15, 16, 18, 20, 21, 24, 25]. The com-
piler does this by computing a minimal set of memory access
pairs whose ordering automatically guarantees SC based on
the delay set analysis [24]; to ensure that these memory ac-
cess pairs are not reordered, memory fences are inserted at
appropriate points. As shown in Fig. 3(a) a memory fence
added after the update of flag1 ensures that processor P1
stalls until the update of flag1 completes and is visible to
all processors. Likewise the memory fence added after the
update of flag2 ensures that processor P2 stalls until this up-
date completes. While this ensures SC, the insertion of such
memory fences can significantly slowdown the program [8,
9, 14].

(Conditional Fences) We make the observation that the
ordering of memory accesses that the compiler strives to en-
force, is typically already enforced in the normal course of
program executions; this obviates the need for memory fence
instruction most of the time. For instance, let us consider
the scenario shown in Fig. 3(b) in which the two processors’
requests for critical section are staggered in time. In par-
ticular, by the time processor P2 tries to enter the critical
section, the updates to flag1 by processor P1 has already
completed. Clearly, under this scenario SC is already guar-
anteed without requiring the fence instructions. Further-
more, our study conducted on SPLASH-2 programs with
compiler-inserted memory fences shows that this is indeed

the common case; on account of the conflicting accesses typ-
ically being staggered, only 8% of the executed instances of
the memory fences are really necessary to ensure SC. Mo-
tivated by this study, we propose a novel fence mechanism,
known as the C-Fence (conditional fence) that utilizes com-
piler information to dynamically decide if there is a need to
stall at each fence, only stalling when necessary. For each
fence inserted by the compiler, let us call the correspond-
ing fences inserted in other processors due to conflicting ac-
cesses, as its associate fences. Furthermore, let us call a
fence to be active, when the memory accesses before it are
yet to complete; consequently, a conventional fence that is
active will stall the processor. However, the key insight here
is that we can safely execute past a fence, provided its as-
sociate fences are not active. Thus the C-Fence, when it is
going to be issued, checks to verify if its associate fences are
active; if none of its associates are active, the processor is
not made to stall at the C-Fence. If however, some of its
associates are active, the C-Fence stalls until all of its asso-
ciates become inactive. Fig. 3(c) illustrates the working of
a C-Fence. The two fences in question are associates, since
they are introduced due to the same conflicting variables
(the flag variables). Initially, when C-Fence 1 is issued at
time t1, it does not stall since its associate fence C-Fence 2 is
not active. However, when C-Fence 2 is issued at time t3, it
is made to stall, since C-Fence 1 is still active at that time.
Consequently, C-Fence 2 stalls the processor until time t2,
at which point C-Fence 1 becomes inactive. However, if the
processors’ request for critical sections are staggered, as in
Fig. 3(b), then by the time C-Fence 2 is issued, the first
fence would have already been inactive. This would mean
that in this scenario, even C-Fence 2 would not stall. Indeed,
this situation being the common case, as our study shows,
C-Fence is able to greatly minimize stalling. Our experi-
ments conducted on the SPLASH-2 programs confirms that
with C-Fences, programs can be transformed to enforce SC
incurring only 12% slowdown, as opposed to 43% slowdown
using conventional fence instructions.

The main contributions of this paper are as follows.

• We propose a novel fence mechanism known as the C-
Fence (conditional fence), which can be used by the
compiler to enforce SC, while incurring negligible per-
formance overhead.

• Compared to previous software based approaches, our
approach significantly reduces the slowdown. While
the best known prior implementation causes an over-
head of 45% [8] for the SPLASH-2 benchmarks, we
reduce the overhead to only 12%.

• Compared to previous hardware approaches towards
SC which require speculation and its associated hard-
ware costs, our approach does not require any spec-
ulation. Our approach merely requires less than 300
bytes of on-chip storage for the implementation of the
C-Fence mechanism.

2. BACKGROUND

2.1 Sequential Consistency
Memory consistency models [1] constrain memory behav-

iors with respect to read and write operations from multiple



Figure 3: (a) SC using memory fences. (b) Scenario in which fences are not required. (c) SC using conditional
fences. P r o c Aa 1 : X =

a 2 : Y =F e n c e 1 P r o c Bb 1 : = Y
b 2 : = XF e n c e 2

p r o g r a m o r d e rc o n f l i c t r e l a t i o nm e m o r y f e n c e
P r o c B= Y= X= Q= P

F e n c e 2
F e n c e 4

P r o c AX =Y =P =Q =
F e n c e 1

F e n c e 3
P r o c Bb 1 : = Yb 2 : = Xb 1 : = Yb 2 : = X

P r o c Aa 1 : X =a 2 : Y =a 1 : X =a 2 : Y =
( O R )

( a ) ( c )( b )
Figure 4: (a) Memory fences added to ensure SC. (b) Fence1 and Fence2, added to ensure SC of conflicting
accesses to X and Y are associates; likewise, Fence3 and Fence4 are associates. (c) Interprocessor delay is able
to ensure SC.

processors, providing formal specifications of how the mem-
ory system will appear to the programmer. Each of these
models offers a trade-off between programming simplicity
and high performance. Sequential Consistency (SC) [17] is
the simplest and most intuitive model. It requires that all
memory operations of all processors appear to execute one
at a time, and that the operations of a single processor ap-
pear to execute in the order described by the program. SC
is easy to understand, but it can potentially affect the per-
formance of programs. The strict memory ordering imposed
by SC can restrict many hardware and compiler optimiza-
tions that are possible in uniprocessors. Indeed, most of the
processor families do not support SC as shown in Fig. 2.

2.2 Software Based Enforcement of SC
(Naive insertion of fences) While most processors do not

enforce SC automatically, they provide support in the form
of memory fences, which the compiler can utilize to enforce
SC. A fence instruction ensures that all memory operations
prior to it have completed, before the processor issues mem-
ory instructions that follow it. In the most naive scheme,
inserting a fence after every memory instruction can guar-
antee SC. However, the memory fence being an expensive
instruction requiring tens of cycles to execute, the excessive
use of fences can significantly hurt performance.

(Delay set analysis) Various compiler based approaches [8,
9, 14, 18, 25] have been proposed to minimize the number of
fences required to enforce SC. These approaches are gener-
ally based on a technique called delay set analysis, developed
by Shasha and Snir [24], which finds a minimal set of execu-
tion orderings that must be enforced to guarantee SC. Delay
set analysis identifies the points where the execution order
may potentially violate the program order and inserts mem-
ory fences to prevent this violation. To identify these fence
insertion points, the analysis utilizes information about con-
flicting memory accesses. Two memory accesses are said to
conflict if they can potentially access the same memory lo-
cation and at least one of them is a write. Fig. 4(a) shows
a conflict relation between variables X and Y .

Let C denote the conflict relation and P the program or-
der, then P∪C is known as the conflict graph. An execution
order(E) is an orientation of the conflict relation, for a par-
ticular execution. It is worth noting that a given execution
order E violates SC, if there is a cycle in P∪E. A cycle in
the conflict graph indicates that there is an execution order
that is not consistent with the program order. Among such
cycles, those cycles that do not have chords in P are known
as critical cycles. Fig. 4(a) shows a critical cycle in the con-
flict graph (a1, a2, b1, b2, a1). Note that this cycle indicates
a possible execution sequence (a2, b1, b2, a1) which violates
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Figure 5: (a) If Fence1 has already finished stalling by the time Fence2 is issued, then there is no need for
Fence2 to stall. (b) In fact, there is no need for even Fence1 to stall, if all memory instructions before it
complete by the time Fence2 is issued. (c) No need for either Fence1 or Fence3 to stall as they are not
associates, even if they are executed concurrently.

SC, in which b1 reads the new value of Y , but b2 still reads
the old value of X.

The compiler-based approaches break such critical cycles
by enforcing delays between memory operations. For ex-
ample, if the issuing of second instructions in pairs (a1, a2)
and (b1, b2) is delayed until the first completes, SC will be
enforced. Hence, a delay relation D is introduced, in which
uDv indicates that u must complete before v is issued. The
delays are satisfied by inserting memory fences into the pro-
gram as shown in Fig. 4(a). We call those fences as associate
fences or simply associates, if they are inserted to ensure the
delays that appear in the same cycle in the conflict graph
P∪C. As we can see from Fig. 4(b), Fence1 and Fence2

which are added to ensure SC of conflicting accesses to X

and Y are associates; similarly, Fence3 and Fence4 are as-
sociates. It is worth noting that a critical cycle can involve
more than two processors [24], in which case more than two
fences are associates.

(Program slowdown) Lee and Padua [18] developed a com-
piler technique that reduces the number of fence instructions
for a given delay set, by exploiting the properties of fence
and synchronization operations. Later, Fang et al. [9] also
developed and implemented several fence insertion and opti-
mization algorithms in their Pensieve compiler project. In
spite of the above optimizations, the program can experience
significant slowdown due to the addition of memory fences,
with some programs being slowed down by a factor of 2 to 3
because of the insertion of fences [8, 9, 14].

3. OUR APPROACH
Next we describe our approach for simultaneously achiev-

ing SC and high performance. We first motivate our ap-
proach by showing that fences introduced statically may be
superfluous (dynamically) for the purpose of enforcing SC.
We then describe our empirical study which shows that most
fences introduced statically are indeed superfluous. We then
take advantage of this property by proposing and utilizing
C-Fence (conditional fence) for enforcing SC.

3.1 Interprocessor Delays to Ensure SC
In spite of several optimizations proposed, statically in-

troduced fences still cause significant performance overhead.
While fences inserted by the compiler are sufficient to guar-
antee SC, it might be possible to remove the fences dynam-

ically and still ensure that SC is guaranteed. More specifi-
cally, we observe that if two fences are staggered during the
course of program execution, they may not need to stall.

Let us consider the critical cycle shown earlier in Fig. 4(a).
Recall that the compiler inserts delays (through memory
fences) to ensure SC. According to the previous definition,
Fence1 and Fence2 are associates. Fence1, by enforcing the
delay a1Da2 and Fence2, by enforcing the delay b1Db2, are
able to ensure that there are no cycles in the conflict graph,
thereby ensuring SC. While each of the above two intrapro-
cessor delays are needed to enforce SC, we observe that SC
can be alternately ensured with just one interprocessor de-
lay. More specifically, we observe that if either b2 is issued
after a1 completes, or if a2 is issued after b1 completes, SC is
ensured. In other words, either a1Db2 or b1Da2 is sufficient
to guarantee SC. To see why let us consider Fig. 4(c) that
shows the execution ordering resulting from a1Db2. With
this ordering, we can now see that P∪E becomes acyclic
and thus SC is ensured. Likewise, b1Da2 makes the graph
acyclic. Thus, for every critical cycle, even if one of these
interprocessor delays is ensured, then there is no need to stall
in either of the compiler generated fences. It is easy to prove
the correctness by exploring that no critical cycles will exist
when interprocessor delays are enforced.

We now describe execution scenarios in which one of these
interprocessor delays is naturally ensured, which obviates
the need for stalling at fences. Fig. 5(a) illustrates the
scenario in which Fence1 has finished stalling by the time
Fence2 is issued (indicated by a dashed arrow). This en-
sures that the write to X would have been completed by the
time Fence2 is issued and hence instruction b2 is guaranteed
to read the value of X from a1. As we already saw, this in-
terprocessor delay (b2 being executed after a1) is sufficient
to ensure SC. As long as b2 is executed after a1, it does not
really matter if b1 and b2 are reordered. In other words,
there is no need for Fence2 to stall. Furthermore, note that
even Fence1 needn’t have stalled, provided we can guar-
antee that all memory operations before Fence1 (including
a1) complete before the issue of b2. This is illustrated in
Fig. 5(b), which shows that all memory operations prior to
Fence1 have completed (at time t2) before Fence2 is issued
(at time t3), ensuring that b2 is executed after a1 completes.
Thus, for any two concurrently executing fence instructions,
if all memory instructions prior to the earlier fence complete



Figure 6: (a) The semantics of C-Fence. (b) Example with 2 C-Fences. (c) Example with 3 C-Fences.

before the later fence is issued, then there is no need for ei-
ther fence to stall. In other words, an interprocessor delay
between two fences obviates the need for either fence to stall.

An interprocessor delay is only necessary for fences that
are associates. As shown in Fig. 5(c), while Fence1 is enforc-
ing the ordering of variables X and Y , Fence3 is enforcing
the ordering of variables P and Q. Thus, even if the above
memory accesses are reordered, there is no risk of SC vio-
lation; consequently, in this scenario, the two fences need
not stall. Even if two concurrently executing fences are not
staggered, there is no need for the fences to stall, if they are
not associates.

Program # of fences # of fences that % fences that
needn’t stall needn’t stall

barnes 128222492 98053631 76.48
fmm 1997976 1976759 98.51
ocean 22881352 17720437 77.45
radiosity 57072817 52513870 92.02
raytrace 91049516 84955849 93.31
water-ns 39738011 38383903 96.59
water-sp 41763291 40569645 97.15
cholesky 659910 644208 99.88
fft 214568 214326 99.88
lu 58318507 44048176 75.54
radix 751375 619139 83.41

Table 1: Study: A significant percentage of statically
inserted fences need not stall.

(Study) We showed examples of why fences that were in-
serted statically may not be necessary (i.e., they need not
stall) dynamically. We wanted to conduct a study to check
empirically how often the fences inserted statically are not
required to stall. For this study, we used the SPLASH-2
benchmarks and inserted fences using Shasha and Snir’s de-
lay set analysis. For each benchmark, the first column shows
the total (dynamic) number of fences encountered; the sec-
ond column shows the total number of fences which were not
required to stall, since the interprocessor delay was already
ensured during the course of execution; the third column
shows the percentage of dynamic fence instances that were
not required to stall. As we can see from Table 1, about 92%
of the total fences executed do not need to stall. This moti-
vates our technique for taking advantage of this observation
and reducing the time spent stalling at fences.

3.2 C-Fence: Conditional Fence
We propose an efficient fence mechanism known as con-

ditional fence (C-Fence). As opposed to the conventional
memory fence that is used to ensure SC through intraproces-
sor delays between memory instructions, a C-Fence ensures

SC through interprocessor delays. This gives the C-Fence
mechanism an opportunity to exploit interprocessor delays
that manifest in the normal course of execution and con-
ditionally stall only when required to. It is important to
note that ensuring SC via C-Fences does not require any
specialized compiler analysis. The same delay set analysis is
used to insert C-Fences at the same points as conventional
memory fences. The only difference is that we provide ISA
support to let the compiler convey information about asso-
ciate fences to the hardware. Using this information, the
C-Fence ensures that there is a delay between two concur-
rently executing associate fences. In other words, it ensures
that all the memory operations prior to the earlier fence
complete before the later fence is issued.

(Semantics of C-Fence) A fence instruction (either conven-
tional or C-Fence) is said to be active as long as memory
operations prior to it have not yet fully completed. How-
ever, unlike a conventional fence which necessarily stalls the
processor while it is active, a C-Fence can allow instructions
past it to execute even while it is active. More specifically,
when a C-Fence is issued, the hardware checks if any of its
associates are active; if none of its associates are active, the
C-Fence does not stall and allows instructions following it
to be executed. If however, some of its associates are active
when a C-Fence is issued, the C-Fence stalls until none of
its associates are active anymore (Fig. 6(a)).

Fig. 6(b) shows an example to illustrate its semantics with
2 C-Fences. At time t1, when C-Fence 1 is issued, none of
its associates are active and so it does not stall, allowing
instructions following it to be executed. At time t2, when
C-Fence 2 is issued, its associate C-Fence 1 is still active
and so C-Fence 2 is stalled. C-Fence 1 ceases to be active
at time t3, at which time all memory operations prior to it
have been completed; this allows C-Fence 2 to stop stalling
and allows processor 2 to continue execution past the fence.

Now let us consider another example with 3 C-Fences that
are associates of each other, as shown in Fig. 6(c). As before,
C-Fence 1 does not stall when it is issued at time t1. At
time t2, both C-Fence 2 and C-Fence 3 are made to stall as
their associate C-Fence 1 is still active. At time t3 although
C-Fence 1 ceases to be active, the fences C-Fence 2 and C-
Fence 3 which are still active, continue to stall. At time t4,
C-Fence 3 ceases to be active, which allows C-Fence 2 to stop
stalling and allows processor 2 to continue execution past C-
Fence 2. At time t5, C-Fence 2 ceases to be active, which
allows C-Fence 3 to stop stalling and allows processor 3 to
continue execution past C-Fence 3. It is important to note
from this example that although the two fences C-Fence 2
and C-Fence 3 are waiting for each other to become inactive,
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Figure 7: Scalability of C-Fence.

there is no risk of a deadlock. This is because while they are
waiting for each other (stalling), each of the processors still
continue to process memory instructions before the fence
which allows each of them to become inactive at some point
in the future.

(Scalability of C-Fence) The C-Fence mechanism exploits
interprocessor delays that manifest between fence instruc-
tions during normal course of execution. In other words, it
takes advantage of the fact that fence instructions are stag-
gered in execution, as our study showed. However, with
increasing number of processors, the more likely it is that
some of the fences will be executed concurrently. As shown
in Fig. 7(a), C-Fence 2 and C-Fence 3 are executed con-
currently, which necessitates that each of the fences should
stall while the other is active. Thus the performance gains
of C-Fence mechanism are likely to decrease with increasing
number of processors. However, it is expected to perform
better than conventional fence because it is very unlikely
that all C-Fences execute concurrently, in which case each
of the C-Fences are required to stall, as shown in Fig. 7(b).
In fact, our experiments do confirm that even with 16 pro-
cessors the C-Fence mechanism performs significantly better
than the conventional fence.

4. C-FENCE HARDWARE

4.1 Idealized Hardware
The key step in the C-Fence mechanism is to check if the

C-Fence needs to stall the processor when it is issued. To
implement this we have a global table that maintains infor-
mation about currently active fences, called the active-table.
We also have a mechanism to let the compiler convey infor-
mation about associate fences to the hardware. Once this
is conveyed, when a C-Fence is issued, the active-table is
consulted to check if the fence’s associates are currently ac-
tive; if so, the processor is stalled. We now explain what
information is stored in the active-table, and what exactly
is conveyed to the processor through the C-Fence instruction
to facilitate the check. Instead of maintaining the identity
of the currently active fences in the active-table, we main-
tain the identities of the associates of the currently active
fences. This way, when a fence is issued we can easily check
if its associates are active. To this end, each static fence is
assigned a fence-id, which is a number from 1 to N , where
N is the total number of static fences. Then each fence is
also given an associate-id, which is an N bit string; bit i of
the associate-id is set to 1 if the fence is an associate of the
ith fence. The fence-id and the associate-id are conveyed by
the compiler as operands of the C-Fence instruction. When
a C-Fence instruction is issued, its associate-id is stored in
the active-table. Then using its fence-id i, the hardware
checks the ith bit of all the associate-ids in the active table.

If none of the bits are a 1, then the processor continues to
issue instructions past the fence without stalling; otherwise,
the processor is made to stall. While the processor stalls, it
periodically checks the ith bit of all the associate-ids in the
active table, and it proceeds when none of the bits are a 1.
Finally, when the fence becomes inactive, it is removed from
the active table.

4.2 Actual Hardware
The hardware described above is idealized in the follow-

ing two respects. First, the number of static fences is not
bounded; in fact, the number of static fences was as high as
1101 is our experiments. Clearly, we cannot have that much
bits either in the active-table, or as an instruction operand.
Second, we implicitly assumed that the active-table has an
unbounded number of entries; since, each processor can have
multiple fences that are active, it is important to take care
of the scenario in which the active-table is full. We deal
with this issue by taking advantage of the fact that although
there can be an unbounded number of static fences, a small
(bounded) number of the fences typically constitute the ma-
jor chunk of the dynamic execution count. In fact, in our
study we found that just 50 static fences account for 90% of
dynamic execution count as shown in Fig. 8.
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Thus, in our actual hardware implementation we imple-
ment the C-Fence mechanism for the frequent-fences and the
conventional-fence mechanism for the rest. Likewise, when
a C-Fence is issued and the active-table is full, we make the
fence behave like a conventional fence.

(C-Fence + conventional Fence) The general idea is to have
the frequent-fences behave like C-Fences and the rest to be-
have like conventional fences. More specifically, when a C-
Fence is issued, it will stall while any of its associates are
active and then proceed. When a conventional Fence is is-
sued it will stall until all memory operations prior to it have



Figure 9: (a) C-Fence + conventional Fence. (b) HW Support. (c) Action upon issue of a C-Fence.

completed. However, a complication arises if a nonfrequent-
fence f (which is supposed to behave like a conventional
fence), has a frequent-fence as one of its associates. When
such a Fence f is issued, it is not enough for it to stall until
all of its memory operations prior to it have completed. It
should also stall while any of its associate frequent-fences are
still active. To see why let us consider the example shown
in Fig. 9(a) which shows a frequent-fence C-Fence A first
issued in processor A. Since none of its associates are ac-
tive, it proceeds without stalling. While C-Fence A is yet to
complete, nonfrequent-fence Fence B is issued in processor
B. It is worth noting that if Fence B is merely made to
stall until all its memory operations have completed, there
is a possibility of the execution order (a2, b1, b2, a1) man-
ifesting. This clearly is a violation of SC. To prevent this
situation, Fence B has to stall while C-Fence A is active.

(Compiler and ISA Support) The compiler first performs
delay set analysis to determine the fence insertion points.
Once the fences are identified, then a profile based approach
is used to determine the N most frequent fences; in our ex-
periments we found that a value of 50 was sufficient to cover
most of the executed instances. Once the frequent-fences
are identified the compiler assigns fence-ids to the frequent-
fences. Every nonfrequent-fence is assigned a fence-id 0. For
every fence, either frequent or nonfrequent, its associates are
identified and then its associate-id is assigned. Fig. 9(b) de-
scribes the instruction format for the newly added C-Fence
instruction. The first 6 bits are used for the opcode; the
next two bits are the control bits. The first of the con-
trol bits specifies if the current fence is a frequent-fence or
a nonfrequent-fence. The next control bit specifies if the
current fence has an associate-id. It is worth noting that
the current fence has an associate-id if it is an associate of
some frequent-fence. The next 50 bits are used to specify
the associate-id, while the final 6 bits are used to specify the
fence-id for a frequent-fence. Finally, it is worth noting that
the value of N is fixed since it is part of the hardware design;
in our experiments we found that a value of 50 is sufficient
to cover most of the executed instances and we could indeed
pack the C-Fence instruction within 64 bits. However, if
workloads do necessitate a larger value of N , the C-Fence
instruction needs to be redesigned; one possibility is to use
register operands to specify the associate-id.

(CFence: Operation) To implement the C-Fence instruc-
tion, we use a HW structure known as active-table, which
maintains information about currently active fences. Each
entry in the active table has a valid bit, an associate-id and
a fence-id, each totaling 50 bits, as shown in Fig. 9(b). Note
that 50 bits are used to represent fence-id in the active ta-
ble, where bit i is set to 1 if its fence-id is i. We shall later
see why this expansion is helpful. To explain the working
of the C-Fence instruction, let us consider the issuing of C-
Fence instructions shown in Fig. 9(a). Let us suppose that
the first is a frequent-fence (A) with a fence-id of 5, which
is an associate of a nonfrequent-fence (B). When C-Fence A
is issued, its fence-id and associate-id are first inserted into
the active-table. It is worth noting that its associate-id is a
0 since it is not an associate of any of the frequent-fences.
While writing the fence-id to active-table, it is decoded into
a 50 bit value (since its id is 5, the 5th bit is set to 1 and the
rest are set to 0). Then the active table is checked to verify
if any of its associates are currently active; to perform this
check the 5th bit (since its fence-id is 5) of all the associates
are examined. Since this is the first fence that is issued, none
of them will be a 1 and so C-Fence A does not stall. When
Fence B is issued, its fence-id and associate-id are first writ-
ten to the active-table. Since this is a nonfrequent-fence, its
fence-id is a 0. Since it is an associate of frequent-fence A
(with fence-id 5), the 5th bit of its associate-id is set to 1.
Even though this is a normal fence instruction (nonfrequent-
fence), we cannot simply stall, since it is an associate of a
frequent-fence. More specifically, we need to check if its as-
sociate A is active; to do this, bits 5 of all the fence-ids in
the active-table are examined. This also explains why the
fence-ids were expanded to 50 bits, as this would enable this
check to be performed efficiently. Consequently, this check
will return true, since fence A is active; thus Fence B is
made to stall until this check returns a false. In addition
to this stall, it also has to stall until all of its local memory
operations prior to the fence have completed, since it is a
nonfrequent-fence. The actions that are performed for the
issue of each C-Fence instruction are generalized and illus-
trated in Fig. 9(c).

(Active Table) The active-table is a shared structure that is
common to all processors within the chip, and in that respect
it is similar to a shared on-chip cache, but much smaller. In
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Figure 10: Coherence of active-table.

our experiments we found that a 20 entry active-table was
sufficient. Each entry in the active table has a valid bit, an
associate-id and a fence-id. There are three operations that
can be performed on the active table. First, when a C-Fence
is issued the information about the C-Fence is written to the
active table. This is performed by searching the active-table
for an inactive entry, and inserting fence information there.
If there are no invalid entries, it means that the table is full
and we deal with this situation by treating the fence like a
conventional fence. The second operation on an active table
is a read to check if the associates of the issued C-Fence are
currently active. Finally, when a C-Fence becomes inactive,
the active table entry is removed from the C-Fence. To re-
move an entry from the active table, the valid bit is cleared.
Since the active-table is a shared structure it is essential
that we must provide a coherent view of the active table to
all processors. More specifically, we must ensure that two
associate C-Fences that are issued concurrently are not al-
lowed to proceed simultaneously. This scenario is illustrated
in Fig. 10 with fences C-Fence 1 and C-Fence 2. As we can
see, the two C-Fences are issued at the same time in two
processors. This will result in a write followed by a read
to the active-table from each of the processors as shown in
Fig. 10. To guarantee a consistent view of the active-table,
we should prevent the processors from reordering the reads
and writes to the active-table. This is enforced by ensuring
that requests to access the active-table from each processor
are processed inorder. It is important to note that it is not
necessary to enforce atomicity of the write and read to the
active table. This allows us to provide multiple ports to
access the active-table for the purpose of efficiency.

(CFence: Implementation in Processor Pipeline) Before dis-
cussing the implementation of the C-Fence in the processor
pipeline, let us briefly examine how the conventional mem-
ory fence is implemented. The conventional fence instruc-
tion, when it is issued, stalls the issue of future memory
instructions until memory instructions issued earlier com-
plete. In other words once the fence instruction is issued,
future memory instructions are stalled until (a) the mem-
ory operations that are pending within the LSQ (load/store
queue) are processed and (b) the contents of the write buffer
are flushed. On the contrary, upon the issue of the C-Fence
instruction, the processor sends a request to the active ta-
ble to see if the fence’s associates are currently residing in
the active table. The processor starts issuing future mem-
ory instructions upon the reception of a negative response,
which signals the absence of associates in the active-table.
The presence of associates in the active-table (positive re-
sponse), however, causes the processor to repeatedly resend
requests to the active-table, until a negative response is re-
ceived. Thus the benefit of the C-Fence over the conven-

tional fence is realized when a negative response is received
before the completions of tasks (a) and (b). It is thus im-
portant that the processor can receive a response from the
active-table as soon as possible. To enable this, we maintain
a small buffer containing the instruction addresses of de-
coded C-Fence instructions. The buffer behaves as an LRU
cache. This enables us to send a request to the active-table
even while the fence instruction is fetched (if the instruction
address is present in the buffer), instead of waiting till it
is decoded. To decide the number of entries necessary in
the buffer, we did experiments and found that 5 entries are
enough, which results in a hit rate of 94.22%.

5. EXPERIMENTAL EVALUATION
We performed our experimental evaluation with several

goals in mind. First and foremost we wanted to evaluate
the benefit of using the C-Fence mechanism in comparison
with the conventional fence mechanism, as far as ensuring
SC is concerned. Second, we also wanted to evaluate as to
how close the performance of our HW implementation was
with respect to the idealized HW. On a related note, we
also wanted to study the effect of varying the values of the
parameters in our HW implementation, such as active-table
size, the number of frequent fences, etc. Once we figure out
the optimal values of these parameters, we also wanted to
evaluate the hardware resources that C-Fence mechanism
utilizes. Finally, we also wanted to study how the number
of processors affects the performance of C-Fence. However,
before we present the results of our evaluation, we briefly
describe our implementation.

5.1 Implementation

Processor 2 processors, out of order, 2 issues
ROB size 104
L1 Cache 32 KB 4 way 2 cycle latency
L2 Cache shared 1 MB 8 way 9 cycle latency
Memory 300 cycle latency

Coherence Bus based invalidate
# of active table entries 20

Active-table latency 5 cycles
# of frequent fences 50

Table 2: Architectural Parameters.

We implemented our C-Fence mechanism in the SESC [23]
simulator, targeting the MIPS architecture. The simulator
is a cycle accurate multicore simulator which also simulates
primary functions of the OS including memory allocation
and TLB handling. To implement ISA changes, we used
an unused opcode of the MIPS instruction set to implement
the newly added C-Fence instruction. We then modified the
decoder of the simulator to decode the C-Fence instruction
and implemented its semantics by adding the active-table
and the associated control logic to the simulator. The ar-
chitectural parameters for our implementation are presented
in Table 2. The default architectural parameters were used
in all experiments unless explicitly stated otherwise. The
simulator uses release consistency (RC) as its memory con-
sistency model. To enforce SC we inserted fences by iden-
tifying fence insertion points using Shasha and Snir’s delay
set analysis. However, since it is hard to perform interpro-
cedural alias analysis for these set of C programs as they
extensively use pointers, we used dynamic analysis to find
the conflicting accesses as in [8].



5.2 Benchmark Characteristics

We used the SPLASH-2 [27], a standard multithreaded
suite of benchmarks for our evaluation. We could not get
the program volrend to compile using the compiler infras-
tructure that targets the simulator and hence we omitted
volrend from our experiments. We used the input data sets
prescribed in [27] and ran the benchmarks to completion.
Table 3 lists the characteristics of the benchmarks. As we

Benchmark # of Avg # of # of dynamic
static fences associates fences(×1000)

barnes 202 6.65 128222
fmm 259 7.00 1997
ocean 1101 9.59 22881

radiosity 632 19.61 57072
raytrace 301 9.78 91049
water-ns 204 5.70 39738
water-sp 208 5.53 41763
cholesky 388 11.19 659

fft 25 4.16 214
lu 63 4.38 58318

radix 66 3.76 751

Table 3: Benchmark Characteristics.

can see, the number of static fences varies across the bench-
mark programs, from 25 fences for fft to 1101 fences for
ocean. Since the number of static fences added can be sig-
nificant (as high as 1101), we can not store all associate
information in hardware and this motivates our technique
for applying C-Fence mechanism for just the most frequent
fences. We also measured the average number of associates
for each fence. As we can see, the average number of asso-
ciates per fence is around 10, a small fraction of the total
number of fences. This provides evidence of why the as-
sociate information can be crucial for performance; since a
given fence has relatively fewer number of associates, it is
likely that two fences that are executing concurrently will
not be associates and each of them can escape stalling. We
then measured the number of dynamic instances of fences
encountered during execution. As we can see, the dynamic
number of fences can be quite large, which explains why
fences can cause significant performance overhead.

5.3 Conventional Fence vs C-Fence: Execu-
tion Time Overhead

In this section, we measure the execution time overhead of
ensuring SC with C-Fence mechanism and compare it with
the corresponding overhead for conventional fence. For this
experiment, we used our actual hardware implementation
with 50 frequent fences and 20 active-table entries. Fig. 11
shows the execution time overheads for ensuring SC normal-
ized to the performance achieved using release consistency.
As we can see, programs can experience significant slowdown
with a conventional fence, with as high as 2.54 fold execu-
tion time overhead (for lu). On an average, ensuring SC
with a conventional fence causes a 1.43 fold execution time
overhead. With the C-Fence, this overhead is reduced sig-
nificantly to 1.12 fold execution time reduction. In fact, for
all the programs (except lu, radiosity, raytrace and barnes)
SC can be achieved with C-Fence for less than 5% overhead.
Since, the C-Fence mechanism is able to capitalize on the
natural interprocessor delays that manifest in program exe-
cution, most fences can proceed without stalling.
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Figure 11: Execution time overhead of ensuring SC:
Conventional fence vs C-Fence.

5.4 Sensitivity Studies
(Sensitivity towards number of frequent fences) Recall that

our HW implementation applies the C-Fence mechanism for
the N most frequent fences and a conventional fence mecha-
nism for the rest of the fences. In this experiment, we study
the performance by varying N ; we vary the value from 30 to
60 in increments of 10. We compare the performance with
the ideal scheme in which the C-Fence mechanism is applied
for all fences. As we can see from Fig. 12 the performance
achieved even with 30 frequent fences is as good as the ideal
performance for most benchmarks. The only exceptions are
radiosity and raytrace in which the performance of ideal is
markedly better. For these benchmarks, the dynamic execu-
tion counts are more evenly distributed across static fences
and because of this a small number of static fences is not
able to cover most of dynamic instances. On an average, the
performance of the various schemes are as follows: with 30,
40, 50 and 60 frequent fences the respective slowdowns are
1.14x, 1.13x, 1.12x and 1.116x. The performance achieved
with the idealized HW corresponds to 1.11x. Thus we ob-
serve that with 50 frequent fences, we are able to perform
close to the idealized HW implementation.
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Figure 12: Varying the # of frequent fences.

(Sensitivity towards number of active-table entries) The num-
ber of active-table entries can potentially influence the per-
formance. This is because, lesser the number of active-table
entries, greater the chance that the active-table will be full.
Recall that if the active-table is full, then an issued fence
cannot utilize the advantage of the C-Fence mechanism and
has to behave like a conventional fence. In this experiment,
we wanted to estimate the least possible value of the number
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Figure 13: Varying the size of active table.
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Figure 14: Varying the latency of accessing active-
table.
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Figure 15: Conventional fence performance for 2, 4,
8 and 16 processors.
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Figure 16: C-Fence performance for 2, 4, 8 and 16
processors.

of entries of the active-table that can achieve performance
close to the ideal. We varied the number of active-table en-
tries with the values of 10 and 20 and compared it with an
idealized HW implementation with unlimited active-table
entries. As we can see from Fig. 13, even with 10 entries
in the active table, we can achieve the idealized HW per-
formance in all but 2 benchmarks (water-sp and water-ns).
With 20 entries we are able to achieve the idealized HW
performance across all benchmarks.

(Sensitivity towards active-table latency) The processor can
issue memory instructions past C-Fence, only when it re-
ceives a negative response from active-table. Thus the round-
trip latency of accessing the active-table is crucial to the
performance. We varied the latency with values of 2 cy-
cles, 5 cycles and 8 cycles as shown in Fig. 14. We observed
that the performance stays practically the same as the la-
tency is increased from 2 cycles to 5 cycles. Recall that
we send the request to the active-table even as the C-Fence
instruction is fetched; the small buffer (5 entry buffer was
used) containing instruction addresses of decoded C-Fence
instructions allowed us to do this. However, for an 8 cycle
latency, the performance of C-Fence decreases slightly. The
active-table is a shared structure similar to the L2 cache,
whose latency is 9 cycles. However, the size of the active-
table, which is 252 bytes, is much smaller compared to the
shared L2 cache, which is 1MB. Furthermore, the active-
table is a simpler structure as opposed to the L2 cache; for
instance, the L2 tag lookup which takes around 3 cycles
is not required. Hence, we think a 5 cycle latency for the
active-table is reasonable.

(Sensitivity towards number of processors) Here, we wanted
to study the performance variation as the number of proces-
sors is varied. Fig. 15 shows the execution time overhead of
the conventional fence mechanism as the number of proces-
sors is varied across 2, 4, 8 and 16 processors. In general,
we can see that the performance remains almost the same as
the number of processors is varied. Fig. 16 shows the perfor-
mance of the C-Fence mechanism as the number of proces-
sors is varied. Although programs such as lu show a decrease
in execution time, as the number of processors is increased,
in general, the execution time overhead of C-Fence increases
slightly as the number of processors is increased. As we can
see from the average values, the execution time overhead in-
creases from 1.12x for 2 processors, to 1.15x for 4 processors,
to 1.2x for 8 processors and 1.22x for 16 processors. This
is because, as the number of processors increases, there is a
greater chance of associates executing concurrently, which in
turn require each individual fences to stall. However, we can
also observe that the execution time increases are modest.
Consequently, even for 16 processors the C-Fence mechanism
is able to reduce the execution time overhead significantly
compared to the conventional fence (from 1.38x to 1.22x).
Thus, while the relative performance gain reduces as the
number of processors increase, the C-Fence mechanism still
performs significantly better than conventional fence.

5.5 HW Resources Utilized by C-Fence
In this section, we want to estimate the amount of HW

resources that the C-Fence mechanism utilizes. Recall that
the main HW resource that C-Fence utilizes is the active-
table. In the previous experiment we found out that with



a 20 entry active-table, we are able to perform as well as
ideal HW. We also found out that with 50 frequent fences,
we are able to achieve close to the ideal performance. Recall
that each entry in the active-table consists of three fields:
a valid bit, a fence-id and an associate-id. For 50 frequent
fences, an entry would correspond to 2 × 50 + 1 = 101 bits.
Hence, 20 entries amount to 252 bytes. In addition, we use
a 5 entry buffer (requiring 40 bytes) which caches the fence
instruction addresses to speedup the requests to the active-
table. Therefore, we would require an on-chip storage of less
than 300 bytes.

6. RELATED WORK
There have been several techniques proposed by researchers

to speed up the implementation of SC. These techniques
can be categorized into two classes: hardware-based and
software-based.

(Hardware based implementations) In hardware-based im-
plementations, conventional hardware design is modified to
accommodate the requirement of SC. Speculation is the tech-
nique that is used in the hardware-based implementations
to achieve high performance despite ensuring SC. Ghara-
chorloo et al. [10] proposed two techniques to enhance the
performance of SC: hardware-controlled non-binding prefetch
and speculative execution for load accesses. Ranganathan et
al. [22] proposed speculative retirement. Loads are spec-
ulatively retired while there is an outstanding store, and
stores are not allowed to get reordered with respect to each
other. The above two techniques allow only loads to by-
pass pending loads and stores speculatively; stores are not
allowed to bypass other memory accesses. In [12], Gniady
et al. proposed SC++, which allows both load and store
to speculatively bypass each other. By supplementing the
reorder buffer with the Speculative History Queue (SHiQ),
SC++ maintains the speculative states of memory accesses.
The above works showed that SC implementations can per-
form as well as RC implementations if the hardware pro-
vides enough support for speculation. Another set of tech-
niques [3, 4, 26] proposed the idea of enforcing consistency
at the granularity of coarse-grained chunks of instructions
rather than individual instructions. [13, 5] first introduced
this concept in transactional memory, although they do not
target SC. Ceze et al. [4] proposed BulkSC, which enforces
SC at chunk granularity. A chunk that is going to com-
mit sends its signatures to the arbiters and other processors
to determine whether the chunk can be committed. Ahn
et al. [2] proposed a compiler algorithm called BulkCom-
piler to drive the group-formation operation and adapt code
transformations to existing chunk-based implementations of
SC. Blundell et al. [3] proposed InvisiFence, which does
not require either fine-grained buffers to hold speculative
state or require global arbitration for commit in speculation
state compared with the two classes mentioned above. Al-
though hardware-based implementations of SC can achieve
good performance comparable to RC, they need extra hard-
ware support that is not widely available in current pro-
cessors. Furthermore, each of the HW techniques requires
extensive speculation. The C-Fence mechanism, in compar-
ison with the hardware based implementations, utilizes the
compiler inserted fence instructions to achieve SC. Further-
more, it requires no speculation and the associated hardware
costs. The only additional HW required is the active-table
and a small buffer which amounts to less than 300 bytes of

on-chip storage, which is significantly lesser than the above
HW techniques.

(Software based Implementations) Shasha and Snir’s work
[24] originally proposed delay set analysis which finds a min-
imal set of delays that enforces sequential consistency. Mid-
kiff and Padua [21] extended Shasha and Snir’s characteri-
zation to work for programs with array accesses. Krishna-
murthy and Yelick [16, 15] provided some early implemen-
tation work on cycle detection, which was improved later
by Chen et al [6]. Lee and Padua [18] developed a com-
piler technique that reduces the number of fence instruc-
tions for a given delay set, by exploiting the properties of
fence and synchronization operations. Later, Fang et al. [9]
also developed and implemented several fence insertion and
optimization algorithms in their Pensieve compiler project.
Sura et al. [25] described co-operating escape, thread struc-
ture, and delay set analysis to enforce SC. In [19], Lee et
al. used a perfect escape analysis to provide the best bound
on the overhead incurred for a SC memory model. The
delays considered in all the above works are intraproces-
sor delays, while in this work we introduce interprocessor
delays for ensuring SC. This is because interprocessor de-
lays also known in prior work as orientation of a conflict
edge [20] was considered too expensive [24]. The main issue
with the software based implementation is performance over-
head. The C-Fence mechanism can be used in conjunction
with the software based techniques to reduce the performance
overhead. In [8], Duan et al. detected data races by running
the program instead of finding conflict accesses by static
program analysis. The above technique is more a testing
based solution for SC and is orthogonal to this work. In
fact, the above work can utilize C-Fence to further improve
their performance.

7. CONCLUSION
Memory fences can be used by the compiler to enforce se-

quential consistency (SC) of a given program. However, the
inserted memory fences can significantly reduce the program
performance. In this paper, we proposed a novel fence mech-
anism known as C-Fence that can be used by the compiler
to ensure SC at a significantly lesser performance overhead.
While conventional fence enforces intraprocessor delays to
prevent memory reordering, the C-Fence enforces interpro-
cessor delays to ensure SC. However, we observe that most
of the interprocessor delays that are required for the enforce-
ment of SC, are already ensured during the normal course of
execution. The C-Fence mechanism takes advantage of this
by conditionally imposing an interprocessor delay only when
required to. The C-Fence mechanism does not require any
novel compiler analysis, it works with currently used fence
insertion techniques. The C-Fence mechanism requires mod-
est hardware resources, requiring less than 300 bytes of addi-
tional on-chip storage. Our cycle accurate simulation results
show that C-Fence can be used to significantly reduce the
overhead involved in ensuring SC. More specifically, for a
dual core processor running SPLASH-2 programs, we found
that the C-Fence mechanism can reduce the performance
overhead for ensuring SC from 43% to 12%.
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