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ABSTRACT

Many modern multicore architectures support shared mem-
ory for ease of programming and relaxed memory models
to deliver high performance. With relaxed memory models,
memory accesses can be reordered dynamically and seen by
other processors. Therefore, fence instructions are provided
to enforce the memory orderings that are critical to the cor-
rectness of a program. However, fence instructions are costly
as they cause the processor to stall. Prior works have ob-
served that most of the executions of fence instructions are
unnecessary. In this paper we propose address-aware fence,
a hardware solution for reducing the overhead of fence in-
structions without resorting to speculation. Address-aware
fence only enforces memory orderings that are necessary to
maintain the effect that the traditional fence strives to en-
force. This is achieved by dynamically checking a condition
for when an execution of a fence must take effect and delay
the memory accesses following the fence. When a fence in-
struction is encountered, first, necessary memory addresses
are collected to form a watchlist, and then, only the mem-
ory accesses to addresses that are contained in the watchlist
are delayed. The memory accesses whose addresses are not
contained in the watchlist are allowed to complete without
waiting for the completion of pending memory accesses from
before the fence. Our experiments conducted on a group of
concurrent lock-free algorithms and SPLASH-2 benchmarks
show that address-aware fence eliminates nearly all the over-
head due to fences and achieves an average improvement of
12.2% on programs with traditional fences.
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C.1.2 [Processor Architectures]: Multiple Data Stream
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1. INTRODUCTION
Multiprocessors are becoming ubiquitous in all computing

domains, from mobile devices to datacenter servers. They
are able to deliver high performance via parallelism, and
hence the importance of parallel programming continues to
grow. To simplify programming for multiprocessors, shared
memory is widely used as the primary system level program-
ming abstraction. However, problems arise when accesses to
shared memory are reordered. Hence, many memory con-
sistency models have been proposed to constrain memory
behaviors with respect to read and write operations origi-
nating from multiple processors [1]. Each of these models
offers a trade-off between programming simplicity and high
performance. To achieve high performance, many manufac-
turers (e.g., Intel, IBM, Sun, etc) typically choose to support
relaxed/weak consistency models, such as total store order
(TSO), relaxed memory order (RMO), release consistency
(RC), etc [1]. With relaxed memory consistency models,
memory accesses can be reordered dynamically and seen by
other processors. To enforce the memory orderings that are
critical to the correctness of programs, fence instructions
are provided. A fence instruction guarantees that all mem-
ory accesses prior to it are completed before the memory
accesses following it are performed. The stalling of the pro-
cessor resulting from implementing this fence semantics is
costly and often unnecessary [17, 20, 36].

The traditional fence instructions are processor-centric
[36], i.e., a fence instruction only controls the ordering of
memory accesses for the processor executing the fence while
being unaware of memory accesses in other processors. How-
ever, when the reordering of memory accesses across a fence
is not observed by other processors, it is safe to allow the
reordering. Researchers have observed that most dynamic
fence instances are unnecessary because the execution of the
program already conforms to the effect that fences strive
to enforce and therefore they have developed techniques for
eliminating the performance degradation due to unnecessary
execution instances of fence instructions. These techniques
include both speculative techniques [3, 5, 14, 15, 37] and
non-speculative techniques [17, 20, 36]. While the latter are
more desirable because of their lower hardware complexity,
they have two limitations: (a) they are only able to elimi-
nate a subset of unnecessary fence instances; and (b) when a
fence instance is necessary, no memory accesses are allowed
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Figure 1: Unnecessary fence instances at runtime.

to be reordered across fence boundaries even though it may
be safe to allow reordering of some of the memory accesses.

Fig. 1 shows several common scenarios which demonstrate
the above limitations of existing techniques [17, 20, 36]. The
example in Fig. 1(a) contains a conditional branch. Fence
instructions are inserted to ensure that memory accesses to
shared variables x and y are ordered properly. However,
if at runtime the condition in Proc 1 evaluates to false,
and hence a1 is not executed, then the shared variable x is
not accessed concurrently by multiple processors. As a re-
sult, the fence instance is not necessary to effect the order
of memory accesses of x and y. In Fig. 1(b), there are two
pointers p and q pointing to some field of a shared object
(e.g., a hash table [29]) respectively – since they may point
to the same field, fence instructions are inserted. However,
at runtime, if they point to different fields of the shared ob-
ject, i.e., a1 and b2 do not access the same field concurrently,
then the fence instances are not necessary. Finally, in Fig.
1(c), FENCE2 orders both b1 → b2 and b1 → b3. However,
if z is not accessed in any other processor concurrently, b2
need not be delayed and hence can be reordered across the
fence. Thus, even though the instance of FENCE2 is neces-
sary, b2 need not be delayed. However, none of the existing
techniques [17, 20, 36] can eliminate the above unnecessary
fence instances.

We observe that with the knowledge of what is happening
in other processors, we can eliminate the above restrictions
and optimize the fence executions. In this paper, we propose
a hardware solution address-aware fence to reduce the over-
head due to fence instructions without resorting to specula-
tion. Unlike a traditional fence which is processor-centric, an
address-aware fence collects necessary information to decide
whether it should effect the stalling of following memory ac-
cesses. In particular, an address-aware fence instance has an
associated watchlist, which contains memory addresses that
should not be accessed by the memory accesses following
the fence. The completion of a memory access following the
fence is allowed if its memory address is not contained in the
watchlist, appearing as if the fence does not take effect. Oth-
erwise, the memory access is delayed to ensure correctness.
By doing so, unnecessary fence instances behave as a nop

(i.e., they do not stall the processors) and the other fence
instances selectively stall memory operations (i.e., stalling
is minimized). Therefore this approach effectively reduces
overhead of fences whenever possible.

The key contributions of this work are:

1. We propose a new fence mechanism, called address-

aware fence. This is a hardware mechanism that elim-
inates stalling at unnecessary fence executions and re-
duces performance overhead due to fence instructions

without resorting to speculation. The technique is im-
plemented in the microarchitecture without instruc-
tion set support and is transparent to programmers.

2. We describe the architectural design of address-aware
fence. The hardware support only amounts to less than
1KB added to a conventional multiprocessor core.

3. We conduct experiments with a group of concurrent
lock-free algorithms and SPLASH-2 benchmarks. The
results show that address-aware fence eliminates nearly
all the overhead associated with the traditional fence
and yields an average reduction of 12.2% in execution
time.

The rest of the paper is organized as follows. Section 2
presents the background on fence instructions. Section 3
proposes address-aware fence. Section 4 describes the hard-
ware design. The experimental results are presented in Sec-
tion 5. We discuss related work in Section 6 and conclude
in Section 7.

2. BACKGROUND
In this section, we begin with the introduction to fence

instructions provided by modern architectures and their ap-
plications, and then briefly present some existing approaches
to reducing fence overhead.

2.1 Fence Instructions
Fence instructions, or fences for short, are provided in

modern processors as a mechanism to selectively constrain
the default relaxed memory access orders [1, 11]. Fence in-
structions of commercial architectures have various names
and semantics, enforcing different memory orderings. For
example, in Intel IA-32, there are three types of fence in-
structions: mfence, lfence, and sfence. While mfence en-
forces all memory orderings, lfence only enforces orders be-
tween memory load instructions, and sfence only enforces
orders between memory store instructions. Similarly, in
SPARC V9, MEMBAR instruction can be customized to
enforce different memory orderings; in PowerPC, there are
sync and lwsync; and in Alpha model, there are memory
barrier (MB) and write memory barrier (WMB). In the fol-
lowing discussion, we assume a traditional fence is a full
fence, which guarantees that all memory operations prior to
it have completed before its following memory operations
can be performed.

(Applications of fences) For programs running on archi-
tectures that only support relaxed consistency models, it
is important to enforce memory orderings that are critical



to the correctness of the programs. This is because, un-
der relaxed consistency models, the orders specified by the
program are not guaranteed during execution. The correct-
ness of the program may rely on some orders, which can be
potentially reordered by the processor or memory systems
without any protection. Hence, fence instructions have been
used frequently to enforce such necessary memory orderings.
In fact, many lock-free algorithms have to use fence instruc-
tions to ensure that the algorithms perform correctly under
relaxed consistency models [4] (e.g., Dekker algorithm [9],
lock-free dynamic memory allocation [26]). Fences are also
used to implement synchronization operations [33]. In some
memory models (e.g., TSO), fences are implied by atomic
read-modify-write (RMW) instructions for acquire opera-
tions. In addition, sufficient fences can also guarantee se-
quential consistency (SC) for programs running in architec-
tures only supporting relaxed consistency models [11, 19, 30,
22].

2.2 Reducing Fence Overhead
Although fence operations are cheaper than locks, exces-

sive use of fences can still hurt performance. In commercial
applications, frequent thread synchronizations result in sig-
nificant ordering delays due to fence instructions [37]. How-
ever, it is possible to reduce the overhead, based on the
observation that memory accesses across a fence can be re-
ordered as long as they are not observed by other processors.
Therefore, some techniques have been proposed to reduce
the overhead of fence instructions.

Techniques
Applicability

Dekker- Lock-free
Lock

Improving
like algo. SC

CMO [36] No No Yes No
l-mfence [17] Yes No No No
C-Fence [20] Yes∗ Yes∗ Yes∗ Yes∗

Address-aware
Yes Yes Yes Yes∗

fence

Table 1: Comparison of existing approaches and
our approach (∗Compiler support required for inserting
fences).

(Speculative Techniques) First, there is a group of tech-
niques that can address the problem by speculation [3, 5, 14,
15, 37]. Memory accesses after a fence can be speculatively
retired when there is any pending store before the fence.
Before these speculatively retired memory accesses are com-
mitted, if a memory access in another processor conflicts
with one of them, rollback is performed and instructions are
then re-executed. However, the hardware complexity asso-
ciated with aggressive speculation can hinder wide-spread
adoption of these speculative techniques.

(Non-speculative Techniques) There are also three non-
speculative techniques that are listed in Table 1. The table
compares the applicability of these techniques in terms of the
kind of applications they can handle. In [36], Praun et al.
observed that memory ordering instructions used on acquire
and release of a lock are often unnecessary. They proposed
a combined HW/SW mechanism conditional memory order-

ing (CMO) to omit unnecessary memory ordering instruc-
tions. CMO only focuses on memory orderings associated
with lock acquire and lock release, but cannot handle the
other cases. Ladan-Mozes et al. [17] proposed location-based

memory fences to reduce fence overhead. A new instruction

(l-mfence) is introduced, but it is limited to Dekker-like al-
gorithms. In our prior work [20], we proposed conditional

fence (C-Fence) to enforce sequential consistency with the
help of compiler inserting necessary fences. The compiler is
also responsible for collecting the information of fence as-
sociates, which are conveyed to hardware to improve the
performance of sequential consistency by only making as-
sociates be staggered enough. In addition, C-Fence is also
able to handle other kinds of applications as long as fence
associates can be provided by compiler. However, it is still
not able to optimize the scenarios shown in Fig. 1.

Our non-speculative solution, address-aware fence, pre-

sented in this paper is superior to the above non-speculative

techniques in two respects. It is more effective as it is able

to exploit all the optimization opportunities shown in Fig.

1. It is also broadly applicable as it can be applied in all

situations in Table 1.

3. ADDRESS-AWARE FENCE
In this section we propose the address-aware fence mech-

anism for reducing fence overhead. Our technique is imple-
mented in the microarchitecture without introduction of any
new instructions and is thus completely transparent to the
programmer. Fence instructions are introduced, as usual,
either by the compiler or by the programmer. Fence in-
structions in the executable are identified at runtime and
processed by the hardware. Our technique handles all en-
countered fences without being aware of how they are used.
Thus, our technique can naturally handles all cases listed in
Table 1.

A fence instruction forces a strict ordering between mem-
ory accesses that precede it and those that follow it. A
traditional fence enforces this by stalling the processor’s ex-
ecution till all memory accesses encountered before the fence
have completed. However, the above approach is more re-
strictive than what is really required. The purpose of a fence
is to prevent memory accesses from being reordered and ob-

served by other processors. In other words, if the reordering
is not observed by other processors, the reordering is allowed
and hence stalling at the fence is not necessary. Let us call
the order enforced by a fence as fence order. We can relax
the execution of a fence such that the execution is correct
– a fence execution is said to be correct if the execution ap-

pears to maintain fence orders. Obviously, the traditional
fence execution is correct. However, it is inefficient due to
unnecessary stalls.

The address-aware fence mechanism exploits the above
observation to improve the efficiency of the fence execution
mechanism. This section first presents a sufficient condition

for a correct fence execution and then our solution address-

aware fence that utilizes the condition.

3.1 The Condition for Enforcing Fence Orders
Fig. 2(a) shows two fences in two processors respectively.

A1, A2, B1, and B2 represent blocks of instructions sepa-
rated by fences. Furthermore, let us assume a1, a2, b1, and
b2 are memory accesses in A1, A2, B1, and B2 respectively.
Due to the fence, any memory access in A1 is ordered be-
fore any memory access in A2, represented by the solid line
with arrow; and the same is the case for B1 and B2. Thus,
the fence orders a1 → a2 and b1 → b2 are enforced by the
fences. A correct fence execution should make these fence



Figure 2: (a) Violation of fence order; (b) Violation of program order; (c) Cycle detection; (d) Our approach.

orders appear to be enforced. In [30], Shasha and Snir have
shown the condition for enforcing program orders in con-
text of sequential consistency (SC) enforcement. Extending
that condition, we can have the condition for enforcing fence
orders, as all fence orders is a subset of all program orders.

Recall that sequential consistency requires that all mem-
ory accesses appear to take place in the program order which
is specified by the program, i.e., all program orders should
be enforced. Shasha and Snir [30] have shown that an ex-
ecution does not violate sequential consistency iff program

orders (P) and conflict orders (E) do not form a cycle (i.e.,
no cycle in P ∪ E). Here, a conflict order is an execution
order of conflicting memory accesses [30]. Fig. 2(b) shows
such a cycle a1 → a2 → b1 → b2 → a1, where a1 conflicts
with b2 and a2 conflicts with b1. The execution sequence
a2 → b1 → b2 → a1 will violate sequential consistency, be-
cause no sequentially consistent execution can generate the
same result, where both x and y read their old values before
stores. In the case of fence orders in Fig. 2(a), we have to
enforce all fence orders (F), analogous to program orders for
SC in Fig. 2(b). In particular, all fence orders is a subset
of all program orders (F ⊆ P). Accordingly, we can have
the condition for enforcing fence orders – fence orders are

enforced iff fence orders and conflict orders do not form a

cycle (i.e., no cycle in F ∪ E). This is because, without
cycles, F ∪ E can be extended to a total order [7], which
indicates all fence orders F are enforced. Therefore, in Fig.
2(a), to enforce fence orders, we have to prevent such cycles
as a1 → a2 → b1 → b2 → a1, assuming (a1, b2), (b1, a2)
are conflict relations. Note that, even if there is another
memory access b1′ after b1 in B1, and (a1, b1′) and (a2, b1)
are conflict relations, there is no violation of fence orders in-
volving a1, a2, b1, and b1′. This is because there is no fence
order between b1 and b1′ and hence there is no cycle formed
by fence orders and conflict orders.

3.2 Our Approach
Address-aware fence only orders memory operations in-

volving certain memory addresses that must be ordered to
maintain fence orders. In other words, even if there are
stores from before the fence that are pending, the following
memory operations can still complete if their addresses are
not forbidden by the fence. This is why we name the fence
as address-aware fence. An address-aware fence can decide
whether it must stall memory operations according to their
memory addresses. We make use of the condition described

earlier to detect at runtime whether it is possible to form a
cycle with fence orders and conflict orders. If no cycles can
be formed, fences do not stall the memory operations follow-
ing them; otherwise, fences will function so as to maintain
fence orders.

In this section, we present the high-level algorithm of our
approach; while in the next section we will describe the de-
tailed hardware design. The key problem is how to detect
possible cycles at runtime. During execution, fence orders
are easily known, and hence we have to detect the conflict
orders that can form a cycle along with the fence orders. Fig.
2(c) shows how cycles can be detected. In Proc 1, suppose
all instructions in A1 have completed except some pending
memory operations, and FENCE1 does not stall the following
instructions in A2 initially. Hence, some memory opera-
tions are reordered across FENCE1 at runtime. At this point,
in Proc 2, there is a memory operation in B1 which detects a
conflicting memory operation in A2 (in the next section we
will show how the detection is performed relying on cache
coherence transactions). It forms a conflict order c1 from A2
to B1 as shown in the figure ( 1©). This event triggers the
following event: every memory operation after FENCE2 has
to detect whether there is any pending memory operation
prior to FENCE1 that conflicts with it, forming the conflict
order c2 ( 2©). Memory operations in B2 that do not conflict
with pending memory operations in A1 can complete with-
out being stalled by FENCE2 even when there is any pending
memory operation in B1. However, if there does exist a po-
tential conflict order c2 from B2 to A1, FENCE2 will delay
the involved memory operation in B2 to break this potential
conflict order. Moreover, if c1 does not exist, the detection
of c2 is unnecessary, as no cycle will be formed without c1.
Detecting c2 is only triggered when there is a possible c1.

The cycle detection discussed above does not consider how
to relate c1 and c2. In particular, we should know where to
check conflict, e.g., memory operations in B2 should check
conflict with pending memory operations in A1. Further-
more, detecting c2 requires every memory operation in B2
to check conflict in A1 which is on a different processor and
thus this is inefficient. Fig. 2(d) shows our approach to ad-
dress this problem. If a conflict order c1 is detected ( 1©),
memory addresses of all pending memory operations before
FENCE1 are collected to form a watchlist, which is associated
with FENCE2 ( 2©). Now, the memory operations after FENCE2
only need to check the local watchlist to detect conflict, i.e.,
to detect c2 ( 3©). If the address of a memory operation is



not contained in the watchlist, it indicates there is no con-
flict to form c2, which further indicates there is no cycle
detected to violate fence orders. Hence, those memory op-
erations whose addresses are not contained in the watchlist
can still complete without being stalled by the fence even
when there are pending memory operations from before the
fence.

watchlist is 

non-empty 

watchlist is empty  

watchlist 

cleared 

collecting 

watching 

complete     

Figure 3: States of address-aware fence.

(Life cycle of a fence instance) The execution of a fence
instruction proceeds according to the state transition graph
in Fig. 3. There are three states: collecting state, watching

state, and complete state. When the fence is issued it starts
out being in collecting state where it waits for its watchlist.
The memory operations following the fence cannot complete,
as at this time the watchlist that is needed to detect cycles
is not available. After the fence has collected all necessary
addresses to form its watchlist, it switches to next state:
the fence switches to watching state if the watchlist is non-
empty; otherwise it switches directly to complete state. In
watching state the memory operations following the fence
must check the watchlist before completion. The watchlist is
cleared when the corresponding pending memory operations
have completed and the fence switches to complete state,
where the fence has completed execution. If a fence directly
switches from collecting to complete state, it causes no stalls;
thus, it can be viewed as being dynamically eliminated.

4. HARDWARE DESIGN
In this section, we describe our hardware design for address-

aware fence. The challenge is to detect and avoid cycles effi-
ciently. In the following discussion, we present the detailed
hardware design in context of a scalable CMP with dis-
tributed directory-based invalidation cache coherence pro-
tocol. Each processor has a local L1 cache, a bank of L2
cache, and a portion of directory. Each coherence transac-
tion is kept in the directory until it receives the notification
of the transaction completion. We assume each processor
core to be a dynamically scheduled ILP processor with a
reorder buffer (ROB). All instructions retire from ROB in
program order. At the head of ROB, loads can retire when
they complete, while stores can retire as soon as the value
and destination address are available through store buffer-
ing technique [12], which allows stores to retire from the
head of ROB even before they complete. We will see later
that we use an augmented buffer which incorporates the
function of store buffer, in which stores are allowed to com-
plete out of order. The store buffering relaxes Store-Load
and Store-Store orders, but the traditional fence requires the
store buffer to be drained before executing following memory
accesses.

Moreover, the processors also support in-window specula-
tion [13], which guarantees Load-Load order by speculative
load execution (a speculative load in ROB is squashed if
its loaded data is invalidated or replaced before it retires).

Besides, Load-Store order is naturally guaranteed by ROB.
Therefore, memory operations cannot complete past a pend-
ing load, and hence the pending memory operations that can
be bypassed can only be pending stores.

4.1 Operations on Address-aware Fence
Each processor functions as usual when there is no fence

executing. However, when a fence is issued, the processor
initiates the process of handling the fence using address-
aware fence mechanism. The key operations are collecting

and clearing watchlist for a fence, which are introduced in
this section. After the watchlist has been collected, the fence
can retire when it reaches the ROB head. If any load/store
following the fence tries to retire while there are still pending
stores from before the fence, the processor will check whether
the address of the load/store is contained in the watchlist.

4.1.1 Collecting watchlist

When a fence is issued, the processor starts to collect
watchlist for the fence, which is now in collecting state as
shown in Fig. 3. As described in Section 3.2, a watchlist
consists of the memory addresses of a set of pending mem-
ory operations that are all pending stores. It is important
to obtain the set of pending stores quickly, as memory op-
erations following the fence cannot retire until the watchlist
is obtained. To do this, we utilize the directory, where we
are able to find all pending stores being serviced by the di-
rectory. In the following discussion for simplicity we assume
a centralized directory; however, later we describe the mod-
ifications needed for a distributed directory. When a fence
is issued, the processor sends a request to the directory to
fetch the addresses (block addresses) of all pending stores
in other processors. The directory compresses the addresses
into a watchlist using a bloom filter and sends it back to the
requesting processor. Then the requesting processor records
the replied watchlist locally for checking conflict. In this
way, we conservatively assume there is a conflict order c1
(Fig. 2(d) 1©), and obtain the watchlist by fetching all pend-
ing stores (Fig. 2(d) 2©) from the directory.

The processor starts to collect the watchlist as soon as a
fence is issued, because we would like to obtain the watchlist
as early as possible, so that the fence does not stall the
pipeline. However, the collected watchlist may become stale
before it is used for checking conflict. Let us take Fig. 4(a)
as an example for the following discussion. Suppose a1 is a
store miss, and a2 completes past a1; then b1 completes after
a2. If we do not take care of b2, the execution order a2 →

b1 → b2 → a1 will form a cycle and violate the fence order.
In Fig. 4(b), let us assume FENCE2 is issued at time t1, when
no pending store is present in the directory (i.e., cache miss
a1 has not reached the directory). So the watchlist obtained
for FENCE2 will be empty. If we use this empty watchlist,
we cannot avoid the execution order a2 → b1 → b2 → a1,
as the empty watchlist will allow b2 to complete before a1.
This is because the watchlist becomes stale and it does not
contain x accessed by the pending store a1.

To address this problem, we observe that the watchlist

only needs to be updated when there is a cache miss before

the fence. To see why, let us recall cycle detection in Fig.
2(c). A cache miss in B1 would indicate that there is a
potential conflict order like c1, so we need to avoid conflict
order c2. The stale watchlist may not contain all pending
stores in A1, as new pending stores may be generated after
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Figure 4: Collecting and clearing watchlists.

the stale watchlist was obtained. Hence, we have to update
the watchlist. On the other hand, a cache hit does not cre-
ate a conflict order like c1, so there is no need to update
the watchlist. Therefore, if there is any memory operation
before the fence that is a cache miss (load/store miss) in
the local cache, the cache miss transaction sent to the direc-
tory will also require the directory to reply with an updated
watchlist. Note that, the fence can only retire after it has
received the above reply from the directory. For the case in
Fig. 4(b), if a2 completes past a1, a1 will be present in the
directory if it has not completed. Thus, at time t2, b1 is
found to be a miss, so the transaction sent to the directory
will obtain an updated watchlist which includes x. Now the
updated watchlist containing x will stall b2, enforcing the
order a1 → b2 and avoiding fence order violation.

(Unnecessary update) Although a cache miss may create
the conflict order c1 as shown in Fig. 2(c), c1 does not re-
ally exist if the directory indicates the target block is not
cached in other processors. In this case, the watchlist does
not need to be updated. In particular, cache misses to local
variables will fall into this case, which reduces much unnec-
essary traffic.

4.1.2 Clearing watchlist

A fence will be in watching state when it has retired, and
memory operations after the fence have to check the watch-
list to bypass it. But the fence cannot simply complete even
when all pending stores before it have completed, because
memory operations after the fence may still have to check
the watchlist to avoid cycles. Let us consider the example
in Fig. 4(b) again, where a2 completes past a1 and FENCE2

has obtained the watchlist containing x. But this watch-
list cannot be cleared even when b1 has completed, as b2
still has to check the watchlist to avoid the cycle by order-
ing a1 → b2. The watchlist can be cleared only when a1
has completed. That is, the watchlist can be cleared and
hence the fence can complete only when the pending stores

whose addresses are contained in the watchlist have all com-

pleted. If we make each complete store notify the processors
which may contain its address, there will be complicated
communication of tracking information between processors,
complicating the hardware design.

To address this problem, we will delay b1 until a1 com-
pletes. Hence, we introduce a buffer for each processor,
called active buffer. We consider a memory operation or a
fence as active if (1) it has retired; and (2) the memory oper-
ation is a pending store or there is a pending store before the
memory operation/fence. In other words, after retirement,
a memory operation or a fence becomes inactive when there
is no pending store before it. The active buffer records the

addresses of all active memory operations, as well as active
fences, in the order they are retired. Now, each external co-
herence transaction will also check the active buffer. If there
is a conflict in the active buffer (i.e., the target memory ad-
dress is found in the active buffer) and there is a fence prior
to the conflicting entry, then this coherence transaction is
delayed until the target address has been removed from the
buffer (i.e., the corresponding memory operation is no longer
active). Let us recall Fig. 2(d). By using active buffer, if
there is a conflict order c1 from A2 to B1, the completion of
B1 will indicate the completion of A1; otherwise, B1 can-
not complete as coherence transactions sent to Proc 1 will
be delayed. Thus, the watchlist can be safely cleared as soon
as B1 has completed, because it indicates all pending stores
in A1 have completed. This simplifies the implementation
for clearing watchlist, as the processor can decide when to
clear watchlist based on the local information. Note that, to
guarantee that any potential conflict is detected, the cache
block whose address is in the active buffer is not allowed to
be evicted from local cache.

We illustrate the algorithm in Fig. 4(c). Suppose a1 is
a cache miss and a2 has completed past a1 (so a1 will be
present in the directory if it has not completed). Now both
a1 and a2 are active, so their addresses are recorded in the
active buffer; and FENCE1 is recorded as well. In Proc 2,
b1 is then executed, which will be a miss. It obtains the
watchlist containing x from the directory and also sends a
coherence transaction for y to Proc 1. Since y is in the ac-
tive buffer and there is a fence prior to y, the transaction is
delayed, and hence the watchlist is not cleared. If b2 tries
to retire, it has to check the watchlist and hence it stalls.
When a1 has completed, the active buffer will be empty, and
the delayed coherence transaction for y from Proc 2 can be
satisfied. Thus, the completion of b1 indicates memory op-
erations prior to FENCE1 have completed; otherwise, a2 is
active and hence b1 cannot complete. Now the watchlist
containing x can be safely cleared as soon as memory oper-
ations prior to FENCE2 have completed, without the risk of
forming cycles.

(Deadlock freedom) In the above example, it seems pos-
sible that all four instructions a1, a2, b1, and b2 are active,
and b1 is delayed by a2 and a1 is delayed by b2, which forms
a deadlock. However, we show that it is not possible that all
four instructions are active at the same time. Since a1 and
b1 are misses (otherwise a2 → b1 and b2 → a1 do not ex-
ist), they are sent to the directory. Suppose a1 first reaches
the directory. So the watchlist for FENCE2 will contain x

accessed by a1. This watchlist stalls b2, which will not be
able to retire and become active. Thus, the above scenario
of deadlock is not possible.



4.1.3 Distributed directory

To make address-aware fence scalable, we now consider
the implementation with a distributed directory. With a
centralized directory, a cache miss transaction, that needs
to update the watchlist, is sent to the directory and obtains
all pending stores in other processors. However, when the
directory is distributed, a cache miss transaction is only sent
to its home directory, and only obtains the pending stores in
that directory. Hence, the memory operations after the fence
can use the watchlist for checking only if they are mapped
to the same home directory where the watchlist is collected.

To accommodate distributed directory, we maintain a buffer
called watchlist buffer, which has several entries recording
watchlists collected from different home directories. Each
entry in the buffer is also tagged with the ID of the tile
where the home directory resides. When a cache miss brings
back a watchlist, it is recorded in an entry of the buffer,
tagged with the corresponding tile ID. Meanwhile, other
entries are invalidated as they might contain stale watch-
lists. A memory operation trying to retire past the fence
first checks whether there is a valid entry with the tile ID to
which the memory access is mapped. If yes, the memory op-
eration checks against the watchlist. Otherwise, it is forced
to fetch the watchlist from its own home directory before it
can check conflict for retirement. The fetched watchlist is
also recorded, so that future memory operations mapped to
the same home directory can check conflict locally. Thanks
to spatial locality, most of the nearby memory accesses tend
to be mapped to the same home directory, which allows
most memory operations to check watchlists quickly and re-
tire past fences. We use the distributed directory in our
evaluation.

(Handling multiple fences) In the above discussion, we only
consider one executing fence. However, it is also possible
that multiple fences are executing in the pipeline. Since a
watchlist has to be removed when the corresponding fence
can complete, we have to know which watchlist is associ-
ated with which fence. To do this, each issued fence in the
pipeline is associated with a unique tag, and the watchlist
collected for the fence will also be associated with the same
tag. When a fence completes, only the watchlists with the
same tag as the fence are removed. Hence, the watchlists
for uncompleted fences continue to remain recorded in the
buffer. In particular, the watchlist for a fence can be re-
placed by the watchlist for a second fence if they are col-
lected from the same home directory, because the latter is
the updated watchlist from that directory.

4.2 Hardware Summary
Fig. 5 shows the overview of hardware support for address-

aware fence. For simplicity, only main logic blocks related
to our technique are presented. Each processor core is aug-
mented with two new logic blocks to implement our tech-
nique: active buffer and watchlist buffer as discussed in the
previous section. If a retired memory access or fence is ac-
tive, it is added to the active buffer ( 1©). Each external
cache transaction has to check the active buffer, and is de-
layed if there is a hit ( 2©). Each watchlist is recorded in the
watchlist buffer when it is received from the directory ( 3©).
Each memory access has to check the watchlist buffer to
see if it can retire ( 4©). Although we leverage cache coher-
ence to transfer metadata, the coherence protocol and its

transactions are left unchanged. Next, we summarize the
operations in the active buffer and watchlist buffer.
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Figure 5: Overview of the architecture.

(Active buffer) The active buffer records the addresses of
all active memory accesses and active fences. It also incor-
porates the function of store buffer. Each entry of the buffer
consists of the following fields: valid, type, done, and data.
Descriptions of fields are shown in Table 2. The data field
depends on the type. For a store, it includes the destination
memory address and a pointer to its data; for a load, it only
includes the memory address; and for a fence, it includes a
unique tag used to mark its watchlist.

Fields Description

valid whether it is a valid entry
type load, store or fence

done
whether the operation has completed
loads and fences are always complete

data depending on the type

Table 2: Fields in active buffer.

The following are the operations for the active buffer. (1)
Add. Active memory accesses and active fences are added
to the active buffer in the order they retired. However, two
consecutive loads or two consecutive stores can be merged
if their destination addresses are mapped to the same cache
block, reducing the size of active buffer. This is because the
conflict detection is based on the block address. If the buffer
is full, the retiring memory access or fence is delayed until
there is an entry available. (2) Delete. If a memory access or
fence is no longer active, it is removed. That is, at the head
of active buffer, if a pending store has completed, entries un-
til next pending store are invalidated. (3) Conflict detection.
Each external coherence transaction has to detect conflict in
the active buffer. If there is a conflict in the active buffer
and there is an active fence prior to this conflicting entry,
the transaction is delayed. It is important to make conflict
detection efficient. We use a counting bloom filter to hash
memory addresses in the active buffer. Conflict detection
first checks the counting bloom filter before checking entries
in the active buffer, which greatly reduces useless checks as
conflicts are rare.

(Watchlist buffer) The watchlist buffer records all collected
watchlists. Each watchlist is a bit vector which contains
memory addresses compressed using bloom filter. This is to
minimize the network bandwidth, because watchlists are ex-
changed along with cache transactions. Each entry consists
of the following fields: valid, fence tag, tile ID, and watchlist.
Descriptions of each field are shown in Table 3.

The following are the operations for the watchlist buffer.
(1) Add. Each watchlist is recorded when it is replied from



Fields Description

valid whether it is a valid entry
fence tag which fence is the watchlist for
tile ID which directory the watchlist is collected
watchlist bit vector of pending stores

Table 3: Fields in watchlist buffer.

the directory, with the corresponding fence tag and tile ID.
(2) Delete. When all memory operations before a fence have
completed, the entries with the same fence tag is invalidated.
Moreover, when a cache miss before the fence brings back
an updated watchlist, other entries are invalidated as they
might contain stale watchlists. (3) Retirement check. Each
retiring memory operation checks against the watchlist with
the tile ID to which its memory address is mapped. If it does
not find such watchlist, it is first forced to fetch the watchlist
from its home directory. If the block address of the memory
operation is not contained in the watchlist, it can retire even
if there is a pending store prior to the fence. Otherwise, it
indicates the retirement of the memory access may result
in a violation of fence order, and hence it is delayed. It is
worth noting that watchlist buffer will eventually become
empty if the processor is stalled, which indicates that the
forward progress is guaranteed.

5. EXPERIMENTAL EVALUATION
The goals of our evaluation are: (1) to understand why

address-aware fence performs better; (2) to assess the perfor-
mance of address-aware fence compared to traditional fence;
and (3) to assess the space and traffic overhead.

(Simulation) We have developed a hardware simulation in-
frastructure using the Pin tool [24] that simulates a directory-
based shared memory multiprocessor system. Each proces-
sor has a private 4-way 32KB L1 cache and all processors
share a L2 cache (16-way 1MB/core). All L1 caches are kept
coherent using a directory-based MESI protocol. All cores
are connected via a mesh network, which has a link latency
of 2 cycles and router latency of 3 cycles. Each instruction
takes 1 cycle to execute, and it takes 2, 10, and 300 cycles
to access the L1 cache, L2 cache, and main memory, respec-
tively.

Benchmarks Description

dekker Dekker algorithm [9]
lamport Lamport Queue [18]

msn Non-blocking Queue [27]
wsq Chase-Lev’s Work Stealing Queue [6]
bst Binary search tree

SPLASH-2 8 programs from SPLASH-2 [38]

Table 4: Benchmark description.

(Benchmarks) We evaluate our technique using benchmarks
shown in Table 4. There are two groups, concurrent lock-
free algorithms and SPLASH-2 benchmark programs. In
the first group, concurrent lock-free algorithms are imple-
mented using fences and atomic compare-and-swap (CAS)
instructions. Dekker algorithm (dekker) [9] is a classic so-
lution to mutual exclusion problems using only shared vari-
ables for communication. Lamport Queue (lamport) [18] is
a single-producer and single-consumer queue. Non-blocking
concurrent queue (msn) is a multiple-producer and multiple-
consumer queue. Chase-Lev work-stealing queue (wsq) [6]
is a lock-free work-stealing deque implemented with a grow-

able cyclic array. bst is a concurrent search structure im-
plemented using atomic CAS instructions. Since these lock-
free data structures are not closed programs, we constructed
harnesses to use them to assess the performance of address-
aware fences. The second group of benchmarks are from
SPLASH-2 [38]. In these benchmarks, fences are inserted
to enforce sequential consistency. We identified the fence
insertion points based on Shasha and Snir’s delay set analy-
sis, where we employed dynamic analysis to find conflicting
accesses as in [10, 20]. We also use these benchmarks to
compare address-aware fence and C-Fence [20].

5.1 Performance
In this section, we would like to understand how address-

aware fences improve fence performance and evaluate the
performance overhead induced by address-aware fences.

5.1.1 Effectiveness of address-aware fence

Benchmarks #Fences
Address-aware fences C-Fence
#Check #in W.L. #Conf.

barnes 83M 47M 206 21M
fmm 5M 2M 223 1M
ocean 9M 15M 383 1M
radiosity 30M 5M 90 4M
raytrace 44M 34M 239 5M
volrend 39M 49M 436 3M
water-ns 9M 1M 79 656K
water-sp 7M 2M 88 395K

AVG. 28.8M 19.4M 218 4.9M

Table 5: Effectiveness of address-aware fence.

In this evaluation, we use SPLASH-2 benchmark pro-
grams where fences have been inserted for enforcing sequen-
tial consistency. All programs are run with 8 threads. Table
5 characterizes address-aware fences in terms of how often
fences have to take effect. Column 2 in the table shows the
number of dynamic fence instructions executed in each pro-
gram. Although they only account for a small part of all
instructions (∼1%), they induce relatively larger execution
time overhead, as shown later in Fig. 6. With address-aware
fence, when there is any active fence, memory accesses have
to check with watchlists before retirement. Column 3 shows
the number of such memory accesses. Column 4 shows the
number of memory accesses whose block addresses are found
to be present in the watchlists. We can see that, compared
with the number in Column 3, very few memory accesses
are stalled by fences. In fact, the number of fences that
need to stall (Column 3) is negligible compared with the
total number of fences (Column 2). For example, volrend

has the largest number of detected conflicts, but this is still
very small compared the total number of fences – 436 vs. 39
Million. On average, only 218 memory accesses are found
in watchlists; thus, avoiding nearly all fences from taking
effect.

(Comparison with C-Fence) We also implemented and stud-
ied C-Fence mechanism [20], which is able to dynamically
eliminate a fence as long as none of its associate fence (pro-
vided by compiler) is executing concurrently in other pro-
cessors. We measured the number of fences which detect
executing associates and have to stall. Numbers in Column
5 show that the number of fences that have to stall when C-
Fence is used. On an average, around 15% of C-Fences have
to stall. In contrast, address-aware fences require very few



stalls (Column 4 vs. Column 5). This is because address-
aware fence is able to exploit more optimization opportuni-
ties dynamically, e.g., scenarios in Fig. 1, which C-Fence is
not able to optimize.
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Figure 6: Execution time – T represents traditional
fence and A represents address-aware fence.

5.1.2 Execution time

We measured the execution time of programs with tra-
ditional fences and address-aware fences, respectively. Fig.
6 shows the results, which are normalized to the execution
time achieved using traditional fences. The execution time
is broken down into two parts: the stall time due to fences
(Fence stalls) and the rest of the execution time (Execution).
For the first group (concurrent lock-free algorithms), with
traditional fences, we can see that fence stalls account for
8%-29% of the total execution time. Actually, the fence over-
head can be larger depending on the programs using them.
Concurrent algorithms have to guarantee correct data ac-
cesses by multiple threads, and fences are used to guarantee
this goal under relaxed consistency models. However, if data
is not frequently accessed by multiple threads concurrently,
address-aware fences are able to utilize this opportunity to
reduce the fence overhead. In the second group (SPLASH-2
programs), fences are inserted to ensure sequential consis-
tency. Similarly, they experience significant overhead due
to fences (about 10% on average). However, since fences
are inserted conservatively, many dynamic fence instances
are unnecessary, some of which were illustrated in Fig. 1.
With address-aware fence, only very few fences have to take
effect and delay the memory accesses that follow them. On
an average, address-aware fence improves the performance
of all benchmark programs by 12.2%. More importantly,
we can see that address-aware fence only induces negligible
execution time overhead – a fence can retire as long as it
has obtained its watchlist, which can be fetched from the
directory efficiently. On the other hand, traditional fence
has to stall the pipeline until all outstanding stores have
completed, which takes a much longer time to access the
memory or invalidate shared copies.

(Scalability) We vary the number of processors with 4, 8
and 16 processors and measure the execution time of bench-
mark programs from SPLASH-2. The results are shown in
Fig. 7, where data are presented in the same way as in Fig.
6. Each benchmark program has execution time of tradi-
tional fence and address-aware fence with 4, 8 and 16 pro-
cessors, respectively. We can see that, with different num-
bers of processors, the execution time overhead induced by
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Figure 7: Scalability – Tn represents traditional fence
with n processors and An represents address-aware fence
with n processors.

address-aware fence is not affected significantly. Therefore,
the implementation appears scalable. In fact, our imple-
mentation leverages directory-based cache coherence proto-
col, piggybacking required information on coherence trans-
actions. Without introducing centralized structures, the im-
plementation maintains the level of scalability delivered by
the directory-based cache coherence.

5.2 Space and Traffic

Benchmarks
Active buffer #Pend. #Delay Traffic

%Emp. %<64 stores /1K inst. %Inc.

barnes 77.9 98.7 2.2 0.0 13.0
fmm 85.5 99.4 2.8 0.0 18.6
ocean 59.6 84.1 8.7 0.0 9.7
radiosity 78.1 99.5 3.6 0.0 17.4
raytrace 82.5 98.9 2.3 0.0 22.1
volrend 75.2 98.7 4.5 0.0 13.9
water-ns 86.4 99.8 4.1 0.0 8.9
water-sp 89.0 99.9 5.2 0.0 12.5

AVG. 79.2 97.5 4.2 0.0 14.7

Table 6: Characterization of space and traffic.

To support address-aware fence, we introduced active buffer
and watchlist buffer to record information and leveraged
cache coherence to avoid fence order violation. Table 6 char-
acterizes space and traffic induced by address-aware fence.
We conducted the experiments using SPLASH-2 benchmark
programs with 8 threads.

Recall that, active buffer stores addresses of active mem-
ory accesses and fences, and two consecutive loads or two
consecutive stores are merged when they have the same
block address. Column 2 shows that, on average, the ac-
tive buffer is frequently empty – at the rate of 79.2%. When
it is empty, memory accesses at the top of ROB can re-
tire immediately, as there is no active fence prior to them.
To size the active buffer, we tracked the number of active
memory accesses during execution, and found that this num-
ber is less than 64 most of the time (97.5% on average as
shown in Column 3). ocean has more than 64 active ac-
cesses most frequently (15.9%) among all programs, but the
other benchmark programs almost never exceed 64 active
accesses. Thus, we used 64 entries in our implementation.
Besides, for watchlist buffer, we used the number of entries
equal to the number of processors, with each entry recording
the watchlist obtained from the corresponding processor.

A watchlist is obtained from the directory, consisting of
the addresses of pending stores being serviced in the direc-



tory. Column 4 shows the average number of block addresses
compressed in the directory when a processor requests for a
watchlist. As we can see, the average number is 4.2, which is
small. In our implementation, we compressed the addresses
into a watchlist of 160 bits, which are enough to obtain very
low false positive. Column 5 shows the number of exter-
nal cache coherence transactions that are delayed due to
its hit in the active buffer. We can see that all of them
are 0.0 per 1K instructions. So it has little effect on the
performance. Column 6 shows the traffic increase for each
program. Address-aware fence induces additional traffic to
transfer watchlists between processors and the directory, and
this is the main source of the additional traffic. On an av-
erage, the traffic increases by 14.7%, which is modest.

(Hardware Cost Summary) In the highest performing con-
figuration, address-aware fence only adds active buffer and
watchlist buffer to each core. The active buffer has 64 en-
tries, each of which has about 8 bytes; the watchlist buffer
has 8 entries (for 8 processors), each of which has about 20
bytes. The above two buffers amount to a total of 672 bytes.
We expect the extra power consumption of our technique to
be small compared to the state-of-the-art aggressive specu-
lative techniques, as the area overhead of our technique is
small and it does not have to maintain speculative states or
require rollback associated with misspeculations.

6. RELATED WORK
Our work is closely related to the techniques listed in Ta-

ble 1, which are also aimed at reducing overhead of fence
operations non-speculatively. In [36], Praun et al. proposed
conditional memory ordering (CMO) based on the observa-
tion that memory ordering instructions used on acquire and
release of a lock are often unnecessary. The goal of CMO is
to optimize and reduce the cost of the acquire-release mem-
ory synchronization protocol using a purely runtime tech-
nique. However, it does not address the memory ordering
situations using fences as shown in Fig. 1. Ladan-Mozes et

al. [17] proposed location-based memory fences (l-mfence)
to reduce fence overhead. It is a lightweight solution, but it
is limited to the Dekker-like algorithms. Our prior work [20]
proposed conditional fence (C-Fence) to enforce sequential
consistency. Although it can greatly reduce dynamic fence
instructions, it relies on compiler to provide fence associates
information, and stalls due to fence associate conflict are
still conservative as shown in our experiments. On the other
hand, our work aims at reducing all kinds of memory order-
ing overhead induced by fences, and by looking at the ad-
dresses of memory operations across fences at runtime, we
require much less fence stalls.

There has been work on optimizing lock implementations.
Thin locks [2] and other refinements [16, 28] strive to re-
duce the overhead of locking in the context of Java. The
basic idea is to allow a particular thread to reserve a lock,
and hence acquisitions of the lock by the reserving thread
can be performed efficiently. [35] proposed a fast biased
lock, which simplifies and generalizes prior implementations
of biased lock. The above work focuses on reducing the fre-
quency of atomic RMW operations for implementing locks,
while our work reduces the memory ordering overhead in-
duced by fence instructions. Speculative lock elision [29]
and lock elision with transactional memory [8, 34] both use
speculative technique to dynamically eliminate lock opera-
tions. However, our technique does not simply focus on lock

operations but also fences which are also used for lock imple-
mentation, and our technique does not require speculation.

Extensive research has been conducted on implementing
sequential consistency (SC) efficiently. [11, 19, 30] rely on
static analysis to minimize the number of fences which are
required for enforcing SC, and [3, 5, 14, 15, 37, 21, 32] are
various runtime solutions for implementing SC. Besides, in
[23, 25, 31], researchers also argued that SC violation should
be treated as exceptions. However, these techniques are de-
signed to improve SC performance and provide programmers
with a strengthened shared memory system, while our work
is to reduce the cost of fence instructions. Although some of
the above techniques can be adjusted to address the fence
overhead [3, 5, 15, 37], they have to employ speculation.
Memory accesses after a fence can be speculatively retired
when there is any pending memory operation before the
fence. However, the hardware complexity associated with
aggressive speculation can hinder wide-spread adoption. [21,
32] are non-speculative SC implementations. End-to-End
SC [32] proposes to identify thread-local and shared read-
only data, and enforces SC by only ordering the accesses to
remaining data. This approach is also useful for reducing
the memory ordering overhead due to fences. But address-
aware fence is more aggressive, as it further allows accesses
to shared data to be reordered. In our prior work [21], we
propose conflict ordering to enforce SC efficiently without
speculation. However, address-aware fence only focuses on
memory orderings enforced by fences which are present in
the programs. The processor only initiates the process of
handling fences when fences are encountered.

7. CONCLUSION
In this work, we propose a hardware solution address-

aware fence to reduce the overhead due to fence instruc-
tions without speculation. Our technique is implemented in
the microarchitecture without instruction set support and
is transparent to programmers. Address-aware fences only
enforce memory orderings that are necessary to maintain
the effect that the traditional fences strive to enforce, while
other fences are dynamically eliminated. Our experiments
conducted on a group of concurrent lock-free algorithms
and SPLASH-2 benchmarks show that address-aware fences
eliminate nearly all the overhead associated with traditional
fences and achieve an average performance improvement of
12.2% on all benchmark programs.
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