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PLDS: Partitioning Linked Data Structures for Parallelism
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Recently, parallelization of computations in the presence of dynamic data structures has shown promising
potential. In this paper, we present PLDS, a system for easily expressing and efficiently exploiting paral-
lelism in computations that are based upon dynamic linked data structures. PLDS improves the execution
efficiency by providing support for data partitioning and then distributing computation across threads based
upon the partitioning. Such computations often require the use of speculation to exploit dynamic parallelism.
PLDS supports a conditional speculation mechanism that reduces the cost of speculation. PLDS can be em-
ployed in context of different forms of parallelism, which together cover a wide range of parallel applications.
PLDS provides easy-to-use compiler directives, using which programmers can choose from amongst variety
of data partitionings, distribute computation across threads in a partitioning sensitive fashion, and use
conditional speculation when required. We evaluate our implementation of PLDS using ten benchmarks, of
which six are parallelized using speculation. PLDS achieves 1.3x–6.9x speedups on an 8-core machine.
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1. INTRODUCTION

Computation distribution is crucial to the performance of parallel applications. Effi-
cient parallel execution requires exploiting locality of data references in the process of
computation distribution. Many sequential programs consecutively execute the com-
putations that share data to improve data locality. However, when parallelizing these
programs, we should not distribute consecutive computations to different threads con-
temporaneously since it will cause data contention and thereby harm performance.

Data partitioning based computation distribution [Anderson and Lam 1993] has
been proposed to improve the performance of parallel programs in distributed systems
community. The idea is to first partition the data, then assign partitions to threads,
and finally assign computations to threads such that the thread that owns the data
required by a computation performs the computation. Implementation of this strategy
is not a trivial task. Developers need to write code for: partitioning and assigning the
data to threads; and distributing computation among threads based on the partition-
ing. They also need to enforce synchronization between computations from different
partitions. A few programming models have been proposed to explore data and com-
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putation distribution. Most of them focus on array-based parallel programs [Kennedy
and Allen 2001; Rogers and Pingali 1989; Consortium 2005; Dotsenko et al. 2004; Hil-
finger et al. 2005; Chamberlain et al. 2007; Charles et al. 2005]. The Galois system
[Kulkarni et al. 2008] employs data partitioning for irregular JAVA applications. It
is designed for exploiting worklist-based parallelism where an iterative program pro-
cesses work items from a worklist. Galois requires programmers to specify the relation-
ship between method calls and how to undo modifications for shared data structures.
Compared to C++ programs, JAVA programs are less challenging since JAVA supports
more OO features (e.g., properties) and does not have pointer variables.

In this paper, we present a new programming system, called PLDS, which augments
our SpiceC [Feng et al. 2011] system with the ability to exploit parallelism in C++ pro-
grams that rely upon the use of dynamic linked data structures. In PLDS programmers
do not have to write any code to handle misspeculation check and recovery. Since dy-
namic linked data structures are connected in a loosely-coupled manner, we improve
the efficiency of speculation execution based on them with a novel speculation mecha-
nism - conditional speculation. PLDS supports data partitioning and then distribution
of computation across threads based upon the partitioning. It improves data locality
for parallel programs and reduces misspeculation rate when speculative parallelism
is used. To make programming easier, PLDS provides a set of easy-to-use compiler
directives for data partitioning and computation distribution across threads based on
the partitioning. Developers can choose amongst variety of data partitionings and dis-
tribute computation across threads in a partitioning sensitive fashion. Developers do
not write new parallel programs but add PLDS pragmas into the text of an existing
program. PLDS supports two major features - multiple forms of parallelism and condi-
tional speculation, which none of the existing partitioning-based programming models
support.

Multiple forms of parallelism. To make PLDS versatile, PLDS supports different
types of parallelism – homogeneous parallelism and heterogeneous parallelism. Homo-
geneous parallelism is similar to Single Program Multiple Data (SPMD) parallelism.
All threads execute the same code but operate on different data partitions. In hetero-
geneous parallelism, only the master thread starts to execute the code after entering
a parallel region and all other threads are put in idle state. When a thread comes
across a computation that requires data from another thread’s partition, it assigns the
computation to the corresponding thread.

Conditional speculation. Computations on dynamic linked data structures may
need data from multiple threads’ partitions. Such computations require the use of spec-
ulation to exploit dynamic parallelism. The cost of speculation may be very high since
a computation may touch a large number of data objects. PLDS supports a conditional
speculation mechanism that reduces the cost of speculation. It dynamically avoids the
expense of speculation when threads happen to only touch their local partitions.

We present our design and implementation of PLDS in this paper. The core compo-
nents of the PLDS prototype implementation consist of: a source-to-source translator
and a user-level runtime library. The translator analyzes a loop and its PLDS direc-
tives and translates them into C/C++ code. The runtime library implements data par-
titioning and thread management. We evaluate our implementation of PLDS on an
8-core machine using ten benchmarks, of which six are parallelized using speculation.
Our implementation achieves 1.3x–6.9x speedup for these benchmarks.

The remainder of the paper is organized as follows. Section 2 presents an overview
of PLDS. Section 3 illustrates strategies for partitioning data objects belonging to a
dynamically created linked data structure. In Section 4, we describe the programming
interface and show how programs are written in PLDS. Section 4 also presents our
conditional speculation mechanism. In Section 5, we describe the implementation of
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PLDS. Section 6 shows the evaluation of PLDS. Section 7 discusses the related work
and Section 8 concludes the paper.

2. PLDS OVERVIEW

PLDS exploits parallelism by distributing computations across threads that operate
upon different data partitions created by dividing a dynamic linked data structure.
The runtime execution flow of a PLDS program is as follows. A set of threads is created
at the beginning of the program. Each thread is bound to a unique processor core.
A master thread executes the sequential part of the program. When encountering a
parallel region identified by the programmer, the master thread divides the data into
multiple partitions via partitioning strategy selected by the programmer and maps
each partition to one of the threads. Within a parallel region, each thread typically
performs the computations that work on its assigned data partition and it either skips
or redistributes the computations that work on other partitions. To support the above
execution model, PLDS provides the following.

Partitioning Support. PLDS provides four data partitioning strategies to handle
different data structures and computation patterns. METIS and HASH are two parti-
tioning strategies for graph data structures with each computation working on one or
more nodes. SYMM SUBTREE and ASYMM SUBTREE are two partitioning strate-
gies for tree data structures with each computation exhibiting locality on a subtree.
PLDS also allows the programmers to specify custom data partitionings.

Homogeneous Parallel Regions. In this form of parallelism, every thread exe-
cutes the same code after entering the parallel region. Although all threads execute the
same code, different threads perform computations on different data partitions. This
parallelism is similar to the Single Program Multiple Data (SPMD) parallelism. Our
programming model provides constructs for checking if the data required by a compu-
tation (i.e., an iteration of the loop) is located in the current thread’s data partition.
At runtime, a thread performs this check at an early stage of each computation. If the
data required by a computation is located in the thread’s partition, the thread contin-
ues executing the computation. Otherwise, the thread skips to the next computation.
This execution model is often used for graph data structures with each computation
starting from a different node.

Heterogeneous Parallel Regions. This form of parallelism is suitable for compu-
tations that always start from the same node (e.g., a search from the root of a tree).
Homogeneous parallelism is not suitable here since the thread owning the starting
node will end up performing all computations. After entering a heterogeneous parallel
region, only the master thread starts to execute the code in the parallel region and all
other threads are put in idle state. When the master thread comes across a compu-
tation that requires data from another thread’s partition, it assigns the computation
to the corresponding thread and continues to execute the code following the assigned
computation. The thread that receives the computation then performs it in parallel
with other threads. All threads are able to distribute computations to other threads
based on the data required by the computations.

Speculative Parallelism. Sometimes, a computation may need to access and up-
date the data from multiple partitions, where some partitions belong to other threads.
For example, in a graph data structure, a computation may start from one node but end
up with updating multiple nodes around the starting node. The thread that performs
the computation may have to access the data from a partition assigned to another
thread. In this case, it is possible that multiple parallel threads access the same data
simultaneously. PLDS provides speculation support for this type of computation to re-
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solve any data conflict between two threads. PLDS also supports a speculation mech-
anism called conditional speculation, which selectively applies speculation on compu-
tations to reduce the speculation cost.

In subsequent sections we present the partitioning strategies supported by PLDS
and programming support given to the developer in form of pragmas.

3. PARTITIONING SUPPORT

Let us consider the strategies for partitioning data objects belonging to a dynamically
created linked data structure. We provide programmers four partitioning strategies
that can be used to handle commonly occurring scenarios involving graphs and trees
used by a wide range of applications. These strategies include: METIS and HASH for
graphs; and SYMM SUBTREE and ASYMM SUBTREE for trees (see Table I). We also
provide the programmer with the ability to specify custom data partitioning strategies.
In the remainder of this section we discuss the partitioning strategies in detail.

Table I. Summary of partitioning strategies.

Strategy Struct. Selection Criterion Benefits

METIS Graph Spatial Locality Present Locality1; Speculation2

HASH Graph No Spatial Locality Locality1

ASYMM SUBTREE Tree
Searches Originating at Internal/Leaf Node Locality1; Speculation2

Recursively Parallel Computation Locality1

SYMM SUBTREE Tree Searches Originating at Root Node Locality1; Speculation2

1Improved cache locality. 2Reduced speculation cost.

3.1. Graph Partitioning

Graphs are widely used in the design of algorithms. A graph data structure is defined
as a set of data objects connected by edges. Each object is called a node or a vertex
belonging to the graph. A graph may be directed or undirected. We divide the access
patterns of graph data structures into two categories according to the presence or ab-
sence of spatial locality in the access patterns. By spatial locality we mean that if a
node is accessed by a computation, then it is likely that nodes adjacent to it in the
graph will also be accessed during the same computation. Next, we give examples that
show that in the presence of spatial locality, METIS is a good partitioning strategy
while in the absence of spatial locality HASH is a good strategy.

METIS. A computation on a graph data structure often requires accessing a set of
nodes that are connected by edges. Often a computation begins by accessing one or
more nodes in the graph. It then gradually involves more and more nodes that are
adjacent to the beginning nodes. Thus, the access pattern exhibits spatial locality with
respect to the graph structure. Figure 1 shows an example of the graph data structure
where accesses exhibit spatial locality. A dark node indicates that the node is required
by two different computations. Each computation requires accessing a connected sub-
graph and thus exhibits spatial locality with respect to the graph.

For this access pattern, if we randomly assign the computations to threads, we may
incur many cache coherence misses. To improve the locality, we can group nodes that
are near each other into partitions and assign each partition to a thread. Each thread
can then perform computations that start from the nodes in its own partition. Since
there is greater chance that each thread will access its own partition, the cache locality
is enhanced. When threads are executed speculatively in parallel, this approach will
result in low misspeculation rate since it is less likely that two parallel threads will
access the same nodes.

Many algorithms have been proposed for partitioning graph data structures. We
adopt the METIS algorithm, which is based on the state-of-the-art multilevel graph
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Fig. 1. Parallel computation in a graph with
spatial locality.

Fig. 2. Breadth first search - an example of par-
allel computation in a graph without spatial lo-
cality.

partitioning [Karypis and Kumar 1998]. The METIS produces very high quality par-
titionings for large graphs. As it operates with a reduced-size graph, it is extremely
fast compared to traditional partitioning algorithms. Moreover, METIS has a parallel
implementation, which is suitable for parallel programs.

In addition to partitioning an existing graph, we must also consider repartitioning as
a result of node insertions. Since node insertions occur frequently for some applications
(e.g., Delaunay Mesh Refinement [Hudson et al. 2007]), we require the repartitioning
to be inexpensive. Instead of repartitioning the whole graph, we simply incorporate the
new nodes into existing partitions. A new node is assigned to the partition, to which
most of its neighbors belong. In this way, we minimize the number of edges that cross
partition boundaries.

HASH. In some parallel applications, a computation block (e.g., a loop iteration)
only accesses one node in the graph data structure. Thus this access pattern is with-
out spatial locality. Figure 2 shows an example of parallel breadth first search (BFS)
(see Figure 8 for pseudocode). The dark nodes are the nodes that have been visited. The
double circles mark the nodes that need to be visited in parallel. Since each computa-
tion only accesses one node, grouping nearby nodes cannot improve the cache locality
in this case. Besides, grouping nodes that are close to each other may even make the
workload unbalanced since it is likely that the nodes that need to be processed in par-
allel are connected. For this type of access pattern, we just need to hash the nodes
into partitions. We call this partitioning strategy as HASH. Each thread is assigned a
partition constructed via hashing and the thread only processes the nodes in its own
partition. This approach not only balances the workload but also improves cache local-
ity if multiple BFSs need to be performed on the graph. In this scheme, partitioning
and repartitioning are both performed via hashing.

3.2. Tree Partitioning

Tree data structures have been widely used to represent hierarchical structures. We
propose two partitioning strategies for tree structures which are described next.

ASYMM SUBTREE. This partitioning strategy supports two types of tree compu-
tations: computations that start from an internal/leaf node and recursive computa-
tions. First let us consider the computations that start from an internal/leaf node and
then travel within a local subtree that contains the node. Figure 3 shows two examples
of such computations – one computation begins at an internal node and the other at a
leaf node but both computations only touch a subtree instead of the whole tree. This
behavior is typical of searches on trees such as quadtrees and KD-trees. For a program
that performs a large number of such computations at runtime, performing these com-
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putations in parallel could greatly improve the performance. In this scenario we would
like repeated computations on the same subtree to be performed by the same thread
to achieve improved cache locality and also reduce the chance of two parallel threads
accessing the same data. To achieve this we support a partitioning strategy that forms
partitions from subtrees as illustrated by the partitions shown in Figure 3 by dotted
lines. Since this strategy creates subtrees that are not of exact same size we name it
ASYMM SUBTREE. The resulting subtrees are assigned to different threads, which
can operate on their respective partitions in parallel. A computation is performed by
the thread that owns the starting node. For example, in Figure 3, the computation on
the left side is performed by the thread owning the leftmost partition and the compu-
tation on the right side is performed by the thread owning the rightmost partition.

Fig. 3. Parallel computations starting at an in-
ternal/leaf node.

Fig. 4. Parallel computations starting from the
root node.

Now let us consider the case of recursive parallel computations. In such computa-
tions, typically, the starting thread first assigns all of the child subtrees except one
to other parallel threads and then continues to process the one left. The threads as-
signed the child trees repeat the above procedure until no more threads are available
to assign part of the work. Such recursive parallel code is invoked multiple times in
many programs we have examined. If we randomly assign threads to subtrees for each
invocation of the parallel code, we will lose the opportunities of reusing the data in
the cache across multiple invocations. Even if the subtrees are assigned to threads in
the same fixed order during each invocation, the mapping of partitions to threads may
vary across different invocations. To improve data reuse, we can partition the tree as
shown in Figure 3, and at runtime, require each thread to process the same subtree.

root.partition← 0;
partitions← 1;
nodequeue← {root};
while ( nodequeue 6= φ ) {

nodequeue.pop(n);
foreach child ∈ n.childset do {

nodequeue.push(child);
if (child is leftest OR partitions = total partitions)

child.partition← n.partition;
else {

child.partition← partitions;
partitions← partitions + 1;

}
}

}

Fig. 5. Asymmetric tree partitioning algorithm.

Figure 5 shows the algorithm for asymmetric tree partitioning shown in Figure 3.
The algorithm starts with creating a new partition for the root. When the number of
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partitions is smaller than the limit, the algorithm assigns a node’s leftmost child to the
same partition and creates new partitions for all other children. Once the number of
partitions reaches a limit, no new partitions are created. Each of the remaining nodes
is assigned to its parent’s partition. The repartitioning strategy allows for leaf node
insertion and it assigns a new leaf node to its parent’s partition.

SYMM SUBTREE. Most tree algorithms always start at the root node. Figure 4
shows two examples of tree computations starting at the root node. The right arrow
indicates a tree computation that goes from the root to a leaf node and updates the
value at the leaf node (e.g., binary insertion). The left arrow indicates a tree compu-
tation that goes from the root, searches a subtree, and finally updates the values at
several nodes (e.g., during local tree balancing). A tree-based program typically begins
many computations starting from the root node at runtime. Performing these com-
putations in parallel can greatly improve its performance. For such computations, if
each thread only processes the operations on a certain subtree, then we can reduce the
misspeculation rate or even do without speculation (e.g., during binary search). This
also improves the cache locality. Since every computation starts from the root node, all
computations will be started in the thread that owns the root node. We will get poor
performance if we use ASYMM SUBTREE partitioning algorithm in this case. For ex-
ample, under the partitioning of Figure 3, all computations will start in the thread
owning the leftmost partition. If a computation goes right, the thread will assign it to
another thread. However, if a computation goes all the way left, all subsequent compu-
tations will be blocked until it is completed. Suppose a computation has equal chance
of going left and right, around 1/4 of the computations will block subsequent computa-
tions. This will greatly reduce the parallelism. Moreover, if a computation goes all the
way to the right, it will go through three threads and incur communication overhead.

To address the above problem we propose a strategy that partitions the tree into
symmetric subtrees as shown in Figure 4 - we name it SYMM SUBTREE as it parti-
tions the tree in symmetric subtrees. A root partition is created to contain the nodes at
the top few levels of the tree while each subtree partition contains a subtree under the
root partition. At runtime, each thread is assigned a subtree partition. The root par-
tition can be assigned either to the master thread or shared by all threads. Figure 6
presents the symmetric tree partitioning algorithm. The algorithm starts with assign-
ing nodes to the root partition from the top of the tree until reaching a level, at which
the number of nodes is greater that the number of desired partitions. It then evenly
distributes those nodes among the partitions. We do not need to assign the remaining
nodes to the partitions since the searches always go from the top to the bottom.

3.3. Programmer Specified Partitioning

Programmers often have the knowledge of the shape of the data structures that can
be exploited by them during partitioning. To support this scenario we also allow pro-
grammers to specify their own partitioning strategies. Figure 7 shows two partitioning
examples that can be easily specified by programmers. Figure 7(a) shows a hash table
that consists of an array of linked lists. The programmer can easily group the linked
lists by hashing the array indices into partition IDs. At runtime, each thread only pro-
cesses hash operations in its own partition. This partitioning will improve the cache
locality and avoid data contention. Figure 7(b) shows an example of a grid computa-
tion. The computation on each node requires the data from its neighbors. The program-
mer can easily group nodes near each other into the same partition given the position
of each node. Although both examples can be partitioned using METIS, programmer
specified partitionings as shown are even superior.
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nodeset← root;
while ( |nodeset| < total partitions ) {

childset← φ;
foreach node ∈ nodeset do

childset← childset + node.childset;
nodeset← childset;

}
size← ⌈total partitions / |nodeset|⌉;
partitions← 0;
while ( partitions < total partitions ) {

for i← 1 to size do
if ( nodeset 6= φ ) {

nodeset.pop(n);
n.partition← partitions;

}
partitions← partitions + 1;

}

Fig. 6. Symmetric tree partitioning algorithm.

(a) Hash table (b) Grid computation

Fig. 7. Example of manual partitioning.

4. PROGRAMMING SUPPORT

This section presents our programming support for using partitioning based approach
in programming applications. This support is in the form of OpenMP-like pragmas.
We divide the presentation of these pragmas according to the types of parallelism they
support: homogeneous, heterogeneous, and speculative. We also present examples to
illustrate the use of these pragmas in variety of application scenarios.

To enable partitioning of a linked data structure, the partitioning algorithm must
be able to identify the data structure, i.e, its nodes and edges. To allow this our ap-
proach requires that the data structures that need to be partitioned inherit a base
class, called BaseNode. The BaseNode class defines two interfaces (i.e., virtual functions
in C++ ) – GetNeighborNum and GetNeighbor which developers must implement. The
first interface returns the total number of neighbors and the second returns a spec-
ified neighbor. Our partitioning library can acquire the graph information by calling
these two functions. Besides, the implementation of the BaseNode should automatically
maintain a list of nodes that have not been partitioned. The BaseNode class should also
provide two member functions – GetPartition and SetPartition. These two functions
are used to get and set the partition to which a data object belongs.

4.1. Non-speculative Homogeneous Parallelism

#pragma homo partition (DataType,PartitionType)
#pragma inpartition (partition)

The first pragma is used to mark the code region, such as a loop, that is to be exe-
cuted in parallel and where partitioning is to be applied. The homo clause indicates that

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



PLDS: Partitioning Linked Data Structures for Parallelism A:9

homogeneous parallelism is to be used and the partition clause indicates the type of
partitioning where the parameter DataType gives the type of the data structures to be
partitioned and the parameter PartitionType identifies the partitioning strategy to be
used. The second pragma is used to check in which thread the subsequent computa-
tion is to be performed. The pragma checks if the partition specified by the parameter
belongs to the current thread. If so, the current thread continues the subsequent com-
putation. Otherwise, the current thread skips the rest of the computation and goes to
the next computation. The partition parameter can be given in the form of constant,
variable, or return value of a function. Next we illustrate the use of above pragmas
through examples.

read(graph);
vertexset.add(source);
while( !vertexset.empty() ) {

nextset.clear();
#pragma homo partition(Vertex, HASH)
for(int i=0; i<vertexset.size(); i++) {

v = vertexset[i];
#pragma inpartition(v.GetPartition())
if ( !v.visited) {

v.visited = true;
process(v);
nextset.lockedAdd(v.adjacentset());

}
}
vertexset = nextset;

}

Fig. 8. Pseudocode for parallel BFS with graph partitioning.

Parallel loop with graph data structures. Figure 8 shows the pseudocode of a
parallel implementation of Breadth First Search (BFS). The vertexset and nextset are
containers that store unique vertices. The starting node is placed in the vertexset at
the beginning. In the parallel loop, each iteration processes one node in the vertexset
and adds pointers to its neighbors to the nextset. The program does not examine the
visited bit of a neighbor when adding it to the nextset to avoid excessive cache co-
herence misses. After the loop has completed, the program moves the nextset to the
vertexset and repeats the loop. The program ends when all nodes have been visited.

We can use HASH partitioning for the graph since each computation of the parallel
BFS just accesses one node. Partitioning can improve the data reuse if the BFS is called
multiple times. We use two pragmas to realize the partitioning-based parallelism in
this case. The first pragma declares that the code region must be executed in the form
of homogeneous parallelism and the graph must be partitioned using the HASH strat-
egy. Partitioning will only be performed once by the program since the unpartitioned
node list will be empty after the first partitioning. The second pragma checks if the
vertex belongs to the current thread’s partition. If so, the current thread continues
the iteration. Otherwise, the current thread skips to the next iteration. The function
GetPartition returns the vertex’s partition that is computed by the first pragma. At
runtime, the master thread executes the program until reaching the first pragma. Af-
ter data partitioning and mapping, all threads execute the code region in parallel. Each
thread performs the computations on the vertices in its own partition.

Programmer specified partitioning. Our pragmas also support programmer
specified partitioning. Figure 9 shows an example of parallel hash table lookup. Be-
fore entering the loop, the programmer uses the function SetPartition to manually
assign each entry in the hash table to a partition. The pragma homo indicates that the
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loop will be carried out by all threads. Each thread performs the hash function for ev-
ery work in the worklist but only does the insertion for the work that is hashed into its
partition. If we do not partition the hash table and randomly distribute works among
threads, we will need speculation since two threads may insert nodes into the same
part of the hash table. Through partitioning, we eliminate the need for speculation.

for(index=0; index < table.size(); index ++)
table[index].SetPartition(index % totalthreads());

#pragma homo partition(NONE)
foreach w in worklist do {

index = hash(w);
#pragma inpartition(table[index].GetPartition()) {

if ( table[index].lookup(w) == NULL )
table[index].insert(w);

}
}

Fig. 9. Parallel hash table lookup with partitioning.

4.2. Non-speculative Heterogeneous Parallelism

#pragma hetero partition (DataType,PartitionType)
#pragma distribute inpartition (partition)
#pragma join

The first pragma is used to mark the code region such as a loop that is to be executed
in parallel and where partitioning is to be applied. The hetero clause indicates that
heterogeneous parallelism is to be used and the partition clause indicates the type
of partitioning to be used. The second pragma is used to check in which thread the
subsequent computation should be performed. The distribute clause indicates that
the pragma will try to assign the subsequent computation to another thread to which
the partition belongs so that the subsequent computation can be performed in parallel.
If the partition belongs to the current thread, the subsequent computation is skipped.
Finally, the third pragma, #pragma join, is used for synchronization between threads.
The current thread will sleep until the thread owning the given partition finishes its
computation. If the current thread owns the given partition, the pragma does nothing.
Next we illustrate the use of above pragmas through examples.

root=tree.root();
#pragma hetero partition(Node, SYMM SUBTREE)
for(int i=0; i<worklist.size(); i++) {

value = worklist[i];
node = root;
prev = NULL;
while ( node != NULL &&

node.GetPartition() == currentPartition() ) {
prev = node;
node = node.search(value);

}
if (node == NULL)

insert(prev, value);
else {

#pragma distribute inpartition(node.GetPartition()) {
node.searchAndInsert(value);

} } }

Fig. 10. Pseudocode for parallel binary search with tree partitioning.
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Parallel loop with tree data structures. Figure 10 shows the pseudocode for
parallel binary search and insertion. For each work item in the worklist, the program
always starts search from the root node to a leaf node. If we do not partition the tree,
the search procedure requires speculation since multiple searches may go through the
same path. To realize partitioning-based parallelism for this program, we need to mod-
ify the program a little as shown in highlight. The first pragma partitions the tree us-
ing the SYMM SUBTREE partitioning and maps the partitions to the processor cores.
Since we do not know in which subtree each work in the worklist will be located before
performing the search, we mark the loop heterogeneous so it is only executed by the
master thread. In each iteration, the master thread performs searches until it reaches
a node that is not in its partition. Then the second pragma distributes (assigns) the
continuation of the search to a parallel thread corresponding to the node’s partition.
By partitioning the tree in this manner, the searches that are located in the same sub-
tree will be performed by the same thread. Therefore, we improve the performance of
the program without requiring the use of speculation.

function update(node) {
pre process(node);
foreach child in node.children

#pragma distribute inpartition(child.GetPartition())
update(child);

foreach child in node.children
#pragma inpartition(child.GetPartition())

update(child);
foreach child in node.children

#pragma join(child.GetPartition())
post process(node);

}

. . .

// in main function
#pragma hetero partition(Node, ASYMM SUBTREE)
update(root);
. . .

Fig. 11. Pseudocode for parallel recursion computation with tree partitioning.

Recursive computation with tree data structures. Figure 11 shows a sim-
ple example of recursion parallelism. The recursive function is called for multiple
time at runtime. To improve the data reuse, we can partition the tree using the
ASYMM SUBTREE strategy. We use the pragma to partition the tree in the main
function. In the recursive function, we check the partition of each child of the node.
If a child belongs to another thread’s partition, the update for that child is assigned
to that thread. After assigning all the children that are not in the current thread’s
partition, the current thread continues to update the rest children. After the current
thread completes its work, it waits for other threads to finish their work using join
and then performs the post process work. Since the same thread always updates the
same child, the cache performance of the program is improved by our approach.

4.3. Speculative Parallelism

For parallel programs where each computation may touch data across multiple parti-
tions simultaneously, we provide support for speculation via the following pragmas.

#pragma [conditional] speculate
#pragma repartition
#pragma touchpostpone(partition)
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The first pragma is used to mark the code region that requires speculative execution
to enforce atomicity. When the conditional clause is not specified, standard specula-
tion mechanism is used, i.e., speculation is used for every execution of the code region.
When the conditional clause is specified, the conditional speculation mechanism is
used for the region where speculation is only used for computations that dynamically
are determined to require access to multiple threads’ partitions. The second pragma is
used to incrementally assign partitions to newly created nodes. Although we illustrate
this pragma in context of speculation, it can also be used in non-speculative situations
as needed. The third pragma is used to assist in conditional speculation. It postpones
the execution of current computation if the given partition is not a local partition. The
postponed computation is later executed using standard (unconditional) speculation
mechanism. We illustrate the usage of above pragmas using an example.

read(mesh);
worklist.add(mesh.getBads());
while( !worklist.empty() ) {

todolist.clear();
#pragma homo partition(Triangle, METIS)
for(int i=0;i<worklist.size();i++) {

#pragma inpartition(worklist[i].GetPartition())
#pragma speculate {

Cavity c = new Cavity(worklist[i]);
c.build(mesh);
c.retriangulate(mesh);
mesh.update(c);
#pragma repartition

}
todolist.lockedAdd(c.newBads());

}
worklist = todolist;

}

Fig. 12. Parallel Delaunay Mesh Refinement with graph partitioning.

Figure 12 shows the pseudocode of a parallel implementation of Delaunay Mesh
Refinement [Hudson et al. 2007]. The program is designed to refine bad triangles (i.e.,
triangles whose circumradius-to-shortest edge ratios are larger than some bound) in
a mesh. It takes a triangular mesh as input. Each iteration of the parallel loop first
searches the triangles around one bad triangle to form a cavity, then retriangulates the
cavity, and finally updates the mesh. If the procedure generates a new bad triangle,
it is placed in the todolist. The parallel loop requires speculation since two iterations
may access the same triangles. After the parallel loop is completed, the program moves
the todolist to the worklist and repeat the parallel loop. The program ends when there
is no bad triangle in the mesh. Since the bad triangles can be processed in any order,
there is no need to enforce any order in the parallel implementation.

The data accesses of the Delaunay Mesh Refinement algorithm exhibit spatial lo-
cality since if a triangle is accessed in a computation its neighbors are likely accessed
in the same computation. We can improve the program’s performance by grouping
nearby nodes into partitions. We realize the partitioning-based parallelism by using
three pragmas. The first pragma declares the code region that will be executed by all
threads, partitions the mesh (a graph where each node is a triangle) with the METIS
algorithm, and maps the partitions to the threads. The partitioning is only done once
in the program since the list of unpartitioned nodes will be empty in the subsequent
execution. The second pragma checks if the computation should be done in the current
thread. If the computation should be done in another thread, the current thread moves
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on to the next iteration. The function GetPartition returns the bad triangle’s parti-
tion that is computed by the first pragma. The third pragma incrementally updates
the partitioning after new triangles are added into the mesh. At runtime, the master
thread executes the program until reaching the first pragma. After data partitioning
and mapping, all threads execute the parallel code region in parallel as indicated by
the homo clause. Each thread only performs the computations that begin from its own
partition and skips the rest computations. After retriangulating a cavity, a thread in-
crementally partitions the newly created triangles using the repartition pragma.

Conditional speculation. Although data partitioning can reduce the misspecu-
lation rate, the high overhead of speculation can still hurt the parallel performance.
In fact, under partitioning-based parallelism, most computations are likely to touch
their local partitions as long as each partition is large enough. When all threads are
performing computations that only touch their own partitions, the speculation is not
needed. Motivated by this observation, we provide support for partitioning-based con-
ditional speculation. In this approach, by default a thread does not start speculation
at the beginning of each computation. If a computation only touches data in its local
partition, then it succeeds without speculation. If the thread detects that a compu-
tation will touch other partitions, the thread postpones its execution for later. When
all threads complete the computations on their local partitions, they use speculation
in redoing all postponed computations. The conditional use of speculation cuts down
the percentage of computations executed under the speculation though it causes extra
overhead for the computations involving multiple partitions. Therefore, as long as most
computations only touch local partitions, the overall cost of speculation is reduced.

As we mentioned before, for the computations that require a subset of nodes in the
graph, usually start with collecting the nearby nodes around the starting node. Since
the collection procedure usually does not write to any global variable such as the graph
data structure, it can be executed without speculation. In the collection procedure, a
computation decides which nodes it will use later. Therefore, during the collection pro-
cedure, we can determine which partitions a computation will touch. If a computation
will touch a remote partition, the thread postpones the computation, saving the loop
index in a queue for later, and continues to the next computation. These saved compu-
tations will be executed using speculation after all other computations are done.

frontier.add(center);
foreach node in frontier do {

foreach neighbor in node.getNeighbors() do {
#pragma touchpostpone(neighbor.GetPartition())
if ( neighbor is part of the cavity ) {

cavity.add(neighbor);
frontier.add(neighbor);

} else {
border.add(neighbor);

} } }

Fig. 13. Pseudocode for building cavity in Delaunay Mesh Refinement.

For example, in Figure 12, the triangles that will be touched are determined in func-
tion build. Figure 13 shows the pseudocode of the build function. The function collects
the triangles that are in or around the cavity. The function only writes to the vari-
ables local to the threads. Therefore, the function can be executed without speculation.
To realize adaptive speculation, we add one pragma (highlighted) into the function.
The pragma first checks the partition of variable neighbor. If neighbor is in the local
partition, the computation continues. If it is in a remote partition, the pragma saves
the loop index of the computation (i.e., variable i on line 6 in Figure 12) in a queue
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and skips to the next computation. In the parallel loop shown in Figure 12, devel-
opers just need to wrap the speculative code using #pragma conditional speculate
instead of #pragma speculate. No other change needs to be made. At runtime, in the
main parallel loop of Delaunay Mesh Refinement (as shown in Figure 12), the #pragma
conditional speculate does nothing by default. Each thread checks the partition of
each triangle at the pragma touchpostpone. After all threads complete the parallel
loop, they redo the computations for the saved indices. During this redo procedure, the
#pragma conditional speculate starts and ends speculative execution normally.

For the correctness purpose, we do not allow write to any global variable before the
collection procedure is finished. Our compiler can detect whether there is a write to
global variable along the paths from “#pragma speculate” to “#pragma touchpostpone”.
If there is such a write, our compiler will give a warning to the programmer.

5. IMPLEMENTATION OF PLDS

This section briefly describes the implementation of PLDS. The core components of the
PLDS prototype implementation consist of: a source-to-source translator and a user-
level runtime library. The translator analyzes the loop and PLDS directives and trans-
lates them into C/C++ code. The analysis is done by extending ROSE [Quinlan 2000],
which is an open source compiler infrastructure to build source-to-source code trans-
lator. The runtime library implements data partitioning and thread management.

Pragmas. The inpartition and touchpostpone pragmas can cause a thread to skip
the rest of the current computation and jump to the next computation. We allow them
to be placed inside a function called in the parallel region. They are implemented using
the exception support in C++. When these pragmas decide to skip the current compu-
tation, they throw an exception. The parallel code region is wrapped with an exception
handler. Once it captures an exception from those pragmas, it jumps to the next com-
putation. The speculation pragmas are implemented using the Intel STM Compiler
[Intel 2010], which implements Software Transactional Memory (STM) for C/C++ in a
compiler. With this compiler, transforming a piece of code into a transaction requires
very few changes to the code.

Thread management. We use the pthread library for creating and managing
threads. Threads’ context is stored in thread local storage. All working threads are
created at the beginning of the program. Multiple executions of a parallel region reuse
the same threads making the cost of thread creation to be amortized. We use busy-
waiting algorithms to implement the synchronizations between threads. The busy-
waiting algorithms achieve low wake-up latency and hence yield good performance
[Mellor-Crummey and Scott 1991].

Threads-to-cores mapping. In a parallel region using the speculation pragma,
each computation may access multiple adjacent partitions. In modern multicore pro-
cessors, the caches are organized in a hierarchy that causes closer cores to share more
efficiently. To improve the utilization of the cache hierarchy, we need to place adjacent
partitions to close cores so that accessing adjacent partitions will be faster. We use the
cache topology aware mapping algorithm proposed in [Kandemir et al. 2010] to map
the threads to the processor cores for parallel region using speculation.

6. EVALUATION

This section evaluates our prototype implementations of PLDS. The experiments are
conducted on an 8-core DELL PowerEdge T605 machine. Table II lists the details of
the machine. The machine runs CentOS v5.5.

6.1. Benchmarks

We use 10 benchmarks in the experiments. Two out of ten benchmarks are real applica-
tions. The rest eight benchmarks are from three benchmark suites – Lonestar [Kulka-
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Table II. Machine details.

Processors 2×4-core AMD Opteron processors (2.0GHz)
L1 cache Private, 64KB for each core
L2 cache Private, 512KB for each core
L3 cache Shared among 4 cores, 2048KB
Memory 8GB RAM

Table III. Benchmark details. From left to right: benchmark name; function where the parallel region is located and type
of parallelism (homogeneous and heterogeneous); lines of code in the function and number of pragmas introduced;
type of data structure used in the benchmark; partitioning strategy employed; whether speculation is used and whether
conditional speculation is used.

Benchmark Function LOC + Data Partitioning Spec.? - Cond.?
(Par. Type) #Pragmas Structures

Delaunay- main (homo.) 108 + 5 graph METIS yes - yes
Refinement
Boykov- main (homo.) 93 + 5 graph METIS yes - yes
Kolmogorov main (homo.) 93 + 3 graph HASH no - no
Barnes-Hut main (homo.) 107 + 2 graph METIS no - no
Agglomerative- clustering 61 + 4 tree ASYMM SUBTREE yes - yes
Clustering (homo.)
Voronoi build delaunay 106 + 3 tree ASYMM SUBTREE no - no

(heter.)
TreeAdd TreeAdd 23 + 3 tree ASYMM SUBTREE no - no

(heter.)
AVL main (heter.) 87 + 4 tree SYMM SUBTREE yes - no
ITI batch train (heter.) 60 + 4 tree SYMM SUBTREE yes - no
Hash main (homo.) 31 + 2 hash table programmer specified no - no
Coloring coloring (homo.) 32 + 5 graph programmer specified yes - yes

rni et al. 2009], Olden [Carlisle and Rogers 1995], and Shootout. All benchmarks either
already use pointer-linked data structures or were ported to make use of them. For all
benchmarks, the order in which the computations are performed does not affect the
correctness of the output though different orders may yield different outputs. Table III
shows the details of the benchmarks.

The benchmarks Delaunay Refinement and Agglomerative Clustering are from the
Lonestar benchmark suite [Kulkarni et al. 2009] and originally written in JAVA. We
ported them into C++. The original Delaunay Refinement uses a few hash table-based
containers to store the graph. Therefore, even if two computations require different
parts of the graph, they may share some data in the containers. We rewrote the
program using pointer-linked data structures to solve this problem. Agglomerative
Clustering is a hierarchical clustering algorithm. It uses a KD-tree for nearest neigh-
bor search. We reorganized the code so that a node collection procedure is conducted at
an early stage of each computation. Barnes-Hut is an implementation of the Barnes-
Hut n-body algorithm [Barnes and Hut 1986] that simulates the gravitational forces
in a galactic cluster. It uses an octree for storing nodes in the graph. We parallelized
the force-computation step in the main loop. The benchmarks Voronoi and TreeAdd
are from the Olden benchmark suite [Carlisle and Rogers 1995]. Voronoi implements
a recursive Delaunay Refinement algorithm. TreeAdd calculates the sum of values in
a balanced B-tree. Both benchmarks are parallelized using recursion parallelism. In
the experiments, the sum calculation was repeated for ten times during the execu-
tion of TreeAdd. Boykov-Kolmogorov is a maxflow algorithm used for image segmen-
tation. We parallelized two different loops in this program using different partition-
ings – METIS and HASH, respectively. For HASH-based parallelism, although there
is no data contention between threads on the graph structure, two threads may share
other global variables. We use mutex to serialize the accesses to these variables. AVL
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Table IV. Comparison of misspeculation rates with 8
threads. From left to right: benchmark name, mis-
speculation rate without partitioning, and misspecu-
lation rate with partitioning.

Benchmark w/o par. w/ par.
DelaunayRefinement 90.42% 0.07%

Boykov-Kolmogorov 20% 0.09%

AgglomerativeClustering 3.21% 0.25%

AVL 21.84% 3.19%

ITI 16.58% 0.73%

Coloring 6.15% 0.17%

is a self-balancing binary tree algorithm designed for addressing the issue of dele-
tions. During execution, balancing usually takes place locally. We parallelized it us-
ing SYMM SUBTREE partitioning. ITI [Utgoff et al. 1997] is a real application that
constructs decision tree automatically from labeled examples. We speculatively paral-
lelized the batch train function. The Hash benchmark is from the Shootout benchmark
suite. The main loop performs a large number of hash table lookups and insertions. The
hash table can be easily partitioned by programmers. Coloring is an implementation
of the scalable graph coloring algorithm in [Boman et al. 2005]. The original program
does not use graph partitioning or speculative parallelism. In the original program,
threads communicate node information with each other. In the experiments, we paral-
lelized the program using user-specified data partitioning and speculative parallelism.

6.2. Performance
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Fig. 14. Speedup by PLDS.
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Fig. 15. Speedup without partitioning.

Figure 14 shows the speedup achieved by PLDS using different number of threads.
The original sequential versions of these benchmarks are used as baseline. For every
benchmark except Voronoi, the performance of the benchmark improves with the in-
crease of thread number. The performance of Voronoi decreases at 8 threads due to the
high communication overhead (as shown in Figure 17). AVL and ITI gets slowdown with
two threads since it employs a master/worker execution model similar to the example
given in Figure 10. With two threads, they have only one worker thread to perform
computations. Figure 15 shows the speedup without partitioning, where computations
are assigned to threads in a round-robin manner. As we can see, the speedups achieved
by PLDS are much higher than those without partitioning. Without partitioning, par-
allelization causes slowdown for three benchmarks, for all of which PLDS achieves
speedup.

Table IV compares the misspeculation rate with and without partitioning. With
partitioning, the misspeculation rates of all six benchmarks are greatly reduced. The
misspeculation rates of five out of six benchmarks almost decrease to zero. Delaunay
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Fig. 16. Regular speculation vs. Conditional speculation

Table V. Postpone rate.

Benchmark 2 threads 4 threads 8 threads
DelaunayRefinement 3.5% 6.9% 13.1%

Boykov-Kolmogorov 4.6% 7.6% 15.4%

AgglomerativeClustering 1.7% 3.2% 6.0%

Coloring 2.1% 3.9% 8.7%

Refinement has the highest misspeculation rate when partitioning is not used. This
is because close triangles are processed consecutively in the original program. With
partitioning, most misspeculations of Delaunay Refinement are eliminated.

6.3. Effectiveness of Conditional Speculation

Figure 16 shows a performance comparison between regular speculation
and conditional speculation on the four benchmarks – Delaunay Refinement,
Boykov-Kolmogorov, Agglomerative Clustering, and Coloring. Without conditional
speculation, parallelization causes slowdown for Boykov-Kolmogorov due to its high
speculation overhead (as shown in Figure 17). Conditional speculation improves
performance for all four benchmarks. With 8 threads, conditional speculation improves
the performance for the four benchmarks by 2.23x, 3.91x, 1.31x, and 1.46x over regular
speculation, respectively.

Table V shows the percentages of postponed computations for the four benchmarks.
For all four benchmarks, only less than one-sixth of computations requires specula-
tion since most computations only access local data partitions. The postpone rates in-
crease as the number of threads is increased. This is because the chance of accessing
multiple threads’ partitions goes up as the size of each partition decreases. Delaunay
Refinement and Boykov-Kolmogorov have similar postpone rates. The postpone rates of
Agglomerative Clustering and Coloring are a little lower. However, due to the high
cost of the node collection procedures in Agglomerative Clustering, its speedup is
lower than that of the other two.

6.4. Overhead
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Figure 17 shows the time breakdown for the master thread with different numbers
of threads. We divide the time into four categories: computation, speculation, communi-
cation and partitioning. Among the four categories, partitioning spends the least time.
For the four benchmarks that use conditional speculation, their speculation overhead
rises with the increase of thread number. This is mainly due to the increasing postpone
rate as shown in Table V. Among all the benchmarks, AVL has the highest overhead. Its
master thread spends half of the time on speculation since it uses regular speculation.
B.K.-HASH and Voronoi have higher communication overhead which hurts their perfor-
mance. Three benchmarks, Barnes-Hut, Hash, and TreeAdd, have very low overhead.
Partitioning eliminates the speculation cost for Hash.

7. RELATED WORK

Data partitioning has been mostly explored for array-based data-parallel programs on
distributed-memory computers [Kennedy and Allen 2001; Rogers and Pingali 1989].
Partitioned Global Address Space (PGAS) is a parallel programming model that ex-
plores data distribution for array-based data-parallel programs. It includes Unified
Parallel C [Consortium 2005], Co-Array Fortran [Dotsenko et al. 2004], Titanium [Hil-
finger et al. 2005], Chapel [Chamberlain et al. 2007], and X10 [Charles et al. 2005].
They all use SPMD programming style and some of them allow programmers to control
data distribution. However, since these works focus on array-based data parallel pro-
grams, they do not need to consider dynamic computation partitioning and data con-
tention between threads. High Performance Fortran was extended for dynamic data
distribution to parallelize array-based unstructured computations [Müller and Rühl
1995]. Several works [wei Liao et al. 2006; Gordon et al. 2006] have focused on data
and task partitioning for stream programs.

The Galois system has been extended to use data partitioning for optimizing
worklist-based parallelism [Kulkarni et al. 2008]. PLDS is different from Galois in
the following aspects. (1) Galois is not an automatic system while PLDS is. Galois is a
runtime library and does not have compiler support. PLDS has both runtime library
and compiler support. To use Galois, programmers need to use Galois-provided data
strucutres when writing their programs. PLDS does not require this. (2) Galois does
not provide full support for speculative parallelization since it does not support roll-
back. In Galois-provided data strucutres, locks are used to avoid conflicting accesses.
However, when a lock cannot be acquired, a Galois thread only releases all acquired
locks (in case of deadlock) and jumps back to the beginning of the computation. It
does not rollback any performed operation due to the lack of compiler support. Our
compiler translates code using transactional memory. Therefore, we support rollback.
(3) We introduced partition-based heterogeneous parallelism, which Galois does not
have. The function for parallel loop execution (i.e. Galois::for each) provided by Galois
only distributes iterations in a homogeneous way. Besides, Galois does not provide any
function for synchronization between threads. (4) We proposed the conditional spec-
ulation scheme, with which most computation in a speculative parallel region can be
done speculation-free. The Galois system does not support conditional speculation. As
shown in our experiments, conditional speculation improves the performance by 2.48x
on average over regular speculation.

Thread level speculation (TLS) techniques have been proposed to explore more par-
allelization opportunities for sequential programs. Krishnan et al. [Krishnan and Tor-
rellas 1999] proposed an architecture for hardware-based TLS. Recently, many works
have focused on software-based TLS. Behavior oriented parallelization (BOP) [Ding
et al. 2007; Kelsey et al. 2009] is a process-based speculation technique. Copy or Dis-
card (CorD) [Tian et al. 2008; 2010] is a thread-based speculation technique. All these
TLS techniques are based on state separation. In other words, speculative computa-
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tions are performed in a separate memory space. The results are not committed to the
non-speculative space until the speculation succeeds. BOP [Ding et al. 2007; Kelsey
et al. 2009] improves the performance of data copying between spaces with the help of
OS. CorD was extended to support a set of compiler optimizations for copying dynamic
data structures between spaces [Tian et al. 2010].

Partitioning has been explored for individual applications. Lin et al. [Lin et al. 2007]
proposed to partition the variance of the noise-whitened encoding matrix for paral-
lelizing Magnetic Resonance Imaging (MRI) reconstruction. Zeng et al. [Zeng et al.
1998] improve parallel simulation of large-scale wireless networks by partitioning the
network to achieve load balance. Scott et al. [Scott et al. 2007] proposed to use parti-
tioning for parallelizing Delaunay triangulation. In comparison with these works, our
programming model is designed for general-purpose parallelization.

Many programming models have been proposed for writing parallel programs.
OpenMP [Dagum and Menon 1998] is widely used model for parallelizing sequen-
tial programs on shared-memory systems. It expresses non-speculative parallelism us-
ing compiler directives. Threading Building Blocks (TBB) [Reinders 2007] is an Intel-
designed model for parallelizing sequential programs. Instead of using compiler di-
rectives, TBB provides developers with a set of threadsafe containers to wrap their
codes. Messaging Passing Interface (MPI) [Gropp et al. 1994] is a SPMD programming
model. Using MPI, developers need to write explicitly parallel programs, including
manually distributing workloads and handling communications and synchronization.
None of these programming models provide support for data partitioning based compu-
tation distribution and speculative parallelism which we support. Our previous work
on the SpiceC [Feng et al. 2011] provides a parallel programming model that supports
multiple forms of parallelisms, including DOALL, DOACROSS, and pipelining. It also
provides support for speculative parallelism and manycore processors. Through the
addition of PLDS we are able to handle dynamic linked data structures in SpiceC.

8. CONCLUSION

In this paper, we present a programming model – PLDS for writing efficient parallel
programs with pointer-linked data structures. PLDS provides support for data parti-
tioning and conditional speculation which improves cache locality and reduces mis-
speculation rate and speculation cost. PLDS offers easy-to-use OpenMP-like program-
ming constructs and supports two forms of parallelism which together cover a wide
range of applications. Our experiments show that PLDS achieves 1.3x–6.9x speedups
for ten benchmarks on an 8-core machine.
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LIN, F.-H., WANG, F.-N., AHLFORS, S. P., HÄMÄLÄINEN, M. S., AND BELLIVEAU, J. W. 2007. Parallel
MRI reconstruction using variance partitioning regularization. Magnetic Resonance in Medicine 58, 4,
735–744.

MELLOR-CRUMMEY, J. M. AND SCOTT, M. L. 1991. Algorithms for scalable synchronization on shared-
memory multiprocessors. acm trans. Comput. Syst. 9, 1, 21–65.
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