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ABSTRACT OF THE DISSERTATION

Imposing Minimal Memory Ordering on Multiprocessors

by

Changhui Lin

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2013

Dr. Rajiv Gupta, Chairperson

Shared memory has been widely adopted as the primary system level programming

abstraction on modern multiprocessor systems due to its ease of programming. To assist

programmers in understanding program behaviors with respect to read and write operations

originating from multiple processors, many memory consistency models have been proposed.

Sequential consistency (SC) memory model is the simplest and most intuitive model, but its

strict memory ordering requirements can restrict many hardware and compiler optimizations

that are possible in uniprocessors. For higher performance, many manufacturers typically

choose to support relaxed consistency models. In these models, memory fence instructions

are also provided to permit selective overriding of default relaxed memory access ordering,

where strict ordering must be enforced for program correctness. However, memory fences

are costly because they cause a processor to stall.

Although the underlying memory models or memory fence instructions require

a set of memory orderings to be enforced, they are not always necessary at runtime. If

reordering of two memory operations executed on one processor is not observed by any

other processor, then the reordering is safe as the program will behave the same as if they
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were not reordered. Thus we observe that it is possible to relax some of memory orderings

that are in general required but are unnecessary in the current execution. The goal of this

dissertation is to dynamically identify the necessary memory orderings and thus relax the

rest of the required memory orderings. The challenge of achieving this goal is to efficiently

identify the necessary memory orderings.

This dissertation explores programming, compiler, and hardware support for elim-

inating unnecessary memory orderings to improve program performance. First, conflict

ordering is proposed for implementing SC efficiently, where SC is enforced by explicitly or-

dering only conflicting memory operations in the global memory order, instead of all memory

operations. The approach achieves SC performance comparable to RMO (relaxed memory

order), without aggressive post-retirement speculation. Next, three approaches (i.e., scoped

fence, conditional fence, and address-aware fence) are proposed to relax memory order-

ings imposed by memory fences, representing different levels of support from programmer,

compiler and hardware. These approaches make memory fences lightweight to use.

The programming directed approach, scoped fence (S-Fence), introduces the con-

cept of fence scope which constrains the effect of fences in programs. S-Fence enables

programmers to specify the scope of fences using a customizable fence statement. The

scope information is then encoded into binaries and conveyed to hardware. At runtime,

hardware utilizes the scope information to determine whether a fence needs to stall due to

uncompleted memory accesses in the scope. S-Fence bridges the gap between programmers’

intention and hardware execution with respect to the memory ordering enforced by fences.

The compiler directed approach, conditional fence (C-Fence), utilizes compiler in-

formation to dynamically decide if there is a need to stall at each fence. The compiler
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helps to identify fence associates and incorporate this information in a C-Fence instruc-

tion. At runtime, to decide whether a fence can be dynamically eliminated, the hardware

uses the fence associate information to check if there is any associate that is executing. It

significantly reduces fence overhead, while only requiring lightweight hardware support.

The hardware directed approach, address-aware fence, utilizes hardware support

to collect memory access information from other processors to form a watchlist for each

fence instance. The completion of a memory access following the fence is allowed if its

memory address is not contained in the watchlist, appearing as if the fence does not take

effect; otherwise, the memory access is delayed to ensure correctness. Address-aware fence

is implemented in the microarchitecture without instruction set support and is transparent

to programmers. It has the highest precision, eliminating nearly all possible unnecessary

memory orderings due to fences.

viii



Table of Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.1 Sequential consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Fence instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Efficient Sequential Consistency via Conflict Ordering 16

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 SC via Conflict Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Conflict ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Proof of correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Basic Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Basic conflict ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Handling distributed directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Enhanced Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Limitations of basic conflict ordering . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Enhanced conflict ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.3 Hardware summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.2 Execution time overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.3 Sensitivity study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.4 Characterization of conflict ordering . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.5 Bandwidth increase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5.6 HW resources utilized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix



3 Scoped Fence 54

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Scoped Fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Semantics of S-Fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.2 Scope of a fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Class Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.1 Implementation design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Set Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.1 Implementation design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Using S-Fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.1 Lock-free algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6.2 Performance on full applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6.3 Class scope vs. set scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.6.4 Sensitivity study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Conditional Fence 85

4.1 Fence Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.1 The condition for enforcing fence orders . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.2 Associate fences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Conditional Fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.1 Interprocessor delays to ensure fence orders . . . . . . . . . . . . . . . . . . . . . 90
4.2.2 Empirical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.3 Conditional Fence (C-Fence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 C-Fence Hardware: Centralized Active Table . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.1 Idealized hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.2 Actual hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 C-Fence Hardware: Distributed Active Table . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.1 Scalability analysis of C-Fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.2 Design of distributed active table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5.2 Benchmark characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.5.3 Execution time overhead : Conventional fence vs C-Fence . . . . . . . . . 114
4.5.4 Sensitivity study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.5.5 Impact of distributed active table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.5.6 HW resources utilized by C-Fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Address-aware Fence 123

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2 Address-aware Fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.1 Operations on address-aware fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

x



5.3.2 Hardware summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.4.2 Space and traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6 Related Work 148

6.1 Hardware Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.1.1 Speculative techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.1.2 Non-speculative techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Compiler Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.2.1 Fence insertion for enforcing sequential consistency . . . . . . . . . . . . . . . 152
6.2.2 Compiler optimizations consistent with memory models . . . . . . . . . . . 153

6.3 Programming Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.4 Debugging and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5 Other Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5.1 Fence instructions in commercial architectures . . . . . . . . . . . . . . . . . . 156
6.5.2 Optimizing lock implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.5.3 Formalization of memory models for commercial architectures . . . . . . 158

7 Conclusions 159

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Bibliography 165

xi



List of Figures

1.1 Effect of reordering in the Dekker’s algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Ordering memory operations with fence instructions. . . . . . . . . . . . . . . . . . . . 3
1.3 Venn diagram of memory orderings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Execution overhead of fences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Necessary fences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 A motivating example for conflict ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 A common data access pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Scenario in which memory ordering is not necessary. . . . . . . . . . . . . . . . . . . . 12
1.9 Unnecessary fence instances at runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Conflict ordering ensures SC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 predp(b1) = {b1} ∪ predp(b0) ∪ predp(a1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Basic conflict ordering: Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Correctness of conflict ordering implementation: m2 cannot be a read in each

of the 3 scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 (a) and (b): Limitations of basic conflict ordering; (c) and (d): Enhanced

conflict ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Hardware support: conflict ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7 Conventional SC normalized to RMO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.8 Conflict ordering normalized to RMO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9 Performance for bus-based implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.10 Varying the latency of network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.11 Varying number of bits of write-list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.12 Breakdown of checks against write-lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.13 Reduced accesses to directories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Simplified Chase-Lev work-stealing queue [27]. . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Example – parallel spanning tree algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Customized fence statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Semantics of class scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 An example of class scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 Hardware support for class scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7 Micro-operations on fs start and fs end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xii



3.8 Setting fence scope bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.9 Comparison between traditional fence and S-Fence. . . . . . . . . . . . . . . . . . . . . 70
3.10 Simplified Dekker algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.11 Impact of workload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.12 Normalized execution time (T – traditional fence; S – S-Fence; T+ – tra-

ditional fence with in-window speculation; T+ – S-Fence with in-window
speculation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.13 Performance on pst (parallel spanning tree). . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.14 Performance comparison between class scope and set scope (C.S. – class

scope; S.S. – set scope) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.15 Performance for varying memory access latencies. . . . . . . . . . . . . . . . . . . . . . . 82
3.16 Performance with different ROB Sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 (a) Violation of fence order; (b) Violation of program order. . . . . . . . . . . . . . 86
4.2 Associate fences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Interprocessor delay is able to ensure fence orders. . . . . . . . . . . . . . . . . . . . . . 90
4.4 (a) If Fence1 has already finished stalling by the time Fence2 is issued, then

there is no need for Fence2 to stall. (b) In fact, there is no need for even
Fence1 to stall, if all memory instructions before it complete by the time
Fence2 is issued. (c) No need for either Fence1 or Fence3 to stall as they
are not associates, even if they are executed concurrently. . . . . . . . . . . . . . . . 91

4.5 The semantics of C-Fence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6 (a) Example with 2 C-Fences; (b) Example with 3 C-Fences. . . . . . . . . . . . . . 95
4.7 Scalability of C-Fence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.8 Distribution of fences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.9 (a) C-Fence + Conventional fence. (b) HW support. (c) Action upon issue

of a C-Fence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.10 Coherence of active-table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.11 Hit rates of the instruction buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.12 Breakdown of runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.13 Percentages of request types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.14 Normalized time of processing a request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.15 Overview of distributed active table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.16 Distributed active table – one sub-table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.17 The operations of active tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.18 Execution time overhead of ensuring SC: Conventional fence vs C-Fence. . . . 114
4.19 Varying the number of frequent fences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.20 Varying the size of active table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.21 Varying the latency of accessing active-table. . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.22 Performance comparison for 4, 8, 16 and 32 processors. . . . . . . . . . . . . . . . . . 118
4.23 Communication time reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.24 Speedups of distributed active table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1 (a) Cycle detection; (b) Address-aware fence with watchlist. . . . . . . . . . . . . . 126
5.2 States of address-aware fence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3 An example of address-aware fence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xiii



5.4 Collecting and clearing watchlists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.5 Overview of the architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.6 Execution time (T – traditional fence; A – address-aware fence). . . . . . . . . . . 143
5.7 Scalability (Tn represents traditional fence with n processors and An repre-

sents address-aware fence with n processors). . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.1 Implementing fence using RMW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

xiv



List of Tables

1.1 Trade-offs of solutions for eliminating fence overhead. . . . . . . . . . . . . . . . . . . . 9

2.1 Architectural parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2 Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Bandwidth increase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 The extension of ISA for class scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 The extension of ISA for set scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3 Architectural parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Benchmark description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Study: A significant percentage of fence instances need not stall. . . . . . . . . . . 93
4.2 Architectural parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3 Benchmark characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1 Comparison of existing approaches and address-aware fence (∗Compiler sup-
port required for identifying fence associates). . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2 Fields in active buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3 Fields in watchlist buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4 Benchmark description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5 Effectiveness of address-aware fence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.6 Characterization of space and traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xv



Chapter 1

Introduction

Multiprocessors are becoming ubiquitous in all computing domains, from mobile

devices to datacenter servers as they are able to deliver high performance via parallelism.

With this development, the importance of parallel programming continues to grow as the

onus of writing parallel programs that deliver increased performance is on the programmers.

It is a well recognized fact that writing and debugging parallel programs is not an easy

task. Consequently, there has been significant research on developing programming models,

memory models, and tools for making programmers’ job easier. To simplify programming for

multiprocessors, shared memory is widely adopted as the primary system level programming

abstraction. In uniprocessors, as long as dependences are respected, even when accesses to

different memory locations are reordered, the program behaves the same as if no reordering

was performed. However, in multiprocessors, when accesses to different memory locations

in shared memory are effectively reordered, the program can exhibit behaviors that are

different from programmers’ expectation.
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P0 P1

1 flag0 = 1
2 if ( flag1 == 0)
3 critical section

4 flag1 = 1
5 if ( flag0 == 0)
6 critical section

Figure 1.1: Effect of reordering in the Dekker’s algorithm.

Consider the code segment in Fig. 1.1, which is a simplified version of the Dekker’s

algorithm [34, 4]. This algorithm is designed to allow only one processor to enter the critical

section at a time, using two shared memory variables flag0 and flag1. The two flag variables

indicate an intention on the part of each processor to enter the critical section. Initially,

flag0 and flag1 are initialized to 0. When P0 attempts to enter the critical section, it first

updates flag0 to 1 and checks the value of flag1. If flag1 is 0, under the most intuitive

interpretation, P1 has not tried to enter the critical section, and it is safe for P0 to enter.

However, this reasoning is valid, only if the machine that executes the program guarantees

that accesses to flag0 and flag1 are performed in the order specified by the program. If, on

the other hand, the machine allows memory operations to be reordered, it is possible for P0

to first read flag1 and then update flag0. Likewise, P1 may first read flag0 and then update

flag1. As a result, both reads may potentially return the value of 0, allowing both P0 and

P1 to enter the critical section simultaneously. Clearly, this is not what the programmer

intended.

Therefore, many memory consistency models have been proposed to constrain

memory behaviors with respect to read and write operations originating from multiple pro-

cessors [4]. Each model specifies a contract between programmer and system (compiler and

hardware), i.e., the program’s behavior will be consistent with programmer’s expectation if

the programmer follows the rules of the underlying memory model. Of the various memory
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consistency models, the sequential consistency (SC) model [64] is the simplest and most

intuitive model. It requires that all memory operations of all processors appear to execute

one at a time, and that the operations of a single processor appear to execute in the order

described by the program. Moreover, to improve performance, many relaxed memory con-

sistency models [5, 37, 47] have also been proposed that allow different subsets of memory

accesses to be reordered. Each of these models offers a trade-off between programmability

and performance. Manufacturers (e.g., Intel, IBM, Sun, ARM, etc.) typically choose to

support relaxed consistency models, such as total store order (TSO), relaxed memory order

(RMO), release consistency (RC), etc [4].

Under SC, the Dekker algorithm shown in Fig. 1.1 will behave correctly, as SC

guarantees that, in P0 (P1), flag1 (flag0) is read only after flag0 (flag1) has been updated.

However, under relaxed memory models, the above orderings are not guaranteed. To en-

force the orderings that are critical to the correctness of programs, fence instruction, also

known as memory fence or memory barrier, is provided to constrain memory reordering. A

fence instruction guarantees that all memory accesses prior to it have completed, before its

following memory accesses can be performed. Thus, programmers can insert fence instruc-

tions between the accesses to flag0 and flag1 to prevent reordering under relaxed memory

models, as shown in Fig. 1.2 (Line 2 and Line 6).

P0 P1

1 flag0 = 1
2 FENCE

3 if ( flag1 == 0)
4 critical section

5 flag1 = 1
6 FENCE

7 if ( flag0 == 0)
8 critical section

Figure 1.2: Ordering memory operations with fence instructions.
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As we can see, memory consistency models and fence instructions impose con-

straints on memory ordering. The problem is that faithfully implementing these ordering

constraints disallows many possible optimizations and sacrifices performance.

(Sequential consistency) Stronger memory consistency models (e.g., SC) impose

stricter constraints on memory ordering. SC matches the programmers’ expectation that

a parallel program behaves as an interleaving of the memory accesses from its constituent

threads. This enables programmers to understand and reason about their programs the

best. But SC imposes strict memory ordering on programs that restricts many compiler

optimizations (e.g., load reordering, store reordering, caching value in register) [75, 22]

and hardware techniques (e.g., write buffer) that are possible in uniprocessors, and hence

hurts program performance. Indeed, most of the processor families only support relaxed

memory models, which impose less constraints on memory ordering. However, relaxed

memory models require programmers’ expertise to enforce the correctness of programs,

as data sharing among threads is often subtle and complex, placing heavy burdens on

programmers. This sacrifices programmability for performance.

(Fence instructions) Typically, fence instructions are substantially slower than reg-

ular instructions. The fence semantics requires ordering of memory operations before and

after the fence, resulting in the stalling of the processor, which is costly [63, 102]. Under

relaxed memory models, excessive use of fences will incur high overhead. In commercial

applications, frequent thread synchronizations can result in significant ordering delays due

to fence instructions [107]. For example, in [41], Frigo et al. observe that in an Intel multi-

processor, Cilk-5’s THE protocol spends half of its time executing a memory fence. As we

can see, memory ordering imposed by fence instructions can also hurt program performance.
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Although the underlying memory models or fence instructions require a set of

memory orderings should be enforced, they are not always necessary at runtime. If re-

ordering of two memory operations executed on one processor is not observed by any other

processor, then the reordering is safe as the program will behave the same as if they were

not reordered. Thus we observe that it is possible to relax some of memory orderings that

are in general required but are unnecessary in the current execution. In Fig. 1.3, all possible

memory orderings at runtime are represented by ALL, and a subset of them (REQUIRED)

are required orderings. However, only a smaller subset of them (NECESSARY) really need

to be enforced in a given execution, as enforcing them leads to the same program behavior

as if all memory orderings in REQUIRED are enforced. Therefore, we are able to relax

the memory orderings in the set (REQUIRED - NECESSARY). By doing so, more memory

operations can be reordered, reducing stalls and increasing performance. In fact, a vast

majority of memory orderings are unnecessary dynamically [49, 63, 102], which provides a

good opportunity to improve program performance.

ALL 
REQUIRED 

NECESSARY 

Figure 1.3: Venn diagram of memory orderings.

Fences can be utilized to enforce sequential consistency (SC) [64] for programs

running on machines only supporting relaxed memory consistency models. The naive way

to achieve this is by inserting a fence before each memory operation. Fig. 1.4 shows the
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Figure 1.4: Execution overhead of fences.

Benchmarks Total Necessary

barnes 83M 206

fmm 5M 223

ocean 9M 383

radiosity 30M 90

raytrace 44M 239

water-ns 9M 79

water-sp 7M 88

AVG. 28.8M 218

Figure 1.5: Necessary fences.

overhead due to fences for a group of benchmark programs taken from the SPLASH-2

[108] benchmark suite. The execution time is broken down into two parts: the stall time

due to fences (Fence stalls) and the rest of the execution time (Execution). As we can

see, these programs experience significant overhead due to fences (about 20% on average).

Although static analysis is able to reduce the number of inserted fences [95, 66, 39], the

overhead incurred by fences still accounts for a significant part of the overall execution time.

However, most of fence instances are unnecessary dynamically. To show this, we studied the

total number of fence instances encountered during execution and the number of necessary

fence instances. We say a fence instance F is necessary, if at runtime memory operations

across the fence F conflict with memory operations across a fence F ′ in another processor.

This is because, if the memory locations accessed by memory operations across the fence

F are not simultaneously accessed by other processors, then the fence is not necessary.

The results are shown in Fig. 1.5. As we can see, Column 2 shows the total number of

dynamic fence instances encountered in each program. Although they only account for a

small part of all instructions (∼1%), they induce relatively larger execution time overhead.

Column 3 shows the number of necessary fences. We can see that only very few fence

instances are necessary to effect to order memory operations across them. This is because
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(1) the execution of the program often already conforms to the effect that fences strive to

enforce; and (2) since fences are inserted conservatively, many dynamic fence instances are

unnecessary. Therefore, there are a great many opportunities for eliminating unnecessary

memory orderings.

The goal of this dissertation is to dynamically identify the necessary memory or-

derings and thus relax the rest of the required memory orderings. The challenge of achieving

this goal is to efficiently identify the necessary memory orderings. There has been a group

of hardware techniques that aim at eliminating unnecessary stalls due to memory order-

ing requirements [46, 87, 49, 48, 25, 16]. Although these techniques are able to achieve

good performance, the hardware complexity associated with aggressive speculation they

employ can hinder widespread adoption [3]. Many compiler techniques have also been pro-

posed to compute a set of memory access pairs whose ordering automatically guarantees

SC [39, 55, 59, 60, 66, 79, 80, 95, 98]. To ensure that these memory access pairs are not

reordered, memory fences are inserted by the compiler. The main issue with these compiler

techniques is performance overhead, as necessary memory orderings should be identified

conservatively, and thus insertion of fences can significantly slowdown the program. Be-

sides, combined HW/SW techniques [102, 63] have also been proposed to reduce memory

ordering overhead. However, they are only applicable to specific applications. This dis-

sertation is aimed at identifying minimal memory orderings without the above limitations,

by exploring programming, compiler, and hardware support for eliminating unnecessary

memory orderings to improve program performance.
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1.1 Dissertation Overview

This dissertation presents the following four approaches to efficient SC implemen-

tation and reducing fence overhead. The first approach is a hardware solution for imple-

menting SC efficiently. The remaining three approaches focus on reducing the overhead of

fence instructions. They represent different levels of support from programmer, compiler,

and hardware.

1.1.1 Sequential consistency

SC requires that memory operations appear to complete in program order. To

ensure this, prior SC implementations force memory operations to explicitly complete in

program order. However, is program ordering necessary for ensuring SC? Let us consider

the example in Fig. 1.6, which shows memory operations a1, a2, b1 and b2 from processors A

and B. (a1, b2) and (a2, b1) are two pairs of conflicting accesses. Furthermore, let us assume

that while memory operations b1 and b2 have completed, a1 and a2 are yet to complete.

Can a2 complete before a1 in an execution without breaking SC? Prior SC implementations

forbid this and force a2 to wait until a1 completes, either explicitly or using speculation.

We observe that a1 appears to complete before a2, as long as a2 is made to complete after

b1, with which a2 conflicts. In other words, a2 can complete before a1 without breaking SC,

as long as we ensure that a2 waits for b1 to complete. Indeed, if b1 and b2 have completed

before a1 and a2, the execution order b1 → b2 → a2 → a1 is equivalent to the original SC

order b1 → b2 → a1 → a2 as the values read in the two executions are identical.

This dissertation presents conflict ordering for implementing SC efficiently, where

SC is enforced by explicitly ordering only conflicting memory operations. Conflict ordering
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Figure 1.6: A motivating example for conflict ordering.

allows a memory operation to complete, as long as all conflicting memory operations prior

to it in the global memory order have completed, instead of all memory operations. The

approach can achieve SC performance comparable to RMO (relaxed memory order), without

aggressive post-retirement speculation.

1.1.2 Fence instructions

This dissertation also explores compiler, programming, and hardware support for

reducing memory orderings due to fences. The proposed techniques are programming, com-

piler, and hardware directed approaches to help hardware eliminate unnecessary memory

orderings, respectively. Table 1.1 compares the proposed approaches in terms of their pro-

gramming support, compiler complexity, hardware complexity, and expected precision to

identify unnecessary memory orderings.

Programming Compiler Hardware
Precision

Support Complexity Complexity

Programming Directed yes medium low medium

Compiler Directed none high medium medium

Hardware Directed none none high high

Table 1.1: Trade-offs of solutions for eliminating fence overhead.
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Programming Directed Approach

Traditional fence instructions order memory operations without being aware of

programmer’s intention. In practice, programmers typically use fence instructions to en-

sure ordering of specific memory operations, while others do not have to be ordered. One

common application of such ordering demands can be found in the design of concurrent

lock-free algorithms/data structures, which are widely used in multithreaded programming.

In these algorithms, fence instructions and atomic instructions are required to ensure cor-

rectness when they are executed under relaxed memory models. Programs using concurrent

algorithms usually exhibit the pattern shown in Fig. 1.7. Such programs repeatedly access

shared data controlled by concurrent algorithms and then process the accessed data. The

fences in the concurrent algorithms are only supposed to guarantee the correct concurrent

accesses to shared data, without being aware of how the accessed data is processed after-

wards. However, due to their semantics, traditional fences also order memory operations

which belong to the code that processes the data. That is, if long latency memory accesses

are encountered during processing of data, the fences in the concurrent algorithms have to

wait for them to complete, incurring unnecessary stalling at fences. To prevent this, we

need mechanisms to differentiate memory operations that must be ordered by a fence from

the rest of memory operations.

Process Data 

             

Control 

  Data 

Access 
      

Concurrent algo. 

Figure 1.7: A common data access pattern.
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This dissertation presents the concept of fence scope which constrains the effect

of fences in programs. We call such a fence as scoped fence, S-Fence for short. S-Fence

only orders memory operations in its scope, without being aware of memory operations

beyond the scope. S-Fence enables programmers to specify the scope of fences using a

customizable fence statement. Such scope information is encoded into binaries and conveyed

to hardware. At runtime, hardware utilizes the scope information to determine whether a

fence needs to stall due to uncompleted memory operations in the scope. S-Fence bridges the

gap between programmers’ intention and hardware execution with respect to the memory

ordering enforced by fences.

S-Fence involves the programmer in helping hardware dynamically eliminate part

of memory orderings in (REQUIRED - NECESSARY) (Fig. 1.3). Programmer can easily

specify the fence scope using the provided programming support; compiler encodes scope

information in the binary, which is straightforward; and the modification to hardware is

simple, without requiring inter-processor communication. S-Fence does not order memory

operations beyond the scope; however, it still has to order all memory operations in the

scope, where some memory orderings may be unnecessary.

Compiler Directed Approach

We make the observation that the ordering of memory accesses that memory fences

strive to enforce, is often already enforced in the normal course of program execution; this

obviates the need for memory fences most of the time. For instance, consider the scenario

shown in Fig. 1.8, in which the two requests for critical section are staggered in time. In

particular, by the time processor P1 tries to enter the critical section, the update to flag0 by
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P0 P1

1 flag0 = 1
2 FENCE

3 if ( flag1 == 0)
4 critical section

/* update of flag0 completes*/

t

5 flag1 = 1
6 FENCE

7 if ( flag0 == 0)
8 critical section

Figure 1.8: Scenario in which memory ordering is not necessary.

processor P0 has already completed. Clearly, under this scenario, memory accesses to flag0

(Line 1) and flag1 (Line 3) need not be ordered by the fence. Let us call the fences in Line

2 and Line 6 as associates, as they are used to order the same pair of conflicting accesses

to flag0 and flag1. Intuitively, for each fence, as long as its associates are far away from

it at runtime, we can safely execute past the fence. Furthermore, the study conducted on

SPLASH-2 [108] programs with compiler-inserted memory fences shows that this is indeed

the common case; on account of the conflicting accesses typically being staggered, only 8%

of the executed instances of the memory fences are really needed.

This dissertation presents the conditional fence (C-Fence) mechanism, which uti-

lizes compiler information to dynamically decide if there is a need to stall at each fence. The

compiler helps to identify fence associates and incorporate this information in a C-Fence

instruction. At runtime, to decide whether a fence can be dynamically eliminated, the

hardware uses the compiler information to check if there is any associate that is executing.

While traditional fence imposes intraprocessor delays between memory operations before

and after the fence, C-Fence imposes interprocessor delays between fence associates, which

incurs much less overhead.
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C-Fence utilizes compiler information to help hardware dynamically eliminate sub-

set of memory orderings in (REQUIRED - NECESSARY) (Fig. 1.3). It does not require

programming effort, and the hardware cost is lightweight. C-Fence works as long as the

compiler can provide fence associate information. On the other hand, since C-Fence relies

on compiler to statically identify associate information, it is conservative, and thus it only

eliminates subset of unnecessary memory orderings.

Hardware Directed Approach

C-Fence and S-Fence are only able to eliminate a subset of unnecessary memory

orderings due to fences. Fig. 1.9 shows several scenarios where unnecessary fences are not

eliminated by either C-Fence or S-Fence. The example in Fig. 1.9(a) contains a conditional

branch. Fence instructions are inserted to ensure that memory accesses to shared variables

x and y are ordered properly. However, if at runtime the condition in Proc 1 evaluates to

false, and hence a1 is not executed, then the shared variable x is not accessed concurrently

by multiple processors. As a result, the fence instance is not necessary to effect the order of

memory accesses of x and y. In Fig. 1.9(b), there are two pointers p and q pointing to some

field of a shared object (e.g., a hash table [86]) respectively – since they may point to the

same field, fence instructions are inserted. However, at runtime, if they point to different

fields of the shared object, i.e., a1 and b2 do not access the same field concurrently, then

the fence instances are not necessary. Finally, in Fig. 1.9(c), FENCE2 orders both b1 → b2

and b1 → b3. However, if z is not accessed in any other processor concurrently, b2 need not

be delayed and hence can be reordered across the fence. Thus, even though the instance

of FENCE2 is necessary, b2 need not be delayed. Moreover, C-Fence and S-Fence require
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programming/compiler support to help hardware detect unnecessary memory orderings.

However, when there is no source code available, they cannot be applied; and performing

interprocedural alias analysis in compiler is complex and conservative.

Figure 1.9: Unnecessary fence instances at runtime.

This dissertation presents address-aware fence mechanism, a hardware mechanism

to eliminate stalling at unnecessary fence executions without resorting to speculation. Un-

like a traditional fence which is processor-centric, an address-aware fence collects memory

access information from other processors to decide whether it should effect the stalling of

following memory accesses. In particular, an address-aware fence instance has an associated

watchlist, which contains memory addresses that should not be accessed by the memory ac-

cesses following the fence. The completion of a memory access following the fence is allowed

if its memory address is not contained in the watchlist, appearing as if the fence does not

take effect. Otherwise, the memory access is delayed to ensure correctness. Therefore this

approach effectively reduces overhead of fences whenever possible.

Address-aware fence eliminates memory orderings in (REQUIRED - NECESSARY)

(Fig. 1.3) without the help from compiler or programmer. It is implemented in the mi-

croarchitecture without instruction set support and is transparent to programmers. Fence

instructions in the executable are identified at runtime and processed by the hardware.
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Address-aware fence has the highest precision, eliminating nearly all possible unnecessary

memory orderings due to fences.

1.2 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 describes conflict

ordering, a hardware approach for efficient SC implementation. Chapter 3, Chapter 4 and

Chapter 5 present scoped fence, conditional fence, and address-aware fence, respectively.

Related work is given in Chapter 6. Chapter 7 summarizes the contributions of this disser-

tation and identifies directions for future work.

15



Chapter 2

Efficient Sequential Consistency

via Conflict Ordering

Among various memory consistency models, the sequential consistency (SC) model

in which memory operations appear to take place in the order specified by the program is

most intuitive to programmers. Indeed, most works on semantics and software checking

that strive to make concurrent programming easier assume SC [94]; several debugging tools

for parallel programs, e.g. RaceFuzzer [93], also assume SC. In spite of the advantages of

the SC model, processor designers typically choose to support relaxed consistency models;

none of the Intel, AMD, ARM, Itanium, SPARC, or PowerPC processor families choose to

support SC. This is because SC requires reads and writes to be ordered in program order,

which can cause significant performance overhead. Indeed, SC requires the enforcement of

all four possible program orderings: r → r, r → w, w → w, w → r, where r denotes a read

operation and w denotes a write operation. Prior hardware SC implementations enforce

SC by forcing memory operations to explicitly complete in program order, which are not
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able to hide some kinds of stalls due to memory ordering requirements or require aggressive

hardware speculation.

This chapter presents conflict ordering for implementing SC efficiently, where SC

is enforced by explicitly ordering only conflicting memory operations. Conflict ordering

allows a memory operation to complete, as long as all conflicting memory operations prior

to it in the global memory order have completed, instead of all memory operations. The

approach can achieve SC performance comparable to RMO (relaxed memory order), without

post-retirement speculation.

2.1 Background

In program ordering based SC implementations, the hardware directly ensures all

four possible program ordering constraints [16, 46, 48, 49, 87]; they are based on the seminal

work by Scheurich and Dubois [92], in which they state the sufficient conditions for SC for

general systems with caches and interconnection networks.

(Naive) A naive way to enforce program ordering between a pair of memory oper-

ations is to delay the second until the first fully completes. However, this can result in a

significant number of memory ordering stalls; for instance, if the first access is a miss, then

the second access has to wait until the miss is serviced.

(In-window speculation) Out-of-order processing capabilities of a modern processor

can be leveraged to reduce some of these stalls. This is based on the observation that

memory operations can be freely reordered as long as the reordering is not observed by

other processors. Instead of waiting for an earlier memory operation to complete, the

processor can use hardware prefetching and speculation to execute memory operations out
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of order, while still completing in order [46, 109]. However, such reordering is within the

instruction window, where the instruction window refers to the set of instructions that are in-

flight. If the processor receives an external coherence (or replacement) request for a memory

operation that has executed out of order, the processor’s recovery mechanism is triggered to

redo computation starting from that memory operation. Nonetheless, enforcing the w → r

(and w → w) order necessitates that the write-buffer is drained before a subsequent memory

operation can be completed. Thus, a high latency write can still cause significant program

ordering stalls, which in-window speculation is unable to hide. The experiments with the

SPLASH-2 programs show that programs spend more than 20% of their execution time on

average waiting for the write buffer to be drained. For this work, we assume in-window

speculation support as part of baseline implementations of SC as well as fences in RMO.

(Post-retirement speculation) Since in-window speculation is not sufficiently able to

reduce program ordering stalls, researchers have proposed more aggressive speculative mem-

ory reordering techniques [16, 25, 26, 42, 48, 49, 50, 87, 107]. The key idea is to speculatively

retire instructions neglecting program ordering constraints while maintaining the state of

speculatively-retired instructions separately. One way to do this is to maintain the state of

speculatively-retired instructions at a fine granularity, which enables precise recovery from

misspeculations [48, 49, 87]. This obviates the need for a load to wait until the write buffer is

drained and is made to retire speculatively. More recently, researchers have proposed chunk

based techniques [16, 25, 26, 42, 50, 107] which again use aggressive speculation to efficiently

enforce SC at the granularity of coarse-grained chunks of instructions instead of individual

instructions. While the above approaches show much promise, hardware complexity asso-

ciated with aggressive speculation, being contrary to the design philosophy of multi-cores
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consisting of simple energy-efficient cores [1, 2], can hinder wide-spread adoption. Through

this chapter, we seek to show that a lightweight SC implementation is possible without

sacrificing performance.

2.2 SC via Conflict Ordering

This section first informally describes the approach of enforcing SC using conflict

ordering, and then formally proves that conflict ordering correctly enforces SC.

2.2.1 Conflict ordering

SC requires memory operations of all processors to appear to perform in some

global memory order, such that, memory operations of each processor appear in this global

memory order in the order specified by the program [64]. Prior SC implementations ensure

this by enforcing program ordering by explicitly completing memory operations in program

order. More specifically, if m1 and m2 are two memory operations with m1 preceding m2 in

the program order, prior SC implementations ensure m1 → m2 by allowing m2 to complete

only after m1 completes (either explicitly or using speculation); in effect, m2 is made to

wait until m1 and all of m1’s predecessors in the global memory order have completed. In

other words, if pred(m1) refers to m1 and its predecessors in the global memory order, m2

is allowed to complete only when all memory operations from pred(m1) have completed.

While enforcing program ordering is a sufficient condition for ensuring SC [92], it is

not a necessary condition [43, 95]. This chapter presents conflict ordering, a novel approach

to SC, in which SC is enforced by explicitly ordering only conflicting memory operations.

Conflict ordering allows a memory operation to complete, as long as all conflicting memory
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operations prior to it in the global memory order have completed. More specifically, let m1

and m2 be consecutive memory operations; furthermore let pred(m1) refer to memory oper-

ations that include m1 and those before m1 in the global memory order. Conflict ordering

allows m2 to safely complete as long as those memory operations from pred(m1), which

conflict with m2, have completed. It is worth noting that the above condition generally

evaluates to true, since in well-written parallel programs conflicting accesses are relatively

rare and staggered in time [49]. For example, in the scenario shown in Fig. 1.6, a1 appears

to complete before a2, as long as a2 is made to complete after b1, with which a2 conflicts.

In other words, a2 can complete before a1 without breaking SC, as long as we ensure that

a2 waits for b1 to complete.

2.2.2 Proof of correctness

We prove that conflict ordering enforces SC using the formalism of Shasha and

Snir [95]. For the following discussion, we assume an invalidation based cache coherence

protocol for processors with private caches. A read operation is said to complete when the

returned value is bound and can not be updated by other writes; a write operation is said

to complete when the write invalidates all cached copies, and the generated invalidates are

acknowledged [46]. Furthermore, we assume that the coherence protocol serializes writes to

the same location and also ensures that the value of a write not be returned by a read until

the write completes – in other words, we assume that the coherence protocol ensures write

atomicity [4].

Definition 1. The program order P is a local (per-processor) total order which specifies

the order in which the memory operations appear in the program. That is, m1Pm2 iff the

memory operation m1 occurs before m2 in the program.
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Definition 2. The conflict relation C is a symmetric relation on M (all memory opera-

tions) that relates two memory operations (of which one is a write) which access the same

address.

Definition 3. An execution E (or execution order or conflict order) is an orientation of

C. If m1Cm2, then either m1Em2 or m2Em1 holds.

Definition 4. An execution E is said to be atomic, iff E is a proper orientation of C, that

is, iff E is acyclic.

Definition 5. An execution E is said to be sequentially consistent, iff E is consistent with

the program order P, that is, iff P ∪ E has no cycles.

Definition 6. The global memory order G is the transitive closure of the program order

and the execution order, G = (P ∪ E)+.

Remark. In the scenario shown in Fig. 1.6, b1 appears before a1 in the global memory order,

since b1 appears before b2 in program order, and b2 is ordered before a1 in the execution

order. That is, b1Ga1 since b1Pb2 and b2Ea1.

Definition 7. The function pred(m) returns a set of memory operations that appear before

m in the global memory order G, including m. That is, pred(m) = {m} ∪ {m′ : m′Gm}.

Definition 8. An SC implementation constrains the execution by enforcing certain condi-

tions under which a memory operation can be completed. An SC implementation is said to

be correct if it is guaranteed to generate an execution that is sequentially consistent.

Definition 9. Conflict ordering is the proposed SC implementation in which a memory

operation m2 (whose immediate predecessor in program order is m1) is allowed to complete
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iff those memory operations from pred(m1) which conflict with m2 have completed. That

is, m2 is allowed to complete iff {m ∈ pred(m1) : mCm2} have already completed.

Figure 2.1: Conflict ordering ensures SC.

Lemma 1. Any execution E (Definition 3) is atomic.

Proof. Let w and r with a subscript be a write operation and a read operation. Write-

serialization ensures that w1Ew2 iff w1 completes before w2; furthermore, w1Ew2 and

w2Ew3 result in w1Ew3. Write-atomicity also ensures that w1Er2 iff w1 completes be-

fore r2. Since reads are atomic, r1Ew2 iff r1 completes before w2. Furthermore, w1Er2 and

r2Ew3 result in w1Ew3. Thus, E is acyclic; therefore, from Definition 4, E is atomic.

Theorem 1. Conflict ordering is correct.

Proof. We need to prove that any execution E generated by conflict ordering is sequentially

consistent. That is, to prove that the graph P ∪ E is acyclic (from Definition 5). Let

us attempt a proof by contradiction, and assume that there is a cycle in P ∪ E. Since E

is acyclic (from Lemma 1), the assumed cycle should contain at least one program order

edge. Without loss of generality, let us assume that the program order edge that contains a

cycle is m1Pm2 as shown in Fig. 2.1. To complete the cycle, there must be a conflict order
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edge m2Em, where m ∈ pred(m1). Conflict ordering, however, ensures that those memory

operations from pred(m1), which conflict with m2 would have completed before m2 (from

Definition 9). Since m ∈ pred(m1), m would have completed before m2. Thus, the conflict

order edge m2Em is not possible, which results in a contradiction. Thus, conflict ordering

is correct.

2.3 Basic Hardware Design

This section describes the hardware design that incorporates conflict ordering to

enforce SC efficiently. For the basic design, all memory operations will have to check

for conflicts before they can complete. In the next section, an enhanced design will be

described, where we can determine phases in program execution where memory operations

can complete without checking for conflicts.

(System Model) For the following discussion we assume a tiled chip multiprocessor,

with each tile consisting of a processor, a local L1 cache and a single bank of the shared

L2 cache. We assume that the local L1 caches are kept coherent using a directory based

cache coherence protocol, with the directory distributed over the L2 cache. We assume

that addresses are distributed across the directory at a page granularity using the first

touch policy. We assume a directory protocol in which the requester notifies the directory

on transaction completion, so each coherence transaction can have a maximum of four

steps. Thus, each coherence transaction remains active in the directory until the time at

which it receives the notification of transaction completion. Furthermore, we assume that

the cache coherence protocol provides write atomicity. We assume each processor core to

be a dynamically scheduled ILP processor with a reorder buffer (ROB) which supports
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in-window speculation. All instructions, except memory writes, are made to complete in

program order, as and when they retire from the ROB. Writes on the other hand, are made

to retire into the write-buffer, so that the processor need not wait for them to complete.

Finally, it is worth noting that conflict ordering is also applicable to bus based coherence

protocols; indeed, we report experimental results for both bus based and directory based

protocols.

2.3.1 Basic conflict ordering

We next describe the conflict ordering implementation which allows memory op-

erations (both reads and writes) to complete past pending writes, while ensuring SC; it

is worth noting, however, that the system model does not allow memory operations to

complete past pending reads. Recall that conflict ordering allows a memory operation m2,

whose immediate predecessor is m1, to complete as long as m2 does not conflict with those

memory operations from pred(m1) which are pending completion – let us call such pending

operations as predp(m1). Thus, for m2 to safely complete, we need to be sure that m2 does

not conflict with any of the memory operations from predp(m1). Alternatively, if addrp(m1)

refers to the set of addresses accessed by memory operations from predp(m1), we can safely

allow m2 to complete if its address is not contained in addrp(m1). The challenge is to

determine addrp(m1) as quickly as possibly – and in particular without waiting for m1 to

complete. Next, we show how we compute addrp(m1) for a write-miss, cache-hit, and a

read-miss respectively.

(Write-misses) Our key idea for determining addrp(m1) for a write-miss m1 is to simply

get this information from the directory. We show that those memory operations from
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predp(m1), if any, would be present in the directory (as pending memory operations that

are currently being serviced in the directory), provided write-misses such as m1 are issued

to the directory, before subsequent memory operations are allowed to complete. In other

words, if addr-list refers to the set of addresses of the cache misses being serviced in the

directory, addrp(m1) would surely be contained in addr-list. In addition to this, since the

system model does not allow memory operations to complete past pending reads, we are

able to show that addrp(m1) would surely be contained in write-list – where write-list

refers to the set of memory addresses of the write-misses being serviced in the directory.

Consequently, when the write-miss m1 is issued to the directory, the directory replies back

with the write-list, containing the addresses of the write-misses which are currently being

serviced by the directory (to minimize network traffic we safely approximate the write-list

by using a bloom filter). A subsequent memory operation m2 is allowed to complete, only if

m2 does not conflict with any of the writes from the write-list. If m2 does conflict, then the

local cache block m2 maps to is invalidated, and the memory operation m2 and its following

instructions are replayed when necessary. During replay, m2 would turn out to be a cache

miss and hence the miss request would be sent to the directory. This would ensure that m2

would be ordered after its conflicting write that was pending in the directory. It is worth

noting that memory operations that follow a pending write, will now need to wait only until

the write is issued to the directory and get a reply back from the directory, as opposed to

waiting for the write-miss to complete. While the former takes as much time as the round

trip latency to the directory, the latter can take a significantly longer time – since it may

involve the time taken to invalidate all shared copies, and also access memory if it is a miss.
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Figure 2.2: predp(b1) = {b1} ∪ predp(b0) ∪ predp(a1).

(Cache-hits) Fig. 2.2 shows how predp(b1) relates to predp(b0), where b0 is the immediate

predecessor of b1 in the program order, and a1 is the immediate predecessor of b1 in the

conflict order. As we can see, predp(b1) = {b1} ∪ predp(b0) ∪ predp(a1); this is because the

global memory order is the union of the program order and the conflict order. If, however,

b1 is a cache hit, then its immediate predecessor in the conflict order must have completed

and hence cannot be pending; if it were pending, b1 would become a cache-miss. Thus

predp(b1) = {b1} ∪ predp(b0). Since memory operations that follow a cache-hit are allowed

to complete only after the cache hit completes, predp(b1) remains the same as predp(b0).

Consequently, addrp(b1) remains the same as addrp(b0) and thus, the write-list for a cache-

hit need not be computed afresh.

(Read-misses) One important consequence of completing memory operations past pending

writes is that, when a read-miss completes, there might be writes before it in the global

memory order that are still pending. As shown in Fig. 2.3(a), if b2 is allowed to complete

before b1, b1 might still be pending when a1 completes. Now, conflict ordering mandates

that memory operations that follow a1 can complete, only when they do not conflict with

predp(a1). To enable this check, read-misses are also made to consult the directory and

determine the write-list. Accordingly, when read-miss a1 consults the directory, it fetches

the write-list and replies to the processor. Having obtained the write-list, a2 which does
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Figure 2.3: Basic conflict ordering: Example.

not conflict with memory operations from the write-list, is allowed to complete. Memory

operation a3, since it conflicts, is replayed obtaining its value from b1 via the directory.

2.3.2 Handling distributed directories

To avoid a single point of contention, directories are typically distributed across

the tiles, with the directory placement policy deciding the mapping from the address to the

corresponding home directory; we assume the first touch directory placement policy. With

a distributed directory, a write-miss (or a read-miss) m1 is issued to its home directory and

can only obtain the list of pending writes from that directory. This means that a memory

operation m2 that follows m1 can use the write-list to check for conflicts only if m2 maps to

the same home directory as m1. If m2 does not map to the same home node as m1, then m2

will have to be conservatively assumed to be conflicting. Consequently m2 will have to go

to its own home directory to ensure that it does not conflict. If it does not conflict, then m2

can simply commit like a cache hit; otherwise, it is treated like a miss and replayed. When
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m2 goes to its home directory to check for conflicts, we take this opportunity to fetch the

write-list from m2’s home directory, so that future accesses to the same node can check for

conflicts locally. To accommodate this, the local processor has multiple write-list registers

which are tagged by the tile id.

The scenario shown in Fig. 2.3(b) illustrates this. Let us assume that the variable

X maps to Node 1, while variables Z, W and Y map to Node 2. Note that the processor

also has two write-list registers. When a1 is issued to its directory, it returns the pending

write-misses from Node 1. Consequently, this is put into one of the write-list register which

is tagged with the id of Node 1. The contents of the other write-registers are invalidated

as they might contain out-of-date data. When a2 tries to commit, the tags of the write-list

registers are checked to see if any of the write-list registers is tagged with the id of Node 2,

which is the home node for a2. Since none of the write-list registers have the contents of

Node 2, a2 is sent to its home directory (Node 2) to check for conflicts. After ensuring that

a2 does not conflict, the pending stores of the home directory (from Node 2) are returned

and inserted into the write-list register. This allows us to commit a3 which maps to the

same node. Likewise, when a4 tries to commit, it is found to be conflicting and hence

replayed.

Although the distributed directory could potentially reduce the number of mem-

ory operations that can complete past pending writes, the experiments show that, due to

locality, most of the nearby accesses tend to map to the same home node, which allows us

to complete most memory operations past pending writes.
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2.3.3 Correctness

The correctness of conflict ordering implementation hinges on the fact that when

a cache-miss m1 is issued to the directory, the write-list returned by the directory is cor-

rect; that is, the write-list should include addrp(m1), the addresses of all pending memory

operations that occur before m1 in the global memory order. We prove this formally, next.

Figure 2.4: Correctness of conflict ordering implementation: m2 cannot be a read in each
of the 3 scenarios.

Lemma 2. When a cache-miss m1 is issued to the directory, all pending memory operations

prior to it in the global memory order must be present in the directory . That is, when m1

is issued to the directory, {m : mGm1} must be present in the directory.

Proof. (1) m1 is a write-miss. When m1 is issued to the directory, conflict ordering ensures

that all pending memory operations prior to m1 in the program order have been issued to

the directory. (2) m1 is a read-miss. m1 is issued to the directory to fetch the write-list only

when it is retired, and all memory operations prior to it have in turn been issued. Thus,

whether m1 is a write-miss or a read-miss, when m1 is issued to the directory, {m : mPm1}

must be present in the directory. Likewise, when m1 is issued to the directory all memory

operations prior to m1 in the conflict order, {m : mEm1} must have been issued to the

directory. Thus, when m1 is issued to the directory, {m : mGm1} is in the directory.
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Lemma 3. When a read-miss m1 is issued to the directory (to obtain the write-list), none

of the pending memory operations prior to it in the global memory order are read-misses.

Proof. Let us attempt a proof by contradiction and assume that such a pending read-miss

exists. Let m2 be the assumed read-miss such that m2 ∈ predp(m1). Now the read-miss m2

cannot occur before m1 in the program order, as all such read-misses would have retired

and hence cannot be pending. m2 cannot occur before m1 in the conflict order, as two reads

do not conflict with each other. Thus, the only possibility is as shown in Fig. 2.4(a), where

there is a write-miss m3 such that m2Pm3 and m3Em1 (without loss of generality). This

again, however, is impossible since the write m3 will be issued only after all reads before it

(including m2) complete.

Lemma 4. When a write-miss m1 is issued to the directory, all pending read-misses prior

to it in the global memory order, conflict with m1.

Proof. As shown in Fig. 2.4(b), it is possible that there exists m3, a read-miss, such that

m3Gm1 since m3Em1. There cannot be, however, any read-miss m2 such that m2Gm1

with m2 not conflicting with m1. Proof is by contradiction, along similar lines to Lemma 3

(m2 in Fig. 2.4 (b) and Fig. 2.4 (c) cannot be reads).

Theorem 2. When a cache-miss m1 is issued to the directory, the write-list returned will

contain addrp(m1), the addresses of all pending memory operations that occur before m1 in

the global memory order.

Proof. When a cache-miss m1 is issued to the directory, the addresses of the memory op-

erations serviced in the directory (addr-list) will contain addrp(m1) (from Lemma 2). All
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pending read-misses which occur before m1 in the global memory order, if any, would con-

flict with m1 and hence access the same address as m1. (from Lemma 3 and Lemma 4).

Thus, the write-list is guaranteed to contain addrp(m1).

2.4 Enhanced Hardware Design

This section describes the enhanced conflict ordering design, in which we identify

phases in program execution where memory operations can complete without checking for

conflicts. But first, we discuss the limitations of basic conflict ordering, to motivate the

enhanced design.

Figure 2.5: (a) and (b): Limitations of basic conflict ordering; (c) and (d): Enhanced
conflict ordering.

2.4.1 Limitations of basic conflict ordering

We illustrate the limitations of basic conflict ordering with the examples shown

in Fig. 2.5(a) and (b). As we can see, in Fig. 2.5(a), the write-miss a1 estimates predp(a1)

by consulting the directory and obtaining the write-list. All memory operations that follow

the pending write-miss a1 need to be checked with the write-list for a conflict, before they

can complete. It is important to note that even after a1 completes, memory operations
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following a1 will still have to be checked for conflicts. This is because b1, which precedes

a1 in the global memory order, could still be pending when a1 completes. In other words,

the completion of the store a1 is no longer an indicator of all memory operations belonging

to pred(a1) completing. Thus, in basic conflict ordering, all memory operations that follow

a write miss (or a read miss) need to be continually checked for conflicts before they can

safely complete.

Another limitation stems from the fact that a read-miss (or a write-miss) conserva-

tively estimates its predecessors in the global memory order by accessing the directory. Let

us consider the scenario shown in Fig. 2.5(b), in which the read-miss a1 estimates predp(a1)

from the directory. However, if b2 and a1 are sufficiently staggered in time, which is com-

mon [102], then memory operations belonging to pred(b2) (including b1) might have already

completed by the time a1 is issued. In such a case, there is no need for a1 to compute its

write list; indeed, memory operations such as a2 can be safely completed past a1.

2.4.2 Enhanced conflict ordering

(HW support and operation) The approach is to keep track of the (local) memory

operations that have retired from the ROB, but whose predecessors in the global memory

order are still pending. We call such memory operations as active and we track such memory

operations in a per-processor augmented write buffer (AWB). The AWB is like a normal

write-buffer, in that, it buffers write-misses; unlike a conventional write-buffer, however, it

also buffers the addresses of other memory operations (including read-misses, read-hits and

write-hits) that are active. Therefore, an empty AWB indicates an executing phase in which

all preceding memory operations in the global memory order have completed; this allows
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us to complete succeeding memory operations without checking for conflicts. To reduce the

space used by AWB, the consecutive cache hits to the same block are merged.

We now explain how we keep track of active memory operations in the AWB.

A write-miss that retires from the ROB is marked active by inserting it into the AWB,

as usual. The write-miss, however, is not necessarily removed from the AWB (i.e. marked

inactive) when it completes; we will shortly explain the conditions under which a write-miss

is removed from the AWB.

A memory operation which retires from the ROB while the AWB is non-empty is

active by definition. Consequently, a cache hit which retires while the AWB is non-empty is

marked active by inserting its cache block address into the AWB; it is subsequently removed

when the memory operation becomes inactive – i.e., when all prior entries in the AWB have

been removed.

A cache miss which retires while the AWB is non-empty, like a cache hit, is marked

active by inserting its cache block address into the AWB. However, unlike a cache hit, its

block address is not necessarily removed when all prior entries in the AWB have been re-

moved. Indeed, a cache miss remains active, and hence its cache block address remains

buffered in the AWB, until its predecessors in the conflict order become inactive. Accord-

ingly, even if a write-miss completes, it remains buffered in the AWB until all the cache

blocks that it invalidates turn inactive. Likewise, a read-miss that completes is inserted

into the AWB, if it gets its value from a cache block that is marked active. Here, a cache

block is said to be active if the corresponding cache block address is buffered in the AWB,

and inactive otherwise.
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Thus, to precisely keep track of cache misses that are active, we need to somehow

infer whether its predecessors in the conflict order are active. We implement this by tagging

coherence messages as active or inactive. When a processor receives a coherence request

for a cache block, we check the AWB to see if it is marked active. If it is marked active,

the processor responds to this coherence request with a coherence response that is tagged

active. This would enable the recipient (cache miss) to infer that the coherence response is

from an active memory operation. At the same time, when a processor receives a coherence

request to an active cache block, it is buffered; when the cache block eventually becomes

inactive, we again respond to the buffered coherence request with a coherence response that

is tagged inactive. This would enable the recipient (cache miss) to infer that the response

is from a block that has transitioned to inactive. A cache miss, when it receives a coherence

response, is allowed to complete irrespective of whether it receives an active or an inactive

coherence response; however, it remains active (and hence buffered in the AWB) until it

gets an inactive response. Finally, by not allowing an active cache block to be replaced, we

ensure that if a cache miss has predecessors in the conflict order, it will surely be exposed

via the tagged coherence messages.

(Write-miss: Example) We now explain the operation with the scenario shown in Fig. 2.5(c)

which addresses the limitation shown in Fig. 2.5(a). First, the write-miss b1 is issued from

the ROB of processor B and is inserted into the AWB (step 1), after which the read-hit b2

is made to complete past it. Since, the AWB is non-empty when b2 completes, b2 is marked

active by inserting the cache block address X into the AWB (step 2). Then, write-miss a1 to

same address X is issued in processor A, inserted into the AWB, and issued to the directory

(step 3). The directory then services this write-miss request, sending an invalidation request

34



for cache block address X to processor B. Since cache block address X is active in processor

B (cache block address X is buffered in processor B’s AWB), processor B sends an active

invalidation acknowledgement back to processor A (step 4); at the same time, processor

B buffers the invalidation request so that it would be able to respond again when cache

block address X eventually becomes inactive. When processor A receives the invalidation

acknowledgement, a1 completes (step 5), and so it sends a completion acknowledgement to

the directory. It is worth noting that a1 has completed at this point, but is still active and

hence is still buffered in processor A’s AWB. Let us assume that b1 completes at step 6;

furthermore let us assume that at this point all the predecessors of b1 in the global memory

order have also completed – in other words, b1 has becomes inactive. Since b1 has become

inactive, cache block address Y is removed from the AWB. This, in turn, causes b2 (cache

block address X) to be removed from the AWB, because all those entries that preceded

b2 (including b1) have been removed from the AWB. Since cache block address X has

become inactive, processor B again responds to the buffered invalidation request by sending

an inactive invalidation acknowledgement to processor A. When processor A receives this

inactive acknowledgement, the recipient a1 is made inactive and hence removed from the

AWB (step 7). This will allow succeeding memory operations like a2 to safely complete

without checking for conflicts (step 8).

(Read-miss: Example) Fig. 2.5(d) addresses the limitation shown in Fig. 2.5(b). First, the

write-miss b1 is issued and made active by inserting it into the AWB (step 1). Then, the

write-hit b2 which completes past it is made active by inserting address X into the AWB

(step 2). Let us assume that b1 then completes, and also becomes inactive (step 3). This

causes b1 to be removed from the AWB, which in turn causes b2 (cache block address X) to
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be removed. When the read-miss a1 is issued to the directory (step 4), it sends a data value

request for address X to processor B. Since the cached block address X is inactive, processor

B responds with an inactive data value reply to processor A (step 5). Upon receiving this

value reply, a1 completes. Furthermore, since the reply is inactive, it indicates that all the

predecessors of a1 in the conflict order have completed. Thus, the write-list is not computed

and a1 is not inserted into the AWB. Indeed when a2 is issued (step 8), assuming the AWB

is empty, it can safely be completed.

(Misses to uncached blocks) When a cache-miss is issued to the directory and it

is found to be uncached in each of the other processors, this indicates that the particular

cache block is inactive in each of the other processors. This is because an active block is

not allowed to be replaced from the local cache. This allows us to handle a miss to an

uncached block similar to a cache hit, in that, we do not need to compute a new write-list

for such misses. Indeed, if there are no other pending entries in the AWB, then memory

operations that come after a miss to an uncached block can be completed without checking

for conflicts. It is worth noting that misses to local variables, which account for a significant

percentage of misses, would be uncached in other processors. This optimization would allow

us to freely complete memory operations past such local misses.

(Avoiding AWB snoops) In the above design, all coherence requests and replacement

requests must snoop the AWB first to see if the corresponding cache block is marked active.

To avoid this, we associate an active bit with every cache block; the active bit is set whenever

the corresponding cache block address is inserted into the AWB and reset, whenever the

cache block address is not contained in the AWB.
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(Deadlock-freedom) Deadlock-freedom is guaranteed because memory operations

that have been marked active will eventually become inactive. It is worth recalling that a

memory operation becomes inactive when all its predecessors in the global memory order

in turn become inactive. In theory, since conflict ordering guarantees SC, there cannot be

any cycles in the global memory order, which ensures deadlock-freedom. The fact that an

active cache block is not allowed to be replaced, however, can potentially cause the following

subtle deadlock scenario. In this scenario, an earlier write-miss is not allowed to bring its

cache block into its local cache, since all the cache blocks in its set have been marked

active by later memory operations which have completed. In such a scenario, the later

memory operations that have completed are marked active, and are waiting for the earlier

write-miss to turn inactive; the earlier write-miss, however, cannot complete (and become

inactive), since it is waiting for the later memory operations to turn inactive. We avoid

such a scenario by forcing a write-miss to invalidate the cache block chosen for replacement

and set its active bit, before the write-miss is issued to the directory. This will ensure that

later memory operations which complete before the write-miss will not be able to use the

same cache block used by the write-miss, as this cache block has been marked active by the

write-miss. Thus, the deadlock is prevented.

2.4.3 Hardware summary

(Hardware support) Fig. 2.6 summarizes the hardware support required by conflict

ordering. First, each processor core is associated with a set of write-list registers. Second,

each processor core is associated with an augmented write buffer (AWB), which replaces a

conventional write-buffer. Like a conventional write-buffer, each entry of the AWB is tagged
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Figure 2.6: Hardware support: conflict ordering.

by the cache block address; unlike a conventional write buffer, however, it also buffers read-

misses, read-hits and write-hits. To distinguish write-misses from other memory operations,

each entry of the AWB is associated with a write-miss bit. If the current entry corresponds

to a write-miss, i.e. the write-miss bit is set, the entry additionally points to the data that

is written by the current write-miss. Each entry is also associated with a conflict-active bit,

which is set if any of its predecessors which conflict with it are active. Third, an active bit

is added to each local cache block, which indicates whether that particular cache block is

active. Lastly, conflict ordering requires minor extensions to the cache coherence subsystem.

Each processor is associated with a req-buffer which is used to buffer coherence requests to

active cache blocks. Each coherence response message (data value reply and invalidation

acknowledgement) is tagged with an active bit, to indicate whether it is an active response

or an inactive response. Also, conflict ordering involves the exchange of additional coherence

message. While additional coherence messages are exchanged as part of conflict ordering, it
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is worth noting that the coherence protocol and its associated transactions for maintaining

coherence are left unchanged. We summarize the additional transactions next.

(Write-miss actions) The actions performed when the write-miss retires from the

ROB are as follows:

• Insert into the AWB. The write-miss is first inserted into the AWB as follows: the inserted

entry is tagged with the cache block address of the write-miss; since the entry corresponds

to a write-miss, the write-miss bit is set to 1 and the entry points to the data written by

the write-miss; the conflict-active bit is set to 1 since its predecessor in the conflict order

may be active.

• Invalidate replacement victim. Once the write-miss is inserted into the AWB, the cache

block chosen for replacement is invalidated and its active bit is set to 1 – it is worth

recalling that this is done to prevent the deadlock scenario discussed earlier.

• Issue request to home-directory. Now, the write-miss is issued to its home directory. If the

corresponding cache block is found to be uncached in any of the other processors, the

directory replies with an empty write-list. If the cache block is indeed cached in some

other processor, the directory replies with the list of pending write-misses being serviced

in the directory. To minimize network traffic, before sending the write-list, a bloom filter

is used to compress the list of addresses.

• Process response. Once the processor receives the write-list, if it indeed receives a non-

empty write-list, it updates the local write-list register. When the write-miss receives

all of its invalidation acknowledgements, it completes. When the write-miss completes,

it sends a completion message to the directory, so that the directory knows about its
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completion. When a write-miss receives all of its acknowledgements and each of the

acknowledgements are tagged inactive, its corresponding conflict-active bit (in the AWB)

is reset to 0. When the conflict-active is reset, the write-miss checks the AWB to see

if there are any entries prior to it. If there are none, it implies that the write-miss has

become inactive and can be removed from the AWB.

• Remove write-miss and other inactive entries from the AWB. Before removing the write-

miss entry, we first identify those memory operations which follow the original write-miss

that have also become inactive. To identify such inactive memory operations, the AWB

is scanned sequentially starting from the original entry, selecting all those entries whose

conflict-active bit is reset to 0; the scanning is stopped when an entry whose conflict-

active bit is set to 1 is encountered. All such selected entries are removed from the AWB,

and the active bits of their respective cache blocks are reset to 0.

(Cache-hit actions) The actions performed when a cache-hit reaches the head of

the ROB are as follows:

• AWB empty. The AWB is first checked to see if it is empty. If the AWB is empty, the

cache-hit completes without checking for conflicts.

• Check for conflicts. If the AWB is not empty, the write-list registers are checked to see if

the cache-hit conflicts with it. If the cache-hit conflicts (or if write-list register does not

cache the directory entries of the cache-hit’s home node), the cache-hit is treated like a

miss and is issued to its home directory.

• No conflicts. If the cache-hit does not conflict, it is allowed to safely complete. Since the

AWB is non-empty, the cache-hit is marked active by inserting it into the AWB with
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the write-miss bit set to 0, the conflict-active bit set to 0 (since it is a cache-hit, its

predecessors in the conflict order must have completed), and the active bit of the cache

block is set to 1.

(Read-miss actions) The actions performed when a read-miss reaches the head of

the ROB are as follows:

• AWB empty. The AWB is first checked to see if it is empty. If the AWB is empty,

the read-miss completes without checking for conflicts. Then, the data value reply that

the read-miss received as a coherence response is examined. If it is tagged active, it is

inserted into the AWB with the write-miss bit set to 0, the conflict-active bit set to 1

(since it obtained an active response), and the active bit of the cache block is set to 1.

Later, when the read-miss receives its inactive response, the read-miss entry is removed

along with subsequent inactive entries, as discussed earlier.

• Check for conflicts. If the AWB is not empty, the write-list registers are checked to see

if the read-miss conflicts with it. If the read-miss conflicts (or if write-list register does

not cache the directory entries of the read-miss’ home node), the cache-miss is re-issued

to its home directory.

• No conflicts. If the read-miss does not conflict, the read-miss is allowed to safely complete.

Since the AWB is non-empty, the read-miss is marked active by inserting into the AWB

with the write-miss bit set to 0. The conflict-active bit is set to 0 or 1 depending on

whether the read-miss received an inactive or an active data value response, respectively.

If it received an active response – later, when the read-miss receives the inactive response,

the read-miss entry is removed along with subsequent inactive entries, as discussed earlier.
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(Coherence and replacement requests) When a coherence request (invalidate or data

value request) is received for a cache block that is marked active/inactive, the coherence

response is in turn tagged active/inactive. Additionally, if the coherence request is for an

active cache block, the coherence request is buffered in the req-buffer. When the cache

block is eventually reset to inactive, the corresponding entry is removed from the req-

buffer and the processor again responds to the buffered request – but now with an inactive

response. When a coherence request is received for an active cache block and the req-

buffer is full, the coherence response is delayed until a space in the req-buffer frees up. As

discussed earlier, this cannot cause a deadlock, since active cache blocks will eventually turn

inactive. Finally, a cache block that is marked active is not allowed to be replaced. When

a replacement request is received, and all cache blocks in the set are marked active, the

response is delayed until once of the blocks in the set turns inactive – again, without the

risk of a deadlock.

2.5 Experimental Evaluation

We performed experiments with several goals in mind. First and foremost, we

want to evaluate the benefit of ensuring SC via conflict ordering in comparison with the

baseline SC and RMO implementations. We then study the effect of varying the values of

the parameters in the HW implementation, on the performance. Since the performance of

conflict ordering is dependent on how fast requests can get back replies from directories,

we study the sensitivity towards the network latency. We also vary the size of write-lists

to evaluate their effects on performance. We then study the characterization of conflict

ordering to see how it reduces the overhead of using in-window speculation technique.
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Furthermore, we measure the additional network bandwidth that is used up and finally, we

also measure the on-chip hardware resources that conflict ordering utilizes. However, before

we present the results of the evaluation, we briefly describe the implementation.

2.5.1 Implementation

Processor 8, 16 and 32 core CMP, out of order

ROB size 176

L1 Cache private 32 KB 4 way 2 cycle latency

L2 Cache shared 8 MB 8 way 9 cycle latency

Memory 300 cycle latency

Coherence directory based invalidate

# of AWB entries 50 per core

# of req-buffer entries 8 per core

# of write-list registers 6 per core

write-list size 160 bits

2D torus (2×4 for 8-core,
Interconnect 4×4 for 16-core, 4×8 for 32-core)

5 cycle hop latency

Table 2.1: Architectural parameters.

Benchmark Inputs

barnes 16K particles

fmm 16K particles

ocean 258× 258

radiosity batch

raytrace car

water-ns 512 molecules

water-sp 512 molecules

cholesky tk15.O

fft 64K points

lu 512×512

radix 1M integers

Table 2.2: Benchmarks.

We implemented conflict ordering using SESC [88] simulator, targeting the MIPS

architecture. The simulator is a cycle-accurate, execution-driven multi-core simulator with

43



detailed models for the processor and the memory systems. To implement conflict ordering,

we added the associated control logic to the simulator. We considered conflict ordering in

the context of a CMP with local caches kept coherent using a distributed directory based

protocol. The architectural parameters for the implementation are presented in Table 2.1.

The default architectural parameters were used in all experiments unless explicitly stated

otherwise. We measured performance with 8, 16 and 32 processors in Section 2.5.2, and

for other studies, we assumed 32 processors. We used the SPLASH-2 [108], a standard

multithreaded suite of benchmarks for the evaluation. We could not get the program volrend

to compile using the compiler infrastructure that targets the simulator and hence we omitted

it. We used the input data sets described in Table 2.2 and ran the benchmarks to completion.

(Baseline SC implementation) The SC baseline, referred to as conventional SC in the ex-

periments below, uses in-window speculation support. It is an aggressive implementation

that uses hardware prefetching and support for speculation in modern processors to specu-

latively reorder memory operations while guaranteeing SC ordering using replay. However,

such speculation is within the instruction window – where the instruction window refers to

the set of instructions that are in-flight. The implementation we use is similar to ones used

as SC baselines in proposals such as [16, 49, 107].

(Baseline RMO implementation) The baseline RMO implementation allows memory opera-

tions to be freely reordered, enforcing memory ordering only when fences are encountered.

Even when fences are encountered, in-window speculation support (as used in the SC base-

line) is used to mitigate the delays. The RMO implementation is similar to ones used in

recent works such as [16, 49, 107].
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2.5.2 Execution time overhead
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Figure 2.7: Conventional SC normalized to RMO.
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Figure 2.8: Conflict ordering normalized to RMO.

We measure the execution time overhead of ensuring SC via conflict ordering and

compare it with the corresponding overhead for conventional SC. We conducted this ex-

periment for 8, 16 and 32 processors using the default hardware implementation presented

in Table 2.1. Fig. 2.7 and Fig. 2.8 show the execution time overheads for conventional SC

and conflict ordering, respectively. The execution time overheads are normalized to the

performance achieved using RMO. As we can see, most benchmark programs experience

significant slowdown for conventional SC (more than 20% overhead on average for all num-
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bers of processors). In particular, radix has the highest overhead. This is because radix

has a relatively high store-miss rate which forces the following loads to wait longer before

they can be retired. As we can see, with conflict ordering the overhead of ensuring SC

is significantly reduced. On average, the overhead is just 2.0% for 8 processors, 2.2% for

16 processors and 2.3% for 32 processors, and thus the performance of conflict ordering

is comparable to RMO. With conflict ordering loads and stores do not need to wait until

outstanding stores complete; they can mostly retire as soon as the pending stores get replies

back from directories. Since the time to get replies from directories is significantly less than

the time for outstanding stores to complete, loads do not end up causing stalls and stores

can also be performed out of order. This explains why the performance with conflict order-

ing is significantly better than conventional SC. Furthermore, it is worth noting that, with

different numbers of processors, the performance does not vary significantly. Therefore,

conflict ordering appears scalable.
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Figure 2.9: Performance for bus-based implementation.

(Bus-based implementation) In addition to the distributed directory-based imple-

mentation, we also evaluated a bus-based implementation to find out if conflict ordering is

46



applicable to current multi-core processors which are predominantly bus based. For the bus

based implementation, we just implement basic conflict ordering; we maintain a centralized

on-chip structure called write-list-buffer (WLB), which records the addresses of the write-

misses which are currently pending. When a write-miss retires into a local write-buffer it is

sent to the WLB; upon receiving the write-miss, the WLB inserts its address into the WLB

and replies back with the write-list – containing all the addresses that are currently present

in the WLB except the addresses from the source processor. Similar to the directory-based

implementation, a bloom filter is used to compress the addresses. Memory operations which

attempt to complete past the write-miss, check the received write-list to decide whether they

can be completed safely, without violating SC. We conducted experiments for bus-based im-

plementation with 4 and 8 processors, and set the round-trip latency for accessing WLB

as 5 cycles. Fig. 2.9 shows the execution time normalized to RMO. As we can see, the

execution time of conflict ordering is close to RMO for both 4 and 8 processors, with the

overhead less than 2% on average. This shows that conflict ordering is also applicable to

small scale multi-core processors that use a bus for coherence.

2.5.3 Sensitivity study

(Sensitivity towards network latency) The performance of conflict ordering hinges on

the time for a miss to get replies from the directory. It is desirable that conflict ordering is

reasonably tolerant to the network latency. In the experiments, we used 2D torus network

and varied the latency of each hop with values of 3 cycles, 5 cycles, and 8 cycles, as shown

in Fig. 2.10. The performance is measured with 32 processors. As we can see, the overhead

does not vary significantly when the latency is increased from 3 cycles to 5 cycles. Even
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Figure 2.10: Varying the latency of network.

when the latency is increased to 8 cycles, the average performance drops only slightly, to

3.5%. This shows conflict ordering is reasonably tolerant to the network latency. In the

default design, we choose 5 cycles as each hop latency, assuming 2 cycle wire delay between

routers and 3 cycle delay per pipelined router.
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Figure 2.11: Varying number of bits of write-list.

(Sensitivity towards size of write-list) Recall that, to minimize network bandwidth,

the addresses within replies to cache miss requests are compressed to form a write-list using

a bloom filter. While a smaller size is beneficial as far as saving network bandwidth is

concerned, it could also result in false positives. A false positive can lead us to falsely

conclude that a load or store conflicts with a pending store, causing the load to re-execute

or the store to stall. In this experiment, we evaluated the minimum size of the write-list that
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does not result in performance loss. We varied the number of bits of write-list with the value

128, 160, and 192 to evaluate the performance and corresponding false positive rates with 32

processors. In the implementation, we used a bloom filter with 4 hash functions. Fig. 2.11

shows the results, where lines represent false positive rates and bars represent execution

time overheads. As the number of bits increases from 128 to 192, the false positive rate

decreases (on average, 8.01%, 2.42%, and 0.69% respectively), and the execution overhead

also decreases (on average, 2.97%, 2.33% and 2.29% respectively). A size of 160 bits performs

slightly better than 128 bits and very close to 192 bits. Therefore, we choose 160 bits (20

bytes) as the size of the write-list in the implementation.

2.5.4 Characterization of conflict ordering

In this experiment, we wanted to examine how conflict ordering reduces the over-

head of using conventional SC. Recall that, in the conventional SC implementation, loads

cannot be retired if there are pending stores and stores cannot be performed out of order,

which leads to the gap between the performance of SC and RMO. On the other hand, us-

ing conflict ordering, we can safely retire loads and complete stores past pending stores by

checking the write-list. Hence, performance hinges on how often loads and stores can be

reordered with their prior pending stores.

Fig. 2.12 shows the breakdown for all checks against write-lists. We categorize

these checks into three types: checks against empty write-lists, checks against non-empty

write-lists without finding any conflict, and checks against non-empty write-lists with finding

a conflict. When a request to the directory finds that the targeted block is not cached,

it indicates that no active memory operation has accessed the block and the requesting
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Figure 2.12: Breakdown of checks against write-lists.

processor can get a reply with an empty write-list. As we can see, most checks are against

empty write-lists (around 90% on average). For the checks against non-empty write-lists,

there is almost no conflict. Hence, conflict ordering allows almost all memory operation to

be reordered, achieving performance comparable to RMO.
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Figure 2.13: Reduced accesses to directories.

Fig. 2.13 shows the reduced directory accesses using enhanced conflict ordering,

compared to basic conflict ordering. The performance of conflict ordering also hinges on the

frequency of directory accesses. Hence, it is important to have fewer directory accesses. As

we can see, using enhanced conflict ordering, on average we only have about 6% directory

accesses of basic conflict ordering. This is because, for most benchmark programs, AWB is

empty most of the time. For some benchmarks, such as ocean, the access frequency does not
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reduce as much as other benchmarks. However, the access frequency for these benchmarks

in basic conflict ordering is already low. Therefore, their overhead is still low.

2.5.5 Bandwidth increase

Benchmark Bandwidth increase (%)

barnes 2.49

fmm 0.98

ocean 2.64

radiosity 8.36

raytrace 1.21

water-ns 2.08

water-sp 2.21

cholesky 0.24

fft 1.16

lu 1.96

radix 1.71

Table 2.3: Bandwidth increase.

In this experiment, we measure the bandwidth increase due to write-lists that need

to be transferred and extra traffic introduced by conflict ordering for 32 processors. Table

2.3 shows the bandwidth increase compared to RMO. As we can see, for most benchmarks,

the bandwidth increase is less than 3% (2.27% on average). radiosity has relatively higher

bandwidth increase. This is because its write miss rate is relatively higher and requests to

directories usually get non-empty write-lists, resulting in write-lists taking up a relatively

high proportion of bandwidth.

2.5.6 HW resources utilized

Recall that the additional HW resources utilized by conflict ordering are AWB,

req-buffers, write-list registers, and the active bits added to each cache block. Each AWB
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entry contains the cache block address, the conflict-active and the write-miss bits; we do not

count the storage required for data written by the write-miss, since it is already present in

conventional write buffers. Since we use 50 AWB entries per core, each of size 5 bytes, the

total size per processor core amounts to 250 bytes for the AWB. Since we use 8 entries for

the req-buffer, each of size 6 bytes (for storing the cache block address and the processor id),

the total size per processor core amounts to 48 bytes. With 6 write-list registers per core,

each of size 20 bytes, the total size per processor core amounts to 120 bytes. In addition,

we also require active bits to be added to each cache block in the L1 cache. This amounts

to an additional 64 bytes of on-chip storage per processor core. Thus the total additional

on-chip storage amounts to 482 bytes per core. In addition to this we require the hardware

resources needed for in-window speculation which is also required by the SC and RMO

baselines. Thus, the additional hardware resources utilized for conflict ordering is nominal.

2.6 Summary

Should hardware enforce SC? Researchers have examined this question for over 30

years, with no definite answers, yet. While there has been no clear consensus on whether

hardware should support SC [3, 52], it is important to note, however, that the benefits

of supporting SC are widely acknowledged [3]. Indeed, critics of hardware enforced SC,

question it based on whether the costs of supporting SC justify its benefits – all prior SC

implementations needing to employ aggressive speculation and its associated complexity for

supporting SC.

This chapter demonstrates that the benefits of SC can indeed be realized using

nominal hardware resources. While prior SC implementations guarantee SC by explicitly
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completing memory operations within a processor in program order, we guarantee SC by

completing conflicting memory operations, within and across processors, in an order that

is consistent with the program order. More specifically, we identify those shared memory

dependencies whose ordering is critical for the maintenance of SC and intentionally order

them. This allows us to non-speculatively complete memory operations past pending writes

and thus reduce the number of stalls due to memory ordering. experiments with SPLASH-2

suite showed that SC can be achieved efficiently, incurring only 2.3% additional overhead

compared to RMO.
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Chapter 3

Scoped Fence

This chapter resorts to programming support to help hardware dynamically elimi-

nate subset of unnecessary memory orderings, and proposes scoped fence (S-Fence). Fence

instructions used by programmers are usually only intended to order memory accesses within

a limited scope. Based on this observation, the concept fence scope is introduced to define

the scope within which a fence enforces the order of memory accesses. S-Fence enables pro-

grammers to express their ordering demands by specifying the scope of fences when they

only want to order part of the memory accesses. At runtime, hardware uses the scope infor-

mation conveyed by programmers to execute fence instructions in a manner that imposes

fewer memory ordering constraints than a traditional fence, and hence improves program

performance. In particular, this chapter provides two kinds of fence scope (i.e., class scope

and set scope), and describes their programming, compiler and hardware support. S-Fence

only makes changes locally in each processor core, without adding inter-processor commu-

nication for multiprocessors, thereby S-Fence does not have the issue of scalability.
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3.1 Motivation

Fig. 1.7 in Chapter 1 shows a pattern of using concurrent algorithms. The fences

used in concurrent algorithms are only supposed to guarantee the correct concurrent accesses

to shared data, without being aware of how the accessed data is processed afterwards. The

following example illustrates this pattern in detail.

1 void put(TASK task){

2 tail = TAIL;
3 wsq[ tail ] = task;
4 FENCE //store−store
5 TAIL = tail + 1;
6 }

7 TASK take(){
8 tail = TAIL − 1;
9 TAIL = tail ;

10 FENCE //store−load
11 head = HEAD;
12 if ( tail < head){
13 TAIL = head;
14 return EMPTY;
15 }
16 task = wsq[tail ];
17 if ( tail > head)
18 return task ;
19 TAIL = head + 1;
20 if (!CAS(&HEAD,
21 head,head+1))
22 return EMPTY;
23 TAIL = tail + 1;
24 return task ;
25 }

26 TASK steal(){
27 head = HEAD;
28 tail = TAIL;
29 if (head ≥ tail)
30 return EMPTY;
31 task = wsq[head];
32 if (!CAS(&HEAD,
33 head,head+1))
34 return ABORT;
35 return task ;
36 }

Figure 3.1: Simplified Chase-Lev work-stealing queue [27].

Fig. 3.1 shows a simplified C-like pseudo code of Chase-Lev work-stealing queue

[27]. Work-stealing is a popular method for balancing load in parallel programs. Chase-Lev

work-stealing queue implements a lock-free dequeue using a growable cyclic array, which

has three operations: put, take and steal as shown in Fig. 3.1. In the code, HEAD and

TAIL are two global shared variables which record the head and tail indices of the valid

tasks in the cyclic array wsq. The owner thread can put and take a task on the tail of
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the queue, while other thief threads can steal a task on the head of the queue. Under

sequential consistency, the algorithm will execute correctly, complying with the semantics,

i.e., each inserted task is eventually extracted exactly once, either by the owner thread or

other thief threads. However, under relaxed memory models, to guarantee the correctness

of the algorithm, fences have to be inserted to enforce the ordering of some memory accesses

[69, 61]. Under TSO, a store-load fence in Line 10 is required to guarantee that no task is

fetched by two threads; while under PSO, one more store-store fence in Line 4 is required

to guarantee steal does not return a phantom task [69]. In addition, there is need for two

compare-and-swap instructions: at Line 20 and Line 32.

8 tail = TAIL  1; 

9 TAIL = tail; 

10  FENCE 

11 head = HEAD; 

        

 

       

       

 

2 tail = TAIL; 

3 wsq  

4  FENCE 

5 TAIL = tail + 1; 

 

1 task = wsq.take(); 

2  for (each neighbor of task) 

3      if is not processed) { 

4          

5         wsq.put  

6      } 

(a)                                                                (b) 

 

 

 

Figure 3.2: Example – parallel spanning tree algorithm.

Let us consider an application of work-stealing queue – parallel spanning tree

algorithm, an important building block for many graph algorithms [11, 78]. The parallel

spanning tree algorithm is discussed in [11], which uses work-stealing queue to ensure load

balancing because of the irregular nature of graph applications. Here, we focus on how

the work-stealing queue is used. Fig. 3.2(a) shows the core operations of the algorithm

that include calls to work-stealing queue functions take and put. First a task is extracted
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from the work-stealing queue (Line 1), then each unprocessed neighbor task’ of task is

processed (Line 4), and task’ is put into the work-stealing queue (Line 5). Let us further

expand these operations as shown in Fig. 3.2(b) (three blocks in (b) correspond to three

operations in (a)). We can see that there are two fences that are executed. Consider the

fence residing in put (Line 4). The traditional fence semantics will require all its preceding

memory accesses to complete before the following accesses can execute, including those in

the blocks 1©, 2© and 3©. The problem here is that, since graph applications usually do not

exhibit data locality, accessing neighbors of a node may incur long latency cache misses.

Thus, stores to arrays color and parent in 2© can be long latency memory accesses, which

leads to a long stall time for the fence in 3©, even though accesses in Line 2 and 3 can

complete quickly. Moreover, these operations are inside a loop, which imposes a significant

impact on the whole application performance. However, such stalls are not necessary –

the application runs correctly even if the fence does not wait for memory accesses in 2©

to complete. This is because: (1) fences in the work-stealing queue algorithm are only

supposed to order memory accesses inside the algorithm (e.g., in function put, the fence

in Line 4 orders the stores in Lines 3 and 5) – the implementers guarantee the correctness

of the algorithm without being aware of memory accesses beyond the algorithm; and (2)

the parallel spanning tree algorithm does not rely on the fences inside the work-stealing

queue algorithm – the users call the functions put and take, but they ensure the correctness

of their applications on their own (e.g., Line 3 in (a) tests whether a task is processed).

In fact, the correctness of parallel spanning tree algorithm is provable with some ordering

requirements under relaxed consistency models [11], which we do not discuss here.
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The above example shows how people program and ensure correctness of their

programs. The semantics of traditional fence is too restrictive in that it orders all memory

accesses without differentiating them; thus, causing unnecessary stalls. If a fence could

differentiate the memory accesses it has to order from the other accesses, there will be

opportunities to eliminate stalls while still enforcing program correctness. Consider the

memory accesses in 3© in Fig. 3.2(b). Since the queue is only occasionally accessed by thief

threads, the array wsq and shared variables HEAD and TAIL often reside in the processor’s

cache, as long as they are not kicked out by conflicting cache lines. This indicates that

memory accesses in Lines 3 can often complete quickly. If the fence in Line 4 only needs

to order data accesses related to work-stealing queue, without waiting for accesses in 2© to

complete, the stall time due to the fence can be greatly reduced. The same also applies to

the fence in 1©. Thus, we introduce the concept of scope for fences.

3.2 Scoped Fence

This section introduces scoped fence, S-Fence for short, that constrains the effect

of a fence to a limited scope. The semantics of S-Fence is first defined, followed by the scope

of a fence and how programmers can specify the scope.

3.2.1 Semantics of S-Fence

S-Fence can be considered as a refinement of traditional fence as it imposes more

accurate constraints on memory ordering. Recall that, the semantics of traditional fence

requires that all memory accesses preceding the fence must complete before the memory

accesses following the fence are issued. However, S-Fence further limits the scope of the

fence. We adopt the following definition of S-Fence throughout the rest of this chapter.
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S-Fence A S-Fence imposes ordering between memory accesses in such a way that when a

S-Fence is executed by a processor, all previous memory accesses in the scope of the

fence are guaranteed to have completed before any memory access that follows the

S-Fence in the program is issued.

In other words, if a memory access prior to the fence is not in the scope of the

fence, the fence does not need to wait for it to complete. Although S-Fence can also be con-

sidered as a finer form of fence, it is different from other finer fences in current commercial

architectures [4], such as mfence, lfence, and sfence in Intel IA-32 and customizable MEM-

BAR instruction in SPARC V9. The existing finer fences explore the ordering of previous

load/store operations with respect to future load/store operations, while S-Fence explores

the ordering of a subset of memory accesses that are in the scope of a fence.

3.2.2 Scope of a fence

The scope of a fence defines the context in which memory accesses should be

ordered by the fence. There are various scoping rules for variables. For example, function

scope is a commonly-used scope, where a locally defined variable is only valid within the

function; block scope is a finer-grained scope, where a variable is made local to a block

of statements. Programming languages also offer various constructs for controlling scope.

Object-oriented languages, e.g., C++ and Java, use class to group data and functions that

manipulate the data.

We will make use of class in object-oriented programming languages to illustrate

the concept of fence scoping. However, in this work, we do not target any specific language,

but focus on exploring benefits of fence scoping. We would like to provide means for fence
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scoping that capture its main characteristics and are easy for programmers to understand

and use. Without loss of generality, we offer two types of fence scoping, i.e., class scope and

set scope. Programming support is also provided to allow programmers to specify the fence

scope they want to use, as shown in Fig. 3.3. There are three fence statements customized

with parameters, which define the scopes. The specified scope information will be utilized

by the compiler and conveyed to the hardware. The first statement has no parameter. It

simply represents a traditional fence, which has a global scope. In the following sections, we

focus on class scope and set scope, as well as corresponding programming, compiler, and

hardware support.

1. S-FENCE [global scope]
2. S-FENCE[class] [class scope]
3. S-FENCE[set, {var1, var2, ...}] [set scope]

Figure 3.3: Customized fence statements.

(Memory consistency models) Note that, the concept of S-Fence does not assume

a specific memory model. Fences are still put into programs according to the underlying

memory models. The difference of S-Fence is that it further allows to specify the scope

of each fence, and such information is conveyed to hardware to order memory operations

more accurately. Therefore, fence scoping is orthogonal to memory models, although in

evaluation we consider RMO memory model.

3.3 Class Scope

The fence statement S-FENCE[class] is used to specify that the fence has a class

scope. The intuition of class scope is that, since function members of the class operate on

data members of the class, fences in function members only have to order memory accesses
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to the data inside the class – they do not have to order those outside the class. In other

words, class scope contains all memory accesses to the data members of the class; if the

class has a data member of another class (say A), then class scope also contains memory

accesses to the data members of class A and so on recursively.

More formally, Fig. 3.4 shows the semantics of fences with class scope. The

semantics only focuses on the memory operations and fence operations. Let us denote the

set of all memory operations by MemOp, and the set of all method members by F. For each

f ∈ F , C(f) denotes the class which defines this method f . Moreover, Seq(F ) denotes the

set of all finite sequences over F , s · t denotes the concatenation of two sequences s and t,

and [s℄ denotes the set of all distinct elements in the sequence s. The semantics is presented

in an operational style with a set of inference rules. We use the following semantic domains.

• FSeq ∈ Seq(F ), which is used for recording nested method invocation.

• Scope ∈ Class 7→ P(MemOp). Each class forms a scope for the fences used in the

class, and the class is associated with a set of memory operations that have to be

ordered by these fences.

• pc ∈ PC, which is the program counter. next(pc) is used to denote the instruction

following pc.

The formulation in Fig. 3.4 focuses on the effects in processors, but omits the

effects in memory subsystem, which depends on the underlying memory models. These

inference rules are applied to a single process. They define the state transition from 〈FSeq×

Scope × pc〉 to 〈FSeq′ × Scope′ × pc′〉. Components not updated in the rules are assumed

to be unchanged.
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Figure 3.4: Semantics of class scope.

The first two rules [ScopeEnt] and [ScopeEx] show the operations at the en-

trance and exit of a method containing fences. The rule [MemOp] shows that, when a

memory operation mop is encountered, it is added to its corresponding scopes, which may

include multiple nested scopes. We omit the rules for removing memory operations from

scopes when they are completed, as this is done by the memory subsystem, which can

implement different memory models. The rule [Fence] shows that a fence can complete

only when all memory operations in the corresponding scope have completed, indicated by

Scope(C(f))=∅.

Fig. 3.5 shows an example of class scope. Suppose fences at Lines 6 and 16 have

class scope. Consider the memory accesses to m1 and m2 in the class A, n1 and n2 in the

class B. The fence at Line 16 will order the accesses to n1 and n2, as they are in class B;

while the fence at Line 6 will order all four memory accesses, as accesses to m1 and m2 are

in the class A and n1 and n2 are data members of class B accessed by b.funcB() (Line 5).

Recall the algorithm of Chase-Lev work-stealing queue in Fig. 3.1. Assume those

operations are implemented in a class. To only order data accesses related to work-stealing
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1 class A{
2 B b;
3 int m1, m2;
4 void funcA1(){
5 b.funcB();
6 FENCE

7 m1=
8 }
9 void funcA2()

10 {m2= }
11 }

12 class B {
13 int n1, n2;
14 void funcB(){
15 n1=
16 FENCE

17 n2=
18 }
19 }

Figure 3.5: An example of class scope.

queue, we can apply class scope to the fences by specifying them as S-FENCE[class],

which forces the fences to only order memory accesses inside the class. Hence, for the

parallel spanning tree algorithm in Fig. 3.2, since the memory accesses in 2© are out of

scope of the fence in Line 4, the fence does not have to wait for accesses in 2© to complete.

3.3.1 Implementation design

Let us say a hardware implementation for S-Fence is consistent with the semantics

of S-Fence if it guarantees that any execution in the hardware does not violate its semantics.

Obviously, the naive implementation is to consider S-Fence as full fence, stalling the pipeline

if there is any memory access not complete prior to the fence. However, to take advantage

of S-Fence, the hardware should be able to flag whether a memory access is in the scope of

a given fence. Hence, the main hardware support for S-Fence is in form of additional bits,

called fence scope bits, that are associated with each entry of the reorder buffer (ROB) and

store buffer.
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Compiler support. To convey the scope information to hardware, compiler has to in-

corporate it into binaries. We assume that the compiler does not reorder memory accesses

across any fence. For class scope, we only need the extension of Instruction Set Architecture

(ISA) shown in Table 3.1.

New fence inst. class-fence
Supporting inst. fs start, fs end

Table 3.1: The extension of ISA for class scope.

First, we use a new instruction class-fence to represent a fence with class scope.

Second, for class scope, we have to convey to hardware: (1) whether a memory access is

in a class scope; and (2) which scope a memory access belongs to. To do this, we assign a

unique ID to a class if it contains class-scope fences in any of its function members, called

cid . In the generated binary, cid is incorporated into function members of the class. In

particular, we introduce two instructions fs start (start of a fence scope) and fs end (end of

a fence scope) with cid as their operand to embrace each function. For each public function,

we insert fs start at the entry of the function, and insert fs end for each exit. Note that,

there might be multiple exits for a function. At runtime, they behave as a nop operation

other than informing ROB to set bits properly. For the remainder of the program, no extra

work is done by the compiler, e.g., they are compiled as using traditional compilers.

Hardware support. Fig. 3.6 shows the hardware support for class scope in an out-of-

order processor core with a ROB and a store buffer. All instructions are retired from the

head of ROB in program order. At the head of ROB, loads are retired when they complete,

while stores are retired to the store buffer as soon as the value and destination address are

available. To support class scope, each ROB and store buffer entry is extended with the

64



... 

Store Buffer 

Reorder Buffer 

... 

Fence Scope Bits (FSB) 

cid     FSB Entry 

Mapping Table 

... 

Fence Scope Stack (FSS) 

Figure 3.6: Hardware support for class scope.

fence scope bits (FSB) as shown in Fig. 3.6, to flag whether a memory operation is in the

scope of some fence. Besides, we use an auxiliary mapping table to maintain the mapping

from cid to FSB entry, and a fence scope stack (FSS) to handle nested scopes properly.

The key step at runtime is to properly set the bits in FSB and check if a fence has to stall

the processor when it is encountered.

Setting fence scope bits. Each entry in FSB represents a distinct scope. Memory

accesses that belong to the same scope of a fence set the same entry of FSB. Each set bit is

cleared when the corresponding memory access has completed. Note that, at a given point

in execution, the number of active fence scopes can be quite large; thus possibly exceeding

the limited number of entries allowed by FSB. We must deal with this situation in the

hardware implementation.

The compiler-inserted instructions fs start and fs end are utilized to flag memory

accesses in the class scope of a fence. Fig. 3.7 shows the micro-operations on fs start and

fs end. (1) When the processor issues a fs start, it indicates the start of a scope, and the

operand is the cid of the scope. The mapping table is first looked up to see if an FSB entry
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1 fs start cid :
2 //operations in mapping table
3 if (cid recorded in mapping table)
4 current entry = map[cid];
5 else

6 current entry = a new entry available
7 in FSB;
8 map[cid] = current entry ;
9 //operations in FSS

10 FSS.push(current entry );
11

12 fs end cid :
13 //operations in FSS
14 FSS.pop();

Figure 3.7: Micro-operations on fs start and fs end.

has been assigned to this scope. If not, a new available entry is used to flag this scope,

and the mapping information is added to the mapping table. Moreover, FSS is updated by

pushing the current FSB entry. Note that, FSS records the nested active scopes, where the

outermost scope is at the bottom of the stack while the innermost scope is on the top of

the stack. Hence, the current scope in which instructions are being decoded is on the top

of the stack. The entries recorded in FSS determine which FSB entries have to be flagged.

When FSS is not empty, a newly issued memory operation sets all FSB entries that are

contained in FSS. By doing this, when an inner scope is flagged for an instruction, all of

its outer scopes are also flagged. This is for the ease of next step for fence issue (recall

that a class-fence also has to order memory accesses in its inner scope), as well as removing

mapping information when an entry is no longer used for a scope. FSS does not change

as long as the processor does not encounter a fs start or fs end, and hence the processor

continues flagging memory accesses in the same FSB entries. (2) When the processor issues

a fs end, it indicates the end of current decoded scope, and the top of FSS is popped. (3) As
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for the mapping table, the mapping information is maintained as long as the corresponding

scope is active. When bits in the same entry for all FSBs have been cleared, the processor

looks up the mapping table and invalidates the mapping information with such FSB entry.

Class scope Set scopeClass scope Set scope

I0

fs_start a MT {a 0}

FSS 0I0

I1

fs start b
MT {a 0, b 1}

I2

I3

_

inner

outer

FSS 0 1

I4

fs_end b
MT {a 0, b 1}

FSS 0
I5

I6
fs end a

FSS 0

MT {a 0, b 1}

I7

0 1 2 3

fs_end a { , }

FSS

0 1 2 3

Figure 3.8: Setting fence scope bits.

Fig. 3.8 illustrates how we flag memory accesses for class scope. Here, we only

show FSBs for ROB – each row corresponds to the FSB of a ROB entry. For simplicity,

we only show memory operations, which are decoded in program order and allocated in the

entries of ROB. Suppose there is a fs start before Instructions 0 and 2, and a fs end before

Instructions 5 and 7. Recall that fs start and fs end should appear in pairs at runtime,

and each pair embraces the instructions in its scope. Hence, we have two scopes here and

they are nested, the inner one and the outer one. In the figure, the right side shows how

the states of mapping table (MT) and FSS change as instructions are decoded. The line

with arrow crosses the entries for current scope, and the highlighted entries in Columns 0-1

will be set to flag the memory accesses that are in the class scope of a fence. Initially, no

memory access is flagged, and both the mapping table and FSS are empty. Since a fs start

with cid a is encountered before Instruction 0, the processor starts to use Entry 0 to flag the
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following memory accesses. The mapping a → 0 is added to the mapping table, and Entry

0 is pushed to FSS. Before Instruction 2, another fs start with cid b is encountered. The

processor uses a new entry (Entry 1) for the inner scope, and the mapping table and FSS

are also updated accordingly. Now, FSS contains two entries (0 and 1). For the following

memory accesses, both Entry 0 and 1 are set, as Entry 1 represents the current scope and

Entry 0 represents the outer scope. Since there is a fs end before Instruction 5, the top of

FSS is popped, with only Entry 0 remaining in FSS. However, the mapping table remains

the same, as a mapping is only removed when all memory accesses in the corresponding

entry have completed. Likewise, fs end before Instruction 7 indicates the end of the outer

scope. FSS is emptied, and hence no memory access is flagged afterwards.

(Handling excessive scopes) There can be multiple simultaneously active fence

scopes. Moreover, at a given point in execution, the number of active fence scopes may

be too large for FSB to assign a different entry to each scope, i.e., FSB does not have

enough entries. If the number of active scopes does exceed the number of FSB entries, for

each newly encountered scope, we simply choose one specific FSB entry to flag memory

accesses. The mapping table and FSS are updated in the same way. The difference is,

in the mapping table, multiple fence scopes can be mapped to the same entry now. Such

implementation is still consistent with the semantics of S-Fence, as it only places stricter

constraints on memory ordering due to fences. However, it is unlikely that a program will

involve too many simultaneously active fence scopes. Thus, we only need to maintain a small

number of FSB entries in the hardware, and it almost does not affect program performance.

In some rare cases, the mapping table or FSS can be full. That is, when we

encounter a fs start instruction and there is no space for mapping table or FSS to add a
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new entry. To handle this, we maintain a counter to indicate how many additional scopes

are encountered after mapping table or FSS is full. The counter increases by 1 with fs start,

and decreases by 1 with fs end. During the period when the counter is not zero, each

encountered fence will behave as a traditional fence, which orders all memory operations.

After the counter becomes zero, the processor switches back to its normal state.

(Handling branch prediction) Branch prediction is widely employed in today’s pipelined

microprocessors for improving performance. A branch misprediction requires ROB to dis-

card all instructions following the branch instruction and those instructions are fetched and

executed again. This process may affect the information recorded in FSS. For example,

there is a branch between a pair of fs start and fs end. The issue of fs start will push an

entry to FSS. Then, the predicted branch leads to the issue of fs end, and hence the entry in

FSS is popped. Later on, the branch prediction is found to be incorrect, and the following

instructions are fetched and executed again. In this case, the processor will issue another

fs end which is also paired with the previous fs start. However, the entry in FSS has been

popped because of the previous fs end, which results in a problem in FSS. To solve this, we

maintain a shadow copy of FSS, namely FSS′. FSS′ has the similar operations as FSS. The

difference is that fs start and fs end only trigger operations on FSS′ if there is no uncon-

firmed branch prediction prior to them. Hence, FSS′ maintains the information that is not

affected by branch prediction. When there is a branch misprediction, we copy the content

in FSS′ back to FSS and start execution as usual.

Issuing fence. After we have set FSB bits properly, it becomes straightforward to de-

termine whether a fence can be issued. When a class-fence is encountered, the top of FSS
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indicates which entry of FSB is flagging the current scope. The processor checks this entry

of all FSBs to determine if it is allowed to issue. If no entry is set, the fence is allowed to

issue and so are the following instructions; otherwise, the fence is stalled until all entries

are cleared.

3.3.2 An example
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Figure 3.9: Comparison between traditional fence and S-Fence.

Fig. 3.9 depicts an example to illustrate the performance advantages of S-Fence.

Fig. 3.9(a) shows the instructions the processor decodes, where only memory accesses

are displayed. Instructions 1 and 3 are in the inner scope as indicated in FSBs, and the

fence is a class-fence in the inner scope which only orders Instructions 1 and 3. Moreover,

Instructions 0 and 3 are long latency cache misses. Fig. 3.9(b) shows a timeline for executing

instructions, in terms of the states of ROB and store buffer. The upper half is for traditional

fence, while the lower half is for S-Fence. Initially, St A and St X are retired to the store

buffer. St X is a cache hit, so it completes earlier than St A. The subsequent instruction is a

fence. With traditional fence, the fence cannot be issued as St A has not completed. Once

the store buffer is drained, the fence is issued and so are the following instructions Ld Y
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and St B. Then Ld Y takes some cycles to load data from memory as it is a cache miss. On

the other hand, with S-Fence, since the fence is a scoped fence, it can be issued as soon as

St X completes. In this case, Ld Y can be issued and it starts to load data earlier, without

waiting for the store buffer to be drained. The total execution time is therefore reduced.

3.4 Set Scope

Class scope constrains a fence to limit its scope to the object class where it is used.

Furthermore, a fence may only intend to order some specific memory accesses. Hence, we

also provide a way to specify the fence scope more accurately. The fence statement S-

FENCE[set, {var1, var2, ...}] is used to specify that the fence has a set scope, and it only

needs to order memory accesses to a certain set of variables {var1, var2, ...}.

P0 P1
7 m0 = ...
8

9 flag0 = 1
10 FENCE

11 if ( flag1 == 0)
12 critical section

13 m1 = ...
14

15 flag1 = 1
16 FENCE

17 if ( flag0 == 0)
18 critical section

Figure 3.10: Simplified Dekker algorithm.

For example, Fig. 3.10 shows Dekker’s algorithm [34], which is designed to allow

only one processor to enter the critical section at a time. The purpose of fences (Lines 10

and 16) is to order the accesses to flag0 and flag1. However, traditional fences will also

order other memory accesses. In particular, in P0, if there is a long latency memory access

to m0 (Line 7) before the store to flag0 (Line 9), the fence will stall its following memory

accesses until the store to m0 completes, even when the store to flag0 completes quickly as
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a cache hit. However, the reordering of the access to m0 across the fence does not violate

the programmer’s intention, i.e., the exclusive access to the critical section. Hence, we can

apply set scope to the fences by specifying them as S-FENCE[set, {flag0, flag1}], which

forces the fences to only order the memory accesses to flag0 and flag1. In this case, even

if the store to m0 (Line 7) is a long latency memory access, the fence (Line 10) does not

have to wait for the store to complete. As long as the store to flag0 (Line 9) has been

completed, the fence will allow the following memory accesses to proceed.

3.4.1 Implementation design

Set scope requires to identify the memory accesses that have to be ordered at

runtime. Similar to class scope, this can be easily implemented with compiler and hardware

support.

New fence inst. set-fence
Supporting inst. inst. flagging memory operations

Table 3.2: The extension of ISA for set scope.

Compiler support. For set scope, we only need the ISA extension shown in Table 3.2.

We use a new instruction set-scope to represent a fence with set scope. Besides, the ISA is

extended to allow a compiler to flag memory accesses to the variables in the set scope. At

runtime, when a processor core decodes a memory instruction which is flagged, it will set a

scope bit of the allocated ROB entry.

Hardware support. Since memory accesses in the set scope of fences have been flagged

using the extended ISA, it is straightforward to set FSB bits for these memory accesses when

they are decoded and issued. For simplicity, in the current design, we do not differentiate
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memory accesses in set scopes of different fences. Hence, we use a specific FSB entry (e.g.,

the last entry as shown in Fig. 3.8) to flag if the memory access is in the set scope. By

doing this, when the processor encounters a set-fence, it checks the last entry of all FSBs

to determine whether it can be issued.

3.5 Using S-Fence

S-Fence is easy for programmers to use. It does not require programmers any

additional effort to reason about their programs. The only extra work for programmers is

to specify the constraints on fences, which will be conveyed to the compiler and hardware.

Class scope is consistent with the principle of the concept of class in object-oriented pro-

gramming. Class is used to encapsulate the data and functions that manipulate the data,

keeping them safe from outside interference and misuse. If one implements an algorithm en-

capsulated in a class and only wants to use fences to order memory accesses inside the class

(e.g., the example in Fig. 3.1), then one can simply use fences with class scope. Moreover,

if one only wants to order memory accesses to a certain set of variables (e.g., the example in

Fig. 3.10), then one can choose to use fences with set scope providing the set of variables.

In other cases, if one does not want to specify the scope of the fence, one can simply use a

traditional fence.

On the other hand, when users call functions written by others (e.g., libraries

implementing concurrent lock-free algorithms), the correctness of the users’ programs should

not rely on the order provided by the callees. The users should guarantee the correctness of

their parts of the code themselves. In fact, this is also a good programming style, following

the principle of modularity in object-oriented programming.
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(Class scope vs. set scope) With set scope, a fence can have a narrower scope

compared with class scope. For example, in the work stealing queue (Fig. 3.1), we can

either use class scope, or set scope with parameters of shared variables (e.g., HEAD, TAIL,

etc). There are trade-offs between using class scope and using set scope. (1) Compiler.

With class scope, compiler only needs to insert fs start and fs end to embrace the functions;

with set scope, compiler has to analyze the program to identify the memory accesses to the

specified variables, which will involve alias analysis. (2) Hardware. Class scope has higher

hardware complexity than set scope. Class scope has to set fence scope bits according to

the inserted fs start and fs end, and handle nested scope properly. However, set scope can

set fence scope bits easily according to the flagged memory operations. (3) Performance.

Since set scope is more accurate on what memory operations to order, it may have better

performance than class scope. We will compare the performance in the evaluation.

3.6 Experimental Evaluation

The goals of the experimental evaluation are: (1) to assess the performance of S-

Fence compared to traditional fences; (2) to understand how applications can benefit from

S-Fence, and what characteristics can affect the performance of S-Fence; (3) to study the

effect of varying the values of the parameters in the hardware implementation.

Processor 8 core CMP, out-of-order

ROB size 128

L1 Cache private 32 KB, 4 way, 2-cycle latency

L2 Cache shared 1 MB, 8 way, 10-cycle latency

Memory 300-cycle latency

# of FSB entries 4

# of FSS entries 4

Table 3.3: Architectural parameters.
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(Simulation) We implemented S-Fence in the simulator SESC [88] targeting the

MIPS architecture. The simulator is a cycle-accurate, execution-driven multicore simulator

with detailed models for the processor and memory systems. We implemented S-Fence by

adding FSB, FSS, FSS′ and the associated control logic to the simulator. Currently, scopes

for fences in each benchmark program are manually identified, and the scope information is

fed to the simulator for runtime usage. Table 3.3 shows the default architectural parameters

used in all experiments unless explicitly stated otherwise.

Benchmarks Type Description

dekker set Dekker algorithm [34]

wsq class Work-stealing queue [27]

msn class Non-blocking Queue [77]

harris class Harris’s set [51]

barnes set Barnes-Hut n-body [108]

radiosity set Diffuse radiosity method [108]

pst class Parallel spanning tree [11]

ptc class Parallel transitive closure [40]

Table 3.4: Benchmark description.

(Benchmarks) We evaluate the technique using benchmarks in Table 3.4. In these

benchmark programs, fences and atomic compare-and-swap (CAS) instructions are utilized

to implement lock-free algorithms. There are two groups of benchmark programs. The

first group consists of several lock-free algorithms, i.e., dekker, wsq, msn and harris. We

use these applications to study how program characteristics can affect the performance

of S-Fence. Since these lock-free data structures are not closed programs, we constructed

harnesses to use them to assess the performance of S-Fence. The second group consists of

several full applications. We use them to evaluate how they can benefit from S-Fence, and

how architecture parameters affect the performance. pst and ptc are parallel spanning tree
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algorithm [11] and parallel transitive closure algorithm [40] using work-stealing queue [27].

barnes and radiosity are from SPLASH-2 [108], and they are inserted with fences to enforce

sequential consistency [95].

3.6.1 Lock-free algorithms

In the lock-free algorithms, fences and atomic instructions are used to ensure cor-

rectness when they are executed under relaxed memory models. Fences are inserted as

suggested in [20, 69, 61]. We use these applications to obtain a preliminary understanding

of the performance of S-Fence. Moreover, the workload between fences may affect the ben-

efit of S-Fence. We developed the harness programs to control the workload. We varied the

workload of each task in the applications, from low workload to more expensive computa-

tions, to evaluate the performance of S-Fence. We only measured the execution time of the

parallel sections in the programs. Fig. 3.11 shows the speedups of S-Fence over traditional

fence, where the x axis represents different amounts of computations, from low to high.
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Figure 3.11: Impact of workload.

As we can see, S-Fence achieves improvement for all applications, with peak

speedups ranging from 1.13x to 1.34x. Moreover, for each application, its speedup varies
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with different workload. The trend is first increasing before reaching the peak speedup and

decreasing afterwards. This is because, with low workload, the fence costs relatively more

time to order the memory accesses in the scope, in which case S-Fence does not completely

manifest its advantage over traditional fence. As the workload increases, it will reach a

point at which S-Fence can manifest its advantage the most, and hence the speedup reaches

the peak value. When the workload increases further, the time cost by the workload will

gradually dominate the overall running time of the program, and the stalls due to fences

gradually become insignificant. Hence, the speedup becomes smaller. From the figure, we

can also observe that, different benchmarks reach peak speedups with different workload.

One reason of this result is that they have different amount of computation in the scope,

and hence they need different amount of workload to reach the peak value. In particular,

dekker reaches the peak value with low workload. Therefore, the speedup of S-Fence over

traditional fence depends on the relative cost of the workload. However, S-Fence always

performs better than traditional fence.
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Figure 3.12: Normalized execution time (T – traditional fence; S – S-Fence; T+ – traditional
fence with in-window speculation; T+ – S-Fence with in-window speculation) .
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3.6.2 Performance on full applications

We now evaluate the performance of S-Fence on several full applications. Fig. 3.12

shows the normalized execution time of applications with traditional fence and S-Fence, with

and without in-window speculation [46]. Each bar consists of two parts, the stalling time

due to fences Fence stalls and the rest of the execution time Others. All execution time is

normalized to the total execution time with traditional fence (the lower, the better). Let

us first see their execution time without in-window speculation.

(pst and ptc) We use pst (parallel spanning tree [11]) and ptc (parallel transitive

closure [40]) to evaluate S-Fence with class scope. These two applications are both graph

applications and use work-stealing queue to achieve load balancing because of the irreg-

ular nature of graph applications. We use S-Fence with class scope in the work-stealing

queue implementation, and evaluate their performance. Note that, using S-Fence in these

applications does not violate the applications’ correctness.

As we can see from Fig. 3.12, in the case of pst, traditional fences used in the

work-stealing queue incurs stalls accounting for more than 50% of the overall execution

time. Using S-Fence reduces 12.9% fence stalls and achieves 1.11x speedup in the overall

execution time. We can see that S-Fence does not reduce as many stalls as that in barnes

and radiosity. This is because, in addition to the fences used in the work-stealing queue

implementation, another fence is required between the stores to arrays color and parent

(segment 2© in Fig. 3.2) under relaxed consistency models. Since S-Fence does not optimize

this fence, it is a full fence outside the work-stealing queue implementation. The existence

of this full fence limits the optimization space for S-Fence. In the case of ptc, we can see that

fence stalls only occupy a small percentage of overall execution time, as workload between
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fences is relatively large. However, S-Fence is still able to reduce around half of fence stalls

in ptc, and achieves 4.3% improvement in the overalll execution time.

(barnes and radiosity) We use barnes and radiosity to evaluate S-Fence with set

scope. Programs running on machines only supporting relaxed consistency models can be

inserted with fences to enforce sequential consistency [95]. This can be done by compilers

to identify memory pairs which have to be ordered based on delay set analysis [95]. Hence,

the inserted fences are used to order some specific memory accesses, but not all of them. So

S-Fence with set scope can be utilized here during compilation, flagging memory operations

that have to be ordered with delay set analysis.

As we can see from Fig. 3.12, in the case of barnes and radiosity with traditional

fence, fence stalls account for a significant portion of the total execution time (38.8% and

34.5% respectively). However, S-Fence is able to eliminate 40%-50% fence stalls, and hence

reduce the overall execution time by 19.5% and 15.8%. This is because, memory accesses

to private or read-only data account for a significant portion of all memory accesses [97],

and such memory accesses will not be flagged by S-Fence, as they are not involved in

any conflicting accesses in the delay set analysis [95]. Hence, S-Fence only flags a part of

memory accesses, and orders them at runtime. In particular, those long latency private

memory accesses will not be flagged, and hence they are not ordered by S-Fence. This will

help hide long latency memory accesses.

(In-window speculation) In-window speculation [46], where speculation on reorder-

ing is employed in instruction window, can be used to reduce some of fence stalls. To

incorporate in-window speculation into S-Fence, a fence now can be issued speculatively,

but before it can be retired from ROB, it has to check the FSBs of store buffer. Fig. 3.12
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also shows the performance when in-window speculation is employed. As we can see, with

in-window speculation, fence stalls are reduced significantly for both traditional fence and

S-Fence. However, S-Fence still achieves performance improvement over traditional fence.

Figure 3.13: Performance on pst (parallel spanning tree).

(Input size vs. performance) To better understand the behaviors of S-Fence in

pst, we varied the input graph with the number of nodes from 104 to 107, and measured

the improvement of S-Fence. Fig. 3.13 shows the results, where the line represents the

percentage of reduced fence stalls by using S-Fence and the bars show the execution time

speedup. As we can see, S-Fence reduces stalls by 12.9% to 15.3% compared to traditional

fence; and pst achieves 1.07x to 1.11x speedup in the overall execution time. It is worth

noting that, the speedup decreases as the size of graph increases, although the percentage

of reduced fence stalls increases slightly. This is because, as the size of graph increases,

the existence of the full fence mentioned above results in more stalls, which account for

larger portion of the overall execution time. Therefore, we see the decrease on the overall

performance speedup using S-Fence.
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3.6.3 Class scope vs. set scope
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Figure 3.14: Performance comparison between class scope and set scope (C.S. – class scope;
S.S. – set scope) .

We now compare the performance of class scope and set scope. msn, harris, pst,

and ptc are used for this experiment. They use class scope in previous evaluation, but it

is also possible to use set scope by only flagging shared variables that have to be ordered.

Fig. 3.14 shows the results. For all benchmarks, performance with set scope is slightly

better than that with class scope, as set scope orders fewer memory accesses. However,

the difference between them is not significant. This is because fence stalls are not reduced

significantly by set scope. Since class scope is easier to use, programmers would be able to

choose to use it, instead of set scope, without significant performance loss.

3.6.4 Sensitivity study

This section studies how the architecture parameters affect the performance of

S-Fence, including memory access latency and reorder buffer size.

(Memory access latency) A fence stalls because some memory accesses prior to

it has not completed. Long latency memory accesses impose long stalling for fences. In

particular, a cache miss takes as much time as the round trip latency to the memory,
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Figure 3.15: Performance for varying memory access latencies.

incurring long stalling to its following fence. To study the impact of memory access latency

on S-Fence, we varied the memory access latency with values of 200 cycles, 300 cycles, and

500 cycles. Fig. 3.15 shows the execution time normalized to the total execution time with

traditional fence (the lower, the better). Each cluster shows the results for each benchmark,

including traditional fence and S-Fence with different memory access latencies (200T and

200S represent the execution time with 200 cycles latency for traditional fence and S-Fence

respectively, and so on). As we can see, for barnes and radiosity, the improvement of S-Fence

increases as the latency increases. In particular, larger latency results in larger portion of

fence stalls, and S-Fence is able to reduce 40%-50% fence stalls. However, we see a different

trend for pst. As the latency increases, we do not see the increase in improvement, and the

fence stalls account for less portion of the overall execution time. One reason for this is

that, the full fence in pst outside the work-stealing queue incurs more stalls as the latency

increases, and the benefit of S-Fence is offset by such stalls.

(Reorder buffer size) The reorder buffer (ROB) enables out-of-order instruction

execution. S-Fence only stops issuing new instructions into ROB when any memory access

in the scope prior to the fence has not completed. When a S-Fence does not have to stall,
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Figure 3.16: Performance with different ROB Sizes.

larger ROB size would allow more instructions following the fence to be issued into ROB.

This would increase the improvement of using S-Fence. In Fig. 3.16, we show the impact of

ROB size on the performance of S-Fence, where we varied the ROB size with values of 64,

128 and 256. We present the results as in Fig. 3.15 (64T and 64S represent the execution

time with 64 entries of ROB for traditional fence and S-Fence respectively, and so on). As

we can see, for barnes, S-Fence achieves better performance when the ROB size increases

from 64 to 256. This is because S-Fence used in barnes benefits from larger ROB size by

allowing more instructions to be issued to ROB when a S-Fence does not have to stall. On

the other hand, in the case of radiosity, pst and ptc, the performance of S-Fence remains

stable with different ROB sizes. This is because a smaller ROB size already exposes the

critical path in these applications, and hence larger ROB size does not result in more overlap

of instruction execution. In fact, with 256 entries of ROB, the average number of used ROB

entries is less than 80 for radiosity, pst and ptc, which indicates they do not benefit from a

larger ROB.
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3.7 Summary

In this chapter, we proposed the concept fence scope, and a new fence instruction

scoped fence (S-Fence), which is constrained in its scope. S-Fence expresses programmers’

intention in their programs, and conveys such information to the hardware to reduce memory

ordering requirements. S-Fence is easy to be incorporated in current popular object-oriented

programming languages, and the hardware support is lightweight. Experiments conducted

on a group of lock-free algorithms and the other group of full applications show that, S-Fence

achieves peak speedups ranging from 1.13x to 1.34x for lock-free algorithms, and obtains

speedups from 1.04x to 1.23x for full applications.
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Chapter 4

Conditional Fence

This chapter resorts to compiler support to help hardware dynamically eliminate

subset of unnecessary memory orderings, and proposes conditional fence (C-Fence). The

compiler helps to identify associate fences, which order the same pair of conflicting memory

accesses. Then, at runtime, we can safely execute past a fence, as long as its associates

are far away from this fence. The fact that most fence associates are typically staggered at

runtime allows most fence execution to be eliminated, resulting in significant performance

improvement. For the hardware design, a centralized on-chip structure is first introduced,

which is simple and satisfactory for a lower number of processors; then a distributed on-chip

structure is designed for a higher number of processors to ameliorate the contention in the

centralized structure.

4.1 Fence Order

While most processors do not enforce strict memory ordering automatically, they

provide support in the form of fence instruction (i.e., memory fence), which forces a strict
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ordering between memory accesses that precede it and those following it. A traditional fence

enforces this by stalling the processor’s execution till all memory accesses encountered before

the fence have completed. However, the above approach is more restrictive than what is

really required. The purpose of a fence is to prevent memory accesses from being reordered

and observed by other processors. In other words, if the reordering is not observed by other

processors, the reordering is allowed and hence stalling at the fence is not necessary. Let us

introduce the following definitions.

Definition 10. The memory order enforced by a fence is called fence order.

Definition 11. A fence execution is said to be correct if the execution appears to maintain

fence orders.

Obviously, the traditional fence execution is correct. However, it is inefficient due

to unnecessary stalls. Therefore, to improve the performance, we can relax the execution

of a fence such that the execution is correct, maintaining an illusion that fence orders are

guaranteed. Next, we provide a sufficient condition for a correct fence execution.

Figure 4.1: (a) Violation of fence order; (b) Violation of program order.
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4.1.1 The condition for enforcing fence orders

Consider Fig. 4.1(a), where there are two fences in two processors respectively.

A1, A2, B1, and B2 represent blocks of instructions separated by fences. Furthermore, let

us assume a1, a2, b1, and b2 are memory accesses in A1, A2, B1, and B2 respectively.

Due to the fence, any memory access in A1 is ordered before any memory access in A2,

represented by the solid line with arrow; and the same is the case for B1 and B2. Thus,

the fence orders a1 → a2 and b1 → b2 are enforced by the fences. A correct fence execution

should make these fence orders appear to be enforced. In [95], Shasha and Snir have

shown the condition for enforcing program orders in context of sequential consistency (SC)

enforcement. Extending that condition, we can have the condition for enforcing fence orders,

as all fence orders is a subset of all program orders.

Recall that sequential consistency requires that all memory accesses appear to

take place in the program order which is specified by the program, i.e., all program orders

should be enforced. Shasha and Snir [95] have shown that an execution does not violate

sequential consistency iff program orders (P) and conflict orders (E) do not form any cycle

(i.e., no cycle in P ∪E). Here, a conflict order is an execution order of conflicting memory

accesses [95]. Two memory accesses are said to conflict if they can potentially access the

same memory location and at least one of them is a write. We use C to denote conflict

relations, thereby E is an orientation of C. Fig. 4.1(b) shows such a cycle a1 → a2 →

b1 → b2 → a1, where a1 conflicts with b2 and a2 conflicts with b1. The execution sequence

a2 → b1 → b2 → a1 will violate sequential consistency, because no sequentially consistent

execution can generate the same result, where both x and y read their old values before

stores. Intuitively, the cycle indicates that the reordering of (a1, a2) is observed by (b1, b2)
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in the other processor. However, if any one of the conflict orders (i.e., a2 → b1 and b2 → a1)

is in the opposite direction, the cycle will be broken and there is no sequential consistency

violation.

In the case of fence orders in Fig. 4.1(a), we have to enforce all fence orders (F),

analogous to program orders for SC in Fig. 4.1(b). In particular, all fence orders is a

subset of all program orders (F ⊆ P). Accordingly, we can have the following condition for

enforcing fence orders.

Corollary 1. Fence orders are enforced iff fence orders (F) and conflict orders (E) do not

form any cycle, i.e., no cycle in F ∪ E.

This is because, without cycles, F∪E can be extended to a total order [31], which

indicates all fence orders F are enforced. Therefore, in Fig. 4.1(a), to enforce fence orders,

we have to prevent such cycles as a1 → a2 → b1 → b2 → a1, assuming (a1, b2) and (b1,

a2) are conflict relations. Note that, even if there is another memory access b1′ after b1 in

B1, and (a1, b1′) and (a2, b1) are conflict relations, there is no violation of fence orders

involving a1, a2, b1, and b1′. This is because there is no fence order between b1 and b1′ and

hence there is no cycle formed by fence orders and conflict orders.

4.1.2 Associate fences

The traditional fence execution breaks such cycles by enforcing delays between

memory operations in the same processor. For example, in Fig. 4.1(a), if the issuing of

second instructions in the pairs (a1, a2) and (b1, b2) is delayed until the first completes, fence

orders will be enforced. The execution a2 → b1 → b2 → a1, which violates fence orders, is

no longer possible, because now a2 can not complete before a1.
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Figure 4.2: Associate fences.

Definition 12. We call those fences as associate fences or simply associates, if they

appear in the same cycle in F∪E, ensuring delays between memory accesses involved in the

cycle.

As we can see from Fig. 4.2(a), Fence1 and Fence2 which order conflicting accesses

to x and y are associates; similarly, Fence3 and Fence4 are associates. Moreover, a cycle

can involve more than two processors [95], in which case more than two fences are associates.

Fig. 4.2(b) shows this case, where Fence1, Fence2 and Fence3 are associates.

4.2 Conditional Fence

This section describes conditional fence for reducing fence overhead. We first

motivate the approach by showing that fences introduced statically may be superfluous

dynamically, then describe an empirical study which shows that most fence executions are

indeed superfluous. Conditional fence is then proposed by taking advantage of this property.
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4.2.1 Interprocessor delays to ensure fence orders

While fences in the program are used to ensure required memory orderings, it

might be possible to remove the fences dynamically and still maintain an illusion that all

required memory orderings are guaranteed. More specifically, we observe that if two fences

are staggered during the course of program execution, they may not need to stall.

Proc A Proc B 

a1: St  x 

 

 

 

a2: Ld y 

Fence 1 

b1: St  y 
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fence  order 

conflict  order  
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Figure 4.3: Interprocessor delay is able to ensure fence orders.

Let us consider the cycle shown in Fig. 4.1(a), According to the previous definition,

Fence1 and Fence2 are associates. Moreover, let us denote delay relation by D, in which

uDv indicates that u must complete before v is issued. Fence1, by enforcing the delay

a1Da2, and Fence2, by enforcing the delay b1Db2, are able to break the cycle F∪E. While

each of the above two intraprocessor delays are needed to enforce fence orders, we observe

that fence orders can be alternately ensured with just one interprocessor delay. More

specifically, we observe that if either b2 is issued after a1 completes, or if a2 is issued after

b1 completes, fence orders are ensured. In other words, either a1Db2 or b1Da2 is sufficient

to guarantee fence orders. To see why let us consider Fig. 4.3 that shows the execution

ordering resulting from a1Db2. With this ordering, we can now see that F∪E becomes

acyclic and thus fence orders are ensured. Likewise, b1Da2 makes the graph acyclic. Thus,

for every cycle, even if one of these interprocessor delays is ensured, then there is no need
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to stall in either fence. It is easy to prove the correctness by exploring that no cycles will

exist when interprocessor delays are enforced.
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Figure 4.4: (a) If Fence1 has already finished stalling by the time Fence2 is issued, then
there is no need for Fence2 to stall. (b) In fact, there is no need for even Fence1 to stall,
if all memory instructions before it complete by the time Fence2 is issued. (c) No need
for either Fence1 or Fence3 to stall as they are not associates, even if they are executed
concurrently.

We now describe execution scenarios in which one of these interprocessor delays is

naturally ensured, which obviates the need for stalling at fences. Fig. 4.4(a) illustrates the

scenario in which Fence1 has finished stalling by the time Fence2 is issued (indicated by a

dashed arrow). This ensures that the write to X would have been completed by the time

Fence2 is issued and hence instruction b2 is guaranteed to read the value of X from a1. As

we already saw, this interprocessor delay (b2 being executed after a1) is sufficient to ensure

fence orders. As long as b2 is executed after a1, it does not really matter if b1 and b2 are

reordered. In other words, there is no need for Fence2 to stall. Furthermore, note that even

Fence1 needn’t have stalled, provided we can guarantee that all memory operations before

Fence1 (including a1) complete before the issue of b2. This is illustrated in Fig. 4.4(b),

which shows that all memory operations prior to Fence1 have completed (at time t2) before

Fence2 is issued (at time t3), ensuring that b2 is executed after a1 completes. Thus, for

91



any two concurrently executing fence instructions, if all memory instructions prior to the

earlier fence complete before the later fence is issued, then there is no need for either fence

to stall. In other words, an interprocessor delay between two fences obviates the need for

either fence to stall.

An interprocessor delay is only necessary for fences that are associates. As shown

in Fig. 4.4(c), while Fence1 is enforcing the ordering of variables X and Y , Fence3 is

enforcing the ordering of variables P and Q. Thus, even if the above memory accesses are

reordered, there is no risk of fence order violation; consequently, in this scenario, the two

fences need not stall. Even if two concurrently executing fences are not staggered, there is

no need for the fences to stall, if they are not associates.

4.2.2 Empirical study

(Fences for ensuring SC) Fences can be utilized to enforce sequential consistency

(SC) for programs running on machines only supporting relaxed memory consistency mod-

els. This is based on the technique called delay set analysis, developed by Shasha and

Snir [95], which finds a minimal set of execution orderings that must be enforced to guar-

antee SC, and inserts memory fences to prevent violation. Various compiler techniques

[35, 39, 55, 66, 98] have been proposed to minimize the number of fences required to en-

force SC. For example, Lee and Padua [66] developed a compiler technique that reduces

the number of fence instructions for a given delay set, by exploiting the properties of fence

and synchronization operations. Later, Fang et al. [39] also developed and implemented

several fence insertion and optimization algorithms in their Pensieve compiler project. In

spite of the above optimizations, the program can experience significant slowdown due to
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the addition of memory fences, with some programs being slowed down by a factor of 2 to

3 because of the insertion of fences [35, 39, 55].

Program # of fences # of fences that % fences that
needn’t stall needn’t stall

barnes 128222492 98053631 76.48

fmm 1997976 1976759 98.51

ocean 22881352 17720437 77.45

radiosity 57072817 52513870 92.02

raytrace 91049516 84955849 93.31

water-ns 39738011 38383903 96.59

water-sp 41763291 40569645 97.15

cholesky 659910 644208 99.88

fft 214568 214326 99.88

lu 58318507 44048176 75.54

radix 751375 619139 83.41

Table 4.1: Study: A significant percentage of fence instances need not stall.

(Study) We have seen examples of why fences may not be necessary (i.e., they

need not stall) dynamically. In this study, we want to check empirically how often the

fence instances are not required to stall. SPLASH-2 benchmark programs are used for this

study, where fences are inserted to ensure SC using Shasha and Snir’s delay set analysis. As

shown in Table 4.1, for each benchmark program, the first column shows the total (dynamic)

number of fences encountered; the second column shows the total number of fences which

were not required to stall, since the interprocessor delay was already ensured during the

course of execution; the third column shows the percentage of dynamic fence instances that

were not required to stall. As we can see, about 92% of the total fences executed do not need

to stall. This motivates the proposed technique for taking advantage of this observation

and reducing the time spent stalling at fences.
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4.2.3 Conditional Fence (C-Fence)

As opposed to the conventional memory fence that enforces fence orders through

intraprocessor delays between memory operations, a C-Fence ensures fence orders through

interprocessor delays between associate fences. This gives the C-Fence mechanism an op-

portunity to exploit interprocessor delays that manifest in the normal course of execution

and conditionally stall only when required to. C-Fence provides ISA support to let the

compiler convey information about associate fences to the hardware. Using this informa-

tion, the C-Fence ensures that there is a delay between two concurrently executing associate

fences. In other words, it ensures that all the memory operations prior to the earlier fence

complete before the later fence is issued.

Execution of C-Fencei

(i) Mark C-Fencei as active;
(ii) while(any associate is active) stall;
(iii) Continue executing instructions;

· · ·
· · ·

(iv) Mark C-Fencei inactive when all memory instructions
prior to it have completed

Figure 4.5: The semantics of C-Fence.

(Semantics of C-Fence) A fence instruction (either conventional or C-Fence) is said

to be active as long as memory operations prior to it have not yet fully completed. However,

unlike a conventional fence which necessarily stalls the processor while it is active, a C-Fence

can allow instructions past it to execute even while it is active. More specifically, when a

C-Fence is issued, the hardware checks if any of its associates are active; if none of its

associates are active, the C-Fence does not stall and allows instructions following it to be
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executed. If however, some of its associates are active when a C-Fence is issued, the C-Fence

stalls until none of its associates are active anymore (Fig. 4.5).

X = 

Y =

  

= X

= Y

 

Proc A Proc B

C-Fence 1

C-Fence 2

t1

t3

/* active */

/* stall */

t2

t3

t4

(b)(a)

Proc A Proc B

C-Fence 1

C-Fence 2

t1

t3

/* active */

/* stall */

t2

t4

Proc C

C-Fence 3

/* stall */

t2

t4

/* active */

t5

/* active */

t5

Figure 4.6: (a) Example with 2 C-Fences; (b) Example with 3 C-Fences.

Fig. 4.6(a) shows an example to illustrate its semantics with 2 C-Fences. At time

t1, when C-Fence 1 is issued, none of its associates are active and so it does not stall,

allowing instructions following it to be executed. At time t2, when C-Fence 2 is issued, its

associate C-Fence 1 is still active and so C-Fence 2 is stalled. C-Fence 1 ceases to be active

at time t3, at which time all memory operations prior to it have been completed; this allows

C-Fence 2 to stop stalling and allows processor 2 to continue execution past the fence.

Now let us consider another example with 3 C-Fences that are associates of each

other, as shown in Fig. 4.6(b). As before, C-Fence 1 does not stall when it is issued at time

t1. At time t2, both C-Fence 2 and C-Fence 3 are made to stall as their associate C-Fence

1 is still active. At time t3 although C-Fence 1 ceases to be active, the fences C-Fence 2

and C-Fence 3 which are still active, continue to stall. At time t4, C-Fence 3 ceases to be

active, which allows C-Fence 2 to stop stalling and allows processor 2 to continue execution

past C-Fence 2. At time t5, C-Fence 2 ceases to be active, which allows C-Fence 3 to stop

stalling and allows processor 3 to continue execution past C-Fence 3. It is important to

note from this example that although the two fences C-Fence 2 and C-Fence 3 are waiting
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for each other to become inactive, there is no risk of a deadlock. This is because while they

are waiting for each other (stalling), each of the processors still continue to process memory

instructions before the fence which allows each of them to become inactive at some point

in the future.

Proc 1                          

C-Fence 1

Proc 2                          

C-Fence 2

Proc 3                          

C-Fence 3

Proc 4                          

C-Fence 4

Proc 2                          

C-Fence 2

Proc 3                          

C-Fence 3

Proc 1                          

C-Fence 1

Proc 4                          

C-Fence 4

( a ) ( b )

Figure 4.7: Scalability of C-Fence.

(Scalability of C-Fence) The C-Fence mechanism exploits interprocessor delays that

manifest between fence instructions during normal course of execution. In other words, it

takes advantage of the fact that fence instructions are staggered in execution, as the study

showed. However, with increasing number of processors, the more likely it is that some

of the fences will be executed concurrently. As shown in Fig. 4.7(a), C-Fence 2 and C-

Fence 3 are executed concurrently, which necessitates that each of the fences should stall

while the other is active. Thus the performance gains of C-Fence mechanism are likely to

decrease with increasing number of processors. However, it is expected to perform better

than conventional fence because it is very unlikely that all C-Fences execute concurrently,

in which case each of the C-Fences are required to stall, as shown in Fig. 4.7(b). In fact,

the experiments do confirm that even with 16 processors the C-Fence mechanism performs

significantly better than the conventional fence.

96



4.3 C-Fence Hardware: Centralized Active Table

In this section, we discuss how the C-Fence mechanism is implemented in hardware

with a centralized active table. We first describe the idealized HW implementation, and

then describe the actual hardware implementation that tries to mimic the idealized hardware

implementation, while using much lesser hardware resources.

4.3.1 Idealized hardware

The key step in the C-Fence mechanism is to check if the C-Fence needs to stall

the processor when it is issued. To implement this we have a global table that maintains

information about currently active fences, called the active-table. We also have a mechanism

to let the compiler convey information about associate fences to the hardware. Once this

is conveyed, when a C-Fence is issued, the active-table is consulted to check if the fence’s

associates are currently active; if so, the processor is stalled. We now explain what infor-

mation is stored in the active-table, and what exactly is conveyed to the processor through

the C-Fence instruction to facilitate the check. Instead of maintaining the identity of the

currently active fences in the active-table, we maintain the identities of the associates of the

currently active fences. This way, when a fence is issued we can easily check if its associates

are active. To this end, each static fence is assigned a fence-id, which is a number from

1 to N , where N is the total number of static fences. Then each fence is also given an

associate-id, which is an N bit string; bit i of the associate-id is set to 1 if the fence is an

associate of the ith fence. The fence-id and the associate-id are conveyed by the compiler as

operands of the C-Fence instruction. When a C-Fence instruction is issued, its associate-id

is stored in the active-table. Then using its fence-id i, the hardware checks the ith bit of all

97



the associate-ids in the active table. If none of the bits are a 1, then the processor continues

to issue instructions past the fence without stalling; otherwise, the processor is made to

stall. While the processor stalls, it periodically checks the ith bit of all the associate-ids in

the active table, and it proceeds when none of the bits are a 1. Finally, when the fence

becomes inactive, it is removed from the active table.

4.3.2 Actual hardware

The hardware described above is idealized in the following two respects. First, the

number of static fences is not bounded; in fact, the number of static fences was as high as

1101 in the experiments. Clearly, we cannot have that much bits either in the active-table,

or as an instruction operand. Second, we implicitly assumed that the active-table has an

unbounded number of entries; since, each processor can have multiple fences that are active,

it is important to take care of the scenario in which the active-table is full. We deal with this

issue by taking advantage of the fact that although there can be an unbounded number of

static fences, a small (bounded) number of the fences typically constitute the major chunk

of the dynamic execution count. In fact, the study shows that just 50 static fences account

for 90% of dynamic execution count as shown in Fig. 4.8.

Thus, in the actual hardware implementation we implement the C-Fence mecha-

nism for the frequent-fences and the conventional-fence mechanism for the rest. Likewise,

when a C-Fence is issued and the active-table is full, we make the fence behave like a

conventional fence.

(C-Fence + Conventional Fence) The general idea is to have the frequent-fences

behave like C-Fences and the rest to behave like conventional fences. More specifically,
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Figure 4.8: Distribution of fences

when a C-Fence is issued, it will stall while any of its associates are active and then proceed.

When a conventional fence is issued it will stall until all memory operations prior to it have

completed. However, a complication arises if a nonfrequent-fence f (which is supposed to

behave like a conventional fence), has a frequent-fence as one of its associates. When such a

Fence f is issued, it is not enough for it to stall until all of its memory operations prior to it

have completed. It should also stall while any of its associate frequent-fences are still active.

To see why let us consider the example shown in Fig. 4.9(a) which shows a frequent-fence

C-Fence A first issued in processor A. Since none of its associates are active, it proceeds

without stalling. While C-Fence A is yet to complete, nonfrequent-fence Fence B is issued in

processor B. It is worth noting that if Fence B is merely made to stall until all its memory

operations have completed, there is a possibility of the execution order (a2, b1, b2, a1)

manifesting. This clearly is a violation of fence orders. To prevent this situation, Fence B

has to stall while C-Fence A is active.

(Compiler and ISA Support) The compiler first performs delay set analysis to deter-

mine the fence insertion points. Once the fences are identified, then a profile based approach
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Figure 4.9: (a) C-Fence + Conventional fence. (b) HW support. (c) Action upon issue of
a C-Fence.

is used to determine the N most frequent fences; in the experiments we found that a value

of 50 was sufficient to cover most of the executed instances. Once the frequent-fences are

identified the compiler assigns fence-ids to the frequent-fences. Every nonfrequent-fence is

assigned a fence-id 0. For every fence, either frequent or nonfrequent, its associates are

identified and then its associate-id is assigned. Fig. 4.9(b) describes the instruction format

for the newly added C-Fence instruction. The first 6 bits are used for the opcode; the next

two bits are the control bits. The first of the control bits specifies if the current fence is

a frequent-fence or a nonfrequent-fence. The next control bit specifies if the current fence

has an associate-id. It is worth noting that the current fence has an associate-id if it is

an associate of some frequent-fence. The next 50 bits are used to specify the associate-id,

while the final 6 bits are used to specify the fence-id for a frequent-fence. Finally, it is worth

noting that the value of N is fixed since it is part of the hardware design; in the experiments

we found that a value of 50 is sufficient to cover most of the executed instances and we could

indeed pack the C-Fence instruction within 64 bits. However, if workloads do necessitate a
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larger value of N , the C-Fence instruction needs to be redesigned; one possibility is to use

register operands to specify the associate-id.

(C-Fence: Operation) To implement the C-Fence instruction, we use a HW struc-

ture known as active-table, which maintains information about currently active fences. Each

entry in the active table has a valid bit, an associate-id and a fence-id, each totaling 50 bits,

as shown in Fig. 4.9(b). Note that 50 bits are used to represent fence-id in the active table,

where bit i is set to 1 if its fence-id is i. We shall later see why this expansion is helpful.

To explain the working of the C-Fence instruction, let us consider the issuing of C-Fence

instructions shown in Fig. 4.9(a). Let us suppose that the first is a frequent-fence (A) with

a fence-id of 5, which is an associate of a nonfrequent-fence (B). When C-Fence A is issued,

its fence-id and associate-id are first inserted into the active-table. It is worth noting that

its associate-id is a 0 since it is not an associate of any of the frequent-fences. While writing

the fence-id to active-table, it is decoded into a 50 bit value (since its id is 5, the 5th bit is

set to 1 and the rest are set to 0). Then the active table is checked to verify if any of its

associates are currently active; to perform this check the 5th bit (since its fence-id is 5) of

all the associates are examined. Since this is the first fence that is issued, none of them will

be a 1 and so C-Fence A does not stall. When Fence B is issued, its fence-id and associate-id

are first written to the active-table. Since this is a nonfrequent-fence, its fence-id is a 0.

Since it is an associate of frequent-fence A (with fence-id 5), the 5th bit of its associate-id

is set to 1. Even though this is a normal fence instruction (nonfrequent-fence), we cannot

simply stall, since it is an associate of a frequent-fence. More specifically, we need to check

if its associate A is active; to do this, bits 5 of all the fence-ids in the active-table are exam-

ined. This also explains why the fence-ids were expanded to 50 bits, as this would enable
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this check to be performed efficiently. Consequently, this check will return true, since fence

A is active; thus Fence B is made to stall until this check returns a false. In addition to

this stall, it also has to stall until all of its local memory operations prior to the fence have

completed, since it is a nonfrequent-fence. The actions that are performed for the issue of

each C-Fence instruction are generalized and illustrated in Fig. 4.9(c).

Proc A                   

X =

C-Fence 1

Y =

W1

R1

Proc B                   

= Y

C-Fence 2

= X

W2

R2

Figure 4.10: Coherence of active-table.

(Active Table) The active-table is a shared structure that is common to all proces-

sors within the chip, and in that respect it is similar to a shared on-chip cache, but much

smaller. In the experiments we found that a 20 entry active-table was sufficient. Each

entry in the active table has a valid bit, an associate-id and a fence-id. There are three

operations that can be performed on the active table. First, when a C-Fence is issued the

information about the C-Fence is written to the active table. This is performed by searching

the active-table for an inactive entry, and inserting fence information there. If there are no

invalid entries, it means that the table is full and we deal with this situation by treating

the fence like a conventional fence. The second operation on an active table is a read to

check if the associates of the issued C-Fence are currently active. Finally, when a C-Fence

becomes inactive, the active table entry is removed from the C-Fence. To remove an entry

from the active table, the valid bit is cleared. Since the active-table is a shared structure it
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is essential that we must provide a coherent view of the active table to all processors. More

specifically, we must ensure that two associate C-Fences that are issued concurrently are

not allowed to proceed simultaneously. This scenario is illustrated in Fig. 4.10 with fences

C-Fence 1 and C-Fence 2. As we can see, the two C-Fences are issued at the same time in

two processors. This will result in a write followed by a read to the active-table from each

of the processors as shown in Fig. 4.10. To guarantee a consistent view of the active-table,

we should prevent the processors from reordering the reads and writes to the active-table.

This is enforced by ensuring that requests to access the active-table from each processor

are processed in order. It is important to note that it is not necessary to enforce atomicity

of the write and read to the active table. This allows us to provide multiple ports to access

the active-table for the purpose of efficiency.

(C-Fence: Implementation in Processor Pipeline) Before discussing the implementa-

tion of the C-Fence in the processor pipeline, let us briefly examine how the conventional

memory fence is implemented. The conventional fence instruction, when it is issued, stalls

the issue of future memory instructions until memory instructions issued earlier complete.

In other words once the fence instruction is issued, future memory instructions are stalled

until (a) the memory operations that are pending within the LSQ (load/store queue) are

processed and (b) the contents of the write buffer are flushed. On the contrary, upon the

issue of the C-Fence instruction, the processor sends a request to the active table to see if

the fence’s associates are currently residing in the active table. The processor starts issuing

future memory instructions upon the reception of a negative response, which signals the ab-

sence of associates in the active-table. The presence of associates in the active-table (positive

response), however, causes the processor to repeatedly resend requests to the active-table,
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until a negative response is received. Thus the benefit of the C-Fence over the conventional

fence is realized when a negative response is received before the completions of tasks (a)

and (b). It is thus important that the processor can receive a response from the active-table

as soon as possible. To enable this, we maintain a small buffer containing the pairs of in-

struction address and corresponding fence-id of decoded C-Fence instructions. The buffer

behaves as an LRU cache. This enables us to send a request to the active-table even while

the fence instruction is fetched (if the instruction address is present in the buffer), instead

of waiting till it is decoded. To decide the number of entries necessary in the buffer, we

conducted experiments with 5 entries and 10 entries. The results are shown in Fig. 4.11.

As we can see, both 5 entries and 10 entries result in high hit rates (94.22% and 95.16% on

average, respectively). Hence, we think only 5 entries are enough, which result in a hit rate

of 94.22%. That means 94.22% fences can send lookup request before decoding, because

the instruction addresses in the buffer indicate the instruction is a fence instruction. The

buffer of 5 entries is very small storage, which only requires 45 bytes.
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Figure 4.11: Hit rates of the instruction buffer.

(Discussion) For performance reasons, different architectures that use relaxed mem-

ory models provide various types of fence instructions that enforce different memory orders
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[4, 39]. For example, in Intel IA-32, there exists three types of fence instructions, i.e.,

mfence, lfence and sfence. Specifically, C-Fences can also be subdivided into different types

corresponding to conventional finer grain fences. During execution, new type C-Fences also

consult the active table to determine whether they can be issued. If not, they only or-

der specific memory instructions as conventional fences. Hence, better performance can be

achieved as finer grain fences are inherently cheaper.

4.4 C-Fence Hardware: Distributed Active Table

While the centralized active table is simple and satisfactory for a lower number

of processors, its centralized nature makes it become a bottleneck for a higher number of

processors. In this section, we first study the scalability of C-Fence with centralized active

table, and then propose a distributed design, distributed active table, to ameliorate the

request contention arising from the increasing number of processors.

4.4.1 Scalability analysis of C-Fence
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Figure 4.12: Breakdown of runtime.
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For the C-Fence mechanism, the runtime spent of each processor can be broken

down into three different categories: execution time when the processor is busy running

programs or it stalls due to reasons unrelated to fences; stall time when the processor

stalls because of some executing associates; and communication time when the processor is

waiting for a response from the active table. Fig. 4.12 shows the study results on SPLASH-2

benchmarks, which are measured and averaged across all processors (4, 8, 16 and 32). As

we can see, for most programs, the time spent on communication and stall accounts for

a significant portion of the total runtime. This part of time contributes to the overhead

of enforcing fence orders. Let us consider the communication portion. As the number of

processors increases, communication accounts for a greater portion of the total runtime.

In particular, the communication portion is very small for 4 and 8 processors. However,

it increases significantly when the number of processors increases to 16 and 32. For some

programs (e.g., barnes, raytrace and lu), communication can account for around 15% of the

total runtime.

The reason for the increasing communication time is that, with more processors,

more requests are sent to the active table concurrently. The centralized structure can only

process these requests in order, which causes the communication time to increase. Moreover,

as the number of processors increases, a fence has greater chance to stall due to its executing

associates. In this case, the processor needs to check the active table periodically, sending

the same request to the active table. This further aggravates the contention problem.

To motivate the new design of active table, let us first analyze the requests to

the active table. A fence instance can be issued either after only one request or multiple

requests to the active table. We categorize these requests into two types: first-request which
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is sent for a fence instance for the first time, and subsequent-request (i.e., periodic request)

which is sent as a fence instance is stalled due to negative responses of previous requests.

Hence, a fence instance can have only a first-request or both of them. In the latter case, the

fence has some executing associates, so it keeps sending requests and checking until there is

no executing associate. However, these repetitive subsequent-requests contend with those

first-requests and hence increase the average cost of all fences.
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Figure 4.13: Percentages of request types.

 1x

 2x

 3x

 4x

 5x

 6x

 7x

 8x

 9x

 10x

ba
rn

es

fm
m

oc
ea

n

ra
di

os
ity

ra
yt

ra
ce

w
at

er
−

ns

w
at

er
−

sp

ch
ol

es
ky fft lu

ra
di

x

av
er

ag
e

4 processors
8 processors
16 processors
32 processors

Figure 4.14: Normalized time of processing a
request.

Fig. 4.13 shows the percentages of the two request types. As we can see, percent-

ages of subsequent-requests increase as the number of processors increases. The percentage

can be as high as 80% for 32 processors (e.g., barnes, raytrace and fft). These repetitive

requests place a great deal of burden on the active table, resulting in a longer time for

the active table to process a request. Fig. 4.14 shows the average time of processing a

request for different numbers of processors, normalized to the time required by a request

without waiting. We can see that, as the number of processors increases, a request requires

more time to be processed, as it is delayed by its previous requests. For 32 processors, the

slowdowns can be higher than 8x for barnes and raytrace. This results in the increase of

the communication time. Hence, the centralized active table imposes restrictions to the
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scalability of C-Fence mechanism. This observation motivates us to design a distributed

active table, which can process subsequent-requests locally and ameliorate contention in the

centralized one.

4.4.2 Design of distributed active table

In this section, we introduce the distributed active table, distributing the table into

multiple sub-tables, each of which handles a subset of fences. Each sub-table is logically

associated with a processor, and the information of fences issued by the processor is stored

in its corresponding sub-table. All sub-tables are connected by an on-chip network. Fig.

4.15 provides an overview of the distributed active table.

P1 P2 Pn

Distributed Active Table

Interconnection

sub-table

Figure 4.15: Overview of distributed active
table.

Fence-ID # of fences 

to wait
Waiting 

processors

Valid

bit

Associate-ID

Figure 4.16: Distributed active table – one
sub-table.

Fig. 4.16 shows the detail design of each sub-table. There are several entries, each

of which consists of five fields.

1. Valid bit (1 bit), which indicates whether the entry is available.

2. Fence-ID (50 bits), the ID of the frequent fence. Note that fence-id is represented

using 50 bits, where bit i is set to 1 if its fence-id is i.

3. Associate-ID (50 bits), the associate information of the fence. Bit i is set to 1 if Fence

i is one of its associates.
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4. Waiting-Number (8 bits), indicating how many associates that the fence needs to wait

for. The processor only checks this field locally in the corresponding sub-table after

it has detected the number of fences it needs to wait for.

5. Waiting-Processors. The number of bits equals to the number of processors. This

field indicates which processors are waiting for the fence. Bit i is set to 1 if processor

i is waiting for this fence to complete.

P1

(1)
(2)

(4)

(3)
Sub-table 1 Sub-table 2

(b) Distributed Active Table

P2

Active

Table

(1)(3) (2)

(a) Centralized Active Table

P2P1

Figure 4.17: The operations of active tables.

(Operations) Fig. 4.17 shows the operations of both centralized and distributed

active table. To see the differences between them, let us first recall the operations of the

centralized active table, which is shown in Fig. 4.17(a). When a C-Fence instruction is

issued, its fence-id and associate-id are stored in the active table (1). Upon a processor is

about to issue a C-Fence, it sends a request to consult the active table using the fence-id

(2). The active table processes the request by checking associate-ids in the table, and then

responds to the processor whether the C-Fence can be issued (3). If the response is positive,

the processor issues the C-Fence. Otherwise, the processor stalls and keeps consulting the

active table until it can issue the C-Fence. Therefore, if the processor needs to wait for its
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executing associates in other processors to complete, it periodically checks the active table,

repeating step (2).

In the distributed active table, the goal is to reduce the contention due to periodic

requests to the active table from waiting fences. The operations are shown in Fig. 4.17(b),

described as follows.

• When a C-Fence instruction is issued, its information (i.e., fence-id and associate-id)

is stored in its corresponding sub-table, indicating it is active now (1).

• When a processor is about to issue a C-Fence, it puts the fence-id and associate-id

in its sub-table, and then consults other sub-tables by sending a message, including

fence-id, associate-id, and the processor number (2). Other sub-tables will then give

responses to the consulting processor.

• When a sub-table receives a request from another processor, it uses the incoming

fence-id i to check how many associates of the requesting fence are active. To do this,

the sub-table checks the ith bits of all the associate-ids of active fences, counting how

many bits have been set to 1. After that, the sub-table responds with the number to

the requesting processor. Meanwhile, for each associate in the sub-table, the corre-

sponding bit of the Waiting-Processors is set to indicate that the requesting processor

is waiting for this fence to complete. This is step (3).

• After the requesting processor has received all other sub-tables’ responses about the

number of active associates, it stores the total number in the field Waiting-Number.

Then, the processor periodically checks this field, repeating step (4). This is to detect

when the field becomes 0, which indicates the processor can issue this fence because

there is no active associate at that time.
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• For each active fence, when it has completed, the Valid bit is set to 0. Meanwhile,

according to the Waiting processors, the processor sends the completion message to

those waiting processors. When other processors receive one such message, they de-

crease the numbers in Waiting-Number by 1 respectively.

(Comparison) The key difference between the centralized and distributed active

tables is that, when a processor needs to periodically consult the active table for a stalling

fence, the request is always sent to the global table in the centralized design (step (2) in Fig.

4.17(a)), while in the distributed design the request is only sent to the local corresponding

sub-table (step (4) in Fig. 4.17(b)). In the distributed design, a fence instance’s first-

request and its subsequent-requests are processed in different ways. Although the first-

request is still sent to other sub-tables, for the subsequent-request, the processor only checks

locally the field Waiting-Number in its corresponding sub-table. This is beneficial when

subsequent-request accounts for a large portion. Furthermore, a first-request consults the

field Associate-ID, while a subsequent-request consults the field Waiting-Number. This

indicates that, when a sub-table has these two types of requests at the same time, they can

be processed in parallel, which also ameliorates the contention.

4.5 Experimental Evaluation

We performed experimental evaluation with several goals in mind. First and fore-

most we wanted to evaluate the benefit of using the C-Fence mechanism in comparison with

the conventional fence mechanism, as far as ensuring fence orders is concerned. Second, we

also wanted to evaluate as to how close the performance of the HW implementation was
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with respect to the idealized HW. On a related note, we also wanted to study the effect of

varying the values of the parameters in the HW implementation, such as active-table size,

the number of frequent fences, etc. Once we figure out the optimal values of these param-

eters, we also wanted to evaluate the hardware resources that C-Fence mechanism utilizes.

Finally, we also wanted to study how the number of processors affects the performance of

C-Fence and how distributed active table ameliorates the contention. However, before we

present the results of the evaluation, we briefly describe the implementation.

4.5.1 Implementation

Processor 2 processors, out of order, 2 issues

ROB size 104

L1 Cache 32 KB 4 way 2 cycle latency

L2 Cache shared 1 MB 8 way 9 cycle latency

Memory 300 cycle latency

Coherence Bus based invalidate

# of active table entries 20

Active-table latency 5 cycles

# of frequent fences 50

Table 4.2: Architectural parameters.

We implemented C-Fence mechanism in the SESC [88] simulator, targeting the

MIPS architecture. The simulator is a cycle accurate multicore simulator which also sim-

ulates primary functions of the OS including memory allocation and TLB handling. To

implement ISA changes, we used an unused opcode of the MIPS instruction set to imple-

ment the newly added C-Fence instruction. We then modified the decoder of the simulator

to decode the C-Fence instruction and implemented its semantics by adding the active-table

and the associated control logic to the simulator. The architectural parameters for the im-

plementation are presented in Table 4.2. The default architectural parameters were used in
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all experiments unless explicitly stated otherwise. Note that, the term processor used here

refers to a logical processor. Our experiments assume a CMP with multiple cores. In the

implementation, we did not model the network bandwidth, but focused on the contention

in the active table. For the numbers of cores in our experiments, we think the network

bandwidth is not a bottleneck, considering fence requests are not so frequent.

4.5.2 Benchmark characteristics

We used the SPLASH-2 [108], a standard multithreaded suite of benchmarks for

the evaluation. We could not get the program volrend to compile using the compiler infras-

tructure that targets the simulator and hence we omitted volrend from the experiments.

We used the input data sets prescribed in [108] and ran the benchmarks to completion. For

each benchmark program, fences are inserted to enforce SC using Shasha and Snir’s delay

set analysis. Fence associates are also identified during analysis. However, since it is hard

to perform interprocedural alias analysis for these set of C programs as they extensively use

pointers, we used dynamic analysis to find the conflicting accesses as in [35].

Table 4.3 lists the characteristics of the benchmarks. As we can see, the number of

static fences varies across the benchmark programs, from 25 fences for fft to 1101 fences for

ocean. Since the number of static fences added can be significant (as high as 1101), we can

not store all associate information in hardware and this motivates the technique for applying

C-Fence mechanism for just the most frequent fences. We also measured the average number

of associates for each fence. As we can see, the average number of associates per fence is

around 10, a small fraction of the total number of fences. This provides evidence of why the

associate information can be crucial for performance; since a given fence has relatively fewer
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Benchmark # of Avg # of # of dynamic
static fences associates fences(×1000)

barnes 202 6.65 128222

fmm 259 7.00 1997

ocean 1101 9.59 22881

radiosity 632 19.61 57072

raytrace 301 9.78 91049

water-ns 204 5.70 39738

water-sp 208 5.53 41763

cholesky 388 11.19 659

fft 25 4.16 214

lu 63 4.38 58318

radix 66 3.76 751

Table 4.3: Benchmark characteristics.

number of associates, it is likely that two fences that are executing concurrently will not be

associates and each of them can escape stalling. We then measured the number of dynamic

instances of fences encountered during execution. As we can see, the dynamic number

of fences can be quite large, which explains why fences can cause significant performance

overhead.

4.5.3 Execution time overhead : Conventional fence vs C-Fence
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Figure 4.18: Execution time overhead of ensuring SC: Conventional fence vs C-Fence.
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In this section, we measure the execution time overhead of ensuring SC with C-

Fence mechanism and compare it with the corresponding overhead for conventional fence.

For this experiment, we used actual hardware implementation with 50 frequent fences and

20 active-table entries. Fig. 4.18 shows the execution time overheads for ensuring SC nor-

malized to the performance achieved using release consistency. As we can see, programs

can experience significant slowdown with a conventional fence, with as high as 2.54 fold

execution time overhead (for lu). On an average, ensuring SC with a conventional fence

causes a 1.43 fold execution time overhead. With the C-Fence, this overhead is reduced

significantly to 1.12 fold execution time reduction. In fact, for all the programs (except lu,

radiosity, raytrace and barnes) SC can be achieved with C-Fence for less than 5% overhead.

Since, the C-Fence mechanism is able to capitalize on the natural interprocessor delays that

manifest in program execution, most fences can proceed without stalling.

4.5.4 Sensitivity study
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Figure 4.19: Varying the number of frequent fences.

(Sensitivity towards number of frequent fences) Recall that the HW implementation

applies the C-Fence mechanism for the N most frequent fences and a conventional fence
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mechanism for the rest of the fences. In this experiment, we study the performance by

varying N ; we vary the value from 30 to 60 in increments of 10. We compare the performance

with the ideal scheme in which the C-Fence mechanism is applied for all fences. As we can

see from Fig. 4.19 the performance achieved even with 30 frequent fences is as good as the

ideal performance for most benchmarks. The only exceptions are radiosity and raytrace

in which the performance of ideal is markedly better. For these benchmarks, the dynamic

execution counts are more evenly distributed across static fences and because of this a small

number of static fences is not able to cover most of dynamic instances. On an average, the

performance of the various schemes are as follows: with 30, 40, 50 and 60 frequent fences

the respective slowdowns are 1.14x, 1.13x, 1.12x and 1.116x. The performance achieved

with the idealized HW corresponds to 1.11x. Thus we observe that with 50 frequent fences,

we are able to perform close to the idealized HW implementation.
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Figure 4.20: Varying the size of active table.

(Sensitivity towards number of active-table entries) The number of active-table en-

tries can potentially influence the performance. This is because, lesser the number of active-

table entries, greater the chance that the active-table will be full. Recall that if the active-

table is full, then an issued fence cannot utilize the advantage of the C-Fence mechanism
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and has to behave like a conventional fence. In this experiment, we wanted to estimate

the least possible value of the number of entries of the active-table that can achieve perfor-

mance close to the ideal. For C-Fence with centralized active table, we varied the number

of active-table entries with the values of 10 and 20 and compared it with an idealized HW

implementation with unlimited active-table entries. As we can see from Fig. 4.20, even with

10 entries in the active table, we can achieve the idealized HW performance in all but 2

benchmarks (water-sp and water-ns). With 20 entries we are able to achieve the idealized

HW performance across all benchmarks. In addition, we conducted the same experiment

for C-Fence with distributed active table, and found out that 10 entries per sub-table are

enough to perform close to idealized HW.
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Figure 4.21: Varying the latency of accessing active-table.

(Sensitivity towards active-table latency) The processor can issue memory instruc-

tions past C-Fence, only when it receives a negative response from active-table. Thus the

round-trip latency of accessing the active-table is crucial to the performance. We varied the

latency with values of 2 cycles, 5 cycles and 8 cycles as shown in Fig. 4.21. We observed

that the performance stays practically the same as the latency is increased from 2 cycles to

5 cycles. Recall that we send the request to the active-table even as the C-Fence instruction
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is fetched; the small buffer (5 entry buffer was used) containing instruction addresses of

decoded C-Fence instructions allowed us to do this. However, for an 8 cycle latency, the

performance of C-Fence decreases slightly. The active-table is a shared structure similar

to the L2 cache, whose latency is 9 cycles. However, the size of the active-table, which is

252 bytes, is much smaller compared to the shared L2 cache, which is 1MB. Furthermore,

the active-table is a simpler structure as opposed to the L2 cache; for instance, the L2 tag

lookup which takes around 3 cycles is not required. Hence, we think a 5 cycle latency for

the active-table is reasonable.
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Figure 4.22: Performance comparison for 4, 8, 16 and 32 processors.

(Sensitivity towards number of processors) Here, we wanted to study the perfor-

mance variation as the number of processors is varied. Fig. 4.22 shows the execution time
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overhead of the conventional fence mechanism and C-Fence mechanism (with both central-

ized and distributed active table) as the number of processors is varied across 4, 8, 16 and

32 processors. For conventional mechanism, we can see that in general the performance

remains almost the same as the number of processors is varied. For C-Fence mechanism, al-

though programs such as lu show a decrease in execution time, as the number of processors

is increased, in general, the execution time overhead of C-Fence increases slightly as the

number of processors is increased. As we can see from the average values, with centralized

active table, the execution time overhead increases from 1.12x for 2 processors, to 1.15x for

4 processors, to 1.2x for 8 processors, to 1.23x for 16 processors and 1.29x for 32 processors.

This is because, as the number of processors increases, there is greater chance of associates

executing concurrently, which in turn requires each individual fence to stall. In addition, the

contention in the centralized active table also slowdowns the performance. The distributed

active table is introduced to ameliorate this contention. With the distributed design, we can

further improve the performance of C-Fence mechanism (1.15x, 1.19x, 1.21x and 1.23x for

4, 8, 16 and 32 processors respectively). We can observe that the execution time increases

are modest. Consequently, even for 32 processors the C-Fence mechanism is able to reduce

the execution time overhead significantly compared to the conventional fence (from 1.38x

to 1.23x). Thus, while the relative performance gain reduces as the number of processors

increases, the C-Fence mechanism still performs significantly better than conventional fence.

4.5.5 Impact of distributed active table

As communication time increases significantly as the number of processors in-

creases to a high number, we redesigned the active table to be distributed, intended to

119



  0%

  20%

  40%

  60%

  80%

  100%

ba
rn

es

fm
m

oc
ea

n

ra
di

os
ity

ra
yt

ra
ce

w
at

er
−

ns

w
at

er
−

sp

ch
ol

es
ky fft lu

ra
di

x

av
er

ag
e

R
ed

uc
tio

n 
R

at
e

Benchmarks

16 processors
32 processors

Figure 4.23: Communication time reduction.
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Figure 4.24: Speedups of distributed active
table.

reduce the contention. Fig. 4.23 shows the reduction of communication time for 16 and

32 processors. Since the communication portion for 4 and 8 processors is relatively small,

their reduction rates are not interesting. As we can see, the communication time reduces

a lot for most programs. In particular, barnes, raytrace and water-ns have the reduction

rates greater than 60% for 32 processors, as they experience more contention Fig. 4.14) in

the centralized active table and the distributed design greatly reduces the contention. On

the contrary, the reduction rates for fmm, fft and radix are relatively smaller than others,

because their requests have less contention in the centralized active table. On average, the

reduction rate is 38.7% for 16 processors and 46.9% for 32 processors. This reduction results

in the performance improvement. Fig. 4.24 shows the speedups of C-Fence with distributed

active table over C-Fence with centralized active table. On average, the performance in-

creases 2.5% for 16 processors and 5.4% for 32 processors. In particular, for 32 processors,

the performance of barnes and raytrace increases the most (10.9% and 9.3% respectively),

as they have a greater portion of communication time and the time is reduced a lot using

distributed active table. Thus, C-Fence with distributed active table can ameliorate the

contention in centralized structure and hence improve the performance.
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4.5.6 HW resources utilized by C-Fence

In this section, we want to estimate the amount of HW resources that the C-

Fence mechanism utilizes. Recall that the main HW resource that C-Fence utilizes is the

active-table. For the centralized design, in the previous experiment we found out that with

a 20 entry active-table, we are able to perform as well as ideal HW. We also found out

that with 50 frequent fences, we are able to achieve close to the ideal performance. Recall

that each entry in the active-table consists of three fields: a valid bit, a fence-id and an

associate-id. For 50 frequent fences, an entry would correspond to 1 + 50 × 2 = 101 bits.

Hence, 20 entries amount to 252 bytes. In addition, we use a 5 entry buffer (requiring 45

bytes) which caches the fence instruction addresses and corresponding fence-ids to speedup

the requests to the active-table. Therefore, we would require an on-chip storage of less than

300 bytes. Similarly, for the distributed design, each sub-table requires 10 entries according

to the experiments. Each entry requires 1 + 50 × 2 + 8 + 8 = 117 bits based on the design

described in Section 4.4.2 (assuming 8 processors) and hence each sub-table requires 147

bytes. With a 5 entry buffer, we only require less than 200 bytes of additional on-chip

storage per processor core.

4.6 Summary

Fence instructions can significantly reduce the program performance. This chapter

proposes a novel fence mechanism known as C-Fence that can ensure fence orders at a

significantly lesser performance overhead. While conventional fence enforces intraprocessor

delays to prevent memory reordering, the C-Fence enforces interprocessor delays to ensure
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fence orders. However, we observe that most of the interprocessor delays are already ensured

during the normal course of execution. The C-Fence mechanism takes advantage of this

by conditionally imposing an interprocessor delay only when required to. The C-Fence

mechanism requires modest hardware resources, requiring less than 300 bytes of additional

on-chip storage. Our cycle accurate simulation results show that C-Fence can be used to

significantly reduce the overhead involved in ensuring SC. More specifically, for a dual core

processor running SPLASH-2 programs, we found that the C-Fence mechanism can reduce

the performance overhead for ensuring SC from 43% to 12%.
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Chapter 5

Address-aware Fence

This chapter introduces a hardware mechanism, address-aware fence, to dynami-

cally eliminate unnecessary memory orderings without aggressive speculation, without the

help from compiler or programmer. Unlike a traditional fence which is processor-centric

[102], an address-aware fence collects memory access information from other processors to

form a watchlist associated with the fence instance. The fence now becomes porous, al-

lowing memory accesses whose address is not contained in the watchlist to complete before

the fence. The key challenge is how to collect watchlist efficiently and clear watchlist prop-

erly. To do this, the implementation of address-aware fence leverages directory-based cache

coherence protocol, piggybacking required information on coherence transactions. It is im-

plemented in the microarchitecture without instruction set support and is transparent to

programmers. Compared with scoped fence (Chapter 3) and conditional fence (Chapter 4),

address-aware fence is broadly applicable, and has the highest precision, eliminating nearly

all possible unnecessary memory orderings due to fences.
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5.1 Motivation

In Chapter 4, we have illustrated that, a fence execution is correct if the execution

appears to maintain fence orders, where reordering memory operations across fences is

allowed if the reordering is not observed by other processors. Section 4.1.1 gives a sufficient

condition for enforcing fence orders – fence orders (F) and conflict orders (E) do not form

any cycle, i.e., no cycle in F∪E. C-Fence exploits fence associates provided by compiler to

break such cycles, by ensuring fence associates do not execute concurrently. However, since

C-Fence relies on compiler to statically identify associate information, it is conservative,

and thus some unnecessary fence executions are not eliminated. Several such scenarios have

been shown in Fig. 1.9. In particular, they illustrate unnecessary fence executions due

to conditional branches, dynamic data structures, etc. C-Fence are not able to eliminate

them in those scenarios, as those fences are associates which are identified statically and

conservatively. Moreover, C-Fence requires compiler support to identify fence associates.

However, when there is no source code available, they cannot be applied; and performing

interprocedural alias analysis in compiler is complex and conservative.

Techniques
Applicability

Dekker- Lock-free
Lock

Improving
like algo. SC

CMO [102] No No Yes No

l-mfence [63] Yes No No No

C-Fence Yes∗ Yes∗ Yes∗ Yes∗

Address-aware
Yes Yes Yes Yes

fence

Table 5.1: Comparison of existing approaches and address-aware fence (∗Compiler support
required for identifying fence associates).

124



There are also two existing techniques proposed to reduce fence overhead non-

speculatively by exploiting program execution in other processors, i.e.,conditional memory

ordering (CMO) [102] and location-based memory fences (l-mfence) [63]. Table 5.1 com-

pares the applicability of these non-speculative techniques in terms of the kind of applica-

tions they can handle. In [102], Praun et al. observed that memory ordering instructions

used on acquire and release of a lock are often unnecessary. They proposed a combined

HW/SW mechanism conditional memory ordering (CMO) to omit unnecessary memory

ordering instructions. CMO only focuses on memory orderings associated with lock acquire

and lock release, but cannot handle the other cases. Ladan-Mozes et al. [63] proposed

location-based memory fences to reduce fence overhead. A new instruction (l-mfence) is

introduced, but it is limited to Dekker-like algorithms. Besides, although C-Fence can be

applied in all situations in Table 5.1, it requires compiler support to provide fence associates.

The non-speculative solution address-aware fence is superior to the above non-

speculative techniques in two respects. It is more effective as it is able to exploit all the

optimization opportunities shown in Fig. 1.9. It is also broadly applicable as it can be

applied in all situations in Table 5.1.

5.2 Address-aware Fence

Address-aware fence exploits memory operations being performed in other proces-

sors to eliminate the above restrictions and optimize the fence executions. It only orders

memory operations involving certain memory addresses that must be ordered to maintain

fence orders. This is why it is named address-aware fence. At runtime, it is done by de-

tecting and avoiding cycles formed by fence orders and conflict orders. If no cycles can be
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formed, fences do not stall the memory operations following them; otherwise, fences will

function so as to maintain fence orders.

Address-aware fence is implemented in the microarchitecture without introduction

of any new instructions and is thus completely transparent to the programmer. Fence

instructions are introduced, as usual, either by the compiler or by the programmer. Fence

instructions in the executable are identified at runtime and processed by the hardware.

Address-aware fence handles all encountered fences without being aware of how they are

used, and hence naturally handles all cases listed in Table 5.1.

Figure 5.1: (a) Cycle detection; (b) Address-aware fence with watchlist.

This section presents the high-level algorithm of address-aware fence; while the

next section will describe the detailed hardware design. The key problem is how to detect

possible cycles at runtime. During execution, fence orders are easily known, and hence we

have to detect the conflict orders that can form a cycle along with the fence orders. Fig.

5.1(a) shows how cycles can be detected. In Proc 1, suppose all instructions in A1 have

completed except some pending memory operations, and FENCE1 does not stall the following
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instructions in A2 initially. Hence, some memory operations are reordered across FENCE1

at runtime. At this point, in Proc 2, there is a memory operation in B1 which detects a

conflicting memory operation in A2 (in the next section we will show how the detection is

performed relying on cache coherence transactions). It forms a conflict order c1 from A2

to B1 as shown in the figure ( 1©). This event triggers the following event: every memory

operation after FENCE2 has to detect whether there is any pending memory operation prior

to FENCE1 that conflicts with it, forming the conflict order c2 ( 2©). Memory operations in

B2 that do not conflict with pending memory operations in A1 can complete without being

stalled by FENCE2 even when there is any pending memory operation in B1. However, if

there does exist a potential conflict order c2 from B2 to A1, FENCE2 will delay the involved

memory operation in B2 to break this potential conflict order. Moreover, if c1 does not

exist, the detection of c2 is unnecessary, as no cycle will be formed without c1. Detecting

c2 is only triggered when there is a possible c1.

The cycle detection discussed above does not consider how to relate c1 and c2. In

particular, we should know where to check conflict, e.g., memory operations in B2 should

check conflict with pending memory operations in A1. Furthermore, detecting c2 requires

every memory operation in B2 to check conflict in A1 which is on a different processor and

thus this is inefficient. Fig. 5.1(b) shows the approach to address this problem. If a conflict

order c1 is detected ( 1©), memory addresses of all pending memory operations before FENCE1

are collected to form a watchlist, which is associated with FENCE2 ( 2©). Now, the memory

operations after FENCE2 only need to check the local watchlist to detect conflict, i.e., to

detect c2 ( 3©). If the address of a memory operation is not contained in the watchlist, it

indicates there is no conflict to form c2, which further indicates there is no cycle detected
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to violate fence orders. Hence, those memory operations whose addresses are not contained

in the watchlist can still complete without being stalled by the fence even when there are

pending memory operations from before the fence.

watchlist is 

non-empty 

watchlist is empty  

watchlist 

cleared 

collecting 

watching 

complete     

Figure 5.2: States of address-aware fence.

(Life cycle of a fence instance) The execution of a fence instruction proceeds ac-

cording to the state transition graph in Fig. 5.2. There are three states: collecting state,

watching state, and complete state. When the fence is issued it starts out being in collecting

state where it waits for its watchlist. The memory operations following the fence cannot

complete, as at this time the watchlist that is needed to detect cycles is not available.

After the fence has collected all necessary addresses to form its watchlist, it switches to

next state: the fence switches to watching state if the watchlist is non-empty; otherwise it

switches directly to complete state. In watching state the memory operations following the

fence must check the watchlist before completion. The watchlist is cleared when the cor-

responding pending memory operations have completed and the fence switches to complete

state, where the fence has completed execution. If a fence directly switches from collecting

to complete state, it causes no stalls; thus, it can be viewed as being dynamically eliminated.

(An Example) Fig. 5.3 shows an example to illustrate the execution of address-

aware fences. In Fig. 5.3(a), both a1 and a2 are long latency store misses in Proc 1. At

time t0, FENCE1 gets an empty watchlist. Hence, a3 can complete even though stores a1
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Proc 1 Proc 2 

a1: St x 

a2: St y 

 

 

a3: Ld z 

FENCE1 

b1:  St u 

b2:  St z 

 

 

b3:  Ld v 

b4:  Ld y 

FENCE2 

T 

t0 

t2 

{addr(x), 

addr(y)} 

{  } 

Proc 1 Proc 2 

a1: St x 

a2: St y 

 

 

a3: Ld z 

FENCE1 

b1:  St u 

b2:  St z 

 

 

b3:  Ld v 

b4:  Ld y 

FENCE2  {   } 

Proc 1 Proc 2 

a1: St x 

a2: St y 

 

 

a3: Ld z 

FENCE1 

b1:  St u 

 

 

b3:  Ld v 

b4:  Ld y 

FENCE2 

{  } 

{  } 

-- a1 and a2 completed 

t1 

(x, y, z, u, v are different variables) 

c1 c1 

(a) (c) (b) 

Figure 5.3: An example of address-aware fence.

and a2 are still pending. In Proc 2, b1 is also a long latency store miss, and b2 detects a

conflict with a3 at time t1. Hence, the memory addresses of pending stores prior to FENCE1

are sent to Proc 2 as FENCE2’s watchlist – {addr(x), addr(y)}. After that, b3 can complete

even when b1 is pending, as its address is not contained in FENCE2’s watchlist. On the

other hand, b4 cannot complete – it is delayed until a1 and a2 have completed and FENCE2’s

watchlist is cleared, as shown in Fig. 5.3(b). However, if there is no access to the variable

z in Proc 2 as shown in Fig. 5.3(c)(i.e., no instruction b2), then there is no conflict order

c1 and FENCE2’s watchlist is empty. In this case, both b3 and b4 can complete even though

b1 is pending. As we can see, address-aware fence only stalls necessary memory accesses

to maintain a correct fence execution (delaying b4 in this example), which reduces stalling

overhead due to fences.

5.3 Hardware Design

In this section, we describe the hardware design for address-aware fence. The

challenge is to detect and avoid cycles efficiently. In the following discussion, we present
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the detailed hardware design in context of a scalable CMP with distributed directory-based

invalidation cache coherence protocol. Each processor has a local L1 cache, a bank of L2

cache, and a portion of directory. Each coherence transaction is kept in the directory until it

receives the notification of the transaction completion. We assume each processor core to be

a dynamically scheduled ILP processor with a reorder buffer (ROB). All instructions retire

from ROB in program order. At the head of ROB, loads can retire when they complete,

while stores can retire as soon as the value and destination address are available through

store buffering technique [45], which allows stores to retire from the head of ROB even before

they complete. We will see later that we use an augmented buffer which incorporates the

function of store buffer, in which stores are allowed to complete out of order. The store

buffering relaxes Store-Load and Store-Store orders, but the traditional fence requires the

store buffer to be drained before executing following memory accesses.

Moreover, the processors also support in-window speculation [46], which guaran-

tees Load-Load order by speculative load execution (a speculative load in ROB is squashed

if its loaded data is invalidated or replaced before it retires). Besides, Load-Store order

is naturally guaranteed by ROB. Therefore, memory operations cannot complete past a

pending load, and hence the pending memory operations that can be bypassed can only be

pending stores.

5.3.1 Operations on address-aware fence

Each processor functions as usual when there is no fence executing. However, when

a fence is issued, the processor initiates the process of handling the fence using address-

aware fence mechanism. The key operations are collecting and clearing watchlist for a fence,
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which are introduced in this section. After the watchlist has been collected, the fence can

retire when it reaches the ROB head. If any load/store following the fence tries to retire

while there are still pending stores from before the fence, the processor will check whether

the address of the load/store is contained in the watchlist.

Figure 5.4: Collecting and clearing watchlists.

Collecting watchlist

When a fence is issued, the processor starts to collect watchlist for the fence,

which is now in collecting state as shown in Fig. 5.2. As described in Section 5.2, a

watchlist consists of the memory addresses of a set of pending memory operations that are

all pending stores. It is important to obtain the set of pending stores quickly, as memory

operations following the fence cannot retire until the watchlist is obtained. To do this,

we utilize the directory, where we are able to find all pending stores being serviced by

the directory. In the following discussion for simplicity we assume a centralized directory;

however, later we describe the modifications needed for a distributed directory. When a

fence is issued, the processor sends a request to the directory to fetch the addresses (block

addresses) of all pending stores in other processors. The directory compresses the addresses

into a watchlist using a bloom filter and sends it back to the requesting processor. Then
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the requesting processor records the replied watchlist locally for checking conflict. In this

way, we conservatively assume there is a conflict order c1 (Fig. 5.1(b) 1©), and obtain the

watchlist by fetching all pending stores (Fig. 5.1(b) 2©) from the directory.

The processor starts to collect the watchlist as soon as a fence is issued, because

we would like to obtain the watchlist as early as possible, so that the fence does not stall the

pipeline. However, the collected watchlist may become stale before it is used for checking

conflict. Let us take Fig. 5.4(a) as an example for the following discussion. Suppose a1 is a

store miss, and a2 completes past a1; then b1 completes after a2. If we do not take care of

b2, the execution order a2 → b1 → b2 → a1 will form a cycle and violate the fence order. In

Fig. 5.4(b), let us assume FENCE2 is issued at time t1, when no pending store is present in

the directory (i.e., cache miss a1 has not reached the directory). So the watchlist obtained

for FENCE2 will be empty. If we use this empty watchlist, we cannot avoid the execution

order a2 → b1 → b2 → a1, as the empty watchlist will allow b2 to complete before a1. This

is because the watchlist becomes stale and it does not contain x accessed by the pending

store a1.

To address this problem, we observe that the watchlist only needs to be updated

when there is a cache miss before the fence. To see why, let us recall cycle detection in Fig.

5.1(a). A cache miss in B1 would indicate that there is a potential conflict order like c1, so

we need to avoid conflict order c2. The stale watchlist may not contain all pending stores in

A1, as new pending stores may be generated after the stale watchlist was obtained. Hence,

we have to update the watchlist. On the other hand, a cache hit does not create a conflict

order like c1, so there is no need to update the watchlist. Therefore, if there is any memory

operation before the fence that is a cache miss (load/store miss) in the local cache, the
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cache miss transaction sent to the directory will also require the directory to reply with an

updated watchlist. Note that, the fence can only retire after it has received the above reply

from the directory. For the case in Fig. 5.4(b), if a2 completes past a1, a1 will be present

in the directory if it has not completed. Thus, at time t2, b1 is found to be a miss, so the

transaction sent to the directory will obtain an updated watchlist which includes x. Now

the updated watchlist containing x will stall b2, enforcing the order a1 → b2 and avoiding

fence order violation.

(Unnecessary update) Although a cache miss may create the conflict order c1 as

shown in Fig. 5.1(a), c1 does not really exist if the directory indicates the target block is

not cached in other processors. In this case, the watchlist does not need to be updated.

In particular, cache misses to local variables will fall into this case, which reduces much

unnecessary traffic.

Clearing watchlist

A fence will be in watching state when it has retired, and memory operations after

the fence have to check the watchlist to bypass it. But the fence cannot simply complete

even when all pending stores before it have completed, because memory operations after

the fence may still have to check the watchlist to avoid cycles. Let us consider the example

in Fig. 5.4(b) again, where a2 completes past a1 and FENCE2 has obtained the watchlist

containing x. But this watchlist cannot be cleared even when b1 has completed, as b2

still has to check the watchlist to avoid the cycle by ordering a1 → b2. The watchlist can

be cleared only when a1 has completed. That is, the watchlist can be cleared and hence

the fence can complete only when the pending stores whose addresses are contained in the
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watchlist have all completed. If we make each complete store notify the processors which

may contain its address, there will be complicated communication of tracking information

between processors, complicating the hardware design.

To address this problem, we will delay b1 until a1 completes. Hence, we introduce

a buffer for each processor, called active buffer. We consider a memory operation or a fence

as active if (1) it has retired; and (2) the memory operation is a pending store or there

is a pending store before the memory operation/fence. In other words, after retirement,

a memory operation or a fence becomes inactive when there is no pending store before it.

The active buffer records the addresses of all active memory operations, as well as active

fences, in the order they are retired. Now, each external coherence transaction will also

check the active buffer. If there is a conflict in the active buffer (i.e., the target memory

address is found in the active buffer) and there is a fence prior to the conflicting entry,

then this coherence transaction is delayed until the target address has been removed from

the buffer (i.e., the corresponding memory operation is no longer active). Let us recall

Fig. 5.1(b). By using active buffer, if there is a conflict order c1 from A2 to B1, the

completion of B1 will indicate the completion of A1; otherwise, B1 cannot complete as

coherence transactions sent to Proc 1 will be delayed. Thus, the watchlist can be safely

cleared as soon as B1 has completed, because it indicates all pending stores in A1 have

completed. This simplifies the implementation for clearing watchlist, as the processor can

decide when to clear watchlist based on the local information. Note that, to guarantee that

any potential conflict is detected, the cache block whose address is in the active buffer is

not allowed to be evicted from local cache.
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We illustrate the algorithm in Fig. 5.4(c). Suppose a1 is a cache miss and a2 has

completed past a1 (so a1 will be present in the directory if it has not completed). Now

both a1 and a2 are active, so their addresses are recorded in the active buffer; and FENCE1

is recorded as well. In Proc 2, b1 is then executed, which will be a miss. It obtains the

watchlist containing x from the directory and also sends a coherence transaction for y to

Proc 1. Since y is in the active buffer and there is a fence prior to y, the transaction is

delayed, and hence the watchlist is not cleared. If b2 tries to retire, it has to check the

watchlist and hence it stalls. When a1 has completed, the active buffer will be empty, and

the delayed coherence transaction for y from Proc 2 can be satisfied. Thus, the completion

of b1 indicates memory operations prior to FENCE1 have completed; otherwise, a2 is active

and hence b1 cannot complete. Now the watchlist containing x can be safely cleared as soon

as memory operations prior to FENCE2 have completed, without the risk of forming cycles.

(Deadlock freedom) In the above example, it seems possible that all four instruc-

tions a1, a2, b1, and b2 are active, and b1 is delayed by a2 and a1 is delayed by b2, which

forms a deadlock. However, we show that it is not possible that all four instructions are

active at the same time. Since a1 and b1 are misses (otherwise a2 → b1 and b2 → a1 do

not exist), they are sent to the directory. Suppose a1 first reaches the directory. So the

watchlist for FENCE2 will contain x accessed by a1. This watchlist stalls b2, which will not

be able to retire and become active. Thus, the above scenario of deadlock is not possible.

Distributed directory

To make address-aware fence scalable, we now consider the implementation with

a distributed directory. With a centralized directory, a cache miss transaction, that needs
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to update the watchlist, is sent to the directory and obtains all pending stores in other

processors. However, when the directory is distributed, a cache miss transaction is only

sent to its home directory, and only obtains the pending stores in that directory. Hence,

the memory operations after the fence can use the watchlist for checking only if they are

mapped to the same home directory where the watchlist is collected.

To accommodate distributed directory, we maintain a buffer called watchlist buffer,

which has several entries recording watchlists collected from different home directories.

Each entry in the buffer is also tagged with the ID of the tile where the home directory

resides. When a cache miss brings back a watchlist, it is recorded in an entry of the

buffer, tagged with the corresponding tile ID. Meanwhile, other entries are invalidated as

they might contain stale watchlists. A memory operation trying to retire past the fence

first checks whether there is a valid entry with the tile ID to which the memory access is

mapped. If yes, the memory operation checks against the watchlist. Otherwise, it is forced

to fetch the watchlist from its own home directory before it can check conflict for retirement.

The fetched watchlist is also recorded, so that future memory operations mapped to the

same home directory can check conflict locally. Thanks to spatial locality, most of the

nearby memory accesses tend to be mapped to the same home directory, which allows most

memory operations to check watchlists quickly and retire past fences. We use the distributed

directory in the evaluation.

(Handling multiple fences) In the above discussion, we only consider one executing

fence. However, it is also possible that multiple fences are executing in the pipeline. Since

a watchlist has to be removed when the corresponding fence can complete, we have to

know which watchlist is associated with which fence. To do this, each issued fence in the
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pipeline is associated with a unique tag, and the watchlist collected for the fence will also

be associated with the same tag. When a fence completes, only the watchlists with the

same tag as the fence are removed. Hence, the watchlists for uncompleted fences continue

to remain recorded in the buffer. In particular, the watchlist for a fence can be replaced by

the watchlist for a second fence if they are collected from the same home directory, because

the latter is the updated watchlist from that directory.

5.3.2 Hardware summary
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Reorder
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Figure 5.5: Overview of the architecture.

Fig. 5.5 shows the overview of hardware support for address-aware fence. For sim-

plicity, only main logic blocks related to address-aware fence are presented. Each processor

core is augmented with two new logic blocks to implement the technique: active buffer and

watchlist buffer as discussed in the previous section. If a retired memory access or fence is

active, it is added to the active buffer ( 1©). Each external cache transaction has to check

the active buffer, and is delayed if there is a hit ( 2©). Each watchlist is recorded in the

watchlist buffer when it is received from the directory ( 3©). Each memory access has to

check the watchlist buffer to see if it can retire ( 4©). Although we leverage cache coherence

to transfer metadata, the coherence protocol and its transactions are left unchanged. Next,

we summarize the operations in the active buffer and watchlist buffer.
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(Active buffer) The active buffer records the addresses of all active memory accesses

and active fences. It also incorporates the function of store buffer. Each entry of the buffer

consists of the following fields: valid, type, done, and data. Descriptions of fields are shown

in Table 5.2. The data field depends on the type. For a store, it includes the destination

memory address and a pointer to its data; for a load, it only includes the memory address;

and for a fence, it includes a unique tag used to mark its watchlist.

Fields Description

valid whether it is a valid entry

type load, store or fence

done
whether the operation has completed
loads and fences are always complete

data depending on the type

Table 5.2: Fields in active buffer.

The following are the operations for the active buffer. (1) Add. Active memory

accesses and active fences are added to the active buffer in the order they retired. However,

two consecutive loads or two consecutive stores can be merged if their destination addresses

are mapped to the same cache block, reducing the size of active buffer. This is because the

conflict detection is based on the block address. If the buffer is full, the retiring memory

access or fence is delayed until there is an entry available. (2) Delete. If a memory access

or fence is no longer active, it is removed. That is, at the head of active buffer, if a pending

store has completed, entries until next pending store are invalidated. (3) Conflict detection.

Each external coherence transaction has to detect conflict in the active buffer. If there is

a conflict in the active buffer and there is an active fence prior to this conflicting entry,

the transaction is delayed. It is important to make conflict detection efficient. We use a

counting bloom filter to hash memory addresses in the active buffer. Conflict detection first
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checks the counting bloom filter before checking entries in the active buffer, which greatly

reduces useless checks as conflicts are rare.

(Watchlist buffer) The watchlist buffer records all collected watchlists. Each watch-

list is a bit vector which contains memory addresses compressed using bloom filter. This

is to minimize the network bandwidth, because watchlists are exchanged along with cache

transactions. Each entry consists of the following fields: valid, fence tag, tile ID, and watch-

list. Descriptions of each field are shown in Table 5.3.

Fields Description

valid whether it is a valid entry

fence tag which fence is the watchlist for

tile ID which directory the watchlist is collected

watchlist bit vector of pending stores

Table 5.3: Fields in watchlist buffer.

The following are the operations for the watchlist buffer. (1) Add. Each watchlist

is recorded when it is replied from the directory, with the corresponding fence tag and tile

ID. (2) Delete. When all memory operations before a fence have completed, the entries with

the same fence tag is invalidated. Moreover, when a cache miss before the fence brings back

an updated watchlist, other entries are invalidated as they might contain stale watchlists.

(3) Retirement check. Each retiring memory operation checks against the watchlist with the

tile ID to which its memory address is mapped. If it does not find such watchlist, it is first

forced to fetch the watchlist from its home directory. If the block address of the memory

operation is not contained in the watchlist, it can retire even if there is a pending store

prior to the fence. Otherwise, it indicates the retirement of the memory access may result

in a violation of fence order, and hence it is delayed. It is worth noting that watchlist buffer

will eventually become empty if the processor is stalled, which indicates that the forward

progress is guaranteed.
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5.4 Experimental Evaluation

The goals of the evaluation are: (1) to understand why address-aware fence per-

forms better; (2) to assess the performance of address-aware fence compared to traditional

fence; and (3) to assess the space and traffic overhead.

(Simulation) We have developed a hardware simulation infrastructure using the

Pin tool [71] that simulates a directory-based shared memory multiprocessor system. Each

processor has a private 4-way 32KB L1 cache and all processors share a L2 cache (16-way

1MB/core). All L1 caches are kept coherent using a directory-based MESI protocol. All

cores are connected via a mesh network, which has a link latency of 2 cycles and router

latency of 3 cycles. Each instruction takes 1 cycle to execute, and it takes 2, 10, and 300

cycles to access the L1 cache, L2 cache, and main memory, respectively.

Benchmarks Description

dekker Dekker algorithm [34]

lamport Lamport Queue [65]

msn Non-blocking Queue [77]

wsq Chase-Lev’s Work Stealing Queue [27]

bst Binary search tree

SPLASH-2 8 programs from SPLASH-2 [108]

Table 5.4: Benchmark description.

(Benchmarks) We evaluate the technique using benchmarks shown in Table 5.4.

There are two groups, concurrent lock-free algorithms and SPLASH-2 benchmark pro-

grams. In the first group, concurrent lock-free algorithms are implemented using fences

and atomic compare-and-swap (CAS) instructions. Dekker algorithm (dekker) [34] is a

classic solution to mutual exclusion problems using only shared variables for communi-

cation. Lamport Queue (lamport) [65] is a single-producer and single-consumer queue.
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Non-blocking concurrent queue (msn) is a multiple-producer and multiple-consumer queue.

Chase-Lev work-stealing queue (wsq) [27] is a lock-free work-stealing deque implemented

with a growable cyclic array. bst is a concurrent search structure implemented using atomic

CAS instructions. Since these lock-free data structures are not closed programs, we con-

structed harnesses to use them to assess the performance of address-aware fences. The

second group of benchmarks are from SPLASH-2 [108]. In these benchmarks, fences are

inserted to enforce sequential consistency. We identified the fence insertion points based on

Shasha and Snir’s delay set analysis, where we employed dynamic analysis to find conflict-

ing accesses as in [35]. We also use these benchmarks to compare address-aware fence and

C-Fence (Chapter 4).

5.4.1 Performance

In this section, we would like to understand how address-aware fences improve

fence performance and evaluate the performance overhead induced by address-aware fences.

Effectiveness of address-aware fence

Benchmarks #Fences
Address-aware fences C-Fence
#Check #in W.L. #Conf.

barnes 83M 47M 206 21M

fmm 5M 2M 223 1M

ocean 9M 15M 383 1M

radiosity 30M 5M 90 4M

raytrace 44M 34M 239 5M

volrend 39M 49M 436 3M

water-ns 9M 1M 79 656K

water-sp 7M 2M 88 395K

AVG. 28.8M 19.4M 218 4.9M

Table 5.5: Effectiveness of address-aware fence.
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In this evaluation, we use SPLASH-2 benchmark programs where fences have been

inserted for enforcing sequential consistency. All programs are run with 8 threads. Table 5.5

characterizes address-aware fences in terms of how often fences have to take effect. Column

2 in the table shows the number of dynamic fence instructions executed in each program.

Although they only account for a small part of all instructions (∼1%), they induce relatively

larger execution time overhead, as shown later in Fig. 5.6. With address-aware fence, when

there is any active fence, memory accesses have to check with watchlists before retirement.

Column 3 shows the number of such memory accesses. Column 4 shows the number of

memory accesses whose block addresses are found to be present in the watchlists. We can

see that, compared with the number in Column 3, very few memory accesses are stalled by

fences. In fact, the number of fences that need to stall (Column 3) is negligible compared

with the total number of fences (Column 2). For example, volrend has the largest number of

detected conflicts, but this is still very small compared the total number of fences – 436 vs.

39 Million. On average, only 218 memory accesses are found in watchlists; thus, avoiding

nearly all fences from taking effect.

(Comparison with C-Fence) We also implemented and studied C-Fence mechanism,

which is able to dynamically eliminate a fence as long as none of its associate fence (provided

by compiler) is executing concurrently in other processors. We measured the number of

fences which detect executing associates and have to stall. Numbers in Column 5 show that

the number of fences that have to stall when C-Fence is used. On an average, around 15%

of C-Fences have to stall. In contrast, address-aware fences require very few stalls (Column

4 vs. Column 5). This is because address-aware fence is able to exploit more optimization

opportunities dynamically, e.g., scenarios in Fig. 1.9, which C-Fence is not able to optimize.
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Figure 5.6: Execution time (T – traditional fence; A – address-aware fence).

We measured the execution time of programs with traditional fences and address-

aware fences, respectively. Fig. 5.6 shows the results, which are normalized to the execution

time achieved using traditional fences. The execution time is broken down into two parts:

the stall time due to fences (Fence stalls) and the rest of the execution time (Execution).

For the first group (concurrent lock-free algorithms), with traditional fences, we can see that

fence stalls account for 8%-29% of the total execution time. Actually, the fence overhead

can be larger depending on the programs using them. Concurrent algorithms have to

guarantee correct data accesses by multiple threads, and fences are used to guarantee this

goal under relaxed consistency models. However, if data is not frequently accessed by

multiple threads concurrently, address-aware fences are able to utilize this opportunity to

reduce the fence overhead. In the second group (SPLASH-2 programs), fences are inserted to

ensure sequential consistency. Similarly, they experience significant overhead due to fences

(about 10% on average). However, since fences are inserted conservatively, many dynamic

fence instances are unnecessary, some of which were illustrated in Fig. 1.9. With address-

aware fence, only very few fences have to take effect and delay the memory accesses that
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follow them. On an average, address-aware fence improves the performance of all benchmark

programs by 12.2%. More importantly, we can see that address-aware fence only induces

negligible execution time overhead – a fence can retire as long as it has obtained its watchlist,

which can be fetched from the directory efficiently. On the other hand, traditional fence

has to stall the pipeline until all outstanding stores have completed, which takes a much

longer time to access the memory or invalidate shared copies.
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Figure 5.7: Scalability (Tn represents traditional fence with n processors and An represents
address-aware fence with n processors).

(Scalability) We vary the number of processors with 4, 8 and 16 processors and mea-

sure the execution time of benchmark programs from SPLASH-2. The results are shown in

Fig. 5.7, where data are presented in the same way as in Fig. 5.6. Each benchmark program

has execution time of traditional fence and address-aware fence with 4, 8 and 16 processors,

respectively. We can see that, with different numbers of processors, the execution time

overhead induced by address-aware fence is not affected significantly. Therefore, the im-

plementation appears scalable. In fact, the implementation leverages directory-based cache

coherence protocol, piggybacking required information on coherence transactions. With-

out introducing centralized structures, the implementation maintains the level of scalability

delivered by the directory-based cache coherence.
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5.4.2 Space and traffic

Benchmarks
Active buffer #Pend. #Delay Traffic

%Emp. %<64 stores /1K inst. %Inc.

barnes 77.9 98.7 2.2 0.0 13.0

fmm 85.5 99.4 2.8 0.0 18.6

ocean 59.6 84.1 8.7 0.0 9.7

radiosity 78.1 99.5 3.6 0.0 17.4

raytrace 82.5 98.9 2.3 0.0 22.1

volrend 75.2 98.7 4.5 0.0 13.9

water-ns 86.4 99.8 4.1 0.0 8.9

water-sp 89.0 99.9 5.2 0.0 12.5

AVG. 79.2 97.5 4.2 0.0 14.7

Table 5.6: Characterization of space and traffic.

To support address-aware fence, we introduced active buffer and watchlist buffer

to record information and leveraged cache coherence to avoid fence order violation. Ta-

ble 5.6 characterizes space and traffic induced by address-aware fence. We conducted the

experiments using SPLASH-2 benchmark programs with 8 threads.

Recall that, active buffer stores addresses of active memory accesses and fences,

and two consecutive loads or two consecutive stores are merged when they have the same

block address. Column 2 shows that, on average, the active buffer is frequently empty –

at the rate of 79.2%. When it is empty, memory accesses at the top of ROB can retire

immediately, as there is no active fence prior to them. To size the active buffer, we tracked

the number of active memory accesses during execution, and found that this number is less

than 64 most of the time (97.5% on average as shown in Column 3). ocean has more than

64 active accesses most frequently (15.9%) among all programs, but the other benchmark

programs almost never exceed 64 active accesses. Thus, we used 64 entries in the imple-

mentation. Besides, for watchlist buffer, we used the number of entries equal to the number
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of processors, with each entry recording the watchlist obtained from the corresponding

processor.

A watchlist is obtained from the directory, consisting of the addresses of pending

stores being serviced in the directory. Column 4 shows the average number of block ad-

dresses compressed in the directory when a processor requests for a watchlist. As we can

see, the average number is 4.2, which is small. In the implementation, we compressed the

addresses into a watchlist of 160 bits, which are enough to obtain very low false positive.

Column 5 shows the number of external cache coherence transactions that are delayed due

to its hit in the active buffer. We can see that all of them are 0.0 per 1K instructions. So it

has little effect on the performance. Column 6 shows the traffic increase for each program.

Address-aware fence induces additional traffic to transfer watchlists between processors and

the directory, and this is the main source of the additional traffic. On an average, the traffic

increases by 14.7%, which is modest.

(Hardware Cost Summary) In the highest performing configuration, address-aware

fence only adds active buffer and watchlist buffer to each core. The active buffer has 64

entries, each of which has about 8 bytes; the watchlist buffer has 8 entries (for 8 processors),

each of which has about 20 bytes. The above two buffers amount to a total of 672 bytes.

We expect the extra power consumption of the technique to be small compared to the state-

of-the-art aggressive speculative techniques, as the area overhead of the proposed technique

is small and it does not have to maintain speculative states or require rollback associated

with misspeculations.
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5.5 Summary

This chapter presents a hardware solution address-aware fence to reduce the over-

head due to fence instructions without speculation. Address-aware fence is implemented

in the microarchitecture without instruction set support and is transparent to program-

mers. Address-aware fences only enforce memory orderings that are necessary to maintain

the effect that the traditional fences strive to enforce, while other fences are dynamically

eliminated. The experiments conducted on a group of concurrent lock-free algorithms and

SPLASH-2 benchmarks show that address-aware fences eliminate nearly all the overhead as-

sociated with traditional fences and achieve an average performance improvement of 12.2%

on all benchmark programs.
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Chapter 6

Related Work

This chapter discusses the research work related to enforcing and reducing memory

ordering. They are categorized to hardware, compiler, programming language, verification

and debugging, as well as some other work in the last section.

6.1 Hardware Support

6.1.1 Speculative techniques

Conventional hardware design can be augmented to accommodate the requirement

of sequential consistency (SC), where speculation is typically used to achieve high perfor-

mance despite ensuring SC. The key observation is that, for most memory accesses, the

execution would still follow SC, even if they are reordered. A small fraction of memory

accesses that require the delay for correctness are efficiently detected and corrected by reis-

suing the accesses to the memory system. Thus, the common case is handled with maximum

speed without violating SC.
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Gharachorloo et al. [46] propose two techniques to enhance the performance of

SC – hardware-controlled non-binding prefetch and speculative execution for load accesses.

Prefetching makes it more likely that a memory access will find its data in cache; and spec-

ulation allows the processor to proceed with load accesses that would otherwise be delayed

due to earlier pending accesses. However, such reordering is within the instruction window,

which still requires write buffer be drained before the subsequent memory operations can

complete. The MIPS R10000 processor supports SC and includes this technique [109]. Ran-

ganathan et al. [87] propose speculative retirement, where loads are speculatively retired

while there is an outstanding store, and stores are not allowed to get reordered with respect

to each other. The above two techniques allow only loads to bypass pending loads and

stores speculatively; stores are not allowed to bypass other memory accesses.

In [49], Gniady et al. propose SC++, which allows both load and store to specula-

tively bypass each other. By supplementing the reorder buffer with the Speculative History

Queue (SHiQ), SC++ maintains the speculative states of memory accesses. This enables

the proceeding of retiring instructions, which otherwise need to be stalled due to the long

access latency of a store. This work shows that SC implementations can perform as well

as RC implementations if the hardware provides enough support for speculation. Further-

more, since SHiQ may need to be very large to tolerate long latencies, in [48], they propose

SC++lite, which places the SHiQ in the memory hierarchy, providing a scalable path for

speculative SC systems across a wide range of applications and system latencies.

The above works track speculative state at a per-instruction or per-store granu-

larity, which requires the history buffers must grow proportionally to the duration of spec-

ulation. Another set of techniques [16, 25, 107] propose the idea of enforcing consistency at
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the granularity of coarse-grained chunks of instructions rather than individual instructions.

These approaches execute programs in continuous speculative chunks, buffering register

state via checkpoints and buffering speculative memory state in the L1 cache. At the end

of a chunk, they send their write set to other processors, which use this write set to detect

violations. If there is a violation, the recovery mechanism invalidates speculatively-written

lines in L1 and refetches data from lower levels. [50, 26] first introduces this concept in trans-

actional memory, although they do not target SC. Ceze et al. [25] propose BulkSC, which

enforces SC at chunk granularity. A chunk that is going to commit sends its signatures to

the arbiters and other processors to determine whether the chunk can be committed. Ahn

et al. [6] propose a compiler algorithm called BulkCompiler to drive the group-formation

operation and adapt code transformations to existing chunk-based implementations of SC.

They select chunk boundaries so that they can maximize the potential for compiler optimiza-

tion, and minimize the chance of reexecution. Blundell et al. [16] propose InvisiFence,

which does not require either fine-grained buffers to hold speculative state or require global

arbitration for commit in speculation state.

Speculative techniques can achieve good SC performance comparable to release

consistency (RC). Although the above techniques are designed for efficient SC implementa-

tion, they can also be adjusted to reduce fence overhead. However, the main issue with these

speculative techniques is that they employ extensive post-retirement speculation, which re-

quires high hardware complexity. On the contrary, this dissertation aims at good perfor-

mance without aggressive hardware speculation.
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6.1.2 Non-speculative techniques

There are also works on reducing memory ordering overhead non-speculatively. In

[102], Praun et al. propose conditional memory ordering (CMO) based on the observation

that memory ordering instructions used on acquire and release of a lock are often unneces-

sary. The goal of CMO is to optimize and reduce the cost of the acquire-release memory

synchronization protocol using a purely runtime technique. Ladan-Mozes et al. [63] pro-

pose location-based memory fences (l-mfence) to reduce fence overhead. It is a lightweight

solution, but it is limited to the Dekker-like algorithms. Address-aware fence presented in

the dissertation does not limit to specific applications. It handles all encountered fences

without being aware of how they are used. Concurrently with this work, Duan et al. pro-

pose WeeFence [36], which shares similarities with address-aware fence. They use dedicated

on-chip structures to record addresses of pending stores, while address-aware fence utilizes

cache coherence directory to obtain pending store information.

Non-speculative techniques have also been proposed to enforce SC efficiently. Singh

et al. [97] propose to identify thread-local and shared read-only data, and enforce SC by

only ordering the accesses to remaining data. With assistance from static compiler analysis

and hardware memory management, a processor can easily determine these safe accesses;

and an additional unordered store buffer is employed to allow later memory accesses to

proceed without a memory ordering related stall. In contrast, conflict ordering described

in the dissertation is a pure hardware solution, which checks if there is any conflict with

pending accesses in remote cores before committing a memory operation from the ROB,

resulting in non-speculative completion.
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6.2 Compiler Support

6.2.1 Fence insertion for enforcing sequential consistency

Programs running on machines supporting relaxed consistency models can be

transformed into ones in which SC is enforced. Shasha and Snir, in their seminal work [95],

observe that not all pairs of memory operations need to be ordered for SC; only those pairs

which conflict with others run the risk of SC violation and consequently need to be ordered.

To ensure memory operation pairs are not reordered, memory fences are inserted. They

then propose delay set analysis, a compiler based algorithm for minimizing the number of

fences inserted for ensuring SC. This work leads to other compiler based algorithms that

implement various fence insertion and optimization algorithms.

Although [95] provides some of the foundational ideas for enforcing SC from a com-

piler perspective, it is not designed as a practical static analysis. Midkiff and Padua [80]

extend Shasha and Snir’s characterization to work for programs with branches, alias and

array accesses, but they do not provide a polynomial-time algorithm for performing the

analysis. Krishnamurthy and Yelick [60, 59] provide some early implementation work on

cycle detection. They show that computing the minimal delay set for an arbitrary parallel

program is an NP-hard problem for MIMD programs and propose a polynomial-time algo-

rithm for analyzing SPMD programs. Chen et al. [29] substantially improve both the speed

and the accuracy of the SPMD cycle detection algorithm described in [60]. By utilizing the

concept of strongly connected components, they improve the running time of the analysis

asymptotically from O(n3) to O(n2).

Some compiler techniques aim to find the delay set that is sufficient to enforce SC,

and minimize the number of inserted fences. Lee and Padua [66] develop a compiler tech-
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nique that reduces the number of fence instructions for a given delay set, by exploiting the

properties of fence and synchronization operations. Later, Fang et al. [39] also develop and

implement several fence insertion and optimization algorithms in their Pensieve compiler

project. [55] propose schemes for concurrent languages that employ simple synchronization

and little aliasing, e.g., Titanium. However, their techniques are hard to extend to C/C++

programs because the extensive use of pointers in such programs seriously complicates the

analysis. Sura et al. [98] describe co-operating escape, thread structure, and delay set anal-

ysis to enforce SC. In [67], Lee et al. use a perfect escape analysis to provide the best bound

on the overhead incurred for a SC memory model. In addition, [78] takes a different ap-

proach to reducing the number of fences. It exploits the relaxed semantics of work-stealing

algorithm – tasks are allowed to be executed multiple times for some applications – and

avoid some fences in the algorithm.

While the above works target reducing the number of fences, this dissertation aims

to make fence cheap by eliminating unnecessary fence stalls, and hence it would help achieve

SC more efficiently.

6.2.2 Compiler optimizations consistent with memory models

Compiler optimizations should also be consistent with the required memory mod-

els. Transformations that can have the effect of reordering memory operations should be

carefully examined to avoid violations. [104] analyzed the validity of several common pro-

gram transformations in multithreaded Java, as defined by the Java Memory Model (JMM)

[73]. It identified several valid and invalid transformations with respect to Java memory

model. In [105], Ševč́ık et al. describe a concurrency extension to a C-like programming
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language that provides end-to-end TSO semantics. They prove that a set of optimizations

are TSO-preserving, which provide an end-to-end guarantee when the generated binaries are

executed on x86 hardware. Later, they present CompCertTSO in [106], a verified compiler

that generates x86 assembly code, permitted by the source language x86-TSO semantics.

[103] gives a rigorous study of a group of transformations that involve both reordering

and elimination of memory accesses, and proves that any composition of these transforma-

tions is sound with respect to the DRF guarantee. [100] describes further work on verified

fence elimination. [12, 89] prove the correctness of the proposed compilation scheme from

C/C++11 concurrency primitives to POWER/ARM machines. Moreover, [75, 22] also show

that a large class of optimizations crucial for performance are either already SC-preserving

or can be modified to preserve SC while retaining much of their effectiveness.

These compiler optimizations cannot prevent hardware from reordering, and hence

they are orthogonal to the techniques proposed in this dissertation. They are complementary

in improving program performance.

6.3 Programming Support

Mainstream programming languages like C++ and Java use variants of the data-

race-free memory model known as DRF0 [4, 5], which guarantee SC as long as the program

is free of data races. Some works, such as [13, 15], give formal semantic descriptions for

these programming languages. However, if the programs do have data races then these

models provide much weaker semantics [73, 17]. To redress this, there have been works

that employ dynamic race detection [38] in order to stop execution when semantics become

undefined. Since dynamic data race detection can be slow, recent works [70, 74, 96] propose
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raising an exception upon encountering an SC violation as this can be done more efficiently.

They also require compiler support to partition a program into regions, and many valid

compiler optimizations can be performed within a region but not across regions. During ex-

ecution, hardware guarantees that there is no SC violation by detecting conflicting accesses

in concurrently executing regions; otherwise, an exception will be raised. These efforts

in programming language are rooted in the observation that good programming discipline

requires programmers to protect shared accesses with appropriate synchronization.

On the contrary, the techniques in this dissertation allow data races, as data races

can be intentional and harmless, such as in lock-free data structures. In particular, conflict

ordering, address-aware fence, and conditional fence rely on the detection of data races

which are overlapping in time and intertwined in a manner that can form a cycle.

6.4 Debugging and Verification

Most prior SC violation detection schemes have used data races as proxies for SC

violation [44, 16, 25, 49, 70, 74], which is highly imprecise. In [35], Duan et al. use a race

detector to construct a graph of races dynamically, and then traverse the graph off-line to

find potential SC violations. However, it inherently suffers from the same limitations as data

race detection techniques. False negatives resulting from data race detection could lead to

undetected SC violations, and false positives would report SC violations that never occur.

In [23], Burnim et al. develop a tool to execute programs with a biased random scheduler

to create with high probability a predicted sequential consistency violation. Recently, [81,

85] propose hardware schemes to precisely detect SC violations in machines implementing

relaxed models. When there is violation that is about to occur, an exception is triggered,
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providing information to debug the SC violation. The above works focus on debugging, so

they target precise detection; however, this dissertation aims to avoid unwanted ordering

violations, and targets execution efficiency.

There are also works in verification community [19, 18, 20, 21, 28, 53, 61, 62, 69]

to verify and enforce SC. Verification tools developed in [20, 21] aim at inserting fence

instructions accurately. These tools take the concurrent program and a relaxed memory

consistency model, e.g. TSO [21], as inputs, then enumerate all possible execution patterns

and simulate them according to the memory consistency model. Fences can be inserted

according to the executions that lead to non-SC results. While promising, these techniques

are not designed for on-the-fly SC enforcement with negligible overhead, or reducing fence

overhead. Moreover, [30, 32, 76] are works that can verify if a memory system hardware is

correctly implemented, which is different from the goal of this dissertation.

6.5 Other Works

6.5.1 Fence instructions in commercial architectures

Commercial architectures provide various fence instructions [4]. Some of them

also enforce ordering of a subset of memory operations. In Intel IA-32, there are three

types of fence instructions, i.e., mfence, lfence and sfence. While mfence enforces all mem-

ory orders, lfence only enforces orders between memory load instructions and sfence only

enforces orders between memory store instructions. Moreover, in SPARC V9, MEMBAR

instruction can be customized to enforce different memory orders (i.e., with mask values

indicating #LoadLoad, #StoreLoad, #LoadStore, and #StoreSore); in PowerPC, there are
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lightweight fence lwsync and heavyweight fence sync, where sync is a full fence, while lwsync

guarantees all other orders except RAW; in Alpha model, there are memory barrier (MB)

and write memory barrier (WMB). Although this dissertation also provide fences for en-

forcing ordering of a subset of memory operations, its improvements will be orthogonal to

the above fences. While the above fences explore the ordering of a combination of previous

load and store operations with respect to future load and store operations, this dissertation

explores the ordering of a certain set of memory accesses whose scopes (scoped fence) or

addresses (address-aware fence) are considered.

6.5.2 Optimizing lock implementations

Thin locks [10] are an influential work on lock optimization for Java. They are

developed based on the observation that sequential programs often needlessly use locks

indirectly by calling thread-safe libraries. By overlaying CAS lock on top of Java’s more

costly monitor mechanism, thin locks avoid all monitor accesses for a single threaded pro-

gram, and also guarantee the correctness if additional threads are introduced. There are

also other refinements [56, 83, 82] of thin locks. The basic idea is to allow a particular

thread to reserve a lock, and hence acquisitions of the lock by the reserving thread can

be performed efficiently. [101] propose a fast biased lock, which simplifies and generalizes

prior implementations of biased lock. The above work focuses on reducing the frequency of

atomic RMW operations for implementing locks, while this dissertation aims to reduce the

memory ordering overhead induced by fence instructions. Speculative lock elision (SLE)

[86] eliminates unnecessary serialization of threads due to critical sections to achieve high

performance in multithreaded programs, using speculation. This is because, dynamically,
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these critical sections could have safely executed concurrently without locks. Besides, lock

elision with transactional memory [99, 33] also use speculative technique to dynamically

eliminate lock operations. In contrast, this dissertation does not simply focus on lock op-

erations but also fences which are also used for lock implementation, and the proposed

techniques do not resort to aggressive speculation.

6.5.3 Formalization of memory models for commercial architectures

Commercial architectures with relaxed memory models are often described in am-

biguous informal prose, leading to widespread confusion. In [94], Sewell et al. describe how

the recent Intel and AMD memory model specifications do not match with the actual be-

haviors observed in real machines. Thus, it is necessary to give formal description for these

architectures. [91] formalizes the Intel and AMD architecture specifications of the time,

but those turn out to be unsound with respect to actual hardware later. Then, x86-TSO

model is described in [94, 84], which is sound with respect to actual processor behavior,

matches the current vendor intentions, and is a good model to program above. For POW-

ER/ARM machine, Alglave et al. [7, 8] give preliminary axiomatic models for them. Later,

in [90], Sarkar et al. provide an abstract-machine model for POWER that can accurately

capture the architectural intent and observable processor behavior for a wide range of sub-

tle examples. Moreover, [72] describes an axiomatic model that is provably equivalent to

the operational model in [90]. These formalization works help us better understand the

behaviors of commercial architectures.
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Chapter 7

Conclusions

7.1 Contributions

This dissertation makes contributions in eliminating unnecessary memory order-

ing on multiprocessors. It presents techniques to implement sequential consistency (SC)

efficiently and reduce fence instruction overhead. The techniques are based on the obser-

vation that a subset of memory orderings that are in general required, may be unnecessary

during the current execution. This dissertation explores programming, compiler, and hard-

ware support to efficiently detect such unnecessary memory orderings and eliminate them

to improve performance. In particular, this dissertation makes the following contributions.

I. Efficient hardware SC implementation without aggressive speculation. It is attractive to have

a system in which programmers can treat the combined compiler and hardware as a SC

system and still transparently profit from the performance advantage of the relaxed memory

models, achieving both programming efficiency and high performance. Marino et al. [75]

have recently shown that it is possible for compiler to preserve SC efficiently. However, it
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is questioned whether the costs of enforcing SC in hardware justify its benefits, as prior SC

proposals need to employ aggressive speculation, which has high hardware complexity. This

dissertation presents conflict ordering for efficient hardware enforced SC, by detecting and

preventing cycles in memory access orders across threads which may violate SC. This work

demonstrates that the benefits of SC can indeed be realized using lightweight hardware

resources, without requiring post-retirement speculation.

II. Making fence instructions cheap. Fence instructions are used by the compiler and hard-

ware to prevent the reordering of memory accesses. However, they are expensive in today’s

processors, as enforcing memory ordering is expensive. Consequently, programmers strive

for ways of avoiding excessive use of fences, or replacing heavyweight ones with lightweight

ones. Unfortunately, this can lead to complicated code or sometimes, even bugs. This

dissertation explores various ways to reduce fence overhead, making them cheap to use.

Programmer and compiler can use fences conservatively without worrying about their over-

head. In particular, in high-level languages such as C++ or Java, atomic or volatile is used to

declare some shared variables. Their semantics implies the same effect as fence instructions.

Lightweight fence would be able to implement accesses to such variables efficiently.

III. Exploring programming, compiler, hardware support for eliminating unnecessary memory

ordering. Memory ordering requirements in memory models influence many aspects of sys-

tem design, including the design of programming languages, compilers, and the underlying

hardware. All these aspects work together to ensure memory ordering requirements. This

dissertation discusses the trade-offs between them to design a system that can detect and

eliminate unnecessary memory ordering. With programming and compiler support, a de-
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sign with simple hardware support is possible; on the other hand, hardware should be finely

designed, but it also leads to higher precision of detecting unnecessary memory ordering.

IV. Programming directed fence. Scoped fence (S-Fence) introduces the concept fence scope,

and enables programmers to express their ordering demands. S-Fence bridges the gap be-

tween programmers’ intention and hardware execution with respect to the memory ordering

enforced by fences. The idea of fence scoping is consistent with the principle of encapsulation

and modularity of object-oriented programming languages. This makes it easy to incorpo-

rate fence scoping in current popular object-oriented programming languages. Moreover,

S-Fence is easy for programmers to use and requires simple modifications to the hardware.

In particular, S-Fence only makes changes locally in each processor core, without adding

inter-processor communication, and hence scalability is not an issue for S-Fence.

V. Compiler directed fence. Conditional fence (C-Fence) is proposed to utilize compiler

information to dynamically decide if there is a need to stall at each fence. It does not require

programming effort, and the hardware cost is lightweight. C-Fence can be used to enforce SC

efficiently. Compared to previous software based approaches, C-Fence significantly reduces

the slowdown; compared to previous hardware based approaches, C-Fence does not require

any speculation.

VI. Hardware directed fence. Address-aware fence is proposed to speedup fence execution,

without the help from compiler or programmer. It is implemented in the microarchitecture

without instruction set support and is transparent to programmers. Fence instructions in

the executable are identified at runtime and processed by the hardware. Address-aware
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fence is broadly applicable, and has the highest precision, eliminating nearly all possible

unnecessary memory orderings due to fences.

7.2 Future Directions

I. Memory ordering in distributed systems. In distributed systems, software shared virtual

memory [54, 68, 24, 57] is usually implemented to provide a virtual address space that

is shared among all processors. Application programs can use the system as a physically

shared memory machine. There are two design choices that greatly influence the implemen-

tation of a shared virtual memory: the granularity of the memory units and the strategy

for maintaining coherence. The memory unit can be a page or another fine-grain unit,

that influences the communication frequency between distributed memories. Furthermore,

strategy for maintaining coherence involves deciding when an update should be seen by re-

mote processors. These two factors greatly influence program performance in a distributed

system, as communication cost between processors is nontrivial due to lack of physically

shared memory. A strong memory consistency model (e.g., SC) can be expensive, leading

to poor performance. Therefore, in distributed systems, some relaxed models are usually

implemented, e.g., lazy release consistency [58], entry consistency [14], etc. As a result, it

would be interesting to explore ways to improve performance of stronger memory models

in distributed systems. The ideas described in this dissertation to eliminate unnecessary

memory ordering can be considered in context of distributed systems, although there exist

challenging problems to tackle. For example, in multicore processors, we can obtain in-

formation from directory (closer to processor than memory) to assist reordering decision

quickly; however, in distributed systems, there is no such structure. It is also possible
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to consider application characteristics to design application-specific protocols to improve

performance.

II. Memory ordering in manycore processors. In manycore processors, a large number of cores

are used to perform massively parallel computing. Researchers from Intel have announced

that the architecture of their recent 48-core processor, called Single-Chip Cloud Computer

(SCC) [1], can scale to 1,000 cores. In this kind of architecture, each core is designed as

in-order processor core for power efficiency. Besides, it is based on a message passing ar-

chitecture and does not provide any hardware cache coherence mechanism; hence software

shared virtual memory is also considered in this case. With such massively parallel archi-

tecture, it is necessary to revisit the techniques described in this dissertation. For example,

in-order processor core is different from out-of-order core. Besides, with a large number

of cores in a chip, the traffic due to communication becomes significant, which should be

considered when applying the proposed techniques.

III. Implementing Fences using RMWs. The design of concurrent lock-free applications re-

quires comprehensive consideration of algorithmic concerns and architectural issues. In

particular, enforcing w → r order is one common synchronization pattern [9]. For example,

in Fig. 1.2, the purpose of fences (Lines 2 and 6) is to enforce the w → r order involving

flag0 and flag1. However, when Dekker’s algorithm is used inside an application, the fences

also order other memory accesses. Since we already know the fences are used to enforce the

w → r order involving flag0 and flag1, it is possible to use an atomic RMW instruction and a

lightweight fence to implement the function of heavyweight fence, imposing less constraints

on memory ordering.
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(a) fence (b) RMW

1 Wr(flag0)
2 FENCE

3 Rd(flag1)

1 RMW(flag1)
2 FENCE(load−load)
3 Rd(flag1)

Figure 7.1: Implementing fence using RMW.

Fig. 7.1 shows how we can enforce w → r order using an atomic RMW instruction.

Fig. 7.1(a) is the original implementation using a fence, where the processor first writes

to flag0 and then reads from flag1. A fence is inserted between them to enforce w → r

order. Instead, as shown in Fig. 7.1(b), we can use a RMW instruction to write to flag0,

followed by a lightweight fence instruction only enforcing the load-load order. Let us see

why we can enforce the w → r by using a RMW instruction. An atomic RMW instruction

can be considered as a read immediately followed by a write, i.e., RMW(flag0) in Line 1

can be considered as Rd(flag0);Wr(flag0). Since there is a load-load fence in Line 2, it will

order Rd(flag0) (read part of RMW) and Rd(flag1) (Line 3). Moreover, Rd(flag0);Wr(flag0)

is atomic, so Wr(flag0) (write part of RMW) will also be ordered before Rd(flag1) (Line 3);

otherwise, the atomicity will be violated. Therefore, the write to flag0 and the read from

flag1 are ordered. The benefit of using a RMW instruction (plus a load-load fence) instead

of a heavyweight fence is that, writes other than the target write before the load-load fence

are not required to be drained from the write buffer.
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