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Abstract—Many IoT applications ingest and process time series
data with emphasis on 5Vs (Volume, Velocity, Variety, Value and
Veracity). To design and test such systems, it is desirable to
have a high-performance traffic generator specifically designed
for time series data, preferably using archived data to create a
truly realistic workload. However, most existing traffic generator
tools either are designed for generic network applications, or
only produce synthetic data based on certain time series models.
In addition, few have raised their performance bar to millions-
packets-per-second level with minimum time violations.

In this paper, we design, implement and evaluate a highly
efficient and scalable time series traffic generator for IoT
applications. Our traffic generator stands out in the following
four aspects: 1) it generates time-conforming packets based on
high-fidelity reproduction of archived time series data; 2) it
leverages an open-source Linux Exokernel middleware and a
customized userspace network subsystem; 3) it includes a scalable
10G network card driver and uses “absolute” zero-copy in stack
processing; and 4) it has an efficient and scalable application-level
software architecture and threading model. We have conducted
extensive experiments on both a quad-core Intel workstation and
a 20-core Intel server equipped with Intel X540 10G network
cards and Samsung’s NVMe SSDs. Compared with a stock Linux
baseline and a traditional mmap-based file I/O approach, we
observe that our traffic generator significantly outperforms other
alternatives in terms of throughput (10X), scalability (3.6X) and
time violations (46.2X).

I. INTRODUCTION

The Internet-of-Things (IoT) is emerging as the third wave
in the development of the Internet [25]. The next two decades
will see many technology advances driven by IoT. Gartner
forecasts that 25 billion connected things will be in use by
2020 [3]. Business, finance, retail, manufacturing, utilities,
health, education, transportation, agriculture, mining and every
other sector will be directly impacted by IoT [29].

Many IoT applications ingest time series data (e.g., from
sensors, smart devices, wearables) and process them with em-
phasis on 5Vs (Volume, Velocity, Variety, Value and Veracity).
To facilitate testing and optimizing such complex application-
s/systems, it is desirable to have a high-performance traffic
generator specifically designed for time series data, prefer-
ably using archived data to create a truly realistic workload.
Undoubtedly, such a traffic generator will be useful in many
areas. For example, application developers can use it to test
and analyze their systems; data scientists can carry out data
analytics in a real-time fashion; system admins and cloud
providers will be able to accurately estimate traffic load and
design fine-grained resource management and provisioning
strategies.

However, most of the existing works have focused on
building realistic models to generate synthetic traffic for var-
ious network environments (e.g., [12], [13], [15], [34], [36]
and [37]). Their objective is to simulate the traffic pattern as
close as possible to the real world. Although promising to
some extent, these systems suffer from the following issues
with respect to IoT applications: 1) they are unable to capture
the “true” characteristics of dynamic live streaming of time
series data; no matter how accurate the model is, it will
not be as accurate as actual data traffic; 2) they fall short
of satisfying IoT applications’ all 5Vs requirement due to
suboptimal performance in terms of throughput, scalability
and time violation, as optimizing those metrics are not their
primary goals; 3) they are not time-series-data-centric, thus
lack simulation flexibility such as probabilistic out-of-order
simulation and drifted time window simulation.

In this paper, we design, implement and evaluate a highly
efficient and scalable time series traffic generator for IoT appli-
cations. Our goal is to generate time-conforming packets based
on high-fidelity reproduction of archived time series data.
Under such a requirement, we aim for maximum throughput,
better scalability and minimum time violations. In addition to
superior performance, we also aim to add various simulation
features into the traffic generator, including probabilistic out-
of-order simulation, multi-flow simulation, records with vary-
ing interval simulation and drifted time window simulation.

There are a number of challenges in developing such a
traffic generator. The novel approach in our design is to
adopt an aggressive whole-system optimization, ranging from
OS and network subsystem (userspace driver and stack) to
application design and threading model. More specifically, we
leverage an open-source Linux Exokernel middleware [2] (also
developed by us) to customize OS core functionalities so that
we can bypass the slow Linux kernel and improve scalability
in memory management and interrupt handling. On top of that,
we develop a network subsystem that is completely sitting in
user space. Our customized 10G Network Interface Card (NIC)
driver and zero-copy technique in stack processing guarantee
efficient and scalable packet transmission. In addition, we de-
sign a multi-queue software architecture along with a double-
buffer scheme for traffic generator application.

We have conducted extensive experiments to evaluate the
performance of our traffic generator on both a quad-core Intel
workstation and a 20-core Intel server. We have leveraged Intel
X540 10G cards and Samsung’s NVMe SSD in our platform



for best performance. Not only have we tested our system
using various synthetic data traces, but also we have run a
real 24-hour seismic data [11] (about 2.8 billion time series
sensor records in a single file). Compared with a stock Linux
baseline and a traditional mmap-based file I/O approach, we
observe that our traffic generator produces superior perfor-
mance and outperforms other alternatives significantly in terms
of throughput (10X), scalability (3.6X) and time violations
(46.2X). To summarize, we make the following contributions:

• We propose a highly efficient and scalable time series
traffic generator on a multi-core architecture. To the
best of our knowledge, this is the first work towards
millions-packets-per-second time-conforming traffic gen-
eration based on high-fidelity reproduction of archived
time series data.

• We develop a userspace network subsystem via aggres-
sive customization of the OS core functionalities based
on an open-source Linux Exokernel middleware.

• We apply an “absolute” zero-copy technique to eliminate
any memory copy at all levels. Packet transmission is
handled very efficiently to achieve the best throughput
and latency.

• We design an efficient and scalable software architecture
and threading model for our traffic generator application
using multi-queue and double-buffer schemes.

• We implement our system on two multicore servers and
compare our system with a stock Linux baseline and a
traditional mmap-based file I/O approach.

The rest of the paper is organized as follows. Section II
introduces the system overview. In Section III we present our
Linux Exokernel middleware. In Section IV we address our
10G NIC driver design and userspace stack processing. Next,
we describe the traffic generator design in detail in Section V.
We present experimental results and evaluation in Section VI.
Lastly, we survey related work in Section VII and conclude
in Section VIII.

II. SYSTEM OVERVIEW
In this paper, we focus on three main components as shown

in Figure 1 that include: 1) Linux Exokernel middleware and
its kernel module; 2) userspace 10G NIC driver and protocol
stack; and 3) traffic generation application.
A. Key Components

We leverage an open-source Linux Exokernel middleware
in our design [2], which was originally developed by us two
years ago. There is an Exokernel module sitting inside the
Linux kernel. It communicates with its userspace counterpart
via the proc filesystem. Essentially, the Exokernel middleware
abstracts core OS functionalities (e.g., memory management,
interrupt handling, scheduling, PCI subsystem) and allows
device drivers, protocol stacks, schedulers, and memory man-
agers (e.g., paging) to run as userspace processes.

We develop a customized 10G NIC driver along with a
scalable protocol stack on top of Exokernel middleware. By
bypassing Linux kernel, our userspace driver and stack can
produce much better packet throughput and latency. The dash
arrows in Figure 1 show the control flow between the NIC
and the userspace driver and stack.

In addition, the traffic generation application sits on top of
the system architecture. To access files on disk, it commu-
nicates with storage devices via the normal Linux in-kernel
driver. To send traffic, it interacts with the NIC via our driver
and stack.
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Fig. 1. The overview of system architecture.

B. Traffic Generation Workflow
The overall workflow for our traffic generator consists of

five major steps as indicated in Figure 1. As an example, we
assume the time series data files are stored in an NVMe SSD
drive, and we use Intel X540 10G NIC to send out traffic.

• Step 1: The Linux in-kernel SSD driver and filesystem
initialize the SSD device.

• Step 2: The file is read into the traffic generator process
through a regular file I/O operation in read-only mode.

• Step 3: The traffic generator processes the time series
records and sends them out based on timestamps by
passing the data to the userspace stack and NIC driver.

• Step 4: The NIC driver configures the card to transfer the
packets via DMA from host memory to device.

• Step 5: The record packets are sent out on the wire.

III. LINUX EXOKERNEL

The concept of an exokernel Operating System was orig-
inally developed by MIT [20], [21] with similar ideas being
developed at the University of Glasgow and Microsoft Re-
search in their Nemesis project [28]. The basic concept is to
eliminate the role of a traditional kernel and allow applications
(sometimes referred to as library operating systems) to directly
interact with the hardware. This low-level hardware access
allows programmers to implement custom abstractions, and
omit unnecessary ones to improve performance.

Based on this idea, we developed an open-source eXokernel
Development Kit (XDK) [2]. The implementation of XDK
is not a true exokernel approach according to the strict MIT
definition, but it does provide an exokernel-like capability on
top of Linux. It allows developers to write applications that
directly interact with the hardware and bypass the Linux kernel
altogether primarily as a means to improve performance and
avoid building new functionality in the kernel which could
be easily implemented in user space. The Linux UIO frame-
work [6] and the Intel DPDK architectures [4] are comparable
to the XDK. The main differentiation is that XDK is unified
into a single kernel module and also provides resource access
control across multiple applications.



Figure 2 illustrates our Exokernel framework and shows
two examples: 1) block device driver and file system; and 2)
NIC driver and protocol stacks. Without loss of generality, we
concentrate on the latter as it is more relevant to us.

The XDK implementation includes a dynamically loadable
kernel module. It communicates with the kernel and can
take control of physical resources, such as NICs, interrupt
handling, thread scheduling and memory pages. The module
provides low-level APIs to its userspace counterpart via the
proc filesystem, as shown in solid blue blocks in Figure 2.
Essentially, Exokernel middleware abstracts the hardware and
OS core functionalities needed by NIC drivers, such as mem-
ory allocation and mapping, interrupt configuration and PCI
address space access, allowing NIC drivers and protocol stacks
to run in user space.

Compared to conventional OS where NIC drivers and net-
work protocols are both kernel components, the Exokernel
design bypasses the slow kernel path and permits user appli-
cations to interact with NIC directly (e.g., avoid unnecessary
memory copy and context switches). Additionally, we have
full freedom to implement an efficient and scalable network
subsystem on top of it. Thus, the Exokernel serves as a solid
foundation to our traffic generator design.
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Fig. 2. The Linux Exokernel framework.

IV. NETWORK SUBSYSTEM

A. Customized Scalable 10G NIC Driver

We target Intel X540 10G NIC to develop a scalable driver
solution. Figure 3 illustrates the NIC driver architecture. From
the bottom up, the flow director is essentially a load distributor
that redirects incoming packets to different receive queues
based on certain rules. At the next layer, we distribute receive/-
transmit (RX/TX) queues to different cores, and have RX/TX
threads running on each core to manage queues assigned to
them. We also bind each Message Signaled Interrupts (MSI-
X) vector to a specific core, so that interrupt handling can
take place in parallel on a per-core basis. Figure 3 shows one
configuration of the mapping between core, thread, queue and
vector. Our design is motivated by the distributed resource
partitioning coupled with data localization for performance
optimization [37] [38].
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Fig. 3. NIC driver architecture overview.

Moving upwards, the shared memory channels sit between
the NIC driver and application threads. The lock-free channels
provide an efficient means for the driver and application to
exchange data. There are two channels per core, one for
incoming packets and the other for outgoing packets. We use
shared memory for data transfer so that no extra memory copy
is needed. The top layer represents a multithreaded application.
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Fig. 4. Detailed NIC driver operation.

Figure 4 illustrates packet reception and transmission op-
eration of our NIC driver on a single core (a single column
in Figure 3). We focus on the transmit path in the interest
of our traffic generator. The application thread first allocates



the payload memory. Then it pushes the data down to the
shared memory channel, so that a TX thread can get it without
copy overhead. Once the TX thread obtains the payload data,
it will go through the necessary stack processing (e.g., IP
fragmentation and network header allocation) and prepare the
TX descriptors. Packet header and payload can come from
separate memory buffers to avoid copying. In our design, each
outgoing packet will use two descriptors, one pointing to the
payload memory, the other pointing to the network header.

B. Zero-copy User-level Stack
Unlike many other systems that employ zero-copy mem-

ory strategies but still incur copies within the kernel
(e.g., [14], [16], [17], [22] and [30]), our solution provides
true zero-copy by customizing the IP protocol stack and using
shared memory between the NIC driver and the applica-
tion [38]. In the context of our system, zero-copy means the
following:

• Network packets are DMA-transferred directly from the
NIC device to user-space memory, and vice versa.

• Incoming packets are not assembled (defragmented) into
the larger IP frames. Instead, they are maintained as a
linked-list of packet buffers.

• Outgoing packets are dynamically composed by payload
and network headers. There is no need to copy the
complete packet in contiguous memory.

Figure 5 highlights the zero-copy data communication in
our network subsystem between three logical layers identified
by their respective functional roles, namely the network I/O
layer, the stack processing layer and the application layer. In
the following, we focus on the stack processing layer using
UDP as an example.

The stack processing layer performs four major functions:
1) IP Reassembly, 2) IP Fragmentation, 3) Header Formation,
and 4) Ethernet Frame Construction. First, IP Reassembly
reassembles fragmented IP packets into a UDP packet. Dif-
ferent from conventional approaches, our IP Reassembly is
realized by chaining fragmented IP packets into a linked
list through manipulation of packet buffer pointers instead
of memory copy. Second, IP Fragmentation breaks a UDP
packet into multiple IP packets. In our solution, this is done by
partitioning the payload data and allocating a separate network
header for each logically fragmented IP packet organized by
a linked list. Third, Header Formation prepares the network
headers including Ethernet header, IP header and UDP header
for packet transmission. Fourth, Ethernet Frame Construction
prepares the entire Ethernet frame via packet composition.

We focus on the transmit path (steps 3 and 4 of Figure 5) as
it is most relevant to our traffic generator. When the application
passes down a payload, this layer takes the payload pointer and
length as input. Based on the payload length, we know how
many IP fragments are needed to send the whole payload. The
stack processing layer will partition the payload by obtaining
appropriate start and end addresses and form them into a
linked list (see IP packets in Figure 5). At the same time, it
will allocate new network header buffer for each IP fragment.
This pointer traversal procedure is equivalent to the more

expensive IP fragmentation process in traditional in-kernel
stack. Next, for each IP packet in the list, this layer prepares
its network header (including Ethernet header, IP header, and
UDP header). In the end, the address and size of network
header buffer and payload fragment are passed down to the
network I/O layer for transmission.
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Fig. 5. Zero-copy data communication in stack processing.

V. TRAFFIC GENERATOR DESIGN

In this section, we address three aspects of our traffic
generator design: the archived data file format, the software
architecture and threading model, and the key simulation
features.

A. Archive File Format

As opposed to synthetic traffic generators that generate traf-
fic based on parameterized models, ours reproduces archived
data in a strictly time-conforming manner. To facilitate fast
record retrieval and efficient timestamp parsing, we use a
binary file format specifically designed for this purpose (see
Figure 6). Each data file consists of an arbitrary number of
records in a binary representation. Each record consists of four
fields:

• Length (2 bytes): This is the total length of the record.
This field is used to locate the next record’s starting
position. We choose 2 bytes since it can represent the
maximum IP packet size.

• Timestamp (12 bytes): This is the encoded ISO 8601 time
format (i.e., complete date plus hours, minutes, seconds
and a decimal fraction of a second). The finest time
granularity is 1µs.

• Device ID (16 bytes): This is the device ID field, which
can be used to enable per-device simulation control,
such as dynamically adjusting the number of devices
simulated, arbitrary device and flow binding.

• Data (up to max IP packet size): This is the actual time
series data payload. This field is completely opaque to
the traffic generator, and will be blindly copied into the
packet buffer for transmission.

We encode the ISO 8601 time format into a compressed
binary representation using 12 bytes as shown in Table I. As
specified in the ISO standard, the time format is defined as
follows: YYYY-MM-DDThh:mm:ss.sTZD, with exact punc-
tuation. Note that the first “T” appears literally in the string,
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Fig. 6. Time series data input file format.

to indicate the beginning of the time element. Our encoding
scheme is as follows:

• YYYY (4-digit year): 2 bytes (4 bits per digit).
• MM (2-digit month): 1 byte (4 bits per digit).
• DD (2-digit date): 1 byte (4 bits per digit).
• hh (2-digit hour): 1 byte (4 bits per digit).
• mm (2-digit minute): 1 byte (4 bits per digit).
• ss (2-digit second): 1 byte (4 bits per digit).
• s (up to 6-digit µsec): 3 bytes (4 bits per digit).
• TZD (time zone designator, Z or +hh:mm or -hh:mm): 2

bytes (1 bit for plus/minus sign, 3 bits for the first h, and
4 bits for the remaining digits).

Original Timestamp Encoded Timestamp

2015-07-01T19:20:30.45+01:00 0x20 0x15 0x07 0x01 0x19 0x20
0x30 0x45 0x00 0x00 0x01 0x00

2015-07-01T19:20:30.456789-01:00 0x20 0x15 0x07 0x01 0x19 0x20
0x30 0x45 0x67 0x89 0x81 0x00

2015-07-01T19:20:30.4567Z 0x20 0x15 0x07 0x01 0x19 0x20
0x30 0x45 0x67 0x00 0x00 0x00

TABLE I
BINARY ENCODING EXAMPLES OF TIMESTAMPS.

B. Software Architecture and Threading Models

Figure 7 shows our traffic generator architecture and thread-
ing model, which is motivated by multicore parallelism, lock-
free data structures and flexible thread configuration. We
use one IO thread to read data files and copy them into
double-buffered memory. The number of double-buffers de-
pends on the number of worker threads, which is con-
figurable. Each worker thread sequentially fetches time
series records from memory buffer(s) and pushes them into a
multi-producer multi-consumer (MPMC) lock-free queue. In
addition, TX threads serve as consumers for the MPMC
queue. They pull records from the queue, process them and
send them out via the NIC driver.
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Fig. 7. Traffic generator architecture and threading model.

Next, we highlight the four main aspects of our design.

1) Double-buffer Management: To make sure the disk I/O
does not become a performance bottleneck, we develop a
double-buffer management scheme. When IO thread fills
up a buffer, worker threads can access them immediately.
In the meantime, IO thread can fill up the other buffer
without waiting. Not only can this scheme effectively overlap
disk I/O and memory read, it can also contribute to optimal
disk throughput by using sequential reads.

By default, we pre-allocate 64MB for each buffer. IO
thread often reads data from large files, so we open files
with O_RDONLY and O_LARGEFILE flags. Repeatedly, IO
thread finds an empty buffer and fills it up at once. In
order to avoid partial records read, IO thread also scans
the filled buffer and counts the actual number of records in
the buffer. The file cursor is adjusted accordingly so that
every time when IO thread reads the data file, it starts
from the beginning of a new record. Consequently, when
worker thread pulls records from the buffer, it knows
exactly how many records have been buffered, which makes
buffer synchronization between IO thread and worker
thread simple. For better scalability, we give a double-buffer
to each worker thread to eliminate contention among
them.

2) MPMC Lock-free Queue: Our traffic generator leverages
an efficient multi-producer multi-consumer (MPMC) lock-free
queue from the Boost C++ library [1], which is essential for
high concurrency and good scalability. Worker threads
and TX threads act as producers and consumers, respec-
tively. For each queue, we can have an arbitrary number of
producers and consumers. As shown in Figure 7, we can
configure more than one such queue in parallel, which further
enhances the throughput and scalability.

With respect to the enqueued entry, it contains the following
fields: record offset in the data file, record size, device ID, flow
ID and buffer ID. In this way, each entry uniquely represents
a time series record without copying the actual record. When
TX thread dequeues an entry for timestamp processing, it
is able to access the right record with low overhead. Only
when TX thread is about to send the record does it copy
the record to the packet buffer for transmission.

3) Flexible Threading Models: We designate three roles in
our threading model: IO thread is responsible for disk I/O
read and buffer write; worker thread prepares the records
asynchronously by pushing them into the queue; and TX
thread deals with timestamp processing and transmission.
The minimum requirement is one thread for each role. Other
than that, the number of actual threads per role is flexible and
can be configured according to the underlying hardware as
well as archived time series data characteristics for optimal
performance.

Thanks to the scalable software architecture and the MPMC
lock-free queue, it is trivial to modify thread roles in our traffic
generator. For example, in our settings, one IO thread is
enough to keep up the disk I/O, as we use an NVMe SSD
with sequential read throughput up to 3GB/s. Thus, for the
remaining threads, we can evenly distribute them into worker
threads and TX threads, with the goal of achieving the



best throughput.
4) Timestamp Synchronization: As our traffic generator

deals with real time series data, there are two challenges to
be resolved with regard to timestamp synchronization: first,
how to efficiently process timestamp and synchronize the host
time with record timestamps; and second, how to synchronize
the host time across multiple TX threads to keep time
consistency for all records.

We tackle the first challenge by taking advantage of the
Time Stamp Counter (TSC) for high-resolution time mea-
surement. Lightweight RDTSC instruction is used to probe
the current host TSC. When TX thread fetches the first
record, it records the host TSC (Ch) and the record timestamp
(T0). These two values are kept as a reference point. For a
future record with timestamp Tn, we first calculate the time
difference between Tn and T0. Based on the CPU frequency,
we can derive the TSC difference between them, say Cd.
Then, we can obtain the expected transmitting time for the
new record by adding Cd to Ch. Lastly, before calling the NIC
driver, we check the current host TSC Cn. If Cn is larger than
Cd+Ch, we drop the record due to time violation; otherwise,
we wait until Cn is equal to Cd+Ch and then send it out.

To tackle the second challenge, we maintain a global
timestamp (Tg) for the very first record in the data file and
per-thread host starting TSC (Ch) as reference point. In this
way, each TX thread can reference to its own Ch when
processing a record, which results in time consistency for
all records across threads. More specifically, when the traffic
generator starts, a thread barrier is used to prevent all but one
TX thread from fetching records. Immediately after the first
record is fetched, its timestamp is recorded in a global variable.
At the same time, each TX thread probes its own host TSC
and saves the value. By keeping the per-thread host starting
TSC and the global record starting timestamp, we are able to
achieve our objective in an efficient way.
C. Key Simulation Features

In this section, we present the key simulation features of
our traffic generator other than the high-fidelity reproduction
of archived time series data. We believe that these features
will accommodate numerous use cases for IoT applications.

1) Probabilistic out-of-order simulation: To simulate the
network unpredictability, we devise a probabilistic out-of-order
simulation feature in our traffic generator. This feature adds
randomness to the original time series data. We add another
MPMC lock-free queue for out-of-order records.

We define three parameters for this feature:
• The out-of-order delay window (Tw): This parameter

defines the maximum time window an out-of-order record
can be sent out. If a record carries a timestamp T0, for
out-of-order simulation, it may be sent out at any random
time between T0 and T0 + Tw. By varying Tw, we can
simulate a wide range of network conditions in terms of
packet arrival time.

• The number of out-of-order TX threads: This pa-
rameter specifies out of all TX threads, how many
threads will also be getting records from out-of-order
queue, processing the records and sending the records

at appropriate times. The transmitting time is randomly
generated but bound by an out-of-order delay window.

• The out-of-order probability: This parameter defines the
probability of out-of-order records out of all data, based
on which worker threads decide where to push the
records, normal work queue or out-of-order queue.

2) Multi-flow simulation: Archived time series data may
come from a single source or multiple sources. To allow
flexibility in simulating both scenarios, we add multi-flow
simulation in our traffic generator. Basically, this feature is
enabled by mapping device ID to flow ID (src port,
src IP, dst port, dst IP, proto). During the Header
Formation step in our customized stack processing, we fill
out the header information with appropriate flow ID. From
the host’s point of view, this is comparable to Linux’s raw
socket interface. In addition, with multi-flow simulation we
can dynamically change the number of simulated flows, apply
arbitrary filtering and keep track of per-flow statistics.

3) Packets with varying interval simulation: By default,
our traffic generator generates time-conforming time series
data. However, chances are that developers want to have
the freedom to vary the traffic rate. For instance, to blast
traffic with zero interval, we can test the application perfor-
mance in handling high velocity traffic. For system testing
or diagnosis, we may want to slow down or speed up the
real traffic rate by some factor. Consequently, in addition to
the normal time-conforming mode, we define a tight loop
mode and a fast forward mode. In the tight loop mode,
we use a parameter (i.e., tight loop interval) to adjust the
packet delay arbitrarily, which means the record timestamp
is ignored and the record transmitting time is only guided
by tight loop interval. In the fast forward mode, we use
a parameter (i.e., fast forward factor) to control the traffic
rate change factor based on the original record timestamps
(acceleration or deceleration).

4) Drifted time window simulation: This is a unique feature
in time series data generation, which defines a relaxation
window for each record. Assume the drifted time window
is configured to be Td, then for any record with timestamp
T0 the latest time it can be sent out will be T0 + Td. Thus,
after a record is fetched and processed (right before its final
sending call), we check the current time and compare it with
the record’s timestamp T0. If the current time is no later than
T0+Td, we send the record out; otherwise, we drop the packet.
Therefore, the larger the value of Td, the less fidelity the time
series data has, and the less packet drop rate. If Td is equal to
0, all packets will be sent out at the exact time according to
the timestamp. As a result, we can rely on Td and packet drop
rate to measure the latency and jitter of our traffic generator
in processing time series data.

VI. EXPERIMENTS AND EVALUATION

A. Experiment Setup
We run our experiments on two platforms. The first one

is a quad-core Intel workstation (one Intel Xeon E5-1620
CPU, 3.6GHz, 8GB memory, 500GB HDD), and the second
one is a 20-core Intel server (two Intel Xeon E5-2670v2



CPUs, 2.5GHz, 64GB memory, 4TB HDD). Both platforms
are equipped with a dual-port Intel X540 10G card [5] and
a 400GB Samsung XS1715 NVMe SSD [9]. The NVMe
SSD has a sustained read latency of 90µs and sequential
read throughput up to 3GB/s. In the experiments, the target
machine is connected to another receiving machine via point-
to-point 10G connection. We use Ubuntu 14.04 with Linux
kernel version 3.13.0.

To carry out a comprehensive performance study, the data
sources we use include both real archived data and syntheti-
cally generated files. For the real data, we choose a seismic
data set [11] that contains a period of 24 hours of continuous
sampling from 1399 sensors. The total number of records is
about 2.8 billion and each record is 28 bytes. For the synthetic
data, we generate different source files with varying number
of records, sampling frequency, device number, time duration
and record size.

We refer to our traffic generator as trafgen-exo in
this section for simplicity. To compare with other schemes,
we implement the following two alternatives with varying
threading models.

• trafgen-stock: This scheme deploys our traffic gen-
eration application directly to stock Linux using Intel’s
ixgbe driver and raw sockets. Transmit Packet Steering
(XPS) is configured to assign each TX queue exclusively
to a core, so that there is no contention when transmitting
packets. NIC IRQs are also affinitized to their correspond-
ing cores and irqbalance is disabled to prevent OS
from routing IRQs to different cores.

• trafgen-mmap: This scheme replaces the double-
buffer design in trafgen-exo with traditional mmap-
based file I/O (we use Boost library’s implementa-
tion [1]). In this scheme, worker threads are re-
moved altogether, since IO thread can directly write
into MPMC lock-free queue. In addition, multiple MPMC
queues are not an option anymore considering there is
only one IO thread. Thus, all TX threads access
the same queue to get records.

Next, we present our extensive experimental results and
show that our traffic generator can significantly outperform
the other alternatives in terms of throughput, scalability and
time violations. For throughput and scalability performance,
we enable tight loop mode with zero interval to observe the
peak performance. In addition, for all runs, the number of
threads is equal to the number of cores on both platforms.

B. Single TX Thread Throughput Performance
In this section, we compare the throughput performance

of trafgen-exo and trafgen-stock with single TX
thread for both SSD and HDD on the quad-core work-
station. Figure 8 shows the result for different record sizes
(ranging from 4 bytes to 1472 bytes, which represents the
largest payload for a single Ethernet frame). Data is collected
after sending 100 million records. From this figure, we clearly
see that trafgen-exo outperforms trafgen-stock in
nearly all scenarios, especially for small record sizes on SSD.
In both 4-byte and 28-byte cases on SSD, trafgen-exo

produces 2.4 million-packets-per-seconds (MPPS), whereas
trafgen-stock only makes 0.98 MPPS. In addition, al-
though for large records trafgen-stock is comparable to
trafgen-exo due to much longer transmission delay, we
still observe a 1.9X improvement in the case of 512-byte
records on SSD, with 0.9 MPPS for trafgen-stock and
1.7 MPPS for trafgen-exo. In summary, Figure 8 proves
our traffic generator benefits significantly from a more efficient
network subsystem by using Exokernel and customized device
driver and stack processing.
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Fig. 8. Throughput comparison with trafgen-stock for both SSD and HDD.

C. Double-buffer and Mmap Comparison
In this section, we compare the throughput performance

of trafgen-exo and trafgen-mmap for both SSD and
HDD on the quad-core workstation. We use the same settings
as previous experiment. Figure 9 shows the result for different
record sizes. We come to the following two conclusions: 1) For
single TX thread, both schemes have comparable perfor-
mance, as Boost library’s memory-mapped file implementation
includes memory caching (prefetching), which is beneficial
to sequential read workload as in our case. 2) However,
trafgen-mmap suffers from scalability issue, as can be seen
in this figure when we increase the number of TX threads
to 2 and 3. In fact, we do not observe any performance
gain when more threads are used. This disadvantage can be
explained by the fact that trafgen-mmap only has one
MPMC queue. As a result, if single TX thread already
saturates the queue, extra threads will simply fail to scale up.

D. Single NIC Scalability Performance
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Fig. 10. Single NIC scalability comparison with trafgen-stock for SSD.

In this section, we compare the scalability performance of
trafgen-exo and trafgen-stock with varying number
of TX threads for SSD on the 20-core server. We use the
threading model with equal number of worker threads
and TX threads. Figure 10 shows the result for seismic
data (28-byte records). Data is collected after sending 1 billion
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Fig. 9. Throughput comparison with mmap for both SSD and HDD.

records. We observe that trafgen-exo offers much better
scalability as the number of threads increases, changing from
2 MPPS for 1 thread to 9 MPPS for 9 threads. On the contrary,
trafgen-stock suffers from poor scalability due to Linux
kernel overhead and contention in both stack and driver. For
example, in the case of 9 TX threads, our scheme exhibits
3.6X improvement in scalability with a 10X performance
difference. Thanks to our efficient and scalable design in
both network subsystem and traffic generation application,
trafgen-exo is able to scale its throughput performance
much better than trafgen-stock.

E. Multi-NIC Scalability Performance
In this section, we extend our scalability comparison

from single NIC to multi-NIC scenario. All experimen-
tal settings are the same as previous one, except that
we test two 10G ports by launching two traffic gen-
erator processes and compare different record sizes for
trafgen-exo and trafgen-stock, respectively. As can
be seen in Figure 11(b), when we double the number of NICs,
trafgen-exo perfectly scales up the throughput perfor-
mance by a factor of 2, regardless of the record size and the
number of TX threads. A peak throughput of 13.6 MPPS
has been observed for 2NIC-4TX case with 4-byte records.
However, in comparison, trafgen-stock not only shows
an average of 27% degradation for 4-byte records, but also
it exhibits substantial negative impact when adding another
NIC for larger record sizes, as shown in Figure 11(a). The
throughput drops by 1% for 28-byte records, 31% for 512-byte
records and 35% for 1472-byte records. Again, we attribute
our superior scalability performance to the proposed whole-
system optimization approach in designing trafgen-exo.

F. Time Violation Comparison
In this section, we compare the number of time

violations that trafgen-exo, trafgen-mmap and
trafgen-stock experience in terms of dropped packets
for both HDD and SSD on the quad-core workstation. Packet
drop due to time violation can result from both long latency
and large jitter in handling high frequency time series data.
We compare their respective performance using both synthetic
and real data.

1) Synthetic data: We choose four synthetic data files with
different number of records, devices and time durations as
shown in Table II. Each record is 70 bytes in this study.

All time series records are evenly distributed within the time
range. For the first three data sets, we generate one record per
1µs. For the last data set, we generate two records per 1µs.
We compare the performance with different values of drifted
time window. As can be seen, trafgen-exo has the fewest
dropped packets across all scenarios but one. In the best case,
trafgen-exo has zero packet drop when the drifted time
window is between 10-25µs, whereas trafgen-mmap and
trafgen-stock drop up to 1.3% and 13.1% of the packets
respectively with the same setting. In addition, even when the
drifted time window is set to 0 in the most stringent case,
trafgen-exo is able keep the drop rate below 0.5%, which
is 8.3X better than trafgen-mmap and 46.2X better than
trafgen-stock.

#Rec #Dev Time Drift #Dropped Packets (HDD / SSD)
(sec) (µs) trafgen-mmap trafgen-exo trafgen-stock

1M 1 1
0 11.7K / 15.7K 463 / 482 953 / 479
5 10.4K / 14.6K 40 / 32 105 / 75

10 7.7K / 9.5K 0 / 0 27 / 15

5M 1 5
0 16.9K / 15.3K 2.8K / 2.7K 4.2K / 3.7K

10 15.9K / 6.3K 173 / 128 337 / 266
20 14.7K / 2.9K 0 / 0 43 / 48

5M 100 5
0 21.7K / 7.9K 2.6K / 2.7K 15.1K / 8.8K

10 16.3K / 7.1K 136 / 151 714 / 517
20 11.9K / 5.1K 0 / 0 46 / 41

5M 2 2.5

0 217K / 173K 26K / 12K 1.2M / 929K
10 211K / 160K 622 / 732 886K / 702K
20 158K / 113K 74 / 104 811K / 637K
25 65.1K / 46.3K 0 / 0 653K / 602K

TABLE II
TIME VIOLATION PERFORMANCE COMPARISON WITH SYNTHETIC DATA.

#Rec #Dev Time Drift #Dropped Packets (SSD)
Duration (µs) trafgen-exo trafgen-stock

1M 1399 00:00:30 100 118 0.1M
5M 1399 00:02:33 100 124 0.6M
10M 1399 00:05:06 100 117 1.3M
50M 1399 00:25:33 100 122 6.3M

100M 1399 00:51:06 100 125 12.6M
2.8B 1399 23:54:43 100 173 347M

TABLE III
TIME VIOLATION PERFORMANCE COMPARISON WITH SEISMIC DATA.

2) Real seismic data: Table III shows the time violation
performance for trafgen-exo and trafgen-stock us-
ing real seismic data. As the complete data file contains
a period of 24 hours of records, we show 6 representative
results with different time durations ranging from 30 seconds
to 24 hours. As this data set contains 1399 sensors that
can generate records at the same timestamp, we configure
the drifted time window to be 100µs in all runs. From the
numbers listed in this table we observe that trafgen-exo
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Fig. 11. Multi-NIC scalability comparison with trafgen-stock for SSD.

outperforms trafgen-stock by a large margin. We see less
than 200 dropped packets for trafgen-exo in all runs, even
when we sent out the complete 2.8 billion records. However,
trafgen-stock drops between 0.1 million and 347 million
packets, which accounts for more than 10% of the total sent
records in every single run.

VII. RELATED WORK
A. Linux User-level Stack

In contrast to in-kernel stack, there are many prior
works advocating the advantage of userspace stack, such
as [10], [18], [19], [23], [24], [26], [27], [31] [32], [33]
and [35]. Common arguments for implementing network pro-
tocols in user space include increased flexibility and cus-
tomization, easier maintenance and debugging, and the pos-
sibility of application-specific optimizations offering better
performance [18] [19] [23] [24] [35]. Arsenic [33] is a Linux
2.3.29-based userspace TCP implementation aimed at giving
userspace applications better control for managing bandwidth
on a specialized gigabit network interface. Arsenic enables
zero-copy transfers and connection-specific buffers for the pur-
poses of low overhead and QoS isolation. Based on Arsenic,
Daytona [32] provides a very general userspace TCP stack
that works with arbitrary network interfaces, with no kernel
dependencies. However, the primary goal of Daytona is not
performance-oriented. Two recent works include mTCP [26]
and Arrakis [31]. First, mTCP [26] focuses on building a user-
level TCP stack that provides high scalability on multicore
systems. It leverages high-performance packet I/O libraries
that allow applications to directly access the packets. Second,
Arrakis [31] is a new OS designed to remove the kernel from
the I/O data path without compromising process isolation.
They use device hardware to deliver I/O directly to a cus-
tomized user-level library (e.g., network stack). In addition, to
reduce data center application latency, the Chronos work [27]
moves request handling out of the kernel to userspace by using
zero-copy, kernel-bypass network APIs provided by several
vendors with commodity server NICs such as [10].

Our scheme has both driver and stack in user space.
Compared to aforementioned systems, we strengthen in scal-
able driver/stack design for multicore architecture, as well as
“absolute” zero-copy throughout the packet’s lifetime in the
network subsystem.
B. Existing Zero-copy Techniques

1) User/Kernel Shared Memory: Typical examples include
FBufs [17] and IO-Lite [30]. Those proposed techniques rely

on shared memory semantics between the user and kernel
address space and permit the use of DMA for moving data
between the shared memory and network interface. The NIC
drivers can also be built with per-process buffer pools that are
pre-mapped in both the user and kernel spaces.

2) User/Kernel Page Remapping: Previous work belonging
to this category include Copy on Write [16], Copy Emula-
tion [14] and Trapeze [22]. These implementations re-map
memory pages between user and kernel space by editing the
MMU table and perform copies only when needed. They can
also benefit from DMA to transfer frames between kernel
buffers and the network interface.

3) User Accessible Interface Memory: LPC lwip buffer
management [7], NTZC project [8], Intel’s DPDK [4] and
KV-Cache [38] enable user accessible interface memory. The
network interface memory is accessible and pre-mapped into
user and kernel address space. After incoming packets are
stored in pre-allocated memory, their starting address is passed
to applications directly. Thus, application can access the packet
without memory copy. Same technique is also used when
applications send a packet. There is no data copy at all for
both incoming and outgoing packets.

The first two approaches mentioned above can effectively
reduce the copy between kernel space and user space. How-
ever, they fail to remove the last copy due to packet frag-
mentation/defragmentation inside the kernel stack. In addition,
page remapping schemes also require strict page alignment
for packet buffers. The last approach is true zero-copy, but
the first three works exclude protocol stacks and the last one
(KV-Cache) is built for a microkernel system.
C. Network Traffic Generation

Much work in this area focuses on traffic modeling in
various scenarios and aims at generating synthetic traffic based
on realistic models. In [12], the authors study the time series
models for Internet traffic based on real campus network
traces. They argue that synthetic traffic generation based on
their models is of great importance to simulation studies
of resource management and sensitivity study of parameter
estimates. Sommers et al. develop Harpoon [34], a new tool
for generating representative IP traffic based on TCP and UDP
flows using data collected from a NetFlow trace. Harpoon
could be useful as a tool for providing network hardware
designers and network operators insight into how systems
might behave under realistic traffic conditions. In a similar
work, [15] presents new source-level models for aggregated
HTTP traffic and a design for their integration with the TCP



transport layer. The “connection-based” model derives from a
large-scale empirical study of web traffic and is implemented
in the ns network simulator. In addition, the authors in [36]
propose a tool called Swing, which uses a comprehensive
model to generate live packet traces by matching user and
application characteristics on commodity OS subject to the
communication characteristics of an emulated network. They
claim that Swing will enable the evaluation of a variety
of higher-level application studies, such as bandwidth/capac-
ity estimation tools and dynamically reconfiguring overlays,
subject to realistic levels of background traffic and network
variability. Benson et al. [13] present a preliminary empirical
study of end-to-end traffic patterns in data center networks
that can inform and help evaluate research and operational
approaches. They apply their framework to design network-
level traffic generators for data centers. Lastly, [37] describes a
workload generator system called KV-Blaster, which is based
on a highly-optimized microkernel system and can generate
requests for key-value store/cache system with throughput up
to 4 MPPS rate. In KV-Blaster, it also applies an efficient and
scalable userspace NIC driver and stack similar to ours.

Compared to these work, our traffic generator largely differs
in the following two aspects. First, we focus on time series
data replay from archived data in an efficient and scalable
way. Second, we leverage state-of-the-art hardware/software
and adopt a whole-system optimization approach.

VIII. CONCLUSION

The emergence of big data and IoT have brought numerous
new challenges to application developers, who have to deal
with unprecedented data volume and rate in their system. In
order to test and optimize such systems, a highly efficient and
scalable time series traffic generator is not only necessary but
also challenging. In this paper, we adopt a holistic approach to
tackle this problem. Our contribution lies in the following: 1)
we develop a traffic generator that generates time-conforming
packets based on high-fidelity reproduction of archived time
series data; 2) our system is based on an open-source Linux
Exokernel middleware and a userspace 10G NIC driver; 3) we
take advantage of “absolute” zero-copy in stack processing;
and 4) we propose an efficient and scalable software architec-
ture and threading model. Experiments show that our traffic
generator outperforms other alternatives in terms of throughput
(10X), scalability (3.6X) and time violations (46.2X).
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