
Architectural Support for Protecting User Privacy
on Trusted Processors

Youtao Zhang � Jun Yang
�

Yongjing Lin � Lan Gao
�

� Department of Computer Science
�

Department of Computer Science
The University of Texas at Dallas The University of California at Riverside

Richardson, TX 75083 Riverside, CA 92521

Abstract

Recently proposed trusted processor model is a
promising model for building secure applications.
While effective designs have been proposed for pro-
tecting data confidentiality and data integrity in such
environments, an important security criterion – user
privacy is usually neglected in current designs. Due
to the increasing concern of privacy protection in the
Internet era, such deficiency can hinder the adoption
of the new model.

In this paper, we identify the threat model to user
privacy and propose a new scheme for user privacy
protection. In addition to providing the same ability
in protecting data confidentiality and data integrity,
the new scheme effectively protects user privacy and
only introduces very low overhead.

1 Introduction

The explosion of Internet technology has fertilized
the growth of security threats to computer systems
drastically. However, building an ultra safe com-
puter system is challenging since security attacks
may be launched to any system component (e.g. OS,
user applications, memory contents, and even sys-
tem buses), at any time during execution or data
transmission, and can be of any type, known or un-
known at the time the system was built. Common
security threats include stealing program code and
data (violating data confidentiality), altering program
code and data (violating data integrity), and collect-
ing program execution behavior (violating user pri-
vacy) etc.

Recently a promising trusted processor model was
proposed [5, 6, 7, 3, 9] in which only the main pro-
cessor is trusted in building secure applications1. In
this model, the processor is equipped with public-
key infrastructure (PKI) and enhanced with spe-
cially designed on-chip architectural units for per-
forming cryptographic operations. All other compo-
nents such as OS, co-processors and memory banks
are not trustworthy. Trusted processors have many
advantages, in particular, the secure execution of user
applications is independent of the OS. As a commer-
cial OS usually contains millions of lines of code,
its high level security is especially hard to maintain.
Excluding OS from the design presumably increases
the confidence of providing high level of security to
program execution.

However current research on trusted processors
mainly focuses on protecting data confidentiality
[5, 8, 9] and data integrity [3, 8]. While these designs
have achieved much success, an important security
criterion – user privacy is usually neglected. User
privacy can be violated because each trusted proces-
sor has a unique public-private key pair and the pub-
lic key is released to the software vendor during the
software distribution phase, the identity of each pro-
cessor can be distinguished in the network by its pub-
lic key. Sensitive private data such as shopping pref-
erence, etc., may be revealed without the conscious-
ness of the user. User privacy is becoming a serious
concern in a networked environment especially the
Internet. In the past, it contributes as the major rea-
son to the failure of the introduction of unique serial

1It was also named as trusted hardware [6] or secure proces-
sor [9].

number in Pentium III processor [4].
In this paper, we propose a new mechanism for

protecting user privacy on trusted processors. Instead
of embedding a unique key pair in each processor,
the new scheme uses the same key pair for a batch
of processors. This greatly relieves the burden on the
vendor side to verify the public key. The uniqueness
of each processor is ensured by a secret hardware se-
quence number. To further protect user privacy, a
user selected random number is incorporated which
effectively obfuscates the information transferred in
the network. While the new scheme provides protec-
tion for data confidentiality, data integrity, and user
privacy, it only introduces very low overhead to pro-
gram distribution and execution.

The rest of the paper is organized as follows. We
elaborate the threat model to trusted processors in
section 2. Section 3 discusses our proposed solu-
tion and its protection of user privacy. Section 4 con-
cludes the paper.

2 Trusted Processor Model and its
Threat on User Privacy

We base our design on microprocessors that are
equipped with the public-key infrastructure (PKI)
since the design is becoming a future trend [5, 2, 7].
Let us term it as “trusted processors”. Such a chip
is installed with a public-private key pair (���������),
where ��� , is available to the public. A protected
software that runs on a trusted processor is encrypted
by the distributor using a symmetric cipher with key
� (session key). The encryption not only protects
the confidentiality of the software algorithm but also
guarantees that it can only run on the target proces-
sor. To communicate the � to the processor, the dis-
tributor uses ��� to encrypt it and ships it along with
the software. Secure execution of the protected soft-
ware begins with computing � using �	� which is car-
ried only once but might take a relatively long time,
and decrypting instructions using � which is much
faster but is carried on every instruction fetched into
the processor. In this way, software encrypted for

���������������� can not run on
���������������� since they
have distinct private keys.

The trusted processor adopts efficient mechanisms

in protecting the program data confidentiality and
providing memory integrity verification. Ensuring
confidentiality means to keep data information hid-
den from anyone for whom it is not intended. This
is achieved through data and instruction encryption.
Memory integrity verification is to detect if the mem-
ory has been tampered with by an adversary. This
is accomplished by creating a hash (MAC) value for
each memory block. Hashing is especially useful in
the three types of attacks considered in trusted pro-
cessors: spoofing, splicing, and replay [5, 3]. Both
memory encryption and integrity checking can be
carried efficiently, bringing only a little performance
overhead [9, 8].

2.1 Privacy Threat

As the advantages of secure processors become more
evident, future web based transactions will be likely
to incorporate processor’s public key information for
either strong or weak security requirements. How-
ever, it generates serious privacy problem if each se-
cure processor has a unique public-private key pair.

Let us use an example of purchasing a newly de-
veloped computer game on-line to illustrate the pri-
vacy problem (Figure 1). An end user � purchased a
game on-line from a company � and wants to down-
load it to his own computer. Under the trusted pro-
cessor model, � has to send � his public key �����������!
since � would like to release his encrypted game
only to the trusted processor that � will use to run
the software. � does not want � to see the clear text
of the software game because � might be a market
competitor. On the other hand, if � is an ordinary
game player, � does not want � to collect his pri-
vate information by remembering his �����������! . More
elaborately:

(1) Company � should not easily trust the public
key passed by � since it could be faked by � in
which case the private key is known to � . Once
� gets the encrypted code, he can simply de-
crypt the game and analyze it. For this reason,
� has to validate the received public key, that
is, it is the public key of an existing trusted pro-
cessor. A possible solution is to query a central
database created by the processor manufacturer
(Figure 1). However, it is not desirable since

��������

	��
���

�
�����

������

������

��������������
����

�������������	
����

���������������

��������������
����

������������	

����������������

������������

!�����
���

"#�����$

%����$�"�&

%����
��"�&

!�����
���

"#�����$

"#�����$

Figure 1: Possible Privacy Leakage.

the processor manufacturer can collect and data
mine these queries from which it gets private in-
formation it is not supposed to get (even though
the company may not release it to the public).

(2) As the public key is unique to each processor,
its user has no control over it since otherwise he
may not get the session key correctly decrypted.
However, � can easily identify a returned user
if his public key was used before. After some
time, � ’s activities can be collected and ana-
lyzed by � without � ’s awareness. Further, �
can trade � ’s information with other sales com-
panies to obtain larger pool of customers’ infor-
mation including � ’s additional activities. This
is certainly not what � or any normal customer
desires.

Both problems come from the fact that a trusted
processor can be uniquely identified by its public
key. This privacy concern is very similar to the serial
number that Intel embedded in Pentium III proces-
sors [4]. Intel tried to have a hardware serial number
that is unique and can be queried by some software.
Due to widespread privacy concerns, the number is
finally disabled in the default settings.

3 Proposed Solution

The main functionalities of the public-private key
pair are two folds: 1) it provides a mechanism to pro-
tect program data confidentiality and integrity; and
2) it ensures uniqueness such that only the designated
processor can execute a program. It is easy to see that

the second aspect is the reason for potential violation
of the user privacy. We therefore propose a technique
to conceal the uniqueness of the processor.

Instead of using a unique key pair for each individ-
ual processor, we use a batch processor key pair and
a hardware pseudo random number (PRN) whose
combination uniquely identifies a trusted processor.
The PRN will not be seen by the other party but will
serve as part of a unique ID within the group of the
processors identified by the batch key. This not only
fits into our need but also relieves the burden of dis-
tributing and reclaiming huge number of unique key
pairs. In addition, we allow the user to specify a
random number (URN) to further obfuscate the in-
formation transferred across the network. This is to
discriminate multiple exposures of a single user in an
open network.

Figure 2 shows the additional information that
should be supported by the hardware. The manufac-
ture embeds a physical PRN into the processor which
pertains the same level of secrecy as the key pair.
Note that the PRNs are distinct from within the group
of processors that share the same key pair. Main-
taining such PRNs are much less expensive since the
numbers are smaller and they can be reused for dif-
ferent groups. The URNs are defined by the user.
They are also inputs to the privacy protection unit
(PPU) which executes the communication protocol
that we will define later.

Under such a framework, the concern number (1)
we addressed earlier is now solved by using the com-
bination of processor batch key pair and the PRN.
Introducing the batch key pair for a group of proces-

��������

	�
����

	�
����

���������

��
�������

��

��
���

���������

����

���

���

������
��������

��������� ����

������
��������

��������� ����

��

��

Figure 2: Privacy Protection.

sors significantly reduces the size of the key database
maintained by the chip manufacture. The seller com-
pany can simply query for a public key by providing,
for example, the user processor’s model number and
serial number. The public key obtained through this
way is much trustworthy. On the other hand, using
the batch key can prevent the seller from collecting
and study user information.

Concern number (2) is solved by incorporating
URN into an on-line transaction. Every time the user
purchases a product from a vendor, he should spec-
ify a random number, preferably unique every time,
which is used by the PPU to obfuscate the user’s
identity. Through this way, the vendor cannot tell
whether a series of transactions is from the same per-
son or different people, further protecting the con-
sumer’s privacy. An important premise here is that
we do not consider the attacks during the network
communication. We expect that those attacks be bet-
ter handled in network protocol layers.

The detailed steps of our solution are shown in
Figure 3.

In the first two steps, a user � creates a token con-
sisting of the PRN and a URN so that the value of �
varies every time. � is encrypted by � ’s own � � �������!
so that no one else can decrypt it. In step 3, � tells
the seller � not only � but also his processor infor-
mation regarding to the batch identity. This is used in
step 4 where � queries an authorized database for the
authentic public key. This may or may not be equal
to the �����������! provided by � . In the latter case, the
transaction would be broken at step 6 (more later).
Once the authentic ��������� � is obtained, � bundles the

symmetric key � used to encrypt the software with
the token � received from � , together with the digi-
tal signature of the entire software and calculates � .
The signature can be used to check of the software
has been altered before execution. In step 5, � is in-
serted at the head of the software and sent to � . In
last step, � needs to peel off two levels of protection
to obtain the PRN. Now it is clear that when the pub-
lic key � obtained from an authority is different from
what � provided, step 6 would fail on mismatch of
the PRNs.

3.1 Privacy Analysis

Let us now study how user privacy is safely pro-
tected. In Figure 3, as long as the URN is differ-
ent every-time � wants to purchase goods on-line,
� will appear differently on the web as if it is a new
buyer. Many widely used encryption algorithms such
as AES and 3DES are believed to do a good job in
generating pseudo-random numbers. Thus, we can
rely on PPU to give us a different number every time
(or the series repeats itself with a huge cycle time).
Thus, an observer can never figure out if two � ’s are
from the same person. As a result, � can not col-
lect the information based on the � it receives every
time.

3.2 Security Analysis

The proposed protocol aims to protect both the user
and the seller. It protects the user from being traced
by the sellers through varying the user identity every
time. It protects the sellers in such a way that a fake

Software Distribution Phase:
step 1. � generates a random number URN as shown in Figure 2.
step 2. PPU then calculates ��� � ������� �! �������	�
�
 ���	�� , i.e., it encrypts the concatenation

of PRN and URN using the processor’s public key.
step 3. X is then sent to the � , together with processor’s batch information.
step 4. � checks the batch information and get the well-known public key ��������� � from

processor manufacturer and then generates ��� � ������� � �� ��
�
���
�
�������������� � � �"!#�$��% ��� �
step 5. � attaches � at the head of the encrypted software.

Software Execution Phase:
step 6. When � receives the software, it sends � to the PPU where � is decrypted. After

that, � is extracted and decrypted, followed by retrieval of PRN. It then compares
PRN with the physical random number stored in the processor. If they match, the
execution continues. Otherwise, it stops the execution.

Figure 3: Encryption and Decryption Steps with PRN and URN.

user cannot obtain any sensitive information such as
the code of a software or critical data. This is be-
cause if a “user” uses a public-private key pair other
than that of a secure processor, (s)he will not be able
to decrypt � generated in step 4. Thus, the session
key � will not be released and the code can remain
securely encrypted.

It should be noted that step 6 in the protocol
is performed in an atomic procedure and the re-
sults the PPU computed cannot be released to off-
chip components just as the processor’s private key.
This is because all the processors sharing the same
public-private key pair can decrypt � . However, the
PPU will guarantee that the session key � and the
�������&����� � � �"!#�$��% ��� are destroyed if the ����	 (after
decrypting the �) does not match its own ����	 .

3.3 Hardware Design

As shown in Figure 2, a new architectural enhance-
ment – privacy protection unit (PPU) is proposed to
generate X and verify PRN (step 2 and 6 in Figure 3)
in trusted processors. These tasks involve RSA based
encryption and decryption operations. As these op-
erations are assumed to be much less frequent, RSA
may not be implemented in hardware. In this paper,
we assume both encryption and decryption opera-
tions are done in software using the trusted processor
itself. To ensure security, the processor is enhanced
to restrict the execution of RSA cryptographic op-

erations: the execution may not be interrupted, the
intermediate results are cleared before the end of the
operation, and the result is sent to the secure register
for further processing.

3.3.1 Space Cost

The scheme introduces very modest space overhead.
As PRN is used to distinguish each individual pro-
cessor, its size depends on how many processors in a
batch and 64 bits should be reasonably large to serve
the purpose. Other space overhead includes on-chip
buffer for storing RSA encryption code (The orig-
inal model requires the decryption code only), and
the control logic. Both will not occupy large space.

3.3.2 Runtime Overhead

More concerns come from the runtime overhead in
the new scheme. Secure execution of trusted pro-
gram can be divided into distribution phase and exe-
cution phase. In the former, the user and the server
collaborate to get a uniquely encrypted session key.
In the latter, the designed trusted processor loads and
executes the program.

We found that the runtime overhead should not be
too high in both phases. Recent C++ implementa-
tion of RSA algorithms on Pentium IV 2.1GHz pro-
cessors showed that the delays of RSA encryption
and decryption operations (with 1024 bit keys) are
around 0.1ms and 5ms respectively [1].

In the distribution phase, the end user has to gener-
ate a public-key encrypted � from ����	 and ����	 .
As encryption delay is less than 1ms, it is generally
not a problem since (1) it is a one time delay, (2)
the computation can done beforehand, and (3) the
network communication delay is usually much high
than this.

In the execution phase, the trusted processor has
to perform one extra round of decryption to extract
PRN in X and compare it to the PRN of the pro-
cessor, which adds 5 ms before having the plaintext
session key ready. It is also not a problem since it
happens only when the session key is not present in
the processor. Once the session is decrypted, it can
be cached on chip even the OS dispatches another
program to execute.

4 Conclusion

In this paper, we identify the threat to user privacy
on trusted processors and propose new architectural
enhancements for defending it. To provide security
protection for data confidentiality and data integrity,
we use a batch key pair and a secret unique proces-
sor random number. While at the same time, the user
privacy is protected by integrating a user provided
random number in the scheme. The new scheme in-
troduces little overhead to both program distribution
and execution.

References

[1] Crypto++ 5.1. http://sourceforge.net/projects/
cryptopp/ and
http://www.eskimo.com/ � weidai/cryptlib.html.

[2] P. England, B. Lampson, J. Manferdelli, M.
Peinado, and B. Willman, “A Trusted Open Plat-
form,” IEEE Computer, pages 55-62, July 2003.

[3] B. Gassend, E. Suh, D. Clarke, M. van Dijk,
and S. Devadas, “Caches and Merkle Trees for
Efficient Memory Authentication,” Ninth Inter-
national Symposium on High Performance Com-
puter Architecture (HPCA), Feb. 2003.

[4] Intel. http://support.intel.com/support/processors/
pentiumiii/sb/CS-007579.htm.

[5] D. Lie, C. Thekkath, P. Lincoln, M. Mitchell,
D. Boneh, J. Mitchell, M. Horowitz, “Architec-
tural Support for Copy and Tamper Resistant
Software,” ACM Ninth International Conference
on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), Nov.
2000.

[6] D. Lie, C. Thekkath, and M. Horowitz, “Imple-
menting an untrusted operating system on trusted
hardware”, Proc. of the 19th ACM Symposium
on Operating Systems Principles, pages 178-192,
2003.

[7] E. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas, “AEGIS: Architectures for Tamper-
Evident and Tamper-Resistant Processing,” ACM
17th International Conference on Supercomput-
ing (ICS), June 2003.

[8] E. Suh, D. Clarke, B. Gassend, M. van Dijk,
and S. Devadas, “Efficient Memory Integrity Ver-
ification and Encryption for Secure Processors,”
IEEE/ACM 36th International Symposium on Mi-
croarchitecture (MICRO), Dec. 2003.

[9] J. Yang, Y. Zhang, and L. Gao, “Fast Secure Pro-
cessor for Inhibiting Software Piracy and Tamper-
ing,” IEEE/ACM 36th International Symposium
on Microarchitecture (MICRO), Dec. 2003.

[10] X. Zhuang, T. Zhang, and S. Pande, “HIDE: an
infrastructure for efficiently protecting informa-
tion leakage on the address bus,” ACM 11thInter-
national Conference on Architecture Support for
Programming Language and Operating Systems,
2004.

