A Low-Cost Memory
Remapping Scheme for
Address Bus Protection

Lan Gao*, Jun Yang$, Marek Chrobak*,
Youtao Zhang §, San Nguyen*, Hsien-Hsin S. Lee’

*Univ_ersity of California, Riverside
University of Pittsburgh
ﬂGeorgia Institute of Technology

Security Breaches
--- from another way around

% Steal Secret U

<+ Alter Execution _

S
fw 2 a

Outline

o

% Background & Motivation
» Secure Processor Model
» Address Information Leakage

» Previous Address Bus Protection Solutions
» The HIDE Scheme
> The Shuffle Scheme

« Our Low-Cost Address Permutation Scheme
«+ Performance Evaluation
«+ Conclusion

0’0

Secure Processor Model

Processor
Chip
o—
mornnn

ol
A O

Off-Chip Memory

Security Boundary

[D. Lie et al. ASPLOS 2000, G. Edward Suh et al. MICRO 36, J. Yang et al. MICRO 36]
4

Address Information Leakage

[X. Zhuang, ASPLOS 2004]

[a]
[a]
[b_]
[b]
[Ld]
Address Sequence | abc abc abc ... abcd abd abed abd ...
CFG Hint Loop Conditional Branch

5

Oblivious Memory Access

«» The idea: [oded Goldreich et al.]

> Replace each memory access by a sequence of
redundant accesses

> Satisfactory from a theoretical perspective
“ Overhead:

“naive” | “square root” | “hierarchical”

Memory | m m+2dm | Oftdog’t)

Runtime| tim olta/m) oft Togt)

The HIDE Cache

«»+ The Idea: break the correlation between

repeated addresses [xiaotong Zhuang et al. ASPLOS 2004]
> Permute the address space at suitable intervals
> Permute blocks within a “chunk”

< How: Lock and Permute

» Lock a block in the cache
* A new read from memory
¢ A dirty block since last permutation
» Permute a chunk when replacing a locked block

HIDE Cache: An Example

— 2 Way [— j+— Chunk 0 —«— Chunk 1 —]
Set0 I~ Most Recently 4|0|3|7|8/10[12/14
Set1 o Accessed 6/211/5|9/11/13/15

CPUSequence:Readg, 1, 2, 3, 8 O0Wwrtel 3 Read 9

0 0 0|2 02 218 50% brought
on-chip when
4 4 s 1/3 CO is permuted
Read 0 Read 1 Read 2 Read 3 Read 8
Lock 0 Lock 1 Lock 2 Lock 3 Perm CO
Lock 8
8|0 8|0 8|0 8|0 Block 1 relocated
13 301 1|3 3(9 twice before it's
Read 0 Write 1 Write 3 Read 9 replaced
Lock 0 Lock 1 Lock 3 Perm CO
Lock 9 8

Increased Memory Accesses

W perm [true

05

Normalized Memory Traffic

0.0
aK 8K 16K 32K 64K

Chunk Size (Bytes)

Breakdown of memory traffic for different chunk sizes

Percentage of Total

.) n

R A I S S T R R T T 3
Number of Blocks
Histogram of pages with 0-128 blocks accessed between permutations

Percentage of Total

Redundant Permutations

ok N ®w s O O N @ o

1 0.001 m 0.01

g A
o @\{L&&\@ g o &

S ©
ot ® w

Write Lock Induced Permutations
11

The Shuffle Buffer

“ The Idea: dynamic control flow obfuscation
[X. Zhuang et al., CASES 2004]

> Relocate a block if they appeared on the bus
once

< How: Random Swap

» Any newly read block is inserted into a shuffle
buffer

> A buffered block is written back to the address of
the newly read block

> Only read/write access pairs are observed on the
address bus

12

Shuffle Buffer: An Example

Accesses Shuffle Buffer Memory
“‘ Page 0 -“ Page 1
sat [[[] [o]1][2]3[4]5]6]7[8[9]--{5
orzs [[[[] [o]1]2[3[4]5]6]7][8]9]-{15
s [ofa]2[3] [[[] [4]s]6]7[8]9]-15]
—

w2 [ofafs[3] [[[[[4[s]e[7][2[9]--{15
o [ofafs[3] [T [[[als]6]7[2][9]-{15

Fsh - [0]o[s[3] [[[[[4[s]6]7[2[1]--15]

13

Increased Page Faults

450000

N —+—base —s— Shuffle
400000 \
350000 \
@ 300000
3
1 250000 —
g N
o 200000 -
=
& 150000 Su
5
5 ~
2 100000 =
.
50000
\;\. 1658
— —
0 T T T T —

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
Resident Set Size (in % of Memory Footprint)

Page Fault Curve for gcc “

Outline

¢ Our Low-Cost Address Permutation Scheme

*,
LX3

15

Our Scheme

% Goals:
> Avoid wasteful memory traffic
e Eliminate wasteful permutations
¢ Avoid wasteful reads/writes in each permutation
> Preserve locality and keep the page fault
rate low
% How: RR Block Permutation
> Permute only on-chip blocks of the same
chunk

» Permute only when an RR (Recently Read)
block is to be replaced

16

RR Block Permutation Overview

J Chunk 1 |

m g " [
0 0| m =

Y v Y v

| Remapping Function |

v v v v

J Chunk 1 N

17

RR Block Permutation: An Example

() (2 (©)} 4) (©) (6)
load x,y,z . .
. /7= 1 read miss . o o | read miss
Events| Initially | from replace x permutation write hit replace y
memory
~
I O O O 9 _
Cache '
[T T T Iy iz Tyl |z Tyl 1|zl Tyl]
m[a,]=x
Mem | m[a,]=y Only x is I— m[b,]=y
mla,]=z written back m[b,]=z
‘ Only y is

written back

Comparison of Number of
Permutations

Percentage over HIDE Permutations

Total number of permutations in percentage of
the HIDE permutation number

The Search Algorithm
--- Permute Sufficient Number of Blocks

Replace block A
in Page P

Ck — # of accessed blocks in page P,
2C;— # of accessed blocks in sector

Read (128 - ZCj)
blocks on-chip

‘ Search Page P,’s neighbor ‘

until 128 blocks are found

Permute the 1Q4 l
selected blocks

20

How Many Pages to be Searched?

30

Hammp B art Obzip2 Oeqake @gcc MWgzip

Emcf [Omesa W parservortexdvpr

N
«

N
=)

-
=)

Percentage of Total
=
w

«

= =
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Pages
Average number of pages that supply
sufficient on-chip blocks per permutation

)

21

Security Strength

< Between two permutations, all addresses on
the bus are different

“ The easiest case: A block being mapped to

th wri osa-tymi L
the nth writeback ->a-;omx -

“ It becomes more difficult to make a correct
guess with these uncertainties:
> No clear indication when a permutation happens
> No fixed set of on-chip blocks that participate in
a permutation

22

The Permutation Unit
L

Read

Memory ‘

23

Outline

Performance Evaluation
Conclusion

24

Experiment Environment

% Tools
> Simplescalar Toolset 3.0
» SPEC2K benchmarks
% Configuration
> Cache
 Separate L1 I- and D-cache: 8K, 32B line
« Integrated L2 Cache: 1M, 32B line
« Chunk Size: 8K, 16K, 32K, 64K
» Other Settings
« Page Settings: 4KB, perfect LRU repl policy
« Perfect auxiliary on-chip storage for all schemes

25

Memory Traffic Comparison

68.85

35

O Shuffle & chunk-16 B chunk-8 B chunk-4 B chunk-2 B HIDE

30

25

20

15

10

Normalized Memory Traffic

é@‘? Ly z&s@ § & & & &a‘

Page Faults Comparison

3500
—4—HIDE —#—chunk-16 —4— chunk-8

—*—chunk-4 —¥—chunk-2 —e— Shuffle
2500

2000 ‘\\\\\‘\

1500 \\\‘\\\\,\\\\‘

1000

o

RN
SRR

3000

i
/

Normalized Page Fault Increase

/

o

N
€

Resident Set Size
27

Conclusion

“ Proposed an efficient address permutation
scheme to combat the information leakage
on the address bus

% Tackled two main problems of the previous
schemes:

» The excessive memory traffic in the HIDE
scheme

» The increased page faults in the Shuffle scheme
< Preliminary experiments:

> Reduce the memory traffic in HIDE from 12X to
1.88X

» Keep the page fault rate as low as the base
settings

28

29

