
Time Series Shapelets: A New Primitive for Data Mining

Lexiang Ye
Dept. of Computer Science & Engineering

University of California, Riverside
Riverside, CA 92521
lexiangy@cs.ucr.edu

Eamonn Keogh
Dept. of Computer Science & Engineering

University of California, Riverside
Riverside, CA 92521
eamonn@cs.ucr.edu

ABSTRACT

Classification of time series has been attracting great interest over

the past decade. While dozens of techniques have been

introduced, recent empirical evidence has strongly suggested that

the simple nearest neighbor algorithm is very difficult to beat for

most time series problems. While this may be considered good

news, given the simplicity of implementing the nearest neighbor

algorithm, there are some negative consequences of this. First, the

nearest neighbor algorithm requires storing and searching the

entire dataset, resulting in a time and space complexity that limits

its applicability, especially on resource-limited sensors. Second,

beyond mere classification accuracy, we often wish to gain some

insight into the data.

In this work we introduce a new time series primitive, time series
shapelets, which addresses these limitations. Informally, shapelets
are time series subsequences which are in some sense maximally

representative of a class. As we shall show with extensive

empirical evaluations in diverse domains, algorithms based on the

time series shapelet primitives can be interpretable, more accurate

and significantly faster than state-of-the-art classifiers.

1. INTRODUCTION
While the last decade has seen a huge interest in time series

classification, to date the most accurate and robust method is the

simple nearest neighbor algorithm [4][12][14]. While the nearest

neighbor algorithm has the advantages of simplicity and not

requiring extensive parameter tuning, it does have several

important disadvantages. Chief among these are its space and time

requirements, and the fact that it does not tell us anything about

why a particular object was assigned to a particular class.

In this work we present a novel time series data mining primitive

called time series shapelets. Informally, shapelets are time series
subsequences which are in some sense maximally representative

of a class. While we believe shapelets can have many uses in data

mining, one obvious implication of them is to mitigate the two

weaknesses of the nearest neighbor algorithm noted above.

Figure 1: Samples of leaves from two species. Note that several

leaves have the insect-bite damage

Because we are defining and solving a new problem, we will take

some time to consider a detailed motivating example. Figure 1

shows some examples of leaves from two classes, Urtica dioica
(stinging nettles) and Verbena urticifolia. These two plants are
commonly confused, hence the colloquial name “false nettle” for

Verbena urticifolia.

Suppose we wish to build a classifier to distinguish these two

plants; what features should we use? Since the intra-variability of

color and size within each class completely dwarfs the inter-

variability between classes, our best hope is based on the shapes

of the leaves. However, as we can see in Figure 1, the differences

in the global shape are very subtle. Furthermore, it is very

common for leaves to have distortions or “occlusions” due to

insect damage, and these are likely to confuse any global

measures of shape. Instead we attempt the following. We first

convert each leaf into a one-dimensional representation as shown

in Figure 2.

Figure 2: A shape can be converted into a one dimensional “time

series” representation. The reason for the highlighted section of the

time series will be made apparent shortly

Such representations have been successfully used for the

classification, clustering and outlier detection of shapes in recent

years [8]. However, here we find that using a nearest neighbor

classifier with either the (rotation invariant) Euclidean distance or

Dynamic Time Warping (DTW) distance does not significantly

outperform random guessing. The reason for the poor

performance of these otherwise very competitive classifiers seems

to be due to the fact that the data is somewhat noisy (i.e. insect

bites, and different stem lengths), and this noise is enough to

swamp the subtle differences in the shapes.

Suppose, however, that instead of comparing the entire shapes,
we only compare a small subsection of the shapes from the two
classes that is particularly discriminating. We can call such

subsections shapelets, which invokes the idea of a small “sub-
shape.” For the moment we ignore the details of how to formally

define shapelets, and how to efficiently compute them. In Figure

3, we see the shapelet discovered by searching the small dataset

shown in Figure 1.

Verbena urticifolia

Verbena urticifolia

Urtica dioica

Figure 3: Here, the shapelet hinted at in Figure 2 (in both cases

shown with a bold line), is the subsequence that best

discriminates between the two classes

As we can see, the shapelet has “discovered” that the defining

difference between the two species is that Urtica dioica has a stem
that connects to the leaf at almost 90 degrees, whereas the stem of

Verbena urticifolia connects to the leaf at a much shallower angle.
Having found the shapelet and recorded its distance to the nearest

matching subsequence in all objects in the database, we can build

the simple decision-tree classifier shown in Figure 4.

Figure 4: A decision-tree classifier for the leaf problem. The

object to be classified has all of its subsequences compared to the

shapelet, and if any subsequence is less than (the empirically

determined value of) 5.1, it is classified as Verbena urticifolia

The reader will immediately see that this method of classification

has many potential advantages over current methods:

• Shapelets can provide interpretable results, which may

help domain practitioners better understand their data. For

example, in Figure 3 we see that the shapelet can be summarized

as the following: “Urtica dioica has a stem that connects to the
leaf at almost 90 degrees.” Most other state-of-the-art time

series/shape classifiers do not produce interpretable results [4][7].

• Shapelets can be significantly more accurate/robust on

some datasets. This is because they are local features, whereas

most other state-of-the-art time series/shape classifiers consider

global features, which can be brittle to even low levels of noise

and distortions [4]. In our example, leaves which have insect bite

damage are still usually correctly classified.

• Shapelets can be significantly faster at classification

than existing state-of-the-art approaches. The classification time is

just O(ml), where m is the length of the query time series and l is
the length of the shapelet. In contrast, if we use the best

performing global distance measure, rotation invariant DTW

distance [8], the time complexity is on the order of O(km3), where
k is the number of reference objects in the training set1. On real-

1 There are techniques to mitigate the cubic complexity of rotation
invariant DTW, but unlike shapelets, the time is dependent on D.

world problems the speed difference can be greater than three

orders of magnitude.

The leaf example, while from an important real-world problem in

botany, is a contrived and small example to help develop the

reader’s intuitions. However, as we shall show in Section 5, we

can provide extensive empirical evidence for all of these claims,

on a vast array of problems in domains as diverse as

anthropology, human motion analysis, spectrography, and

historical manuscript mining.

2. RELATED WORK AND BACKGROUND
While there is a vast amount of literature on time series

classification and mining [4][7][14], we believe that the problem

we intend to solve here is unique. The closest work is that of [5].

Here the author also attempts to find local patterns in a time series

which are predictive of a class. However, the author considers the

problem of finding the best such pattern intractable, and thus
resorts to examining a single, randomly chosen instance from each

class, and even then only considering a reduced piecewise

constant approximation of the data. While the author notes “it is
impossible in practice to consider every such subsignal as a
candidate pattern,” this is in fact exactly what we do, aided by
eight years of improvements in CPU time, and, more importantly,

an admissible pruning technique that can prune off more than

99.9% of the calculations (c.f. Section 5.1). Our work may also be

seen as a form of a supervised motif discovery algorithm [3].

2.1 Notation
Table 1 summarizes the notation in the paper; we expand on the

definitions below.

Table 1: Symbol table

Symbol Explanation

T, R time series

S subsequence

m, |T| length of time series

l, |S| length of subsequence

d distance measurement

D time series dataset

A,B class label

I entropy

Î weighted average entropy

sp split strategy

k number of time series objects in dataset

C classifier

S(k) the kth data point in subsequence S

We begin by defining the key terms in the paper. For ease of

exposition, we consider only a two-class problem. However,

extensions to a multiple-class problem are trivial.

Definition 1: Time Series. A time series T = t1,…,tm is an
ordered set of m real-valued variables.

Data points t1,…,tm are typically arranged by temporal order,
spaced at equal time intervals. We are interested in the local
properties of a time series rather than the global properties. A
local subsection of time series is termed as a subsequence.

Definition 2: Subsequence. Given a time series T of length m, a
subsequence S of T is a sampling of length l ≤ m of contiguous
positions from T, that is, S = tp,…,tp+l-1, for 1 ≤ p ≤ m – l + 1.

Verbena urticifolia

Shapelet

Urtica dioica

Verbena urticifolia Urtica dioica

0

I

1

Leaf Decision Tree

Shapelet Dictionary

I
0

1

2

3

5.1

30 10 20 0

Does Q have a subsequence within
a distance 5.1 of shape ?

 yes no

I

Our algorithm needs to extract all of the subsequences of a certain

length. This is achieved by using a sliding window of the

appropriate size.

Definition 3: Sliding Window. Given a time series T of length
m, and a user-defined subsequence length of l, all possible
subsequences can be extracted by sliding a window of size l
across T and considering each subsequence Sp

l of T. Here the
superscript l is the length of the subsequence and subscript p
indicates the starting position of the sliding window in the time

series. The set of all subsequences of length l extracted from T
is defined as ST

l, ST
l={Sp

l of T, for 1 ≤ p ≤ m – l + 1}.

As with virtually all time series data mining tasks, we need to

provide a similarity measure between the time series Dist(T, R).

Definition 4: Distance between the time series. Dist(T, R) is a
distance function that takes two time series T and R which are
of the same length as inputs and returns a nonnegative value d,
which is said to be the distance between T and R. We require

that the function Dist be symmetrical; that is, Dist(R, T) =
Dist(T, R).

The Dist function can also be used to measure the distance
between two subsequences of the same length, since the

subsequences are of the same format as the time series. However,

we will also need to measure the similarity between a short

subsequence and a (potentially much) longer time series. We

therefore define the distance between two time series T and S,
with |S| < |T| as:

Definition 5: Distance from the time series to the subsequence.
SubsequenceDist(T, S) is a distance function that takes time
series T and subsequence S as inputs and returns a nonnegative
value d, which is the distance from T to S. SubsequenceDist(T,
S) = min(Dist(S, S')), for S' ∈ ST

|S|.

Intuitively, this distance is simply the distance between S and its
best matching location somewhere in T, as shown in Figure 5.

Figure 5: Illustration of best matching location in time series T

for subsequence S

As we shall explain in Section 3, our algorithm needs some metric

to evaluate how well it can divide the entire combined dataset into

two original classes. Here, we use concepts very similar to the

information gain used in the traditional decision tree [2]. The
reader may recall the original definition of entropy which we

review here:

Definition 6: Entropy. A time series dataset D consists of two
classes, A and B. Given that the proportion of objects in class A
is p(A) and the proportion of objects in class B is p(B), the
entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).

Each splitting strategy divides the whole dataset D into two

subsets, D1 and D2. Therefore, the information remaining in the

entire dataset after splitting is defined by the weighted average

entropy of each subset. If the fraction of objects in D1 is f(D1) and

the fraction of objects in D2 is f(D2), the total entropy of D after

splitting is Î(D) = f(D1)I(D1) + f(D2)I(D2). This allows us to define

the information gain for any splitting strategy:

Definition 7: Information Gain. Given a certain split strategy
sp which divides D into two subsets D1 and D2, the entropy

before and after splitting is I(D) and Î(D). So the information
gain for this splitting rule is

Gain(sp) = I(D) - Î(D),

Gain(sp) = I(D) - f(D1)I(D1) + f(D2)I(D2).

As hinted at in the introduction, we use the distance to a shapelet
as the splitting rule. The shapelet is a subsequence of a time series

such that most of the time series objects in one class of the dataset

are close to the shapelet under SubsequenceDist, while most of
the time series objects from the other class are far away from it.

To find the best shapelet, we may have to test many shapelet

candidates. In the brute force algorithm discussed in Section 3.1,

given a candidate shapelet, we calculate the distance between the

candidate and every time series object in the dataset. We sort the

objects according to the distances and find an optimal split point

between two neighboring distances.

Definition 8: Optimal Split Point (OSP). A time series dataset
D consists of two classes, A and B. For a shapelet candidate S,
we choose some distance threshold dth and split D into D1 and

D2, such that for every time series object T1,i in D1,

SubsequenceDist(T1,i, S) < dth and for every time series object
T2,i in D2, SubsequenceDist(T2,i, S) ≥ dth. An Optimal Split
Point is a distance threshold that

Gain(S, dOSP(D, S)) ≥ Gain(S, d'th)

for any other distance threshold d'th.

So using the shapelet, the splitting strategy contains two factors:

the shapelet and the corresponding optimal split point. As a

concrete example, in Figure 4 the shapelet is shown in red in the

shapelet dictionary, and the optimal split point is 5.1.

We are finally in the position to formally define the shapelet.

Definition 9: Shapelet. Given a time series dataset D which

consists of two classes, A and B, shapelet(D) is a subsequence
that, with its corresponding optimal split point,

Gain(shapelet(D), dOSP(D, shapelet(D))) ≥ Gain(S, dOSP(D, S))

for any other subsequence S.

Since the shapelet is simply any time series of some length less
than or equal to the length of the shortest time series in our

dataset, there are an infinite amount of possible shapes it could

have. For simplicity, we assume the shapelet to be a subsequence

of a time series object in the dataset. It is reasonable to make this

assumption since the time series objects in one class presumably

contain some similar subsequences, and these subsequences are

good candidates for the shapelet.

Nevertheless, there are still a very large number of possible

shapelet candidates. Suppose the dataset D contains k time series
objects. We specify the minimum and maximum length of the

shapelet candidates that can be generated from this dataset as

MINLEN and MAXLEN, respectively. Obviously MAXLEN ≤
min(mi), mi is the length of the time series Ti from the dataset, 1 ≤
i ≤ k. Considering a certain fixed length l, the number of shapelet
candidates generated from the dataset is:

)1(+−∑
∈

lm
DT

i

i

So the total number of candidates of all possible lengths is:

∑ ∑
= ∈

+−

MAXLEN

MINLENl DT

i

i

lm)1(

0 10 20 30 40 50 60 70 80

S T
best

matching

location

If the shapelet can be any length smaller than that of the shortest

time series object in the dataset, the number of shapelet candidates

is linear in k, and quadratic in m , the average length of time

series objects. For example, the well-known Trace dataset [11]

has 200 instances, each of length 275. If we set MINLEN=3,
MAXLEN=275, there will be 7,480,200 shapelet candidates. For
each of these candidates, we need to find its nearest neighbor

within the k time series objects. Using the brute force search, it
will take approximately three days to accomplish this. However,

as we will show in Section 3, we can achieve an identical result in

a tiny fraction of this time with a novel pruning strategy.

3. FINDING THE SHAPELET
We first show the brute force algorithm for finding shapelets,

followed by two simple but highly effective speedup methods.

3.1 Brute-Force Algorithm
The most straightforward way for finding the shapelet is using the

brute force method. The algorithm is described in Table 2.

Table 2: Brute force algorithm for finding shapelet

FindingShapeletBF (dataset D, MAXLEN, MINLEN)
1
2
3
4
5
6
7
8
9
10

candidates � GenerateCandidates(D, MAXLEN, MINLEN)
bsf_gain � 0
For each S in candidates
 gain � CheckCandidate(D, S)
 If gain > bsf_gain
 bsf_gain � gain
 bsf_shapelet � S
 EndIf
EndFor
Return bsf_shapelet

Given a combined dataset D, in which each time series object is

labeled either class A or class B, along with the user-defined
maximum and minimum lengths of the shapelet, line 1 generates

all of the subsequences of all possible lengths, and stores them in

the unordered list candidates. After initializing the best

information gain bsf_gain to be zero (line 2), the algorithm checks
how well each candidate in candidates can separate objects in
class A and class B (lines 3 to 7). For each shapelet candidate, the
algorithm calls the function CheckCandidate() to obtain the

information gain achieved if using that candidate to separate the

data (line 4). As illustrated in Figure 6, we can visualize this as

placing class-annotated points on the real number line,

representing the distance of each time series to the candidate.

Intuitively, we hope to find that this mapping produces two well-

separated “pure” groups. In this regard the example in Figure 6 is

very good, but clearly not perfect.

Figure 6: The CheckCandidate() function at the heart of the

brute force search algorithm can be regarded as testing to see

how mapping all of the time series objects on the number line

based on their SubsequenceDist(T, S) separates the two classes

If the information gain is higher than the bsf_gain, the algorithm
updates the bsf_gain and the corresponding best shapelet
candidate bsf_shapelet (lines 5 to 7). Finally, the algorithm
returns the candidate with the highest information gain in line 10.

The two subroutines GenerateCandidates() and CheckCandidate()

called in the algorithm are outlined in Table 3 and Table 4,

respectively. In Table 3, the algorithm GenerateCandidates()

begins by initializing the shapelet candidate pool to be an empty

set and the shapelet length l to be MAXLEN (lines 1 and 2).

Table 3: Generate all the candidates from time series dataset

GenerateCandidates (dataset D, MAXLEN, MINLEN)
1
2
3
4
5
6
7
8
9

pool � Ø
l � MAXLEN
While l ≥ MINLEN
 For T in D
 pool � pool ∪ ST

l
 EndFor
 l � l - 1
EndWhile
Return pool

Thereafter, for each possible length l, the algorithm slides a
window of size l across all of the time series objects in the dataset
D, extracts all of the possible candidates and adds them to the

pool (line 5). The algorithm finally returns the pool as the entire
set of shapelet candidates that we are going to check (line 9). In

Table 4 we show how the algorithm evaluates the utility of each

candidate by using the information gain.

Table 4: Checking the utility of a single candidate

CheckCandidate (dataset D, shapelet candidate S)

1

2

3

4

5

6

objects_histogram � Ø

For each T in D

 dist � SubsequenceDist(T, S)
 insert T into objects_histogram by the key dist
EndFor

Return CalculateInformationGain(objects_histogram)

First, the algorithm inserts all of the time series objects into the

histogram objects_histogram according to the distance from the
time series object to the candidate in lines 1 to 4. After that, the

algorithm returns the utility of that candidate by calling

CalculateInformationGain() (line 6).

Table 5: Information gain of distance histogram optimal split

CalculateInformationGain (distance histogram obj_hist)
1
2
3
4
5
6
7
8
9
10

split_dist � OptimalSplitPoint(obj_hist)
D1 � Ø, D2 � Ø
For d in obj_hist
 If d.dist < split_dist
 D1 � D1 ∪ d.objects
 Else
 D2 � D2 ∪ d.objects
 EndIf
EndFor
Return I(D) - Î(D)

The CalculateInformationGain() subroutine, as shown in Table 5,

takes an object histogram as the input, finds an optimal split point

split_dist (line 1) and divides the time series objects into two
subsets by comparing the distance to the candidate with split_dist
(lines 4 to 7). Finally, it calculates the information gain (cf.

definitions 6, 7) of the partition and returns the value (line 10).

After building the distance histogram for all of the time series

objects to a certain candidate, the algorithm will find a split point

that divides the time series objects into two subsets (denoted by

the dashed line in Figure 6). As noted in definition 8, an optimal

split point is a distance threshold. Comparing the distance from

each time series object in the dataset to the shapelet with the

threshold, we can divide the dataset into two subsets, which

achieves the highest information gain among all of the possible

partitions. Any point on the positive real number line could be a

split point, so there are infinite possibilities from which to choose.

To make the search space smaller, we check only the mean values

of each pair of adjacent points in the histogram as a possible split

point. This reduction still finds all of the possible information

gain values since the information gain cannot change in the region

0
Split point

between two adjacent points. Furthermore, in this way, we
maximize the margin between two subsets.

The naïve brute force algorithm clearly finds the optimal shapelet.

It appears that it is extremely space inefficient, requiring the

storage of all of the shapelet candidates. However, we can

mitigate this with some internal bookkeeping that generates and

then discards the candidates one at a time. Nevertheless, the

algorithm suffers from high time complexity. Recall that the

number of the time series objects in the dataset is k and the
average length of each time series is m . As we discussed in

Section 2.1, the size of the candidate set is)(
2kmO . Checking the

utility of one candidate takes)(kmO . Hence, the overall time

complexity of the algorithm is)(
23kmO , which makes the real-

world problems intractable.

3.2 Subsequence Distance Early Abandon
In the brute force method, the distance from the time series T to
the subsequence S is obtained by calculating the Euclidean
distance of every subsequence of length |S| in T and S and
choosing the minimum. This takes O(|T|) distance calculations
between subsequences. However, all we need to know is the

minimum distance rather than all of the distances. Therefore,
instead of calculating the exact distance between every

subsequence and the candidate, we can stop distance calculations

once the partial distance exceeds the minimum distance known so

far. This trick is known as early abandon [8], which is very
simple yet has been shown to be extremely effective for similar

types of problems [8].

Figure 7: (left) Illustration of complete Euclidean distance.

(right) Illustration of Euclidean distance early abandon

While it is a simple idea, for clarity we illustrate the idea in Figure

7 and provide the pseudo code in Table 6.

Table 6: Early abandon the non-minimum distance

SubsequenceDistanceEarlyAbandon(T, S)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

min_dist � ∞
stop � False
For Si in ST

|S|

 sum_dist � 0
 For k � 1 to |S|
 sum_dist � sum_dist + (Si(k) – S(k))

2
 If sum_dist ≥ min_dist
 stop ���� True
 Break
 EndIf
 EndFor
 If not stop
 min_dist � sum_dist
 EndIf
EndFor
Return min_dist

In line 1, we initialize the minimum distance min_dist from the
time series T to the subsequence S to be infinity. Thereafter, for
each subsequence Si from T of length |S|, we accumulate the
distance sum_dist between Si and S, one data point at a time (line
6). Once sum_dist is larger than or equal to the minimum distance
known so far, we abandon the distance calculation between Si and
S (lines 7 to 9). If the distance calculation between Si and S

finishes, we know that the distance is smaller than the minimum

distance known so far. Thus, we update the minimum distance

min_dist in line 13. The algorithm returns the true distance from
the time series T to the subsequence S in line 16. Although the
early abandon search is still O(|T|), as we will demonstrate later,
this simple trick reduces the time required by a large, constant

factor.

3.3 Admissible Entropy Pruning
Our definition of the shapelet requires some measure of how well

the distances to a given time series subsequence can split the data

into two “purer” subsets. The reader will recall that we used the

information gain (or entropy) as that measure. However, there are

other commonly used measures for distribution evaluation, such

as the Wilcoxon signed-rank test [13]. We adopted the entropy

evaluation for two reasons. First, it is easily generalized to the

multi-class problem. Second, as we will now show, we can use a

novel idea called early entropy pruning to avoid a large fraction
of distance calculations required when finding the shapelet.

Obtaining the distance between a candidate and its nearest

matching subsequence of each of the objects in the dataset is the

most expensive calculation in the brute force algorithm, whereas

the information gain calculation takes an inconsequential amount

of time. Based on this observation, instead of waiting until we

have all of the distances from each of the time series objects to the

candidate, we can calculate an upper bound of the information
gain based on the currently observed distances. If at any point

during the search the upper bound cannot beat the best-so-far

information gain, we stop the distance calculations and prune that

particular candidate from consideration, secure in the knowledge

that it cannot be a better candidate than the current best so far.

In order to help the reader understand the idea of pruning with an

upper bound of the information gain, we consider a simple

example. Suppose as shown in Figure 8, ten time series objects

are arranged in a one-dimensional representation by measuring

their distance to the best-so-far candidate. This happens to be a

good case, with five of the six objects from class A (represented
by circles) closer to the candidate than any of the four objects

from class B (represented by squares). In addition, of the five
objects to the right of the split point, only one object from class A
is mixed up with the class B. The optimal split point is
represented by a vertical dashed line, and the best-so-far

information gain is:

[-(6/10)log(6/10)-(4/10)log(4/10)] - [(5/10)[-(5/5)log(5/5)]+(5/10)[-(4/5)log(4/5)-(1/5)log(1/5)]]=0.4228

Figure 8: Distance arrangement of the time series objects in one-

dimensional representation of best-so-far information gain. The

positions of the objects represent their distances to the candidate

We now consider another candidate. The distances of the first five

time series objects to the candidate have been calculated, and their

corresponding positions in a one-dimensional representation are

shown in Figure 9.

Figure 9: The arrangement of first five distances from the time

series objects to the candidate

We can ask the following question: of the 30,240 distinct ways

the remaining five distances could be added to this line, could any

of them results in an information gain that is better than the best

0

0

0 10 20 30 40 50 60 70 80

S

T

0 10 20 30 40 50 60 70 80

S

T
calculation

abandoned

at this point

so far? In fact, we can answer this question in constant time. The

idea is to imagine the most optimistic scenarios and test them. It is

clear that there are only two optimistic possibilities: either all of

the remaining class A objects map to the far right and all of the
class B objects map to the far left, or vice versa. Figure 10 shows
the former scenario applied to the example shown in Figure 9.

Figure 10: One optimistic prediction of distance distribution

based on distances that have already been calculated in Figure 9.

The dashed objects are in the optimistically assumed placements

The information gain of the better of the two optimistic

predictions is:
[-(6/10)log(6/10)-(4/10)log(4/10)] - [(4/10)[-(4/4)log(4/4)]+(6/10)[-(4/6)log(4/6)-(2/6)log(2/6)]]=0.2911

which is lower than the best-so-far information gain. Therefore, at
this point, we can stop the distance calculation for the remaining

objects and prune this candidate from consideration forever. In

this case, we saved 50% of the distance calculations. But in real-

life situations, early entropy pruning is generally much more

efficient than we have shown in this brief example. We will

empirically evaluate the time we save in Section 5.1.

This intuitive idea is formalized in the algorithm outlined in Table

7. The algorithm takes as the inputs the best-so-far information

gain, the calculated distances from objects to the candidate

organized in the histogram (i.e the number line for Figures 8, 9

and 10) and the remaining time series objects in class A and class
B, and returns TRUE if we can prune the candidate as the answer.
The algorithm begins by finding the two ends of the histogram

(discussed in Section 3.1). For simplicity, we make the distance

values at two ends as 0 and maximum distance +1 (in lines 1 and

2). To build the optimistic histogram of the whole dataset based

on the existing one (lines 3 and 8), we assign the remaining

objects of one class to one end and those of the other class to the

other end (lines 4 and 9). If in either case, the information gain of

the optimistic histogram is higher than the best-so-far information

gain (lines 5 and 10), it is still possible that the actual information

gain of the candidate can beat the best so far. Thus, we cannot

prune the candidate and we should continue to test (lines 6 and

11). Otherwise, if the upper bound of the actual information gain

is lower than the best so far, we save all of the remaining distance

calculations with this candidate (line 13).

Table 7: Information gain upper bound pruning

EntropyEarlyPrune (bsf_gain, dist_hist, cA, cB)
1
2
3
4
5
6
7
8
9
10
11
12
13

minend � 0
maxend � largest distance value in dist_hist + 1
pred_dist_hist � dist_hist
Add to the pred_dist_hist, cA at minend and cB at maxend
If CalculateInformationGain (pred_dist_hist) > bsf_gain
 Return FALSE
EndIf
pred_dist_hist � dist_hist
Add to the pred_dist_hist, cA at maxend and cB at minend
If CalculateInformationGain (pred_dist_hist) > bsf_gain
 Return FALSE
EndIf
Return TRUE

The utility of this pruning method depends on the data. If there is

any class-correlated structure in the data, we will typically find a

good candidate that gives a high information gain early in our

search, and thereafter the vast majority of candidates will be

pruned quickly.

There is one simple trick we can do to get the maximum pruning

benefit. Suppose we tested all of the objects from class A first,
then all of the objects from class B. In this case, the upper bound
of the information gain must always be maximum until at least

after the point at which we have seen the first object from class B.
We therefore use a round-robin algorithm to pick the next object

to be tested. That is to say, the ordering of objects we use is a1, b1,
a2, b3,…, an, bn. This ordering lets the algorithm know very early
in the search if a candidate cannot beat the best so far.

It is often the case that different candidates will have the same

best information gain. This is particularly true for small datasets.

We propose several options to break this tie depending on

applications. We can break such ties by favoring the longest

candidate, the shortest candidate or the one that achieves the

largest margin between the two classes. We omit a more detailed

discussion of this minor issue for brevity.

4. SHAPELETS FOR CLASSIFICATION
While we believe that shapelets can have implications for many

time series data mining problems, including visualization,

anomaly detection and rule discovery, for brevity we will focus

just on the classification problem in this work.

Classifying with a shapelet and its corresponding split point

produces a binary decision as to whether a time series belongs to a

certain class or not. Obviously, this is not enough to deal with a

multi-class situation. Even with two-class problems, a linear

classifier is sometimes inadequate. In order to make the shapelet

classifier universal, we frame it as a decision tree [2]. Given the

discussion of the information gain above, this is a natural fit.

At each step of the decision tree induction, we determine the

shapelet and the corresponding split point over the training subset

considered in that step. (A similar idea is considered in [5].)

After the learning procedure finishes, we can assess the

performance of the shapelet decision tree classifier by calculating

the accuracy on the testing dataset. The way we predict the class

label of each testing time series object is very similar to the way

this is done with a traditional decision tree. For concreteness the

algorithm is described in Table 8.

Table 8: Calculating the accuracy of the shapelet classifier

CalculateAccuracy (shapelet decision tree classifier C, dataset Dt)

1
2
3
4
5
6
7

For each T in Dt
 predict_class_label � Predict(C, T)
 If predict_class_label is the same as actual class label
 correct � correct + 1
 EndIf
EndFor
Return correct / | Dt |

The technique to predict the class label of each testing object is

described in Table 9. For each node of the decision tree, we have

the information of a single shapelet classifier, the left subtree and

the right subtree. For the leaf node, there is additional information

of a predicted class label. Starting from the root of a shapelet

decision tree classifier, we calculate the distance from the testing

object T to the shapelet in that node. If the distance is smaller than
the split point, we recursively use the left subtree (lines 6 and 7)

and otherwise use the right subtree (lines 8 and 9). This procedure

continues until we reach the leaf node and return the predicted

class label (lines 1 and 2).

0

Table 9: Predicting the class label of a testing object

Predict (shapelet decision tree classifier C, testing time series T)
1
2
3
4
5
6
7
8
9
10
11

If C is the leaf node
 Return label of C
Else
 S � shapelet on the root node of C
 split_point � split point on the root of C
 If SubsequenceDistanceEarlyAbandon (T, S) < split_point
 Predict (left substree of C, T)
 Else
 Predict (right substree of C, T)
 EndIf
EndIf

5. EXPERIMENTAL EVALUATION
We begin by discussing our experimental philosophy. We have

designed and conducted all experiments such that they are easily

reproducible. With this in mind, we have built a webpage [15]

which contains all of the datasets and code used in this work,

together with spreadsheets which contain the raw numbers

displayed in all of the figures, and larger annotated figures

showing the decision trees, etc. In addition, this webpage contains

many additional experiments which we could not fit into this

work; however, we note that this paper is completely self-

contained.

5.1 Performance Comparison
We test the scalability of our shapelet finding algorithm on the

Synthetic Lightning EMP Classification [6], which, with a

2,000/18,000 train/test split, is the largest class-labeled time series

dataset we are aware of. It also has the highest dimensionality,

with each time series object being 2,000 data points long. Using

four different search algorithms, we started by finding the shapelet

in a subset of just ten time series, and then iteratively doubled the

size of the data subset until the time for brute force made the

experiments untenable. Figure 11 shows the results.

Figure 11: The time required to find the best shapelet (left) and

the hold-out accuracy (right), for increasing large databases sizes

The results show that brute force search quickly becomes

untenable, requiring about five days for just 160 objects. Early

abandoning helps reduce this by a factor of two, and entropy

based pruning helps reduce this by over two orders of magnitude.

Both ideas combined almost linearly to produce three orders of

magnitude speedup.

For each size data subset we considered, we also built a decision

tree (which can be seen at [15]) and tested the accuracy on the

18,000 holdout data. When only 10 or 20 objects (out of the

original 2,000) are examined, the decision tree is slightly worse

than the best known result on this dataset (the one-nearest

neighbor Euclidean distance), but after examining just 2% of the

training data, it is significantly more accurate.

5.2 Projectile Points (Arrowheads)
Projectile point (arrowhead) classification is an important topic in

anthropology (see [15] where we have an extensive review of the

literature). Projectile points can be divided into different classes

based on the location they are found, the group that created them,

and the date they were in use, etc. In Figure 12, we show some

samples of the projectile points used in our experiments.

Figure 12: Examples of the three classes of projectile points in

our dataset. The testing dataset includes some broken points, and

some drawings taken from anthropologist’s field notes

We convert the shapes of the projectile points to a time series

using the angle-based method [8]. We then randomly created a

36/175 training/test split. The result is shown in Figure 13.

Figure 13: (top) The dictionary of shapelets, together with the

thresholds dth. (bottom) The decision tree for the 3-class projectile

points problem

As shown in Figure 13 and confirmed by physical anthropologists

Dr. Sang-Hee Lee and Taryn Rampley of UCR, the Clovis

projectile points can be distinguished from the others by an un-

notched hafting area near the bottom connected by a deep concave

bottom end. After distinguishing the Clovis projectile points, the

Avonlea points are differentiated from the mixed class by a small

notched hafting area connected by a shallow concave bottom end.

The shapelet decision tree classifier achieves an accuracy of

80.0%, whereas the accuracy of rotation invariant one-nearest-
neighbor classifier is 68.0%. Beyond the advantage of greater

accuracy, the shapelet decision tree classifier produces the

classification result 3×103 times faster than the rotation invariant
one-nearest-neighbor classifier and it is more robust in dealing

with the pervasive broken projectile points in most collections.

5.3 Mining Historical Documents
In this section we consider the utility of shapelets for an ongoing

project in mining and annotating historical documents. Coats of

arms or heraldic shields were originally symbols used to identify

Avonlea Clovis Mix

 11.24

85.47

Shapelet Dictionary

(Clovis)

(Avonlea)

I

II

0 100 200 300 400

0

0.5

1.0

1.5

Arrowhead Decision

Tree
I

2 1

II

0

Clovis

Avonlea

0

1 *10
5

2 *10
5

3 *10
5

4 *10
5

5 *10
5

Brute Force

160 10 20 40 80

Early Abandon Pruning

Entropy Pruning

Combined Pruning

About 5 days

10 20 40 80 160
0.9

0.92

0.94

0.96

0.98

se
co
nd
s

ac
cu
ra
cy

Currently best
published accuracy
91.1%

|D|, the number of objects in the database |D|, the number of objects in the database

individuals or groups on the battlefield. Since the beginning of the

Middle Ages, thousands of annotated catalogues of these shields

have been created, and in recent years hundreds of them have

been digitized [1][9]. Naturally, most efforts to automatically

extract and annotate these volumes concentrate on the colors and

patterns of the shields; however, there is also useful information

contained in the shape. Consider for example Figure 14, which

shows examples of different shapes commonly associated with

various countries’ heraldic traditions.

Figure 14: Examples of the three classes in our dataset. The

shields were hand-drawn one to six centuries ago

Note that in most of these documents, the shields were drawn

freehand and thus have natural variability in shape, in addition to

containing affine transformation artifacts introduced during the

digital scanning.

We convert the shapes of the shields to a time series using the

angle-based method [8]. Because some shields may be augmented

with ornamentation (i.e far left in Figure 14) or torn (i.e Figure

16) and thus may have radically different perimeter lengths, we do

not normalize the time series lengths.

We randomly select 10 objects from each class as the training

dataset, and leave the remaining 129 objects for testing. The

resulting classifier is shown in Figure 15.

Figure 15: (top) The dictionary of shapelets, together with the

thresholds dth. (bottom) A decision tree for heraldic shields

Note that we can glean some information about this dataset by

“brushing” the shapelet back onto the shields as in Figure 15 top.
For example, both the Spanish and the French shields have right

angle edges at the top of the shield, so the shapelet algorithm does

not choose that common feature to discriminate between the
classes. Instead, the unique semi-circular bottom of the Spanish

crest is used in node II to discriminate it from the French

examples.

For our shapelet decision tree classifier, we achieve 89.9%

accuracy; while for the rotation invariant one-nearest-neighbor
Euclidean distance classifier the accuracy is only 82.9%. Beyond

the differences in accuracy, there are two additional advantages of

shapelets. First, the time to classify is approximately 3×104 times

faster than for the rotation invariant one-nearest-neighbor
Euclidean distance, although we could close that difference

somewhat if we indexed the training data with a shape indexing

algorithm [8]. Second, as shown in Figure 16, many images from

historical manuscripts are torn or degraded. Note that the decision

tree shown in Figure 15 can still correctly classify the shield of

Charles II, even though a large fraction of it is missing.

Figure 16: The top section of a page of the 1840 text, A guide to

the study of heraldry [10]. Note some shields are torn

5.4 Understanding the Gun/NoGun Problem
The Gun/NoGun motion capture time series dataset is perhaps the
most studied time series classification problem in the literature

[4][14]. We take the standard train/test split for this dataset and

use it to learn the decision tree shown in Figure 17.

Figure 17: (top) The dictionary of shapelets, with the thresholds

dth. (bottom) The decision tree for the Gun/NoGun problem

The holdout accuracy for the decision tree is 93.3%, beating the

one-nearest-neighbor Euclidean distance classifier, whose

accuracy is 91.3%, and unconstrained or constrained DTW

[4][14], with accuracies of 90.7% and 91.3%, respectively. More

significantly, the time to classify using the decision tree is about

four times faster than the one-nearest-neighbor Euclidean distance

classifier. This is significant, since surveillance is a domain where

classification speed can matter.

Moreover, by “brushing” the shapelet back onto the original

video, we are able to gain some understanding of the differences

between the two classes. In Figure 17, we can see that the NoGun

class has a “dip” where the actor put her hand down by her side,

and inertia carries her hand a little too far and she is forced to

correct for it (a phenomenon known as “overshoot”). In contrast,

0 25 50 75 100

0

1

2

3

I 38.94

Shaplet Dictionary

I Gun Decision Tree

0 1

(NoGun)

NoGun

Gun

Charles II

I

2 1

II

0

0 100 200 300 400

0

1

2

3
I

II

151.7

156.1

Shaplet Dictionary

Shield Decision Tree

Polish Spanish

(Polish)

(Spanish)

Spanish Polish French

when the actor has the gun, she returns her hand to her side more

carefully, feeling for the gun holster, and no dip is seen.

5.5 Wheat Spectrography
This dataset consists of 775 spectrographs of wheat samples

grown in Canada between 1998 and 2005. The data is made up of

several different types of wheat, including Soft White Spring,
Canada Western Red Spring, Canada Western Red Winter, etc.
However, the class label given for this problem is the year in
which the wheat was grown. This makes the classification

problem very difficult, as some of the similarities/dissimilarities

between objects can be attributed to the year grown, but some can

be attributed to the wheat type, which we do not know. In Figure

18 we plot one example from each class; as the reader can see, the

differences between classes are very subtle.

Figure 18 : One sample from each of the seven classes in the

wheat problem. The objects are separated in the y-axis for visual

clarity, as they all have approximately the same mean

We created a 49/726 train/test split, ensuring that the training set

has seven objects from each class, and then tested the

classification accuracy of the one-nearest-neighbor Euclidean

distance classifier, which we find to be 54.3% (Dynamic Time

Warping does not outperform Euclidean distance here). We then

created a decision tree for the data, using the algorithm introduced

in Section 4. The output is shown in Figure 19.

Figure 19: (top) The dictionary of shapelets, together with the

thresholds dth. (bottom) The decision tree for the wheat

spectrography problem

The accuracy of the decision tree is 72.6%, which is significantly

better than the 54.3% achieved by the nearest neighbor method.

6. CONCLUSIONS AND FUTURE WORK
We have introduced a new primitive for time series and shape

mining, time series shapelets. We have shown with extensive

experiments that we can find the shapelets efficiently, and that

they can provide accurate, interpretable and fast classification

decisions in a wide variety of domains. Ongoing and future work

includes extensions to the multivariate case and detailed case

studies in the domains of anthropology and MOCAP analyses.

Acknowledgements: We thank Ralf Hartemink for help with the

heraldic shields and Dr. Sang-Hee Lee and Taryn Rampley for

their help with the projectile point dataset. This work was funded

by NSF 0803410 and 0808770.

7. REFERENCES
[1] Anon. 1525. Founders’ and benefectors’ book of Tewkesbury

Abbey, in Latin England. Online version
www.bodley.ox.ac.uk/dept/scwmss/wmss/medieval/mss/top/glouc/d/002.htm

[2] Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J. 1984.

Classification and regression trees. Wadsworth.

[3] Chiu, B., Keogh, E., and Lonardi, S. 2003. Probabilistic Discovery

of Time Series Motifs. In Proc of the 9th ACM SIGKDD. 493–498.

[4] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E.

2008. Querying and Mining of Time Series Data: Experimental

Comparison of Representations and Distance Measures. In Proc of

the 34th VLDB. 1542–1552.

[5] Geurts, P. 2001. Pattern Extraction for Time Series Classification. In

Proc of the 5th PKDD, 115–127.

[6] Jeffery, C. 2005. http://public.lanl.gov/eads/datasets/emp/index.html

[7] Keogh, E. and Kasetty, S. 2002. On the Need for Time Series Data

Mining Benchmarks: A Survey and Empirical Demonstration. In

Proc’ of the 8th ACM SIGKDD. 102–111.

[8] Keogh, E., Wei, L., Xi, X., Lee, S., and Vlachos, M. 2006.

LB_Keogh Supports Exact Indexing of Shapes under Rotation

Invariance with Arbitrary Representations and Distance Measures.

In the Proc of 32th VLDB. 882–893.

[9] Koschorreck,W. and Werner, W., editors. 1981. Facsimile edition

with commentary: Kommentar zum Faksimile des Codex Manesse:

Die grosse Heidelberger Liederhandschrift.

[10] Montagu, J.A. 1840. A guide to the study of heraldry. Publisher:

London : W. Pickering. Online version

www.archive.org/details/guidetostudyofhe00montuoft

[11] Rodríguez, J.J. and Alonso, C.J. 2004. Interval and dynamic time
warping-based decision trees. In Proc of the 2004 ACM Symposium

on Applied Computing, 548–552.

[12] Salzberg, S.L. 1997. On comparing classifiers: Pitfalls to avoid and
a recommended approach. Data Mining and Knowledge Discovery,

1, 317–328, 1997.

[13] Wilcoxon, F. 1945. Individual Comparisons by Ranking Methods.

Biometrics, 1, 80–83.

[14] Xi, X., Keogh, E., Shelton, C., Wei, L., and Ratanamahatana, C. A.

2006. Fast Time Series Classification Using Numerosity Reduction.

In the Proc of the 23rd ICML. 1033–1040.

[15] Ye, L. 2009. The Time Series Shapelet Webpage.

www.cs.ucr.edu/~lexiangy/shapelet.html Note to reviewers. Until

the paper is accepted, the webpage is password-protected with

the username/password: kdd/riverside

0 200 400 600 800 1000 1200

0
0.5
1

2 4 0 1 6 5

I

II

III IV

V

VI

Wheat Decision Tree

0.1

0.2

0.3

0.4

0.0

100 200 300 0

I 5.22

II 2.48

III 12.15

IV 2.7

V 42.8

VI 4.09

Shapelet Dictionary

3

