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ABSTRACT 

Classification of time series has been attracting great interest over 

the past decade. While dozens of techniques have been 

introduced, recent empirical evidence has strongly suggested that 

the simple nearest neighbor algorithm is very difficult to beat for 

most time series problems. While this may be considered good 

news, given the simplicity of implementing the nearest neighbor 

algorithm, there are some negative consequences of this. First, the 

nearest neighbor algorithm requires storing and searching the 

entire dataset, resulting in a time and space complexity that limits 

its applicability, especially on resource-limited sensors. Second, 

beyond mere classification accuracy, we often wish to gain some 

insight into the data.  

In this work we introduce a new time series primitive, time series 
shapelets, which addresses these limitations. Informally, shapelets 
are time series subsequences which are in some sense maximally 

representative of a class. As we shall show with extensive 

empirical evaluations in diverse domains, algorithms based on the 

time series shapelet primitives can be interpretable, more accurate 

and significantly faster than state-of-the-art classifiers.  

1. INTRODUCTION 
While the last decade has seen a huge interest in time series 

classification, to date the most accurate and robust method is the 

simple nearest neighbor algorithm [4][12][14]. While the nearest 

neighbor algorithm has the advantages of simplicity and not 

requiring extensive parameter tuning, it does have several 

important disadvantages. Chief among these are its space and time 

requirements, and the fact that it does not tell us anything about 

why a particular object was assigned to a particular class.  

In this work we present a novel time series data mining primitive 

called time series shapelets. Informally, shapelets are time series 
subsequences which are in some sense maximally representative 

of a class. While we believe shapelets can have many uses in data 

mining, one obvious implication of them is to mitigate the two 

weaknesses of the nearest neighbor algorithm noted above. 

 
Figure 1: Samples of leaves from two species. Note that several 

leaves have the insect-bite damage 

Because we are defining and solving a new problem, we will take 

some time to consider a detailed motivating example. Figure 1 

shows some examples of leaves from two classes, Urtica dioica 
(stinging nettles) and Verbena urticifolia. These two plants are 
commonly confused, hence the colloquial name “false nettle” for 

Verbena urticifolia. 

Suppose we wish to build a classifier to distinguish these two 

plants; what features should we use? Since the intra-variability of 

color and size within each class completely dwarfs the inter-

variability between classes, our best hope is based on the shapes 

of the leaves. However, as we can see in Figure 1, the differences 

in the global shape are very subtle. Furthermore, it is very 

common for leaves to have distortions or “occlusions” due to 

insect damage, and these are likely to confuse any global 

measures of shape. Instead we attempt the following. We first 

convert each leaf into a one-dimensional representation as shown 

in Figure 2. 

 

Figure 2: A shape can be converted into a one dimensional “time 

series” representation. The reason for the highlighted section of the 

time series will be made apparent shortly 

Such representations have been successfully used for the 

classification, clustering and outlier detection of shapes in recent 

years [8]. However, here we find that using a nearest neighbor 

classifier with either the (rotation invariant) Euclidean distance or 

Dynamic Time Warping (DTW) distance does not significantly 

outperform random guessing. The reason for the poor 

performance of these otherwise very competitive classifiers seems 

to be due to the fact that the data is somewhat noisy (i.e. insect 

bites, and different stem lengths), and this noise is enough to 

swamp the subtle differences in the shapes.  

Suppose, however, that instead of comparing the entire shapes, 
we only compare a small subsection of the shapes from the two 
classes that is particularly discriminating. We can call such 

subsections shapelets, which invokes the idea of a small “sub-
shape.” For the moment we ignore the details of how to formally 

define shapelets, and how to efficiently compute them. In Figure 

3, we see the shapelet discovered by searching the small dataset 

shown in Figure 1. 

Verbena urticifolia 

Verbena urticifolia 

Urtica dioica 



 
Figure 3: Here, the shapelet hinted at in Figure 2 (in both cases 

shown with a bold line), is the subsequence that best 

discriminates between the two classes  

As we can see, the shapelet has “discovered” that the defining 

difference between the two species is that Urtica dioica has a stem 
that connects to the leaf at almost 90 degrees, whereas the stem of 

Verbena urticifolia connects to the leaf at a much shallower angle. 
Having found the shapelet and recorded its distance to the nearest 

matching subsequence in all objects in the database, we can build 

the simple decision-tree classifier shown in Figure 4. 

 
Figure 4: A decision-tree classifier for the leaf problem. The 

object to be classified has all of its subsequences compared to the 

shapelet, and if any subsequence is less than (the empirically 

determined value of) 5.1, it is classified as Verbena urticifolia  

The reader will immediately see that this method of classification 

has many potential advantages over current methods: 

• Shapelets can provide interpretable results, which may 

help domain practitioners better understand their data. For 

example, in Figure 3 we see that the shapelet can be summarized 

as the following: “Urtica dioica has a stem that connects to the 
leaf at almost 90 degrees.” Most other state-of-the-art time 

series/shape classifiers do not produce interpretable results [4][7]. 

• Shapelets can be significantly more accurate/robust on 

some datasets. This is because they are local features, whereas 

most other state-of-the-art time series/shape classifiers consider 

global features, which can be brittle to even low levels of noise 

and distortions [4]. In our example, leaves which have insect bite 

damage are still usually correctly classified. 

• Shapelets can be significantly faster at classification 

than existing state-of-the-art approaches. The classification time is 

just O(ml), where m is the length of the query time series and l is 
the length of the shapelet. In contrast, if we use the best 

performing global distance measure, rotation invariant DTW 

distance [8], the time complexity is on the order of O(km3), where 
k is the number of reference objects in the training set1. On real-

                                                                 

1 There are techniques to mitigate the cubic complexity of rotation 
invariant DTW, but unlike shapelets, the time is dependent on D.   

world problems the speed difference can be greater than three 

orders of magnitude.  

The leaf example, while from an important real-world problem in 

botany, is a contrived and small example to help develop the 

reader’s intuitions. However, as we shall show in Section 5, we 

can provide extensive empirical evidence for all of these claims, 

on a vast array of problems in domains as diverse as 

anthropology, human motion analysis, spectrography, and 

historical manuscript mining. 

2. RELATED WORK AND BACKGROUND 
While there is a vast amount of literature on time series 

classification and mining [4][7][14], we believe that the problem 

we intend to solve here is unique. The closest work is that of [5]. 

Here the author also attempts to find local patterns in a time series 

which are predictive of a class. However, the author considers the 

problem of finding the best such pattern intractable, and thus 
resorts to examining a single, randomly chosen instance from each 

class, and even then only considering a reduced piecewise 

constant approximation of the data. While the author notes “it is 
impossible in practice to consider every such subsignal as a 
candidate pattern,” this is in fact exactly what we do, aided by 
eight years of improvements in CPU time, and, more importantly, 

an admissible pruning technique that can prune off more than 

99.9% of the calculations (c.f. Section 5.1). Our work may also be 

seen as a form of a supervised motif discovery algorithm [3]. 

2.1 Notation 
Table 1 summarizes the notation in the paper; we expand on the 

definitions below. 

Table 1: Symbol table 

Symbol Explanation 

T, R time series 

S subsequence 

m, |T| length of time series 

l, |S| length of subsequence 

d distance measurement 

D time series dataset 

A,B class label 

I entropy  

Î weighted average entropy 

sp split strategy 

k number of time series objects in dataset 

C classifier 

S(k) the kth data point in subsequence S 

We begin by defining the key terms in the paper. For ease of 

exposition, we consider only a two-class problem. However, 

extensions to a multiple-class problem are trivial.  

Definition 1: Time Series. A time series T = t1,…,tm is an 
ordered set of m real-valued variables.  

Data points t1,…,tm are typically arranged by temporal order, 
spaced at equal time intervals. We are interested in the local 
properties of a time series rather than the global properties. A 
local subsection of time series is termed as a subsequence. 

Definition 2: Subsequence. Given a time series T of length m, a 
subsequence S of T is a sampling of length l ≤ m of contiguous 
positions from T, that is, S = tp,…,tp+l-1, for 1 ≤ p ≤ m – l + 1.  
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Our algorithm needs to extract all of the subsequences of a certain 

length. This is achieved by using a sliding window of the 

appropriate size. 

Definition 3: Sliding Window. Given a time series T of length 
m, and a user-defined subsequence length of l, all possible 
subsequences can be extracted by sliding a window of size l 
across T and considering each subsequence Sp

l of T. Here the 
superscript l is the length of the subsequence and subscript p 
indicates the starting position of the sliding window in the time 

series. The set of all subsequences of length l extracted from T 
is defined as ST

l, ST
l={Sp

l of T, for 1 ≤ p ≤ m – l + 1}. 

As with virtually all time series data mining tasks, we need to 

provide a similarity measure between the time series Dist(T, R). 

Definition 4: Distance between the time series. Dist(T, R) is a 
distance function that takes two time series T and R which are 
of the same length as inputs and returns a nonnegative value d, 
which is said to be the distance between T and R. We require 

that the function Dist be symmetrical; that is, Dist(R, T) = 
Dist(T, R).  

The Dist function can also be used to measure the distance 
between two subsequences of the same length, since the 

subsequences are of the same format as the time series. However, 

we will also need to measure the similarity between a short 

subsequence and a (potentially much) longer time series. We 

therefore define the distance between two time series T and S, 
with |S| < |T| as: 

Definition 5: Distance from the time series to the subsequence. 
SubsequenceDist(T, S) is a distance function that takes time 
series T and subsequence S as inputs and returns a nonnegative 
value d, which is the distance from T to S. SubsequenceDist(T, 
S) = min(Dist(S, S')), for S' ∈  ST

|S|. 

Intuitively, this distance is simply the distance between S and its 
best matching location somewhere in T, as shown in Figure 5.  

 
Figure 5: Illustration of best matching location in time series T 

for subsequence S 

As we shall explain in Section 3, our algorithm needs some metric 

to evaluate how well it can divide the entire combined dataset into 

two original classes. Here, we use concepts very similar to the 

information gain used in the traditional decision tree [2]. The 
reader may recall the original definition of entropy which we 

review here: 

Definition 6: Entropy. A time series dataset D consists of two 
classes, A and B. Given that the proportion of objects in class A 
is p(A) and the proportion of objects in class B is p(B), the 
entropy of D is:     I(D) = -p(A)log(p(A)) -p(B)log(p(B)). 

Each splitting strategy divides the whole dataset D into two 

subsets, D1 and D2. Therefore, the information remaining in the 

entire dataset after splitting is defined by the weighted average 

entropy of each subset. If the fraction of objects in D1 is f(D1) and 

the fraction of objects in D2 is f(D2), the total entropy of D after 

splitting is Î(D) = f(D1)I(D1) + f(D2)I(D2). This allows us to define 

the information gain for any splitting strategy:  

Definition 7: Information Gain. Given a certain split strategy 
sp which divides D into two subsets D1 and D2, the entropy 

before and after splitting is I(D) and Î(D). So the information 
gain for this splitting rule is   

Gain(sp) = I(D) - Î(D),    

Gain(sp) = I(D) - f(D1)I(D1) + f(D2)I(D2). 

As hinted at in the introduction, we use the distance to a shapelet 
as the splitting rule. The shapelet is a subsequence of a time series 

such that most of the time series objects in one class of the dataset 

are close to the shapelet under SubsequenceDist, while most of 
the time series objects from the other class are far away from it.  

To find the best shapelet, we may have to test many shapelet 

candidates. In the brute force algorithm discussed in Section 3.1, 

given a candidate shapelet, we calculate the distance between the 

candidate and every time series object in the dataset. We sort the 

objects according to the distances and find an optimal split point 

between two neighboring distances. 

Definition 8: Optimal Split Point (OSP). A time series dataset 
D consists of two classes, A and B. For a shapelet candidate S, 
we choose some distance threshold dth and split D into D1 and 

D2, such that for every time series object T1,i in D1, 

SubsequenceDist(T1,i, S) < dth and for every time series object 
T2,i in D2, SubsequenceDist(T2,i, S) ≥ dth. An Optimal Split 
Point is a distance threshold that 

Gain(S, dOSP(D, S)) ≥ Gain(S, d'th) 

for any other distance threshold d'th. 

So using the shapelet, the splitting strategy contains two factors: 

the shapelet and the corresponding optimal split point. As a 

concrete example, in Figure 4 the shapelet is shown in red in the 

shapelet dictionary, and the optimal split point is 5.1. 

We are finally in the position to formally define the shapelet. 

Definition 9: Shapelet. Given a time series dataset D which 

consists of two classes, A and B, shapelet(D) is a subsequence 
that, with its corresponding optimal split point,  

Gain(shapelet(D), dOSP(D,  shapelet(D))) ≥ Gain(S, dOSP(D, S)) 

for any other subsequence S. 

Since the shapelet is simply any time series of some length less 
than or equal to the length of the shortest time series in our 

dataset, there are an infinite amount of possible shapes it could 

have. For simplicity, we assume the shapelet to be a subsequence 

of a time series object in the dataset. It is reasonable to make this 

assumption since the time series objects in one class presumably 

contain some similar subsequences, and these subsequences are 

good candidates for the shapelet.  

Nevertheless, there are still a very large number of possible 

shapelet candidates. Suppose the dataset D contains k time series 
objects. We specify the minimum and maximum length of the 

shapelet candidates that can be generated from this dataset as 

MINLEN and MAXLEN, respectively. Obviously MAXLEN ≤ 
min(mi), mi is the length of the time series Ti from the dataset, 1 ≤ 
i ≤ k. Considering a certain fixed length l, the number of shapelet 
candidates generated from the dataset is: 
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If the shapelet can be any length smaller than that of the shortest 

time series object in the dataset, the number of shapelet candidates 

is linear in k, and quadratic in m , the average length of time 

series objects. For example, the well-known Trace dataset [11] 

has 200 instances, each of length 275. If we set MINLEN=3, 
MAXLEN=275, there will be 7,480,200 shapelet candidates. For 
each of these candidates, we need to find its nearest neighbor 

within the k time series objects. Using the brute force search, it 
will take approximately three days to accomplish this. However, 

as we will show in Section 3, we can achieve an identical result in 

a tiny fraction of this time with a novel pruning strategy. 

3. FINDING THE SHAPELET 
We first show the brute force algorithm for finding shapelets, 

followed by two simple but highly effective speedup methods.  

3.1 Brute-Force Algorithm 
The most straightforward way for finding the shapelet is using the 

brute force method. The algorithm is described in Table 2. 

Table 2: Brute force algorithm for finding shapelet 

FindingShapeletBF (dataset D, MAXLEN, MINLEN) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

candidates � GenerateCandidates(D, MAXLEN, MINLEN) 
bsf_gain � 0 
For each S in candidates 
      gain � CheckCandidate(D, S) 
      If gain > bsf_gain 
            bsf_gain � gain 
            bsf_shapelet � S 
      EndIf 
EndFor 
Return bsf_shapelet 

Given a combined dataset D, in which each time series object is 

labeled either class A or class B, along with the user-defined 
maximum and minimum lengths of the shapelet, line 1 generates 

all of the subsequences of all possible lengths, and stores them in 

the unordered list candidates. After initializing the best 

information gain bsf_gain to be zero (line 2), the algorithm checks 
how well each candidate in candidates can separate objects in 
class A and class B (lines 3 to 7). For each shapelet candidate, the 
algorithm calls the function CheckCandidate() to obtain the 

information gain achieved if using that candidate to separate the 

data (line 4). As illustrated in Figure 6, we can visualize this as 

placing class-annotated points on the real number line, 

representing the distance of each time series to the candidate. 

Intuitively, we hope to find that this mapping produces two well-

separated “pure” groups. In this regard the example in Figure 6 is 

very good, but clearly not perfect.  

 
Figure 6: The CheckCandidate() function at the heart of the 

brute force search algorithm can be regarded as testing to see 

how mapping all of the time series objects on the number line 

based on their SubsequenceDist(T, S) separates the two classes 

If the information gain is higher than the bsf_gain, the algorithm 
updates the bsf_gain and the corresponding best shapelet 
candidate bsf_shapelet (lines 5 to 7). Finally, the algorithm 
returns the candidate with the highest information gain in line 10. 

The two subroutines GenerateCandidates() and CheckCandidate() 

called in the algorithm are outlined in Table 3 and Table 4, 

respectively. In Table 3, the algorithm GenerateCandidates() 

begins by initializing the shapelet candidate pool to be an empty 

set and the shapelet length l to be MAXLEN (lines 1 and 2). 

Table 3: Generate all the candidates from time series dataset 

GenerateCandidates (dataset D, MAXLEN, MINLEN) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

pool � Ø 
l � MAXLEN 
While l ≥ MINLEN 
      For T in D 
            pool � pool ∪ ST

l 
      EndFor 
      l � l - 1 
EndWhile 
Return pool 

Thereafter, for each possible length l, the algorithm slides a 
window of size l across all of the time series objects in the dataset 
D, extracts all of the possible candidates and adds them to the 

pool (line 5). The algorithm finally returns the pool as the entire 
set of shapelet candidates that we are going to check (line 9). In 

Table 4 we show how the algorithm evaluates the utility of each 

candidate by using the information gain. 

Table 4: Checking the utility of a single candidate 

CheckCandidate (dataset D, shapelet candidate S) 

1 

2 

3 

4 

5 

6 

objects_histogram � Ø 

For each T in D 

      dist � SubsequenceDist(T, S) 
      insert T into objects_histogram by the key dist 
EndFor 

Return CalculateInformationGain(objects_histogram) 

First, the algorithm inserts all of the time series objects into the 

histogram objects_histogram according to the distance from the 
time series object to the candidate in lines 1 to 4. After that, the 

algorithm returns the utility of that candidate by calling 

CalculateInformationGain() (line 6). 

Table 5: Information gain of distance histogram optimal split  

CalculateInformationGain (distance histogram obj_hist) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

split_dist � OptimalSplitPoint(obj_hist) 
D1 � Ø, D2 � Ø 
For d in obj_hist 
      If d.dist < split_dist 
            D1 � D1 ∪ d.objects 
      Else 
            D2 � D2 ∪ d.objects 
      EndIf 
EndFor 
Return I(D) - Î(D) 

The CalculateInformationGain() subroutine, as shown in Table 5, 

takes an object histogram as the input, finds an optimal split point 

split_dist (line 1) and divides the time series objects into two 
subsets by comparing the distance to the candidate with split_dist 
(lines 4 to 7). Finally, it calculates the information gain (cf. 

definitions 6, 7) of the partition and returns the value (line 10).  

After building the distance histogram for all of the time series 

objects to a certain candidate, the algorithm will find a split point 

that divides the time series objects into two subsets (denoted by 

the dashed line in Figure 6). As noted in definition 8, an optimal 

split point is a distance threshold. Comparing the distance from 

each time series object in the dataset to the shapelet with the 

threshold, we can divide the dataset into two subsets, which 

achieves the highest information gain among all of the possible 

partitions. Any point on the positive real number line could be a 

split point, so there are infinite possibilities from which to choose. 

To make the search space smaller, we check only the mean values 

of each pair of adjacent points in the histogram as a possible split 

point. This reduction still finds all of the possible information 

gain values since the information gain cannot change in the region 

0 
Split point 



between two adjacent points. Furthermore, in this way, we 
maximize the margin between two subsets. 

The naïve brute force algorithm clearly finds the optimal shapelet. 

It appears that it is extremely space inefficient, requiring the 

storage of all of the shapelet candidates. However, we can 

mitigate this with some internal bookkeeping that generates and 

then discards the candidates one at a time. Nevertheless, the 

algorithm suffers from high time complexity. Recall that the 

number of the time series objects in the dataset is k and the 
average length of each time series is m . As we discussed in 

Section 2.1, the size of the candidate set is )(
2kmO . Checking the 

utility of one candidate takes )( kmO . Hence, the overall time 

complexity of the algorithm is )(
23kmO , which makes the real-

world problems intractable.  

3.2 Subsequence Distance Early Abandon 
In the brute force method, the distance from the time series T to 
the subsequence S is obtained by calculating the Euclidean 
distance of every subsequence of length |S| in T and S and 
choosing the minimum. This takes O(|T|) distance calculations 
between subsequences. However, all we need to know is the 

minimum distance rather than all of the distances. Therefore, 
instead of calculating the exact distance between every 

subsequence and the candidate, we can stop distance calculations 

once the partial distance exceeds the minimum distance known so 

far. This trick is known as early abandon [8], which is very 
simple yet has been shown to be extremely effective for similar 

types of problems [8].  

 
Figure 7:  (left) Illustration of complete Euclidean distance. 

(right) Illustration of Euclidean distance early abandon  

While it is a simple idea, for clarity we illustrate the idea in Figure 

7 and provide the pseudo code in Table 6.  

Table 6: Early abandon the non-minimum distance 

SubsequenceDistanceEarlyAbandon(T, S) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

min_dist � ∞ 
stop � False 
For Si in ST

|S| 

      sum_dist � 0 
      For k � 1 to |S| 
            sum_dist � sum_dist + (Si(k) – S(k))

2 
            If sum_dist ≥ min_dist 
                  stop ���� True 
                  Break 
            EndIf 
      EndFor 
      If not stop 
            min_dist � sum_dist 
      EndIf 
EndFor 
Return min_dist 

In line 1, we initialize the minimum distance min_dist from the 
time series T to the subsequence S to be infinity. Thereafter, for 
each subsequence Si from T of length |S|, we accumulate the 
distance sum_dist between Si and S, one data point at a time (line 
6). Once sum_dist is larger than or equal to the minimum distance 
known so far, we abandon the distance calculation between Si and 
S (lines 7 to 9). If the distance calculation between Si and S 

finishes, we know that the distance is smaller than the minimum 

distance known so far. Thus, we update the minimum distance 

min_dist in line 13. The algorithm returns the true distance from 
the time series T to the subsequence S in line 16. Although the 
early abandon search is still O(|T|), as we will demonstrate later, 
this simple trick reduces the time required by a large, constant 

factor.  

3.3 Admissible Entropy Pruning 
Our definition of the shapelet requires some measure of how well 

the distances to a given time series subsequence can split the data 

into two “purer” subsets. The reader will recall that we used the 

information gain (or entropy) as that measure. However, there are 

other commonly used measures for distribution evaluation, such 

as the Wilcoxon signed-rank test [13]. We adopted the entropy 

evaluation for two reasons. First, it is easily generalized to the 

multi-class problem. Second, as we will now show, we can use a 

novel idea called early entropy pruning to avoid a large fraction 
of distance calculations required when finding the shapelet.  

Obtaining the distance between a candidate and its nearest 

matching subsequence of each of the objects in the dataset is the 

most expensive calculation in the brute force algorithm, whereas 

the information gain calculation takes an inconsequential amount 

of time. Based on this observation, instead of waiting until we 

have all of the distances from each of the time series objects to the 

candidate, we can calculate an upper bound of the information 
gain based on the currently observed distances. If at any point 

during the search the upper bound cannot beat the best-so-far 

information gain, we stop the distance calculations and prune that 

particular candidate from consideration, secure in the knowledge 

that it cannot be a better candidate than the current best so far.  

In order to help the reader understand the idea of pruning with an 

upper bound of the information gain, we consider a simple 

example. Suppose as shown in Figure 8, ten time series objects 

are arranged in a one-dimensional representation by measuring 

their distance to the best-so-far candidate. This happens to be a 

good case, with five of the six objects from class A (represented 
by circles) closer to the candidate than any of the four objects 

from class B (represented by squares). In addition, of the five 
objects to the right of the split point, only one object from class A 
is mixed up with the class B. The optimal split point is 
represented by a vertical dashed line, and the best-so-far 

information gain is:             

[-(6/10)log(6/10)-(4/10)log(4/10)] - [(5/10)[-(5/5)log(5/5)]+(5/10)[-(4/5)log(4/5)-(1/5)log(1/5)]]=0.4228 

 

Figure 8: Distance arrangement of the time series objects in one-

dimensional representation of best-so-far information gain. The 

positions of the objects represent their distances to the candidate  

We now consider another candidate. The distances of the first five 

time series objects to the candidate have been calculated, and their 

corresponding positions in a one-dimensional representation are 

shown in Figure 9. 

 

Figure 9: The arrangement of first five distances from the time 

series objects to the candidate  

We can ask the following question: of the 30,240 distinct ways 

the remaining five distances could be added to this line, could any 

of them results in an information gain that is better than the best 
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so far? In fact, we can answer this question in constant time. The 

idea is to imagine the most optimistic scenarios and test them. It is 

clear that there are only two optimistic possibilities: either all of 

the remaining class A objects map to the far right and all of the 
class B objects map to the far left, or vice versa. Figure 10 shows 
the former scenario applied to the example shown in Figure 9.  

 

Figure 10: One optimistic prediction of distance distribution 

based on distances that have already been calculated in Figure 9. 

The dashed objects are in the optimistically assumed placements    

The information gain of the better of the two optimistic 

predictions is:  
[-(6/10)log(6/10)-(4/10)log(4/10)] - [(4/10)[-(4/4)log(4/4)]+(6/10)[-(4/6)log(4/6)-(2/6)log(2/6)]]=0.2911 

which is lower than the best-so-far information gain. Therefore, at 
this point, we can stop the distance calculation for the remaining 

objects and prune this candidate from consideration forever. In 

this case, we saved 50% of the distance calculations. But in real-

life situations, early entropy pruning is generally much more 

efficient than we have shown in this brief example. We will 

empirically evaluate the time we save in Section 5.1.   

This intuitive idea is formalized in the algorithm outlined in Table 

7. The algorithm takes as the inputs the best-so-far information 

gain, the calculated distances from objects to the candidate 

organized in the histogram (i.e the number line for Figures 8, 9 

and 10) and the remaining time series objects in class A and class 
B, and returns TRUE if we can prune the candidate as the answer. 
The algorithm begins by finding the two ends of the histogram 

(discussed in Section 3.1). For simplicity, we make the distance 

values at two ends as 0 and maximum distance +1 (in lines 1 and 

2). To build the optimistic histogram of the whole dataset based 

on the existing one (lines 3 and 8), we assign the remaining 

objects of one class to one end and those of the other class to the 

other end (lines 4 and 9). If in either case, the information gain of 

the optimistic histogram is higher than the best-so-far information 

gain (lines 5 and 10), it is still possible that the actual information 

gain of the candidate can beat the best so far. Thus, we cannot 

prune the candidate and we should continue to test (lines 6 and 

11). Otherwise, if the upper bound of the actual information gain 

is lower than the best so far, we save all of the remaining distance 

calculations with this candidate (line 13).    

Table 7: Information gain upper bound pruning 

EntropyEarlyPrune (bsf_gain, dist_hist, cA, cB) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

minend � 0 
maxend � largest distance value in dist_hist + 1 
pred_dist_hist � dist_hist 
Add to the pred_dist_hist, cA at minend and cB at maxend 
If CalculateInformationGain (pred_dist_hist) > bsf_gain 
      Return FALSE 
EndIf 
pred_dist_hist � dist_hist 
Add to the pred_dist_hist, cA at maxend and cB at minend 
If CalculateInformationGain (pred_dist_hist) > bsf_gain 
      Return FALSE 
EndIf 
Return TRUE 

The utility of this pruning method depends on the data. If there is 

any class-correlated structure in the data, we will typically find a 

good candidate that gives a high information gain early in our 

search, and thereafter the vast majority of candidates will be 

pruned quickly.  

There is one simple trick we can do to get the maximum pruning 

benefit. Suppose we tested all of the objects from class A first, 
then all of the objects from class B. In this case, the upper bound 
of the information gain must always be maximum until at least 

after the point at which we have seen the first object from class B. 
We therefore use a round-robin algorithm to pick the next object 

to be tested. That is to say, the ordering of objects we use is a1, b1, 
a2, b3,…, an, bn. This ordering lets the algorithm know very early 
in the search if a candidate cannot beat the best so far. 

It is often the case that different candidates will have the same 

best information gain. This is particularly true for small datasets. 

We propose several options to break this tie depending on 

applications. We can break such ties by favoring the longest 

candidate, the shortest candidate or the one that achieves the 

largest margin between the two classes. We omit a more detailed 

discussion of this minor issue for brevity.  

4. SHAPELETS FOR CLASSIFICATION 
While we believe that shapelets can have implications for many 

time series data mining problems, including visualization, 

anomaly detection and rule discovery, for brevity we will focus 

just on the classification problem in this work. 

Classifying with a shapelet and its corresponding split point 

produces a binary decision as to whether a time series belongs to a 

certain class or not. Obviously, this is not enough to deal with a 

multi-class situation. Even with two-class problems, a linear 

classifier is sometimes inadequate. In order to make the shapelet 

classifier universal, we frame it as a decision tree [2]. Given the 

discussion of the information gain above, this is a natural fit.  

At each step of the decision tree induction, we determine the 

shapelet and the corresponding split point over the training subset 

considered in that step. (A similar idea is considered in [5].)  

After the learning procedure finishes, we can assess the 

performance of the shapelet decision tree classifier by calculating 

the accuracy on the testing dataset. The way we predict the class 

label of each testing time series object is very similar to the way 

this is done with a traditional decision tree. For concreteness the 

algorithm is described in Table 8. 

Table 8: Calculating the accuracy of the shapelet classifier 

CalculateAccuracy (shapelet decision tree classifier C, dataset Dt) 

1 
2 
3 
4 
5 
6 
7 

For each T in Dt 
      predict_class_label � Predict(C, T) 
      If predict_class_label is the same as actual class label 
            correct � correct + 1 
      EndIf 
EndFor 
Return correct / | Dt | 

The technique to predict the class label of each testing object is 

described in Table 9. For each node of the decision tree, we have 

the information of a single shapelet classifier, the left subtree and 

the right subtree. For the leaf node, there is additional information 

of a predicted class label. Starting from the root of a shapelet 

decision tree classifier, we calculate the distance from the testing 

object T to the shapelet in that node. If the distance is smaller than 
the split point, we recursively use the left subtree (lines 6 and 7) 

and otherwise use the right subtree (lines 8 and 9). This procedure 

continues until we reach the leaf node and return the predicted 

class label (lines 1 and 2). 

 

0 



Table 9: Predicting the class label of a testing object  

Predict (shapelet decision tree classifier C, testing time series T) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

If C is the leaf node 
      Return label of C 
Else 
      S � shapelet on the root node of C 
      split_point � split point on the root of C 
      If SubsequenceDistanceEarlyAbandon (T, S) < split_point 
            Predict (left substree of C, T) 
      Else 
            Predict (right substree of C, T) 
      EndIf 
EndIf 

 

5. EXPERIMENTAL EVALUATION 
We begin by discussing our experimental philosophy. We have 

designed and conducted all experiments such that they are easily 

reproducible. With this in mind, we have built a webpage [15] 

which contains all of the datasets and code used in this work, 

together with spreadsheets which contain the raw numbers 

displayed in all of the figures, and larger annotated figures 

showing the decision trees, etc. In addition, this webpage contains 

many additional experiments which we could not fit into this 

work; however, we note that this paper is completely self-

contained. 

5.1 Performance Comparison 
We test the scalability of our shapelet finding algorithm on the 

Synthetic Lightning EMP Classification [6], which, with a 

2,000/18,000 train/test split, is the largest class-labeled time series 

dataset we are aware of. It also has the highest dimensionality, 

with each time series object being 2,000 data points long. Using 

four different search algorithms, we started by finding the shapelet 

in a subset of just ten time series, and then iteratively doubled the 

size of the data subset until the time for brute force made the 

experiments untenable. Figure 11 shows the results.  

Figure 11: The time required to find the best shapelet (left) and 

the hold-out accuracy (right), for increasing large databases sizes 

The results show that brute force search quickly becomes 

untenable, requiring about five days for just 160 objects. Early 

abandoning helps reduce this by a factor of two, and entropy 

based pruning helps reduce this by over two orders of magnitude. 

Both ideas combined almost linearly to produce three orders of 

magnitude speedup.  

For each size data subset we considered, we also built a decision 

tree (which can be seen at [15]) and tested the accuracy on the 

18,000 holdout data. When only 10 or 20 objects (out of the 

original 2,000) are examined, the decision tree is slightly worse 

than the best known result on this dataset (the one-nearest 

neighbor Euclidean distance), but after examining just 2% of the 

training data, it is significantly more accurate.  

5.2 Projectile Points (Arrowheads) 
Projectile point (arrowhead) classification is an important topic in 

anthropology (see [15] where we have an extensive review of the 

literature). Projectile points can be divided into different classes 

based on the location they are found, the group that created them, 

and the date they were in use, etc. In Figure 12, we show some 

samples of the projectile points used in our experiments.  

 
Figure 12: Examples of the three classes of projectile points in 

our dataset. The testing dataset includes some broken points, and 

some drawings taken from anthropologist’s field notes 

We convert the shapes of the projectile points to a time series 

using the angle-based method [8]. We then randomly created a 

36/175 training/test split. The result is shown in Figure 13. 

 

Figure 13: (top) The dictionary of shapelets, together with the 

thresholds dth. (bottom) The decision tree for the 3-class projectile 

points problem   

As shown in Figure 13 and confirmed by physical anthropologists  

Dr. Sang-Hee Lee and Taryn Rampley of UCR, the Clovis 

projectile points can be distinguished from the others by an un-

notched hafting area near the bottom connected by a deep concave 

bottom end. After distinguishing the Clovis projectile points, the 

Avonlea points are differentiated from the mixed class by a small 

notched hafting area connected by a shallow concave bottom end. 

The shapelet decision tree classifier achieves an accuracy of 

80.0%, whereas the accuracy of rotation invariant one-nearest-
neighbor classifier is 68.0%. Beyond the advantage of greater 

accuracy, the shapelet decision tree classifier produces the 

classification result 3×103 times faster than the rotation invariant 
one-nearest-neighbor classifier and it is more robust in dealing 

with the pervasive broken projectile points in most collections. 

5.3 Mining Historical Documents 
In this section we consider the utility of shapelets for an ongoing 

project in mining and annotating historical documents. Coats of 

arms or heraldic shields were originally symbols used to identify 
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individuals or groups on the battlefield. Since the beginning of the 

Middle Ages, thousands of annotated catalogues of these shields 

have been created, and in recent years hundreds of them have 

been digitized [1][9].  Naturally, most efforts to automatically 

extract and annotate these volumes concentrate on the colors and 

patterns of the shields; however, there is also useful information 

contained in the shape. Consider for example Figure 14, which 

shows examples of different shapes commonly associated with 

various countries’ heraldic traditions.  

 
Figure 14: Examples of the three classes in our dataset. The 

shields were hand-drawn one to six centuries ago  

Note that in most of these documents, the shields were drawn 

freehand and thus have natural variability in shape, in addition to 

containing affine transformation artifacts introduced during the 

digital scanning.   

We convert the shapes of the shields to a time series using the 

angle-based method [8]. Because some shields may be augmented 

with ornamentation (i.e far left in Figure 14) or torn (i.e Figure 

16) and thus may have radically different perimeter lengths, we do 

not normalize the time series lengths.   

We randomly select 10 objects from each class as the training 

dataset, and leave the remaining 129 objects for testing. The 

resulting classifier is shown in Figure 15. 

 
Figure 15: (top) The dictionary of shapelets, together with the 

thresholds dth. (bottom) A decision tree for heraldic shields  

Note that we can glean some information about this dataset by 

“brushing” the shapelet back onto the shields as in Figure 15 top. 
For example, both the Spanish and the French shields have right 

angle edges at the top of the shield, so the shapelet algorithm does 

not choose that common feature to discriminate between the 
classes. Instead, the unique semi-circular bottom of the Spanish 

crest is used in node II to discriminate it from the French 

examples.   

For our shapelet decision tree classifier, we achieve 89.9% 

accuracy; while for the rotation invariant one-nearest-neighbor 
Euclidean distance classifier the accuracy is only 82.9%. Beyond 

the differences in accuracy, there are two additional advantages of 

shapelets. First, the time to classify is approximately 3×104 times 

faster than for the rotation invariant one-nearest-neighbor 
Euclidean distance, although we could close that difference 

somewhat if we indexed the training data with a shape indexing 

algorithm [8]. Second, as shown in Figure 16, many images from 

historical manuscripts are torn or degraded. Note that the decision 

tree shown in Figure 15 can still correctly classify the shield of 

Charles II, even though a large fraction of it is missing. 

 
Figure 16: The top section of a page of the 1840 text, A guide to 

the study of heraldry [10]. Note some shields are torn   

5.4 Understanding the Gun/NoGun Problem 
The Gun/NoGun motion capture time series dataset is perhaps the 
most studied time series classification problem in the literature 

[4][14]. We take the standard train/test split for this dataset and 

use it to learn the decision tree shown in Figure 17. 

 

Figure 17: (top) The dictionary of shapelets, with the thresholds 

dth. (bottom) The decision tree for the Gun/NoGun problem 

The holdout accuracy for the decision tree is 93.3%, beating the 

one-nearest-neighbor Euclidean distance classifier, whose 

accuracy is 91.3%, and unconstrained or constrained DTW 

[4][14], with accuracies of 90.7% and 91.3%, respectively. More 

significantly, the time to classify using the decision tree is about 

four times faster than the one-nearest-neighbor Euclidean distance 

classifier. This is significant, since surveillance is a domain where 

classification speed can matter. 

Moreover, by “brushing” the shapelet back onto the original 

video, we are able to gain some understanding of the differences 

between the two classes. In Figure 17, we can see that the NoGun 

class has a “dip” where the actor put her hand down by her side, 

and inertia carries her hand a little too far and she is forced to 

correct for it (a phenomenon known as “overshoot”). In contrast, 
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when the actor has the gun, she returns her hand to her side more 

carefully, feeling for the gun holster, and no dip is seen.  

5.5 Wheat Spectrography 
This dataset consists of 775 spectrographs of wheat samples 

grown in Canada between 1998 and 2005. The data is made up of 

several different types of wheat, including Soft White Spring, 
Canada Western Red Spring, Canada Western Red Winter, etc. 
However, the class label given for this problem is the year in 
which the wheat was grown. This makes the classification 

problem very difficult, as some of the similarities/dissimilarities 

between objects can be attributed to the year grown, but some can 

be attributed to the wheat type, which we do not know.  In Figure 

18 we plot one example from each class; as the reader can see, the 

differences between classes are very subtle. 

 
Figure 18 : One sample from each of the seven classes in the 

wheat problem. The objects are separated in the y-axis for visual 

clarity, as they all have approximately the same mean  

We created a 49/726 train/test split, ensuring that the training set 

has seven objects from each class, and then tested the 

classification accuracy of the one-nearest-neighbor Euclidean 

distance classifier, which we find to be 54.3% (Dynamic Time 

Warping does not outperform Euclidean distance here). We then 

created a decision tree for the data, using the algorithm introduced 

in Section 4. The output is shown in Figure 19. 

 

Figure 19: (top) The dictionary of shapelets, together with the 

thresholds dth. (bottom) The decision tree for the wheat 

spectrography problem 

The accuracy of the decision tree is 72.6%, which is significantly 

better than the 54.3% achieved by the nearest neighbor method.  

6. CONCLUSIONS AND FUTURE WORK 
We have introduced a new primitive for time series and shape 

mining, time series shapelets. We have shown with extensive 

experiments that we can find the shapelets efficiently, and that 

they can provide accurate, interpretable and fast classification 

decisions in a wide variety of domains. Ongoing and future work 

includes extensions to the multivariate case and detailed case 

studies in the domains of anthropology and MOCAP analyses.  
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