
The Asymmetric Approximate Anytime Join: A New Primitive with Applicationsto
Data Mining

Lexiang Ye Xiaoyue Wang Dragomir Yankov Eamonn Keogh
University of California, Riverside

{lexiangy, xwang, dyankov, eamonn}@cs.ucr.edu

Abstract

It has long been noted that many data mining algorithms can
be built on top of join algorithms. This has lead to a wealth
of recent work on efficiently supporting such joins with various
indexing techniques. However, there are many applications which
are characterized by two special conditions, firstly the two datasets
to be joined are of radically different sizes, a situation we call an
asymmetric join. Secondly, the two datasets are not, and possibly
can not be indexed for some reason. In such circumstances the
time complexity is proportional to the product of the number of
objects in each of the two datasets, an untenable proposition in
most cases. In this work we make two contributions to mitigate this
situation. We argue that for many applications, an exact solution
to the problem is not required, and we show that by framing the
problem as an anytime algorithm we can extract most of the benefit
of a join in a small fraction of the time taken by the full algorithm.
In situations where the exact answer is required, we show that we
can quickly index just the smaller dataset on the fly, and greatly
speed up the exact computation. We motivate and empirically
confirm the utility of our ideas with case studies on problems as
diverse as batch classification, anomaly detection and annotation of
historical manuscripts.

1 Introduction.

Many researchers have noted that many data mining algo-
rithms can be built on top of an approximate join algorithm.
This has lead to a wealth of recent work on efficiently sup-
porting such joins with various indexing techniques [3], [5],
[24], [27]. However, we argue that while the classic database
use of approximate joins for record linkage (entity reso-
lution, duplicate detection, record matching, reduplication,
merge/purge processing database hardening etc.) does re-
quire a full join, many data mining/information retrieval uses
of joins can achieve the same end result with an approxi-
mate join. Here approximate does not refer to the distance
measure or rule used to link two objects, but rather to the
fact that only a small subset of the Cartesian product of the
two datasets needs to be examined. While the result will
not be the same as that of an exhaustive join, it can often
be good enough for the task at hand. For example, when
performing a classic record linkage, if one dataset contains

“John Lennon, 9 October 1940”, and the other contains
“John W. Lennon, 09-Oct-40”, it is clear that these cor-
respond to the same person, and an algorithm that failed to
link them would be very undesirable. In contrast, for many
data mining applications of joins it is not really necessaryto
find the nearest neighbor, it can suffice to find anear-enough
neighbor. Examples of useful tasks that utilize the detection
of near-enoughneighbors as a subroutine include clustering
[6], classification [23], anomaly detection [22] and as we
show in Section 3.3, historical manuscript annotation. Given
this, we show that by framing the problem as ananytime al-
gorithm we can extract most of the benefit of the full join
algorithm in only a small fraction of the time that it requires.
Anytime algorithms are algorithms that trade execution time
for quality of results [9]. In particular, an anytime algorithm
always has a best-so-far answer available, and the quality of
the answer improves with execution time. The user may ex-
amine this answer at any time, and then choose to terminate
the algorithm, temporarily suspend the algorithm, or allow
the algorithm to run to completion. Furthermore, we show
that although we are explicitly assuming the data is not in-
dexed at query time, we can build an index on the fly for the
smaller dataset and greatly speed up the process.

The rest of the paper is organized as follows. The
next section offers more background and explicitly states our
assumptions.

1.1 Background and Assumptions.The Similarity Join
(SJ) combines two sets of complex objects such that the
result contains all pairs of similar objects [3]. It is essentially
the classic database join which has been relaxed to allow
linkage of two objects that satisfy a similarity criterion.The
relatedAll Nearest Neighbor(ANN) operation takes as input
two sets of multi-dimensional data points and computes for
each point in the first set the nearest neighbor in the second
set [5]. Note that this definition allows for points in the
second set to be unmatched. In this work we introduce the
Asymmetric Approximate Anytime Join(AAAJ) which also
allows objects in the second set to be unmatched, however, it
differs from the above in several important ways:

• We assume that the second set is many orders of mag-

nitude larger than the first set. In some cases the second
set may be considered effectively infinite1, for example,
this may be the set of all images on the internet or some
streaming data.

• The sheer size of the second set means that it cannot
be indexed, or can only be “weakly” indexed. For ex-
ample we cannot index the billions of high dimensional
images on the WWW, but we can use Google image
search to weakly order images onsize, date of creation
or most significantly (cf. Section 3.3)keywordssur-
rounding them.

• The vast majority of work in this area assumes the dis-
tance metric used is the Euclidean distance [3], [5],
[24], [27]. However, motivated by several real world
problems we need to be able to support more general
measures such asDynamic Time Warping(DTW), ro-
tation invariant Euclidean distance, or weighted combi-
nations of individual measures such as shape, color and
texture similarity.

• Given that the second set may be effectively infinite,
we may need to abandon any notion of finding an exact
answer; rather we hope to find a high quality answer. In
such circumstances we frame the problem as an anytime
algorithm.

Note that it is critical to the motivation of this work that
we assume that the second set isnot indexed, because there
are many excellent techniques for computing all manner of
variations of joins when the datais indexed [3], [5], [24],
[27]. In addition to the reasons noted above, additional
reasons why the data might not be indexed include the
following:

• The input query could be intermediate results of com-
plex database queries (as noted in [27]), or the incre-
mental results of a directed web crawl.

• The high dimensionality of the data we need to con-
sider. For example, the five datasets considered in
[5] have an average dimensionality of 4.8, the datasets
considered in [27] are all two dimensional and even
[24] which is optimized for “handling high-dimensional
data efficiently” considers at most 64 dimensions. In
contrast we need to consider datasets with dimensional-
ity in the thousands, and at least some of these datasets
are not amiable to dimensionality reduction.

At least some anecdotal evidence suggests that many real
world datasets are often not indexed. For example Protopa-
pas et al. [15] have billions of star light curves (time se-
ries measuring the intensity of a star) which they mine for

1We call the set of images on the WWW “effectively infinite” because it
is expanded at a rate faster that the download rate of any one machine.

Time

Q
u
al
it
y
 o
f

S
o
lu
ti
o
n

Current Solution

Setup Time

S

Interruption Time

Figure 1: An abstract illustration of an anytime algorithm.
Note that the quality of the solution keeps improving up to
time S, when the algorithm is interrupted by the user.

outliers, however the data is not indexed due to its high di-
mensionality and the relative cost and difficulty of building
an index for a dataset that may only be queried a few times
a year. Additional examples include NASA Ames, which
has archived flight telemetry for one million domestic com-
mercial flights. Dr. Srivastava, the leader of the Intelligent
Systems Division notes that linear scans on this dataset take
two weeks, but the size at dimensionality of the data makes
indexing untenable even with state of the art techniques [19].
Given the above, we feel that our assumption that the larger
of the datasets is not indexed is a reasonable assumption re-
flected by many real word scenarios.

The main contribution of this work is to show that joins
can be cast as anytime algorithms. As illustrated in Figure 1
anytime algorithms are algorithms that trade execution time
for quality of results [9]. In particular, after some small
amount ofsetup-timean anytime algorithm always has a
best-so-far answer available, and the quality of the answer
improves with execution time.

Zilberstein and Russell [28] give a number of desirable
properties of anytime algorithms:

• Interruptability : After some small amount of setup
time, the algorithm can be stopped at anytime and
provide an answer.

• Monotonicity : the quality of the result is a non-
decreasing function of the computation time.

• Measurable quality: the quality of an approximate
result can be determined.

• Diminishing returns : the improvement in solution
quality is largest at the early stages of computation, and
diminishes over time.

• Preemptability: the algorithm can be suspended and
resumed with minimal overhead.

As we shall see, we can frame an approximate asymmet-
ric join as any anytime algorithm to achieve all these goals.
Due to their applicability to real world problems, there has
been increasing interest in anytime algorithms. For example

Algorithm 2.1 BRUTEFORCEJOIN(A,B)

1: for i ← 1 to |A| do
2: mapping[i].dist← DIST(ai ,b1)
3: mapping[i].pointer← 1
4: for j ← 2 to |B| do
5: d ← DIST(ai ,b j)
6: if d < mapping[i].dist then
7: mapping[i].dist← d
8: mapping[i].pointer← j
9: return mapping

some recent works such as [21] and [23] show how to frame
nearest neighbor classification as an anytime algorithm and
that top-k queries can also be calculated in an anytime frame-
work, and [25] shows how Bayesian network structure can be
learned in an anytime setting.

2 The Asymmetric Approximate Anytime Join.

For concreteness of the exposition we start by formalizing
the notion of the All Nearest Neighbor query.

DEFINITION 2.1. Given two sets of objectsA andB, an All
Nearest Neighbor query, denoted asANN query(A,B), finds
for each objectai ∈ A an objectb j ∈ B such that for all other
objectsbk ∈ B, dist(b j ,ai) ≤ dist(bk,ai).

Note that in general ANN query(A,B) 6=
ANN query(B,A). We will record the mapping fromA
to B with a data structure calledmapping. We can discover
the index of the object inB that ai maps to by accessing
mapping[i].pointer, and we can discover the distance from
ai to this object withmapping[i].dist.

It is useful for evaluating anytime or approximate joins
to consider a global measure of how close all the objects
in A are to their (current) nearest neighbor. We call this
Q, the quality of the join and we measure it as:Q =

∑|A|
i=1mapping[i].dist.

Given this notation we can show the brute force nested
loop algorithm for the All Nearest Neighbor (ANN) algo-
rithm in Algorithm 2.1

Note that lines 2 to 3 are not part of the classic ANN
algorithm. They simply map everything inA to the first item
in B. However, once this step has been completed, we can
continuously measureQ as the algorithm progresses, a fact
that will be useful when we consider anytime versions of the
algorithm below.

In Algorithm 2.1 we haveA in the outer loop andB in the
inner loop, a situation we denote as BFAoB (Brute Force,
A overB). We could, however, reverse this situation to have
B in the outer loop andA in the inner loop. For a batch
algorithm this makes no difference to either the efficiency or
outcome of the algorithm. Yet, as we shall see, it can make
a big difference when we cast the algorithm in an anytime

framework.
Before considering our approach in the next section,

we will introduce one more idealized strawman that we
can compare to. Both flavors of the algorithms discussed
above take a single item from one of the two datasets to be
joined and scan it completely against the other dataset before
considering the next item. Recall, however, that the desirable
property ofdiminishing returnswould like us to attempt to
minimize Q as quickly as possible. For example, assume
that we must scanB in sequential order, but we can choose
which objects inA to scan acrossB, and furthermore we
can start and stop with different objects fromA at any point.
Suppose that at a particular point in the algorithm’s execution
we could either scana1 across five items inB to reduce its
error from 10.0 to 2.5, or we could scana2 across ten items in
B to reduce its error from 11.0 to 1.0. The former would give
us arate of error reduction of 1.5 = (10.0− 2.5)/5, while
the latter choice would give us arate of error reduction of
1 = (11.0− 1.0)/10. In this case, the former choice gives
us the faster rate of error reduction and we should choose it.
Imagine that we do this foreveryobject inA, at everystep
of the algorithm. This would give us the fastest possible rate
of error reduction for a join. Of course, we cannot actually
compute this on the fly, we have no way of knowing the best
choices without actually doing all the calculations. However,
we can compute the best choices offline and imagine that
such an algorithm exists. Fittingly, we call such an algorithm
magic, and can use it as an upper bound for the improvement
we can make with our algorithms.

2.1 Augmented Orchard’s Algorithm. While the state-
ment of the problem at hand explicitly prohibits us from in-
dexing the larger datasetB, nothing prevents us from index-
ing the smaller setA. If A is indexed, then we can simply
sequentially pull objectsb j from B and quickly locate those
objects inA that are nearer tob j than to their current best-so-
far.

While there is a plethora of choices for indexing dataset
A, there are several special considerations which constrain
and guide our choice. The overarching requirement isgener-
ality, we want to apply AAAJ to very diverse datasets, some
of which may be very high dimensional, and some of which,
for example strings under the edit distance, may not be ami-
able to spatial access methods. With these considerations in
mind we decided to use a slightly modified version of Or-
chard’s algorithm [14], which requires only that the distance
measure used be a metric. Orchard’s algorithm is not com-
monly used because its quadratic space complexity is simply
untenable for many applications. However, for most of the
practical applications we consider here this is not an issue.
For example, assume that we can record both the distance
between two objects and each of the values in the real valued
vectors with the same number of bits. Further we assume

d

2d ?

q

a
j

d1

d2

a

qbest_so_far distance

bound

d

2d ?

q

a
i

d1

d2
b
j

a
nn

a
i

qbest_so_far distance

bound

Figure 2: (Left) The triangular inequality is used in Orchard’s
Algorithm to prune the items inA that cannot possibly
to be the nearest neighbor of queryq. (Right) Similarly
the triangular inequality is used in Augmented Orchard’s
Algorithm to prune the items inA that are certain to have
a better best-so-far match than the current queryq.

have a feature vector length ofn per object. Given this, the
datasetA itself requiresO(|A|n) space, and Orchard index
requiresO(|A|2) space. Concretely, for the Butterfly exam-
ple in Section 3.3 the space overhead amounts to approxi-
mately 0.04%, and for the light curve example the overhead
is approximately 2.8%. Because Orchard’s algorithm is not
widely known we will briefly review it in the next section.
We refer the interested reader to [14] for a more detailed
treatment.

2.1.1 A Review of Orchard’s Algorithm. The basic idea
of Orchard’s algorithm is to quickly prune non-nearest
neighbors based on the triangular inequality. In the prepro-
cessing stage the distance between each two items in the
datasetA is calculated. As shown in Figure 2Left, given
a queryq, if the distance betweenq and an itemai in dataset
A is already known asd, then those items in datasetA whose
distance is larger than 2d to ai can be pruned. The distance
between these items andq is guaranteed to be larger thand
which directly follows the triangular inequality. Therefore,
none of them can become the nearest neighbor ofq.

Specifically, for every objectai ∈ A, Orchard’s algo-
rithm creates a listP[ai].pointer which contains pointers
to all other objects inA sorted by distance toai . I.e., the
list stores the index, denoted asP[ai].pointer[k]), of thekth
nearest neighbor toai within datasetA, and the distance
P[ai].dist[k] betweenai and this neighbor.

This simple array of lists is all that we require for fast
nearest neighbor search inA. The algorithm, as outlined in
Algorithm 2.2, begins by choosing some random element in
A as the tentative nearest neighborann.loc, and calculating the
distancenn.dist between the queryq and that object (lines 1
and 2). Thereafter, the algorithm inspects the objects in list

Algorithm 2.2 ORCHARDS(A,q)

1: nn.loc← random integer between 1 and|A|
2: nn.dist← DIST(ann.loc,q)
3: index← 1
4: while P[ann.loc].dist[index] < 2× nn.dist and index<

|A| do
5: node← P[ann.loc].pointer[index]
6: d ← DIST(anode,q)
7: if d < nn.dist then
8: nn.dist← d
9: nn.loc← node

10: index← 1
11: else
12: index← index+1
13: return nn

P[ann.loc].pointer in ascending order until one of three things
happen. The end of the list is reached, or the next object on
the list has value that is more than twice the currentnn.dist
(line 4). In either circumstance the algorithm terminates.
The third possibility is that the item in the list is closer to
the query than the current tentative nearest neighbor (line7).
In that case the algorithm simply jumps to the head of the
list associated with this new nearest neighbor to the query
and continues from there (lines 8 to 10).

We can see that a great advantage of this algorithm is
its simplicity; it can be implemented in a few dozen lines of
code. Another important advantage for our purposes is its
generality. The function DIST can be any distance metric
function. In contrast, most algorithms use to index data in
order to speed up joins explicitly exploit properties that may
not exist in all datasets. For example they may require the
data to be real valued [5],[27] or may be unable to handle
mixed data types.

Note that this algorithm finds the one nearest neighbor
to a queryq. However, recall that we have a data structure
calledmappingwhich records the nearest item to each object
in A that we have seen thus far. So we need to adapt the
classic Orchard’s algorithm to update not only the nearest
neighbor toq in A (if appropriate) but all objectsai such
that DIST(ai ,q) < mapping[i].dist. We consider a method to
adapt the algorithm in the next section.

2.1.2 Augmented Orchard’s Algorithm. The results
from the previous section together with the mapping struc-
ture built for datasetA can be utilized into an extended
scheme for approximate joins, which exhibits the properties
of an anytime join algorithm too. We term this schemeAug-
mented Orchard’s Algorithm(see Algorithm 2.3).

The algorithm starts with an initialization step (lines 1 to
4) during which the table of sorted neighborhood listsP[ai]
is computed. At this point all elements inA are also mapped

to the first element in the larger datasetB. To provide for
the interruptability property of anytime algorithms, we adopt
a B-over-A mapping between the elements of the two sets.
The approximate join proceeds as follows: DatasetB is
sequentially scanned from the second element on, improving
the best-so-far match for some of the elements in dataset
A. For this purpose, we first invoke the classic Orchard’s
algorithm which finds the nearest neighborann.loc to the
current queryb j and also computes the distance between
them (i.e.nn.dist, line 6). If the query improves on the best-
so-far match ofann.loc, then we update the element’s nearest
neighbor as well as its distance (lines 8 and 9).

In addition to improving the best match forann.loc,
the query exampleb j may also turn out to be the best
neighbor observed up to this point for some of the other
elements inA. However, we do not need to check the
distances between allai and the queryb j . Instead, we
can use the pre-computed distance listP[ann.loc] and once
again apply the triangle inequality to prune many of the
distance computations. Concretely, we need to compute
the actual distance betweenb j and anyai ∈ A only if the
following inequality holds: mapping[i].dist > |nn.dist−
DIST(ann.loc,ai)|. Figure 2Right gives the intuition behind
this pruning criterion. The “distance bound” represents the
right term of the above inequality. If it is larger or equal
to the bound obtained with the best-so-far query toai , then
the new queryb j cannot improve the current best match
of ai . Note that all terms in the inequality are already
computed as demonstrated on line 12 of the algorithm, so no
distance computations are performed for elements that fail
the triangle inequality. Finally, it is important to point out
that a näıve implementation of both Orchard’s algorithm and
our extension may attempt to compute the distance between
the queryb j and the same elementai more than once, so we
keep a temporary structure that stores all elements computed
thus far and the corresponding distances for each query
b j . The memory overhead for bookkeeping the structure is
negligible and at the same time allows us to avoid multiple
redundant computations.

We conclude this section by sketching the intuition be-
hind the pruning performance of theAugmented Orchard’s
Algorithm. Choosing a vantage (center) point is a common
technique in many algorithms that utilize the triangular in-
equality, such as [4], [18], [26], etc. In all of these works
one or more center points are selected and the distance be-
tween them and all other elements in the dataset are com-
puted. These distances are subsequently used together with
the triangular inequality to efficiently find the nearest neigh-
bors for incoming queries. As to what points constitute good
centers, i.e. centers with good pruning abilities, dependson
several factors [18], e.g. dataset distribution, positionof the
centers among the other points, as well as the position of the
query in the given data space. The two common strategies in

Algorithm 2.3 AUGMENTORCHARDS(A,B)

1: for i ← 1 to |A| do
2: Build P[ai]
3: mapping[i].dist← DIST(ai ,b1)
4: mapping[i].pointer← 1
5: for j ← 2 to |B| do
6: nn← Orchards(A,b j)
7: if nn.dist < mapping[nn.loc].dist then
8: mapping[nn.loc].dist← nn.dist
9: mapping[nn.loc].pointer← j

10: for index← 1 to |A|−1 do
11: node← P[ann.loc].pointer[index]
12: bound← |nn.dist−P[ann.loc].dist[index]|
13: if mapping[node].dist > bound then
14: d ← DIST(anode,b j)
15: if d < mapping[node].dist then
16: mapping[node].dist← d
17: mapping[node].pointer← j
18: return mapping

selecting the centers are random selection [4], [26] or selec-
tion based on some heuristic, e.g. maximal remoteness from
any possible cluster center [18]. In the Augmented Orchard’s
Algorithm we follow a different approach. Namely, for ev-
ery queryb j we select a different center pointann.loc. This
is possible as in the initialization step we have computed all
pairwise distances among the elements inA. The algorithm
also heavily relies on the fact that theP[ai] lists are sorted in
ascending order of pairwise distance. The assumption is that
b j may impact the best-so-far match only for elements that
are close to it, i.e. its nearest neighborann.loc and the closest
elements to that neighbor which are the first elements in the
P[ann.loc] list. All remaining elements in this list are even-
tually pruned by the triangular inequality on line 13 of the
algorithm.

3 Experiments and Case Studies.

In this section we consider examples of applications
of AAAJ for several diverse domains and applica-
tions. Note that in every case the experiments are
completely reproducible, the datasets may be found at
http://www.cs.ucr.edu/∼lexiangy/AAAJ/Dataset.html.

3.1 A Sanity Check on Random Walk Data.We begin
with a simple sanity check on synthetic data to normalize
our expectations. We constructed a dataset of one thousand
random walk time series to act as databaseA, and one million
random walk times to act as databaseB. All time series are
of length 128.

Figure 3 shows the rate at which the measureQ de-
creases as a function of the number of Euclidean distance

Log(Q/Max(Q))
BF_AoB
BF_BoA
Magic
AAAJ

Number of calls to Euclidean distance function

0 1 2 3 4 5 6 7 8 9 10

x 108

-14

-12

-10

0

AAAJ

Terminates

-2

-6

-4

-8

Figure 3: The log ofQ as a function of the number of calls
to the Euclidean distance.

comparisons made. Note that this figuredoesinclude the
setup time for AAAJ to build the index, but this time is so
small relative to the overall time that it cannot be detectedin
the figure (It can just be seen in Figure 5, where|B| is much
smaller relative to|A|).

We can see that not only does AAAJ terminate 3 times
faster than the other algorithms, but the rate at which it min-
imizes the error is much greater, especially in the beginning.
This of course is the desirablediminishing returnsproperty
for anytime algorithms. Note in particular that the rate of er-
ror reduction for AAAJ is very close tomagic, which is the
optimal algorithm possible, given the assumptions stated for
it.

3.2 Anytime Classification of Batched Data.There has
been recent interest in framing the classification problem as
an anytime algorithm [21], [25]. The intuition is that in many
cases we must classify data without knowing in advance how
much time we have available. The AAAJ algorithm allows
us to consider an interesting variation of the problem which
to our knowledge has not been addressed before. Suppose
that instead of been given one instance to classify under
unknown computational resources we are given a collection
of unlabeled instances. In this circumstance we can trivially
use AAAJ as an anytime classifier.

Suppose we are givenk objects to classify, and we intend
to classify them using the One Nearest Neighbor (1NN)
algorithm with training setB. However, it is possible that we
may be interrupted at any time (Paper [21] discusses several
real world application domains where this may happen). In
such a scenario it would make little sense to use the classic
brute force algorithm in Algorithm 2.1 to classify the data.
This algorithm might perfectly classify the first 20% of the
k objects before interruption, but then its overall accuracy,
including the default rate on the 80% of the data it could not
get to in time, would be very poor. Such a situation can
arise in several circumstances, for example robot location
algorithms are often based on classifying multiple “clues”
about location and combining them into a single best guess,
and robot navigation algorithms are typically cast as anytime

Table 1: An abridged trace of the current classification of the
30 characters of the stri ng “SGT PEPPERS LONELY HEARTS
CLUB BAND” vs. the number of distance calculations made

TTT TTTTTTT TTTTTT TTTTTT TTTT TTTT 30
TTT TTITTTT TTTTTT TTTTTT TTTT TTTT 436
TTT TTIITTT TTTTTT TTTTTT TTTT TTTT 437
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

...
SBT PSPPERS LONEOY REARTF CLUB BANG 21166
SBT PSPPERS LONEGY REARTF CLUB BANG *22350
SBT PSPPERS LONEGY REARTF CLUN BANG 23396
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

...
SGT PEPPERS LONELY HEARTZ CLUB HAND 182405
SGT PEPPERS LONELY HEARTS CLUB HAND 305794

algorithms [9].
TheLetter dataset has 26 class labels corresponding to

the letters fromA to Z. The task here is to recognize letters
given 16 features extracted from image data. There are a total
of 20,000 objects in the dataset. We decided on a 30-letter
familiar phrase, and randomly extracted 30 objects from the
training set to spell that phrase. We ran AAAJ with the 30
letters corresponding toA, and the 19,970 letters remaining
in the training set corresponding toB. Table 1 shows a trace
of the classification results as the algorithm progresses.

After the first 30 distance comparisons (corresponding
to lines 1 to 4 of Algorithm 2.3), every letter in our phrase
points to the first letter of datasetB, which happens to be
“T”. Thereafter, whenever an item inA is joined with a new
object inB, its class label is updated. When the algorithm
terminates after 305,794 distance calculations, the target
phrase is obvious in spite of one misspelling (“HAND” instead
of “BAND”). Note, however, that after the AAAJ algorithm
has performed just 7.3% of its calculations, its string “sbt
psppers lonegy reartf club bang” is close enough to
the correct phrase to be autocorrected by Google, or to be
recognized by 9 out of 10 (western educated) professors at
UCR. Figure 4 gives some intuition as to why we can cor-
rectly identify the phrase after performing only a small frac-
tion of the calculations. We can see that AAAJ behaves like
an ideal anytime algorithms, deriving the greatest changesin
the early part of the algorithms run.

In this experiment the improvement of AAAJ over
BF BoA is clear but not very large. AAAJ terminates
with 433,201 calculations (including the setup time for the
Orchard’s algorithms), but the other algorithms only take
598,801. However, this is because the size ofA was a mere
30, as we shall see in the next experiment the improvement
becomes more significant for larger datasets.

In Figure 5 we see the results of a similar experiment,
this time the data is star light curves (discussed in more detail

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 200,000 400,000 600,000

Q/Max(Q)

0 200,000 400,000 600,000

Accuracy

BF_AoB
BF_BoA

Magic

AAAJ

Number of calls to Euclidean distance function Number of calls to Euclidean distance function

Figure 4: (Left) The normalized value ofQ as a function of
the number of calls to the Euclidean distance. (Right) The
accuracy of classification, averaged over the 30 unknown
letters, as a function of the number of calls to the Euclidean
distance.

0.2

0.4

0.6

0.8

1

0 2,000,000 4,000,000 6,000,000

Q/Max(Q)

0 2,000,000 4,000,000 6,000,000

Accuracy

BF_AoB
BF_BoA

Magic

AAAJ

Number of calls to Euclidean distance function Number of calls to Euclidean distance function

0.4

0.5

0.6

0.7

0.8

0.9

AAAJ

Terminates

AAAJ

Terminates

Figure 5: (Left) The normalized value ofQ as a function of
the number of calls to the Euclidean distance. (Right) The
accuracy of classification, averaged over the 1,000 star light
curves, as a function of the number of calls to the Euclidean
distance.

in Section 3.4), with|A| = 500 and|B| = 8,736. Each time
series was of length 1,024.

At this scale it is difficult to see the advantage of the
proposed algorithm. However, consider this. After perform-
ing 1,000,000 distance calculations the AAAJ algorithm has
reduced the normalized value ofQ to 0.1640. On the other
hand, the BFBoA algorithm must perform 4,342,001 dis-
tance calculations to reduce the normalizedQ to the same
level. The following observation is worth noting. While all 4
algorithms have identical classification accuracy when they
terminate (by definition), the accuracy of AAAJ is actually
slightly higher while it is only 80% completed. This is not an
error, it is simply the case that this particular run happened
to have a few mislabel objects towards the end of datasetB,
and those objects cause several objects inA to be mislabeled.

3.3 Historical Manuscript Annotation. Recent initia-
tives like the Million Book Project and Google Print Library
Project have already archived several million books in dig-
ital format, and within a few years a significant fraction of
world’s books will be online [10]. While the majority of the

Figure 6: Page 967 of “The Theatre of Insects; or, Lesser
living Creatures...” [13], published in 1658, showing the
“Day” butterfly.

data will naturally be text, there will also be tens of millions
of pages of images. Consider as an example the lithograph
of the “Day” butterfly shown in Figure 6.

The image was published in 1658, therefore predating
the binomial nomenclature of Linnaeus by almost a century.
So a modern reader cannot simply find the butterfly species
by looking it up on the web or reference book2. However,
the shape is well defined, and in spite of being in black and
white the author’s helpful notes tell us that it is “for the most
part yellowish, those places and parts excepted which are
here blacked with inke”.

With a combination of information retrieval techniques
and human insight we can attempt to discover the true iden-
tify of the species illustrated in the book. Note that a queryto
Google image search for “Butterfly” returns approximately
4.73 million images (on 9/12/2007). A large fraction of these
are not images of butterflies, but of butterfly valves, swim-
mers doing the butterfly stroke, greeting cards etc. Further-
more, of the images actually depicting butterflies, many de-
pict them in complex scenes that are not amiable to state-of-
the-art segmentation algorithms. Nevertheless, a surprising
fraction of the images can be automatically segmented with

2There is a “Day moth” (Apina callisto), however it looks nothing like
the insect in question.

“Day Butterfly”

Eastern tiger swallowtail

(Papilio glaucus)

Figure 7: We can compare two shapes by converting them
to one-dimensional representations and using an appropriate
distance measure, in this case Dynamic Time Warping.

simple off the shelf tools (we use Matlab’s standard image
processing tools with default parameters). As illustratedin
Figure 7, for those images which can be segmented into a
single shape, we can convert the shapes into a one dimen-
sional representation and compare them to our image of in-
terest [11].

While the above considers just one image, there are
many online collections of natural history which have hun-
dreds or thousands of such images to annotate. For example,
Albertus Seba’s 18th century masterwork [17] has more than
500 drawings of butterflies and moths, and there are at least
twenty 17th and 18th century works of similar magnitude
(see [7], page 86 for a partial list).

We believe that annotating such collections is a perfect
application of AAAJ. We have a collection of a few hundred
objects, that we want to link to a subset of a huge dataset (the
images on the internet). An exhaustive join is not tenable,
nor is it needed. We don’t need to find the exact nearest
match to each butterfly, just one that is near-enough to likely
be the same or related species.

Once we have a near-enough neighbor we can use
any meta tags or text surrounding the neighbor to annotate
our unknown historical images. The basic framework for
annotation of historical manuscripts in this way has been the
subject of extensive study by several groups, most notably at

0 2 4 6 8 10 12 14 16
0.2

x 105

BF_AoB

BF_BoA

Magic

AAAJ

Q/Max(Q)

Number of calls to Euclidean distance function

1.0

0.4

0.6

0.8

Figure 8: The normalized value ofQ as a function of the
number of calls to the Euclidean distance.

the University of Padova3 [1]. However, the work assumes
unlimited computation resources and a high degree of human
intervention. Here we attempt to show that AAAJ could
allow real time exploration of historical manuscripts. We
can simply point to an image and right-click and choose
annotation-search. At this point the user can provide some
text clues to seed the search. In this case we assume the
word “butterfly” is provide to the system, which then issues
a Google image search.

While there are still some image processing and web
crawling issues to be resolved we consider this problem an
ideal one to test the utility of AAAJ, so we conducted the
following experiment.

DatasetA consists of 35 drawings of butterflies. They
are taken from manuscripts as old as 1783 and as recent as
1968. In every case we know the correct species label be-
cause it either appears in the text (in some cases in German
or French which we had translated by bilingual entomolo-
gists) or because the entomologist Dr. Agenor Mafra-Neto
was able to unambiguously identify it for us. DataB con-
sist of 35 real photographs of corresponding insects, plus
691 other images of butterflies (including some duplicates of
the above) plus 44,215 random shapes. The random shapes
come from combining all publicly available shape datasets,
and include images of fish, leafs, bones, fruit, chicken parts,
arrowheads, tools, algae, and trademark logos. Both datasets
are randomly shuffled.

While we used Dynamic Time Warping as the distance
measure in Figure 7, it is increasingly understood that for
large datasets the amount of warping allowed should be
reduced [16], [19]. For large enough datasets the amount of
warping allowed should be zero, which is simply the special
case of Euclidean distance.

Figure 8 shows the rate of reduction ofQ on the butterfly
dataset.

While we can see that the rate of error reduction is very
fast, it is difficult to get context for the utility of AAAJ from

3The work at the University of Padova and related projects consider
mostly religious texts, in particular illuminated manuscripts. We know of
no other research effort that considers historical scientific texts.

this figure. Consider therefore Figure 9. Here we show in
the leftmost column the original historical manuscripts (note
that at this resolution they are very difficult to differentiate
from photographs). After 10% of the eventual time had
passed we took a snapshot of the current nearest neighbors
of A. Figure 9 (center) shows the top eight, as measured by
mapping[i].dist. In the rightmost column we show the final
result (which is the same for all algorithms). It is difficult
to assign a metric to these results, since precision/recallor
accuracy cannot easily be modified to give partial credit for
discovering a related species (or a mimic, or convergently
evolved species). However, we can intuitively see that much
of the utility of conducting this join is captured in the first
10% of the time.

3.4 Anytime Anomaly Detection. In certain domains
data observations come gradually over time and are subse-
quently accumulated in large databases. In some cases the
input data rate may be very high or data may come from
multiple sources, which makes it hard to guarantee the qual-
ity of the stored observations. Still we may need to have
some automatic way to efficiently detect whether incoming
observations are normal or represent severe outliers, withre-
spect to the data already in the database. A simple means
to achieve this is to apply the nearest neighbor rule and to
find out whether there is some similar observation stored so
far. Depending on the accumulated dataset size and the input
rate, processing all incoming observation in online manner
with the above simple procedure may still be intractable. At
the same time it is often undesirable and, as we demonstrate
below, unnecessary to wait for the whole process to finish
and then run offline some data cleaning procedure. What we
can use instead is an anytime method that computes the ap-
proximate matches to small subsets of elements in a batch
mode, before the next subset of observation has arrived. Be-
low we demonstrate how our AAAJ algorithm can help us
with this.

As a concrete motivating example consider star light
curves, also known as variable stars. The American Associ-
ation of Variable Star Observers has a database of over 10.5
million variable star brightness measurements going back
over ninety years. Over 400,000 new variable star bright-
ness measurements are added to the database every year by
over 700 observers from all over the world [12], [15]. Many
of the objects added to the database have errors. The sources
of these errors range from human error, to malfunctioning
observational equipment, to faults in punch card readers (for
attempts to archive decade old observations) [12]. An obvi-
ous way to check for errors is to join the new tentative collec-
tion (A) to the existing database (B). If any objects inA are
unusually far from their nearest neighbor inB then we can
single them out for closer inspection. The only problem with
this idea is that a full join on the 10.5 million object database

Agrias

sardanapalus

Agrias

sardanapalus

Agrias beata

Troides amphrysus Troides amphrysus Troides magellanus

Papilio ulysses Papilio karna Papilio ulysses

Parides philoxenus Pachlioptera polyphontes Pachlioptera

polyeuctes

Papilio antimachus Heliconius melpomene Papilio antimachus

Papilio krishna Papilio karna

iruana

Papilio karna

iruana

Papilio demodocus Papilio bromius Graphium sarpedon

Papilio hesperus Papilio blumei Papilio ascalaphus

Dataset A 10% Time 100% Time

Figure 9: (Left column) Eight sample images from the
dataset, a collection of butterfly images from historical
manuscripts. (Center column) The best matching images af-
ter AAAJ has seen 10% of the data. (Right column) The best
matching images after AAAJ has seen all of the data.

200 400 600 800 1000

-2

0

2

4

6

200 400 600 800 1000

-2

0

2

4

6

200 400 600 800 1000

-2

0

2

4

6

200 400 600 800 1000

-2

0

2

4

6

(a) (b)

(c) (d)

Figure 10: Various light curve vectors in the dataset. (a) and
(b) are normal ones. And (c) and (d) are outliers.

takes much longer than a day. As we shall see, doing this
with AAAJ allows us to spot potentially anomalous records
much earlier.

For this experiment we use a collection of star light
curves donated by Dr. Pavlos Protopapas of Time Series Cen-
ter at Harvard’s Initiative for Innovative Computing. The
dataset that we have obtained contains around 9,000 such
light curves from different star classes. Each example is a
time series of size 1,024. Figure 10 shows four different light
curve shapes in the data. Suppose that a domain expert con-
siders as outliers examples whose nearest neighbor distance
is more than a predefined threshold oft standard deviations
away from the average nearest neighbor distance [15]. For
the light curve data we sett = 5 standard deviations, which
captures most of the anomalies as annotated by the expert as-
tronomers. Examples (c) and (d) in Figure 10, show two such
light curves, while (a) and (b) are less than 5 standard devi-
ations from their nearest neighbors and therefore are treated
as normal.

Now assume that the light curve observations are
recorded in batch mode 100 at a time. We can apply the
AAAJ algorithm to every such set of incoming light curves
(representing datasetA in the algorithm) and find its approx-
imate match within the database (setB) interrupting the pro-
cedure before the next subset of light curves arrives. If the
maximal approximate nearest neighbor distance inA is more
than the threshold of 5 standard deviations from the average
nearest neighbor distance, then before combiningA with the
rest of the database we remove from it the outliers that fail
the threshold.

To demonstrate the above procedure we conduct two

0 100,000 200,000 300,000 400,000

10

20

30

40

50

mean+std

mean

maximum

0 200,000 300,000 400,000

10

20

30

40

50

100,000

mean- std

Number of calls to Euclidean distance function

Statistics for the nearest neighbor distance of AAAJ

Figure 11: Average nearest neighbor distance with respect
to the performed Euclidean distance comparisons. (Top) A
is composed only of normal elements. (Bottom) A contains
one outlier.

experiments. In the first one datasetA consists of 100
randomly selected examples among the examples annotated
as normal. For the second experiment, we replace one
of the normal examples inA (selected at random) with a
known outlier. This outlier is not believed to be a recording
or transcription error, but an unusual astronomical object.
Figure 11 shows the improvement in the average nearest
neighbor distance in datasetA, again as a function of the
performed Euclidean distance computations. The maximal
nearest neighbor distance is also presented in the graphs.
The top graph corresponds to the experiment where dataset
A is composed only of normal elements, and the bottom one
is for the dataset with one outlier. The experiment shows
how efficiently the AAAJ algorithm can detect the outliers.
The average distance drops quickly after performing only a
limited number of computations. After that the mean value
stabilizes. At this point we can interrupt the algorithm and
compute the deviation for each element inA. The elements
that fail the expert provided thresholdt are likely to fail it
had we performed a full join too. In the second example we
are able with high confidence to isolate the outlier in only a
few thousand distance computations.

4 Conclusions and Future Work

In this work we have argued that for many data mining prob-
lems an approximate join may be as useful as an exhaustive
join. Given the difficulty of figuring out exactly “how ap-
proximate” is sufficient, we show that we can cast joins as
anytime algorithms, in order to use as much computational
resources as are available. We demonstrated the utility of our
ideas with experiments on diverse domains and problems.

As we have shown for the domains considered we can
extract most of the benefit of a join after doing only a small
fraction of the work (the diminishing returns requirement of
[28]), and we can use internal statistics (as in Section 3.4)
to achieve the measurable quality requirement [28]. The
interruptability and preemptability requirements are trivially
true, we can stop the AAAJ algorithm at anytime and we
only need to save the relatively tiny mapping data structureif
we want to pick up where we stopped at a later date. Finally,
with regards to Zilberstein and Russell’s requirements, the
monotonicity property is clearly observed in Figures 3, 4, 5,
8 and 11.

Future work includes extending Orchard’s algorithm to
non-metric measures and an enormously scaled up version of
the butterfly dataset which also considers color and texture
information.

Acknowledgements

We would like to thank all the donors of datasets. In
particular, Dr. Agenor Mafra-Neto for his entomological
assistance, and Dr. Pavlos Protopapas for his help with the
star light curve dataset.

References

[1] M. Agosti, N. Ferro and N. Orio,Annotations as a Tool
for Disclosing Hidden Relationships Between Illuminated
Manuscripts, AI* IA 2007, Proc. of 10th Congress of the
Italian Association for Artificial Intelligence. Artificial Intel-
ligence and Human-Oriented Computing , pp. 662–673, 2007.

[2] B. Arai, G. Das, D. Gunopulos, and N. Koudas,Anytime
measures for top-k algorithms, VLDB 2007, Proc. of 33rd
international onference on Very Large Data Bases, pp. 225–
237, 2007.

[3] C. Böhm and F. Krebs,High performance data mining using
the nearest neighbor join, ICDM 2002, Proc. of 2nd Interna-
tional Conference on Data Mining, pp. 43–50, 2002.

[4] W. Burkhard and R. Keller,Some approaches to best-match
file searching, Communications of the ACM, 16 (1973),
pp. 230–236.

[5] Y. Chen and J. M. Patel,Efficient evaluation of all-nearest-
neighbor queries, ICDE 2007, Proc. of IEEE 23rd Inter-
national Conference on Data Engineering, pp. 1056–1065,
2007.

[6] C. Elkan,Using the triangle inequality to accelerate k-means,
ICML 2003, Proc. of International Conference on Machine
Learning, 2003.

[7] P. Smart,The illustrated encyclopedia of the butterfly world,
in Salamander Books London, London, 1975.

[8] K. Fujisawa, S. Hayakawa, and T. Aoki,Real time search
for autonomous mobile robot using the framework of anytime
algorithm, AROB 4th’99, Proc. of 4th Int Symp on Artificial
Life and Robotics , pp. 291–296, 1999.

[9] J. Grass and S. Zilberstein,Anytime algorithm development
tools, ACM SIGART Bulletin, 7 (1996), pp. 20–27

[10] M. Herwig, Google’s total library: putting the world’s books
on the web, http://www.spiegel.de/international/, 2007.

[11] E. Keogh, L. Wei, X. Xi, S. H. Lee, and M. Vlachos,
LB Keogh supports exact indexing of shapes under rotation
invariance with arbitrary representations and distance mea-
sures, VLDB 2006, Proc. of 32nd international conference on
Very Large Data Bases-Volume 32, pp. 882–893, 2006.

[12] K. H. Malatesta, S. J. Beck, G. Menali, and E. O. Waagen,The
AAVSO Data Validation Project, The Journal of the American
Association of Variable Star Observers, 2006.

[13] T. Mouffet,The theater of insects., Volume 2, Da Capo Press,
New York, USA, 1958.

[14] M. T. Orchard, A fast nearest-neighbor search algorithm,
ICASSP’91, Proc. of International Conference on Acoustics,
Speech, and Signal Processing, pp. 2297–2300, 1991.

[15] P. Protopapas, J. M. Giammarco, L. Faccioli, M. F. Stru-
ble,and R. Dave, and C. Alcock,Finding outlier light curves
in catalogues of periodic variable stars, Monthly Notices of
the Royal Astronomical Society, 369 (2006), pp. 677–696.

[16] C. A. Ratanamahatana, and E. Keogh,Three myths about
dynamic time warping data mining, SDM’05, Proc. of SIAM
International Conference on Data Mining, 2005.

[17] A. Seba,Locupletissimi rerum naturalium thesauri accurata
descriptio Naaukeurige beschryving van het schatryke kabi-
net der voornaamste seldzaamheden der natuur, Amsterdam,
4 vols. 394 B pp. 26–29, vol.3, 1734-1765.

[18] M. Shapiro,The choice of reference points in best-match file
searching, Communications of the ACM, 20 (1977), pp. 339–
343.

[19] Y. Shi, and T. Mitchell, and Z. Bar-Joseph,Inferring pairwise
regulatory relationships from multiple time series datasets,
Bioinformatic, 23 (2007), Oxford Univ Press, pp. 755–763,
2007.

[20] A. Srivastava, Personal Communication, 2007.
[21] K. Ueno, X. Xi, E. Keogh, and D. J. Lee,Anytime Classifi-

cation Using the Nearest Neighbor Algorithm with Applica-
tions to Stream Mining, ICDM 2006, Proc. of 6th Interna-
tional Conference on Data Mining, pp. 623–632, 2006.

[22] L. Wei, E. Keogh, and X. Xi,A Saxually explicit images: find-
ing unusual shapes, ICDM 2006, Proc. of 6th International
Conference on Data Mining, pp. 18–22, 2006.

[23] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanama-
hatana,Fast time series classification using numerosity reduc-
tion, ICML 2006, Proc. of 23rd international conference on
Machine learning, pp. 1033–1040, 2006.

[24] C. Xia, H. Lu, B. C. Ooi, and J. Hu,GORDER: An Efficient
Method for KNN Join Processing, VLDB04, Proc. of 30th
International Conference on Very Large Data Bases, pp. 756–
767, 2004.

[25] Y. Yang, G. Webb, K. Korb, and K. M. Ting,Classifying
under computational resource constraints: anytime classifi-
cation using probabilistic estimators, Machine Learning, 69
(2007),pp. 35–53.

[26] P. N. Yianilos, Data structures and algorithms for nearest
neighbor search in general metric spaces, SODA’93, Proc.
of the 4th annual ACM-SIAM Symposium on Discrete algo-
rithms, pp. 311–321, 1993.

[27] J. Zhang, N. Mamoulis, D. Papadias and Y. Tao,All-nearest-

neighbors queries in spatial databases, SSDBM 2004, Pro-
ceedings. 16th International Conference on Scientific and Sta-
tistical Database Management, pp. 297–306, 2004.

[28] S. Zilberstein and S. Russell,Approximate reasoning using
anytime algorithms, Imprecise and Approximate Computa-
tion, Kluwer Academic Publishers, 11 (1995).

