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Abstract “John Lennon, 9 Cctober 1940”, and the other contains

It has long been noted that many data mining algorithms catehn W Lennon, 09-Qct-40", itis clear that these cor-
be built on top of join algorithms. This has lead to a wealfffSPONd to the same person, and an algorithm that failed to
of recent work on efficiently supporting such joins with varioudnk them would be very undesirable. In contrast, for many
indexing techniques. However, there are many applications whig@ta mining applications of joins it is not really necessary
are characterized by two special conditions, firstly the two datastid the nearest neighbor, it can suffice to fingear-enough

to be joined are of radically different sizes, a situation we call &¢ighbor. Examples of useful tasks that utilize the detecti
asymmetric join. Secondly, the two datasets are not, and possppgipear-enougmeighbors as a subroutine include clustering
can not be indexed for some reason. In such circumstances!fe classification [23], anomaly detection [22] and as we
time complexity is proportional to the product of the number ghow in Section 3.3, historical manuscript annotation e@iv
objects in each of the two datasets, an untenable propositiorfli§: We show that by framing the problem asaaytime al-
most cases. In this work we make two contributions to mitigate tg@Tithm we can extract most of the benefit of the full join
situation. We argue that for many applications, an exact solutiglgorithm in only a small fraction of the time that it requre

to the problem is not required, and we show that by framing tAnytime algorithms are algorithms that trade executioretim
problem as an anytime algorithm we can extract most of the benf9f quality of results [9]. In particular, an anytime algin

of a join in a small fraction of the time taken by the full algorithm@lways has a best-so-far answer available, and the quélity o
In situations where the exact answer is required, we show that )€ answer improves with execution time. The user may ex-
can quickly index just the smaller dataset on the fly, and grea@{Pine this answer at any time, and then choose to terminate
speed up the exact computation. We motivate and empiricdf}e algorithm, temporarily suspend the algorithm, or allow
confirm the utility of our ideas with case studies on problems H @lgorithm to run to completion. Furthermore, we show
diverse as batch classification, anomaly detection and annotatioféit although we are explicitly assuming the data is not in-

historical manuscripts. dexed at query time, we can build an index on the fly for the
smaller dataset and greatly speed up the process.
1 Introduction. The rest of the paper is organized as follows. The

- next section offers more background and explicitly states o
Many researchers have noted that many data mining algo- .
. . . - ,._dssumptions.
rithms can be built on top of an approximate join algorithm.

This has lead to a wealth of recent work on efficiently sup-, Background and Assumptions.The Similarity Join

porting such joins with various indexing techniques [3], [5 ; .
[24], [27]. However, we argue that while the classic databa(ss‘]) combines two sets of complex objects such that the

) - . . result contains all pairs of similar objects [3]. It is essalty
use of approximate joins for record linkage (entity "®Sthe classic database join which has been relaxed to allow
lution, duplicate detection, record matching, reduplaat

; ; linkage of two objects that satisfy a similarity criteriofhe
merge/purge processing database hardening etc.) does re- . : :
i o o . ) relatedAll Nearest Neighbo(ANN) operation takes as input
quire a full join, many data mining/information retrievalas . : .
. . . two sets of multi-dimensional data points and computes for
of joins can achieve the same end result with an approXi- L ) ; :
each point in the first set the nearest neighbor in the second

mate join. Here approximate does not refer to the dIStanCer [5]. Note that this definition allows for points in the

measure or rule used to link two objects, but rather to tﬁgcond set to be unmatched. In this work we introduce the

fact that only a small subset of the Cartesuan product of t eymmetrlc Approximate Anytime JAiAAAJ) which also
two datasets needs to be examined. While the result wi : : .
T allows objects in the second set to be unmatched, however, it
not be the same as that of an exhaustive join, it can oft : . i

iffers from the above in several important ways:

be good enough for the task at hand. For example, when
performing a classic record linkage, if one dataset costain ¢ \We assume that the second set is many orders of mag-



nitude larger than the first set. In some cases the secon
set may be considered effectively infifitéor example,
this may be the set of all images on the internet or some
streaming data.

Setup Time

o

/ Interruption Time

Current Solution

0on

Quality of
Solut

e The sheer size of the second set means that it cannc
be indexed, or can only be “weakly” indexed. For ex- Time ——>
ample we cannot index the billions of high dimensional
images on the WWW, but we can use Google image

search to weakly order images size date of creation igure 1: An abstract illustration of an anytime algorithm.
or most significantly (cf. Section 3.Reywordssur- Note that the quality of the solution keeps improving up to
rounding them time S, when the algorithm is interrupted by the user.

e The vast majority of work in this area assumes the dis- , . L .
tance metric used is the Euclidean distance [3], [Qytllers, however the data is not indexed due to its high di-

[24], [27]. However, motivated by several real worldnensionality and the relative cost and difficulty of builglin
problems we need to be able to support more gene?d index for a dataset that may only be queried a few times
measures such @ynamic Time WarpingDTW), ro- a year. Additional examples include NASA Ames, which
tation invariant Euclidean distance, or weighted comiias archived flight telemetry for one million domestic com-

nations of individual measures such as shape, color 4p€rcial flights. Dr. Srivastava, the leader of the Intelfige
texture similarity. Systems Division notes that linear scans on this dataset tak

two weeks, but the size at dimensionality of the data makes
e Given that the second set may be effectively infinitthdexing untenable even with state of the art techniquels [19
we may need to abandon any notion of finding an exagiven the above, we feel that our assumption that the larger
answer; rather we hope to find a high quality answer. &1 the datasets is not indexed is a reasonable assumption re-
such circumstances we frame the problem as an anytifiected by many real word scenarios.
algorithm. The main contribution of this work is to show that joins
Note that it is critical to the motivation of this work tha@n be cast as anytime algorithms. As illustrated in Figure 1
we assume that the second setdsindexed, because theréa\nytlme.algorlthms are aIgonthm; that trade executiortim
are many excellent techniques for computing all manner 8 duality of results [9]. In particular, after some small
variations of joins when the dafa indexed [3], [5], [24], amount ofsetup—tlmeaq anytime algonthm. always has a
[27]. In addition to the reasons noted above, additiorf&?St'SO'far answer available, and the quality of the answer

reasons why the data might not be indexed include theProves withexecutiontime. _
following: Zilberstein and Russell [28] give a number of desirable

properties of anytime algorithms:
e The input query could be intermediate results of com-

plex database queries (as noted in [27]), or the incre-® Interruptability : After some small amount of setup

mental results of a directed web crawl. time, the algorithm can be stopped at anytime and
. ) ) ) provide an answer.
e The high dimensionality of the data we need to con-

sider. For example, the five datasets considered ire Monotonicity: the quality of the result is a non-
[5] have an average dimensionality of 4.8, the dataset: decreasing function of the computation time.
considered in [27] are all two dimensional and even
[24] which is optimized for handling high-dimensional
data efficientlyy considers at most 64 dimensions. In
contrast we need to consider datasets with dimensionale Diminishing returns: the improvement in solution

ity in the thousands, and at least some of these datase quality is largest at the early stages of computation, and
are not amiable to dimensionality reduction. diminishes over time.

At least some anecdotal evidence suggests that many re, Preemptability: the algorithm can be suspended and
world datasets are often not indexed. For example Protope asumed with minimal overhead.

pas et al. [15] have billions of star light curves (time se-
ries measuring the intensity of a star) which they mine for As we shall see, we can frame an approximate asymmet-
ric join as any anytime algorithm to achieve all these goals.
TWe call the set of images on the WW\ffectively infinittbecause it DUE t0 their applicability to real world problems, there has
is expanded at a rate faster that the download rate of any ockimea been increasing interest in anytime algorithms. For exampl

e Measurable quality: the quality of an approximate
result can be determined.



Algorithm 2.1 BRUTEFORCEJOIN(A, B) framework.

1: for i — 1to|A| do Before considering our approach in the next section,
2: mappingi].dist — DisT(a;, by) we will introduce one more idealized strawman Fhat we
3 mappindi].pointer— 1 can compare tp. B(_Jth flavors of the algorithms discussed
4 for j «— 2to|B| do gt_)ove take a smgle item from one of the two datasets to be
5 d — DisT(a,bj) joined and scan it completely against the other datasetdefo
6: if d < mappindi].dist then considering t_hg r!exfc item. Recall, hovyever, that the dbkgra

7 mappingi].dist < d property ofd|m|n|s_h|ng returnswpuld like us to attempt to

8: mappingi].pointer — j minimize Q as quickly as possible. For example, assume
9: return mapping that we must scaB in sequential order, but we can choose

which objects inA to scan acros8, and furthermore we
can start and stop with different objects fréxat any point.
some recent works such as [21] and [23] show how to frarigppose that at a particular point in the algorithm’s exeaut
nearest neighbor classification as an anytime algorithm amel could either scam; across five items ifB to reduce its
that top-k queries can also be calculated in an anytime frarggror from 10.0 to 2.5, or we could scapacross ten items in
work, and [25] shows how Bayesian network structure can Béo reduce its error from 11.0 to 1.0. The former would give

learned in an anytime setting. us arate of error reduction of 5 = (10.0—2.5)/5, while
the latter choice would give usrate of error reduction of
2 The Asymmetric Approximate Anytime Join. 1= (110-1.0)/10. In this case, the former choice gives

H§ the faster rate of error reduction and we should choose it.
IMmagine that we do this foeveryobject inA, at everystep

of the algorithm. This would give us the fastest possible rat
DEFINITION 2.1. Given two sets of objecsandB, an All - of error reduction for a join. Of course, we cannot actually
Nearest Neighbor query, denotedAdN query(A,B), finds compute this on the fly, we have no way of knowing the best
for each object; € A an object; € B such that for all other choices without actually doing all the calculations. Hoesv
objectsby € B, dist(bj,a;) < dist(bx,a). we can compute the best choices offline and imagine that

Note that in general ANNgqueryA,B) # such an algorithm exists. Fittingly, we call such an aldonit
ANN query(B,A). We will record the mapping; fromA Magic and can use it as an upper bound for the improvement

to B with a data structure callesiapping We can discover W€ €an make with our algorithms.

the index of the object iB that s maps to by accessing

mappingi]. pointer, and we can discover the distance frori-1 Augmented Orchard’s Algorithm. While the state-
a to this object withmappingi].dist. ment of the problem at hand explicitly prohibits us from in-

It is useful for evaluating anytime or approximate joind€xing the larger datase{ nothing prevents us from index-

to consider a global measure of how close all the obje#?d the smaller sed. If Ais indexed, then we can simply

in A are to their (current) nearest neighbor. We call thigduentially pull objectb; from B and quickly locate those
Q, the quality of the join and we measure it a§ = objects inAthat are nearer to; than to their current best-so-

Al Lo far
>i_;mappingi].dist. . . . _ .
Given this notation we can show the brute force nestﬁd While there is a plethora of choices for indexing dataset

loop algorithm for the All Nearest Neighbor (ANN) algo- ther_e are seve_ral special con5|d_erat|ons_ which gonstram
. . . and guide our choice. The overarching requiremegeéiser-
rithm in Algorithm 2.1

Note that lines 2 to 3 are not part of the classic ANﬁhty’ we want to apply AAAJ to very diverse datasets, some

. . o o of which may be very high dimensional, and some of which,
algorithm. They simply map everything Ao the first item for example strings under the edit distance, may not be ami-

in B. However, once this step has been completed, we %ble to spatial access methods. With these considerations i

contmyously Measurg as the algorlthm Progresses, a facrfinind we decided to use a slightly modified version of Or-
that will be useful when we consider anytime versions of th , : . 4 .

) chard’s algorithm [14], which requires only that the distan
algorithm below.

In Algorithm 2.1 we havé in the outer loop an&in the measure used be a metric. Orchard’s algorithm is not com-

inner loop, a situation we denote as BB (Brute Force, monly used because its quadratic space complexity is simply

A overB). We could, however, reverse this situation to ha\ygtenable for many applications. However, for most of the

B in the outer loop and in the inner loop. For a batchpractical applications we consider here this is not an issue

algorithm this makes no difference to either the efficiency por example, assume that we can record both the distance

. . etween two objects and each of the values in the real valued
outcome of the algorithm. Yet, as we shall see, it can makeé . :

S . . . vectors with the same number of bits. Further we assume
a big difference when we cast the algorithm in an anytime

For concreteness of the exposition we start by formalizi
the notion of the All Nearest Neighbor query.



Algorithm 2.2 ORCHARDS(A, Q)
1: nnloc « random integer between 1 afiy

4, N 2: nn.dist < DIST(annioc, )
> \ 3. index— 1
17 ! 4: while Plannoc]-distfindeX < 2 x nn.dist andindex<
N |A| do
S 5 node« Plannoc]. pointefindex
"'%.. 6: d « DIST(anode 0)
| 7: if d < nn.dist then
8: nn.dist«—d
9 nn.loc < node
10: index«— 1
Figure 2: (eft) The triangular inequality is used in Orchard’s 1: else
Algorithm to prune the items irA that cannot possibly 12: index«— index+ 1

to be the nearest neighbor of queyy (Righ)) Similarly 13: return nn
the triangular inequality is used in Augmented Orchard’s
Algorithm to prune the items i\ that are certain to have
a better best-so-far match than the current query

Plannioc]- pointerin ascending order until one of three things
happen. The end of the list is reached, or the next object on
the list has value that is more than twice the curremdlist
have a feature vector length pnfper object. Given this, the(line 4). In either circumstance the algorithm terminates.
datasetA itself requiresO(]A|n) space, and Orchard indexThe third possibility is that the item in the list is closer to
requiresO(|A|?) space. Concretely, for the Butterfly examthe query than the current tentative nearest neighbor Tjine
ple in Section 3.3 the space overhead amounts to apprdwithat case the algorithm simply jumps to the head of the
mately 004%, and for the light curve example the overhedidt associated with this new nearest neighbor to the query
is approximately B%. Because Orchard’s algorithm is noand continues from there (lines 8 to 10).
widely known we will briefly review it in the next section. ~ We can see that a great advantage of this algorithm is
We refer the interested reader to [14] for a more detaildéd simplicity; it can be implemented in a few dozen lines of
treatment. code. Another important advantage for our purposes is its
generality. The function BT can be any distance metric
2.1.1 A Review of Orchard’s Algorithm. The basic idea function. In contrast, most algorithms use to index data in
of Orchard’s algorithm is to quickly prune non-nearestrder to speed up joins explicitly exploit properties thaym
neighbors based on the triangular inequality. In the preprmt exist in all datasets. For example they may require the
cessing stage the distance between each two items indat to be real valued [5],[27] or may be unable to handle
datasetA is calculated. As shown in Figure [2eft, given mixed data types.
a queryq, if the distance betweegpand an iteng; in dataset Note that this algorithm finds the one nearest neighbor
Ais already known ad, then those items in datasktvhose to a queryq. However, recall that we have a data structure
distance is larger thand2o a can be pruned. The distancealledmappingwhich records the nearest item to each object
between these items agds guaranteed to be larger thdn in A that we have seen thus far. So we need to adapt the
which directly follows the triangular inequality. Thereéy classic Orchard’s algorithm to update not only the nearest
none of them can become the nearest neighbqr of neighbor toq in A (if appropriate) but all objects; such
Specifically, for every object € A, Orchard’s algo- that DisT(a,q) < mappindi].dist. We consider a method to
rithm creates a lisP[a]. pointer which contains pointers adapt the algorithm in the next section.
to all other objects irA sorted by distance tg;. l.e., the
list stores the index, denoted B&]. pointerlk]), of thekth 2.1.2 Augmented Orchard’s Algorithm. The results
nearest neighbor te; within datasetA, and the distancefrom the previous section together with the mapping struc-
Pla;].dist[k] betweers; and this neighbor. ture built for datasetA can be utilized into an extended
This simple array of lists is all that we require for fasticheme for approximate joins, which exhibits the propsrtie
nearest neighbor searchAn The algorithm, as outlined inof an anytime join algorithm too. We term this schefey-
Algorithm 2.2, begins by choosing some random elementritented Orchard’s Algorithrsee Algorithm 2.3).
A as the tentative nearest neighlbgyoc, and calculating the The algorithm starts with an initialization step (lines 1 to
distancenn.dist between the querg and that object (lines 14) during which the table of sorted neighborhood IB}s;]
and 2). Thereafter, the algorithm inspects the objectssin lis computed. At this point all elementsAnare also mapped



to the first element in the larger dataget To provide for Algorithm 2.3 AUGMENTORCHARDS(A, B)
the interruptability property of anytime algorithms, weoptl ;. for j — 1 to |A| do

a B-overA mapping between the elements of the two sets;. Build P[a;]
The approximate join proceeds as follows: DataBes 5. mappingi].dist < DIsT(a;,by)
sequentially scanned from the second element on, improving mappingi]. pointer— 1
the best-so-far match for some of the elements in datasgt for j — 2 to|B| do
A. For this purpose, we first invoke the classic Orchard’s. nn— OrchardgA, b;)
algorithm which finds the nearest neighb@fioc to the 7. if nn.dist < mappingnn.loc.dist then
current queryb; and also computes the distance betweeng. mappingnn.loc].dist < nn.dist
them (i.e.nn.dist, line 6). If the query improves on the best- 4. mappingnn.loc]. pointer j
so-far match oBnnoc, then we update the element’s nearest,. for index— 1 to|A| — 1 do
neighbor as well as its distance (lines 8 and 9). 11: node— Plannoc]. pointerindex

In addition to improving the best match f@hnioc, 1o bound«— |nn.dist— P[annoc].dist[index|
the query exampléd; may also turn out to be the best;s. if mappingnodé.dist > bound then
neighbor observed up to this point for some of the othgy. d — DIST(anode bj)
elements inA. However, we do not need to check thegs. if d < mappingnodg.distthen
distances between adi and the queryb;. Instead, we 4. mappingnodé.dist — d
can use the pre-computed distance Rfinnioc] and once 7. mappingnodé. pointer — j

again apply the triangle inequality to prune many of thes. return mapping

distance computations. Concretely, we need to compute

the actual distance betwedn and anya; € A only if the

following inequality holds: mappindi].dist > |nn.dist —

DisT(annioc, )|- Figure 2Rightgives the intuition behind selecting the centers are random selection [4], [26] orcsele
this pruning criterion. The “distance bound” represents tfjon hased on some heuristic, e.g. maximal remoteness from
right term of the above inequality. If it is larger or equalny possible cluster center [18]. In the Augmented Orclsard’
to the bound obtained with the best-so-far quergitahen  a|gorithm we follow a different approach. Namely, for ev-
the new queryb; cannot improve the current best matchry queryb; we select a different center poiafnioc. This

of &. Note that all terms in the inequality are already possible as in the initialization step we have computéd al
computed as demonstrated on line 12 of the algorithm, sodigrwise distances among the elementéirThe algorithm
distance computations are performed for elements that gﬁo heavily relies on the fact that tRég;] lists are sorted in
the triangle inequality. Finally, it is important to pointio ascending order of pairwise distance. The assumptionts tha
that a née implementation of both Orchard’s algorithm angj may impact the best-so-far match only for elements that
our extension may attempt to compute the distance betwggd c|ose to it, i.e. its nearest neighlagg,oc and the closest
the quenb; and the same elemeatmore than once, SO Weg|ements to that neighbor which are the first elements in the
keep a temporary structure that stores all elements cortd\p%mloc] list. All remaining elements in this list are even-

thus far and the corresponding distances for each quy|ly pruned by the triangular inequality on line 13 of the
bj. The memory overhead for bookkeeping the structureggorithm.

negligible and at the same time allows us to avoid multiple
redundant computations. 3 Experiments and Case Studies.

. \We conclgde this section by sketching the intuition b?ﬁ this section we consider examples of applications
hind the pruning performance of tiugmented Orchard’sOf AAAJ for several diverse domains and applica-

Algorithm Choosing a vantage (center) point is a commaon . .
: . . o . .tions.  Note that in every case the experiments are
technique in many algorithms that utilize the triangular in

equality, such as [4], [18], [26], etc. In all of these Workcompletely reproducible, the datasets may be found at

one or more center points are selected and the distanceﬁgt&.//www.cs.ucr.eduﬁlemangy/AAAJ/Dataset.html.
tween them and all other elements in the dataset are cqm-

puted. These distances are subsequently used together(\]/évv%b
the triangular inequality to efficiently find the nearestgiei
bors for incoming queries. As to what points constitute go
centers, i.e. centers with good pruning abilities, depemds
several factors [18], e.g. dataset distribution, posibbthe
centers among the other points, as well as the position of %:I:ength 128.

uery in the given data space. The two common strategies in Figure 3 shows the rate at which the measQrele-
query 9 pace. 9 creases as a function of the number of Euclidean distance

A Sanity Check on Random Walk Data.We begin

a simple sanity check on synthetic data to normalize
oyr expectations. We constructed a dataset of one thousand
random walk time series to act as datab&sand one million
random walk times to act as databdseAll time series are



Log(Q/Max(Q)) Table 1: An abridged trace of the current classification ef th
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. LX‘;@Q — CLUB BAND" vs. the number of distance calculations made
| Terminateg :
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Number of calls to Euclidean distance function
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Figure 3: The log ofQ as a function of the number of calls ~ SBT PSPPERS LONEGY REARTF CLUB BANG | *22350
to the Euclidean distance. SBT PSPPERS LONEGY REARTF CLUN BANG | 23396

) o ] SGT PEPPERS LONELY HEARTZ CLUB HAND | 182405
comparisons made. Note that this figuteesinclude the SGT PEPPERS LONELY HEARTS CLUB HAND | 305794
setup time for AAAJ to build the index, but this time is so

small relative to the overall time that it cannot be detedated
the figure (It can just be seen in Figure 5, whilBgis much
smaller relative tdA|). algorithms [9].

We can see that not only does AAAJ terminate 3 times The Letter dataset has 26 class labels corresponding to
faster than the other algorithms, but the rate at which itmithe letters fromA to Z. The task here is to recognize letters
imizes the error is much greater, especially in the begmnimgiven 16 features extracted from image data. There arela tota
This of course is the desirabtéminishing returngroperty of 20,000 objects in the dataset. We decided on a 30-letter
for anytime algorithms. Note in particular that the rate ef efamiliar phrase, and randomly extracted 30 objects from the
ror reduction for AAAJ is very close tmagic which is the training set to spell that phrase. We ran AAAJ with the 30
optimal algorithm possible, given the assumptions stated fetters corresponding t4, and the 19,970 letters remaining
it. in the training set corresponding B Table 1 shows a trace

of the classification results as the algorithm progresses.
3.2 Anytime Classification of Batched Data.There has After the first 30 distance comparisons (corresponding
been recent interest in framing the classification problemta lines 1 to 4 of Algorithm 2.3), every letter in our phrase
an anytime algorithm [21], [25]. The intuition is that in myanpoints to the first letter of datas& which happens to be
cases we must classify data without knowing in advance htw. Thereafter, whenever an item &is joined with a new
much time we have available. The AAAJ algorithm allowsbject inB, its class label is updated. When the algorithm
us to consider an interesting variation of the problem whitérminates after 305,794 distance calculations, the targe
to our knowledge has not been addressed before. Suppgasase is obvious in spite of one misspellingAND” instead
that instead of been given one instance to classify unaér'BAND"). Note, however, that after the AAAJ algorithm
unknown computational resources we are given a collectioas performed just.3% of its calculations, its stringsht
of unlabeled instances. In this circumstance we can thwiapsppers | onegy reartf club bang” is close enough to
use AAAJ as an anytime classifier. the correct phrase to be autocorrected by Google, or to be

Suppose we are givérpbjects to classify, and we intendrecognized by 9 out of 10 (western educated) professors at
to classify them using the One Nearest Neighbor (INNJCR. Figure 4 gives some intuition as to why we can cor-
algorithm with training seB. However, it is possible that werectly identify the phrase after performing only a smaltfra
may be interrupted at any time (Paper [21] discusses sevéml of the calculations. We can see that AAAJ behaves like
real world application domains where this may happen). &m ideal anytime algorithms, deriving the greatest chaimges
such a scenario it would make little sense to use the clagkie early part of the algorithms run.
brute force algorithm in Algorithm 2.1 to classify the data. In this experiment the improvement of AAAJ over
This algorithm might perfectly classify the first 20% of th8F_BoA is clear but not very large. AAAJ terminates
k objects before interruption, but then its overall accuraayith 433,201 calculations (including the setup time for the
including the default rate on the 80% of the data it could n@trchard’s algorithms), but the other algorithms only take
get to in time, would be very poor. Such a situation c&598,801. However, this is because the sizé @fas a mere
arise in several circumstances, for example robot locati®d, as we shall see in the next experiment the improvement
algorithms are often based on classifying multiple “cluesiecomes more significant for larger datasets.
about location and combining them into a single best guess, In Figure 5 we see the results of a similar experiment,
and robot navigation algorithms are typically cast as amgti this time the data is star light curves (discussed in moraiidet
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Figure 4: (eft) The normalized value d as a function of
the number of calls to the Euclidean distancRigh? The
accuracy of classification, averaged over the 30 unknown
letters, as a function of the number of calls to the Euclidean
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Figure 5: (eft) The normalized value d as a function of

the number of calls to the Euclidean distancRigh) The
accuracy of classification, averaged over the 1,000 sthar ligata will naturally be text, there will also be tens of mili®
curves, as a function of the number of calls to the Euclideahpages of images. Consider as an example the lithograph
distance. of the “Day” butterfly shown in Figure 6.

The image was published in 1658, therefore predating
the binomial nomenclature of Linnaeus by almost a century.
So a modern reader cannot simply find the butterfly species

. T looking i h f
At this scale it is difficult to see the advantage of t by looking it up on the web or reference bdokHowever,

proposed algorithm. However, consider this. After perform e shape is well defined, and in spite of being in black and

: . : . Wwhite the author’s helpful notes tell us that it i®f the most
ing 1,000,000 distance calculations the AAAJ algorithm h . .
reduced the normalized value @fto 0.1640. On the otherggrt yellowish, those places and parts excepted which are

. ~_here blacked with inKe
?and, th? I3|EI?0A atlgonfjhm n:rL:St perforlm ‘;3At'r2]‘001 dis- With a combination of information retrieval techniques
ance calculations to reduce the normaliZgdo the same nd human insight we can attempt to discover the true iden-

Iﬁvar.it;rr]ne fcr)]llc\)/wT dg cr)]t;)iselrvalltloni fI|S V\f[ior:lh notlnrg. WVCIrI]e allh ify of the species illustrated in the book. Note that a query
aigo S have identical classitication accuracy whey oogle image search for “Butterfly” returns approximately

terminate (by definition), the accuracy of AAAJ is actuallx e .
. . Lo L .73 million images (on 9/12/2007). A large fraction of thes
slightly higher while itis only 80% completed. This is not are not images %f b(utterﬂies but )of buttgrfly valves, swim-

grﬁ;\/: s fSerTE)le)i/sﬁzgeclist?etgasttt(:]\;:a[r)c?sttlﬁglirr\:jugfr:ﬁgseg ers doing the butterfly stroke, greeting cards etc. Further
) ore, of the images actually depicting butterflies, many de-

and those objects cause several objectstmbe mislabeled. pict them in complex scenes that are not amiable to state-of-

the-art segmentation algorithms. Nevertheless, a simgris
>}‘raction of the images can be automatically segmented with

in Section 3.4), withA| = 500 and|B| = 8,736. Each time
series was of length 1,024.

3.3 Historical Manuscript Annotation. Recent initia-
tives like the Million Book Project and Google Print Librar
Project have already archived several million books in dig-

ital format, and within a few years a significant fraction of 2There is a “Day moth” Apina callistg, however it looks nothing like
world’s books will be online [10]. While the majority of thethe insect in question.
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Figure 8: The normalized value @ as a function of the
number of calls to the Euclidean distance.

the University of Padova[1]. However, the work assumes
unlimited computation resources and a high degree of human
intervention. Here we attempt to show that AAAJ could
allow real time exploration of historical manuscripts. We
can simply point to an image and right-click and choose
annotation-search. At this point the user can provide some
text clues to seed the search. In this case we assume the
word “butterfly” is provide to the system, which then issues
a Google image search.
Figure 7: We can compare two shapes by converting the  While there are still some image processing and web
to one-dimensional representations and using an appteprérawling issues to be resolved we consider this problem an
distance measure, in this case Dynamic Time Warping. ideal one to test the utility of AAAJ, so we conducted the

following experiment.

DatasetA consists of 35 drawings of butterflies. They

are taken from manuscripts as old as 1783 and as recent as

1968. In every case we know the correct species label be-
simple off the shelf tools (we use Matlab’s standard imagayse it either appears in the text (in some cases in German
processing tools with default parameters). As illustrated or French which we had translated by bilingual entomolo-
Figure 7, for those images which can be segmented intgjists) or because the entomologist Dr. Agenor Mafra-Neto
single shape, we can convert the shapes into a one dimgas able to unambiguously identify it for us. Ddacon-
sional representation and compare them to our image ofdjst of 35 real photographs of corresponding insects, plus
terest [11]. 691 other images of butterflies (including some duplicates o

While the above considers just one image, there ahe above) plus 44,215 random shapes. The random shapes
many online collections of natural history which have hugome from combining all publicly available shape datasets,
dreds or thousands of such images to annotate. For examjngd include images of fish, leafs, bones, fruit, chickenspart
Albertus Seba’s 18th century masterwork [17] has more tharrowheads, tools, algae, and trademark logos. Both datase
500 drawings of butterflies and moths, and there are at legre randomly shuffled.
tWenty 17th and 18th Century WOI‘kS Of Similar magnitud( Wh||e we used Dynamic T|me Warping as the distance
(see [7], page 86 for a partial list). measure in Figure 7, it is increasingly understood that for
We believe that annotating such collections is a perfgarge datasets the amount of warping allowed should be

application of AAAJ. We have a collection of a few hundregedyced [16], [19]. For large enough datasets the amount of
objects, that we want to link to a subset of a huge dataset (fyarping allowed should be zero, which is simply the special
images on the internet). An exhaustive join is not tenablase of Euclidean distance.

nor is it needed. We d.on’t need to.find the exact neare  Figure 8 shows the rate of reduction@bn the butterfly
match to each butterfly, just one that is near-enough toflikgjataset.
be the same or related species. While we can see that the rate of error reduction is very

Once we have a near-enough neighbor we can Wast, it is difficult to get context for the utility of AAAJ frm
any meta tags or text surrounding the neighbor to annote
our unkpown h.IStOIjlcal Images. Th_e b"?ISIC framework fe—srreork at the University of Padova and related projectssictam
annotation of historical manuscripts in this way has been thostly religious texts, in particular illuminated manusciptVe know of

subject of extensive study by several groups, most notablyio other research effort that considers historical sdienéixts.

Eastern tiger swallowtail
(Papilio glaucus)



this figure. Consider therefore Figure 9. Here we show i
the leftmost column the original historical manuscriptstén
that at this resolution they are very difficult to differeaig
from photographs). After 10% of the eventual time hac
passed we took a snapshot of the current nearest neighb
of A. Figure 9 (center) shows the top eight, as measured |
mappingi].dist. In the rightmost column we show the final
result (which is the same for all algorithms). It is difficult
to assign a metric to these results, since precision/recall
accuracy cannot easily be modified to give partial credit fc
discovering a related species (or a mimic, or convergent
evolved species). However, we can intuitively see that muc
of the utility of conducting this join is captured in the first
10% of the time.

Dataset 4 10% Time 100% Time

L

Agrias Agrias beata
sardanapalus

Troides amphrysus Troides amphrysus Troides magellanus
3.4 Anytime Anomaly Detection.In certain domains
data observations come gradually over time and are subs
quently accumulated in large databases. In some cases
input data rate may be very high or data may come fror

multiple sources, which makes it hard to guarantee the quz ! | ‘ g ! ! i i

ity of the stored observations. Still we may need to hav  Papilio ulysses Papilio karna Papilio ulysses

some automatic way to efficiently detect whether incomin
observations are normal or represent severe outliers resth
spect to the data already in the database. A simple mes

to achieve this is to apply the nearest neighbor rule and-
find out whether there is some similar observation stored ¢  Parides philoxenus ~ Pachlioptera polyphontes ~ Pachlioptera

far. Depending on the accumulated dataset size and the inj polyeuctes
rate, processing all incoming observation in online manne
with the above simple procedure may still be intractable. A

the same time it is often undesirable and, as we demonstri  pypiiio antimachus Papilio antimachus

below, unnecessary to wait for the whole process to finis

and then run offline some data cleaning procedure. What v
can use instead is an anytime method that computes the i

Papilio krishna Papilio karna Papilio karna
iruana iruana

Heliconius melpomene

proximate matches to small subsets of elements in a bat
mode, before the next subset of observation has arrived. E
low we demonstrate how our AAAJ algorithm can help us

with this.
As a concrete motivating example consider star ligh
curves, also known as variable stars. The American Assoc
ation of Variable Star Observers has a database of over 1( }
million variable star brightness measurements going bac  p,ii, demodocus Papilio bromius  Graphium sarpedon

over ninety years. Over 400,000 new variable star brigh

ness measurements are added to the database every yee
over 700 observers from all over the world [12], [15]. Many
of the objects added to the database have errors. The sour
of these errors range from human error, to malfunctionin

observational equipment, to faults in punch card readers (f ~ Fapilio hesperus Papilio blumei— Papilio ascalaphus

attempts to archive decade old observations) [12]. An obv

ous way to check for errors is to join the new tentative cellec

tion (A) to the existing databas8&). If any objects inA are Figure 9: (eft column Eight sample images from the

unusually far from their nearest neighborBrthen we can dataset, a collection of butterfly images from historical

single them out for closer inspection. The only problem withanuscripts. €enter columhThe best matching images af-

this idea is that a full join on the 10.5 million object databa ter AAAJ has seen 10% of the dat&ight columi The best
matching images after AAAJ has seen all of the data.
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Figure 11: Average nearest neighbor distance with respect
to the performed Euclidean distance comparisoisp(A

Figure 10: Various light curve vectors in the dataset. (&) ag composed only of normal element®ofton) A contains
(b) are normal ones. And (c) and (d) are outliers. one outlier

takes much longer than a day. As we shall see, doing texperiments. In the first one datas&tconsists of 100
with AAAJ allows us to spot potentially anomalous record@ndomly selected examples among the examples annotated
much earlier. as normal. For the second experiment, we replace one
For this experiment we use a collection of star liglof the normal examples iA (selected at random) with a
curves donated by Dr. Pavlos Protopapas of Time Series cknown outlier. This outlier is not believed to be a recording
ter at Harvard’s Initiative for Innovative Computing. Th©' transcription error, but an unusual astronomical object
dataset that we have obtained contains around 9,000 sFigure 11 shows the improvement in the average nearest
light curves from different star classes. Each example if1€ighbor distance in dataséf again as a function of the
time series of size 1,024. Figure 10 shows four differerttligPerformed Euclidean distance computations. The maximal
curve shapes in the data. Suppose that a domain expert 1€arest neighbor distance is also presgnted in the graphs.
siders as outliers examples whose nearest neighbor distzThe top graph corresponds to the experiment where dataset
is more than a predefined thresholdt atandard deviations” iS composed only of normal elements, and the bottom one
away from the average nearest neighbor distance [15]. js for the dataset with one outlier. The experiment shows
the light curve data we sét= 5 standard deviations, whichhow efficiently the AAAJ algorithm can detect the outliers.
captures most of the anomalies as annotated by the exper' € average distance drops quickly after performing only a
tronomers. Examples (c) and (d) in Figure 10, show two sylimited number of computations. After that the mean value
light curves, while (a) and (b) are less than 5 standard destabilizes. At this point we can interrupt the algorithm and

ations from their nearest neighbors and therefore arestiecOMPpUte the deviation for each elementinThe elements
as normal. that fail the expert provided threshaoldare likely to fail it

Now assume that the light curve observations ghad we performed a full join too. In the second example we

recorded in batch mode 100 at a time. We can apply @€ able with hi_gh confidence to .isolate the outlier in only a

AAAJ algorithm to every such set of incoming light curvef€W thousand distance computations.

(representing datasAtin the algorithm) and find its approx-

imate match within the database (8interrupting the pro- 4 Conclusions and Future Work

cedure before the next subset of light curves arrives. If tin this work we have argued that for many data mining prob-

maximal approximate nearest neighbor distanogi;more lems an approximate join may be as useful as an exhaustive

than the threshold of 5 standard deviations from the averdoin. Given the difficulty of figuring out exactly “how ap-

nearest neighbor distance, then before combiAimgth the proximate” is sufficient, we show that we can cast joins as

rest of the database we remove from it the outliers that fanytime algorithms, in order to use as much computational

the threshold. resources as are available. We demonstrated the utilityrof o
To demonstrate the above procedure we conduct tideas with experiments on diverse domains and problems.



extract most of the benefit of a join after doing only a small
fraction of the work (the diminishing returns requiremeht d11]
[28]), and we can use internal statistics (as in Section 3.4)

to achieve the measurable quality requirement [28].

The

interruptability and preemptability requirements areiadiy

true, we can stop the AAAJ algorithm at anytime and ﬁ ]
only need to save the relatively tiny mapping data strudfur

we want to pick up where we stopped at a later date. Finally,
with regards to Zilberstein and Russell's requirements, ta 3]
monotonicity property is clearly observed in Figures 3,4, 5

8 and 11.
Future work includes extending Orchard’s algorithm to

(14]

As we have shown for the domains considered we cH®] M. Herwig, Google’s total library: putting the world’s books

on the webhttp://www.spiegel.de/international/, 2007.

E. Keogh, L. Wei, X. Xi, S. H. Lee, and M. Vlachos,
LB_Keogh supports exact indexing of shapes under rotation
invariance with arbitrary representations and distance mea-
sures VLDB 2006, Proc. of 32nd international conference on
Very Large Data Bases-Volume 32, pp. 882-893, 2006.

K. H. Malatesta, S. J. Beck, G. Menali, and E. O. WaaJérm,
AAVSO Data Validation ProjecThe Journal of the American
Association of Variable Star Observers, 2006.

T. Mouffet, The theater of insectsvolume 2, Da Capo Press,
New York, USA, 1958.

M. T. Orchard, A fast nearest-neighbor search algorithm
ICASSP’91, Proc. of International Conference on Acoustics,

non-metric measures and an enormously scaled up version of Speech, and Signal Processing, pp. 2297-2300, 1991.
the butterfly dataset which also considers color and textlt€]l P- Protopapas, J. M. Giammarco, L. Faccioli, M. F. Stru-
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