
Comparison of Dataflow Architecture and Real-Time Workshop Embedded Coder
in Power Electronics System Control Software Design

Jinghong Guo, Stephen H. Edwards*, and Dusan Borojevich
Center for Power Electronics Systems

The Bradley Department of Electrical and Computer
Engineering

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061 USA

*Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061 USA

 Abstract— Dataflow software architecture has been proposed
to design reusable and reconfigurable control software for
power electronics systems. Mathwork’s Real-time Workshop is
a commercial software tool supports fast prototyping and
automatic program building. In this paper, the proposed
dataflow architecture approach will be compared with the Real-
time Workshop from software infrastructure, control
functionality and flexibility. Several power electronics control
applications will be used to compare the performance of code
generated from the two approaches.

I. INTRODUCTION

Dataflow architecture has been proposed to address
software development and maintenance issues encountered
by legacy “main-program-and-subroutine” software style [1]
[2] in control software design for power electronics systems.
Within the dataflow architecture, the control software is
composed with function bodies (ECOs) and data channels.
The dataflow approach provides a way to design reusable and
reconfigurable control software from a design library of
standard software modules. A real-time kernel, named
DARK, is also developed to support fast context switching,
distributed control and real-time scheduling. The generated
control software could be tailored with different scheduling
methods and code optimization levels to meet application
real-time requirements as well as performance, without
affecting the application code.

Mathworks Simulink [3] is a widely used software package
for modeling, simulating and analyzing dynamical systems.
Real-time Workshop [4] generates optimized, portable and
customizable code from Simulink models, which could run
on many production targets. These two software packages
together provide a software platform for rapid prototyping
process and automatic program building.

From software construction point of view, both approaches
attempt to reduce engineering effort. Dataflow architecture
allows users to design software from functional self-
contained library blocks at the C code level. Simulink and
Real-Time Workshop save software design effort by

 This work was supported primarily by the ERC Program of the National

Science Foundation under Award Number EEC-9731677.

providing a graphical modeling environment and automatic C
code generation. Though dataflow approach requires a
dataflow graph description, which is handwritten so far, this
software architecture has the potential to incorporate a
graphical design interface to further reduce the software
design period and cost.

However, the two approaches differ from each other at the
constructed software. A real-time kernel designed for
dataflow architectural software provides abundant real-time
control features to meet requirements from different kinds of
applications. These real-time control features range from
static single thread scheduling to preemptive multithread
scheduling. The bare board embedded C code generated from
Simulink and Real-Time workshop only supports single
tasking or preemptive multitasking. The dataflow
architectural software is easy to design for distributed control
application, while Simulink and Real-Time Workshop do not
have special mechanism to facilitate distributed control
software design.

In this paper, the differences rooted in the software
infrastructure, such as the basic software component division,
component interaction mechanisms and system organization,
are analyzed. Section II will give an overview of dataflow
architecture infrastructure. Section III will introduce
Simulink/Real-Time Workshop package and analyze the
software structure of the generated embedded C code. After
these qualitative comparisons between these two approaches,
a 3-phase close loop inverter control is used as examples in
section IV to quantitatively show the performance
comparison of software generated from these two approaches.
It will also be analyzed how those software style features
discussed in section II and III relate to the generated software
performance.

II. DATAFLOW ARCHITECTURE

Software written using a dataflow architecture consists of a
collection of independent components running in parallel that
communicate via data channels; such a design can be
succinctly depicted graphically. A node is a computational
component, and an arrow is a buffered data channel. A
control algorithm is divided into nodes first. Each
concurrently executing node is a self-contained software part

with well-defined functionality. Data channels provide the
sole mechanism by which nodes can interact and
communicate with each other, ensuring lower coupling and
greater reusability. Data channels can also be implemented
transparently between processors to carry messages between
components that are physically distributed. Choosing this
component model for embedded control software alleviates
many of the negative aspects of the more traditional main-
program-and-subroutine organization. More importantly,
however, it also opens up the possibility of developing a
library of commonly recurring, standardized control software
functions encapsulated in reusable data flow components. To
best capitalize on the reusability features of the dataflow
architecture style, the design of a library of standardized
software components will be discussed. Based on the design
library, a new system can be rapidly configured from an
existing collection of components.

In the dataflow architecture, a control application is
composed of ECOs and data channels, and the connections
between ECOs and data channels are described in a dataflow
graph. Consequently, designing a control application mainly
involves constructing such a dataflow graph by selecting
ECOs from the design library and connecting them together.
Additional user-defined or application-specific ECOs are also
easily supported. Annotations on the graph specify ECO
startup parameters, ECO priorities, ECO execution policies,
data channel property choices, and data channel buffering
policies. Fig. 1 shows how a control application built up from
individual ECOs and run-time system structure.

Fig. 1 Dataflow programming.

Unlike applications that are built up from simple
subroutines, dataflow applications require support for their
unique features, including support for concurrent execution
data channel buffering, inter-process synchronization, and
interrupt handling. To explore the overhead required to
support dataflow applications, the control application is
working with a custom designed real-time micro-kernel,
Dataflow Architecture Real-time Kernel (DARK) [5], which
supports lightweight process management, data channel

management, system resource allocation, device driver
support, and interrupt handling.

DARK supports a set of OS features, designed as
compilation parameter, from which allow users to choose to
satisfy their application requirements. For example, DARK
supports four ECO scheduling methods: preemptive multi-
thread, non-preemptive multi-thread, single thread with
dynamic scheduling and single thread with static single
thread. For data channel connection, DARK supports two
ways: queued data channel, or mailbox data channel. The
combination of ECO scheduling and data channel connection
methods provides different real-time kernel features to meet
specific applications requirements. For applications that all
ECOs have the same sample rate (or update rate), the
execution sequence can be predefined. Thus, the static
scheduled single thread and mailbox features can be applied,
which introduces the least runtime overhead.

III. MATHWORKS SIMULINK AND REAL-TIME WORKSHOP
SOFTWARE

In recent years, Mathwork’s Simulink and Real-Time
Workshop software packages have been widely used in
industry and academia for modeling and simulating dynamic
systems and generating C code for rapid prototyping or
embedded control. Simulink is a software package for
modeling and simulating dynamic systems. It provides a
graphical design environment that allows designers to build
models as block diagrams. Real-Time Workshop generates
optimized, portable and customizable ANSI C code from
Simulink models to create stand-alone implementations of
models that operate in real-time and non-real-time in a
variety of target environments. The relationships between
Mathworks’ MATLAB, Simulink and Real-Time Workshop
are shown in Fig. 2.

Fig. 2. Relationships between Mathwork’s MATLAB, Simulink and

Real-time Workshop software packages.

The overall software design procedure using Simulink and

Real-Time Workshop package is first draw block diagram

Error Generator

Xe = X - Xref

2-D Regulator

Xr = r(X1,X2)
abc-dqo

Xdqo = Tabc_dqo Xabc

...

Control Generator

Control Software Run-time
Supervisor

Startup
Running

Dataflow Graph ECO Library

abc_dqo

ia
ib
ic
θ

2-D
Regulator

id
iq

id_ref

dd

iq_ref

dq

Error Generator

Xe = X - Xref

2-D Regulator

Xr = r(X1,X2)
abc-dqo

Xdqo = Tabc_dqo Xabc

...

Control Generator

Control Software Run-time
Supervisor

Startup
Running

Dataflow Graph ECO Library

abc_dqo

ia
ib
ic
θ

2-D
Regulator

id
iq

id_ref

dd

iq_ref

dq

based system model in Simulink, and then build target C code
using Real-Time Workshop. Simulink provides standard
block libraries and a graphical design environment. It
supports hierarchical design, which means a block can be
composed of several sub blocks. It also allows users to create
their customized library to simplify their specific design
procedure. The designed model can be simulated in Simulink
to adjust system model structure or model parameters. After
several such iterations, when the simulation results match the
design specifications, the model can be translated into C code
through Real-Time Workshop. Real-Time Workshop allows
users to choose from several code formats for different code
running targets. To generate C code that can be complied for
embedded systems, Embedded Coder format is applied for
the design example in this paper.

The overall software design procedure using Simulink and
Real-Time Workshop package is first draw block diagram
based system model in Simulink, and then build target C code
using Real-Time Workshop. Simulink provides standard
block libraries and a graphical design environment. It
supports hierarchical design, which means a block can be
composed of several sub blocks. It also allows users to create

their customized library to simplify their specific design
procedure. The designed model can be simulated in Simulink
to adjust system model structure or model parameters. After
several such iterations, when the simulation results match the
design specifications, the model can be translated into C code
through Real-Time Workshop. Real-Time Workshop allows
users to choose from several code formats for different code
running targets. To generate C code that can be complied for
embedded systems, Embedded Coder format is applied for
the design example in this paper.

To generate embedded C code, there are some constrains
on model blocks. It requires that all blocks in the model are
either discrete time block or continuous time block but can be
sampled at discrete time. If multiple sample rates are used in
a system, it requires that the lowest sample will be chosen as
the base rate and other higher sample must be multiple time
of the base rate. The purpose of these constraints is for the
Embedded Coder to generate C code with some basic real-
time scheduling support.

The C code generated from Embedded Coder is in legacy
main-program-and-subroutine style, composed of a sample
main program, an interrupt service routine (ISR) to
implement the control algorithm and data structure
descriptions. The pseudo code of the main program and the
ISR, rt_OneStep (), is shown in Fig. 3. In the main program,
after initialization, the DSP enters an infinite loop to wait for
interrupts. The interrupts occur at the base sample specified
in the Simulink model. And in the ISR, ModelStep is called
to implement control in the current time step. The structure of
ModelStep is shown in Fig. 4, where MdlOutput computes
the outputs of a model, MdlUpdate updates model states, and
MdlDerivatives computes derivates for model states if
necessary.

Fig. 4 ModelStep structure.

main()

{

 Initialization (including installation of rt_OneStep as

an interrupt service routine for a real-time clock)

 Initialize and start timer hardware

 Enable interrupts

 While(not Error)and (time <final time)

 Background task

 EndWhile

 Disable interrupts (Disable rt_OneStep from

executing)

 Complete any background tasks

 Shutdown

}
(a) Pseudo main program.

rt_OneStep()

{

 Check for interrupt overflow or other error

 Enable "rt_OneStep"(timer)interrupt

 ModelStep—Time step combines output, logging,

update

}
(b) Pseudo ISR program.

Fig. 3 Pseudo code of Embedded Coder generated C program.

IV. COMPARISON OF DATAFLOW APPROACH AND SIMULINK &
REAL-TIME WORKSHOP PACKAGE

In this paper, a 3-phase voltage source inverter (VSI) with
closed voltage loop is chosen as the design example. The
specifications of the 3-phase VSI are:

Input: Vdc = 200 V;
Outputs: balanced 3-phase sinusoidal with line-to-line

voltage 100V;
Switching frequency: fs = 10kHz;
Output inductance L = 300 uH at each phase;
Output capacitance C = 100 uF at each phase.

The voltage loop is design to have phase margin 35 degree
and 10 dB gain margin.

The dp transformation technology is used to simplify the
close loop control design and SVM technology is used to
implement the modulator. The digital controller is assumed to
run in an Analog SHARC DSP (ADSP 21160). Analog
Device also provides a software development environment
Visual DSP/Visual DSP ++, which support ANSI C.

A. Software design procedure

Fig. 5 shows the Simulink model of the close loop control
of the 3-phase VSI, while Fig. 6 shows its dataflow graph.
From the high end user point of view, the two software

Fig. 5 Simulink Model of voltage close loop control of 3-phase inverter.

Fig. 6 Dataflow graph of voltage close loop control of 3-phase

inverter.

2-D Regulator

dd

sinθLook_up
Sin_table

Look_up
Cos_table

vbADC_B
driver

Start

abc-dqo

vaADC_A
driver

Start

cosθ

dq

dd_ref

dq_ref

dqo-αβγ

dd dq

3-D Modulator

dα dβ

da db dc

Start

Start

2-D Regulator

dd

sinθLook_up
Sin_table

Look_up
Cos_table

vbADC_B
driver

Start

abc-dqo

vaADC_A
driver

Start

cosθ

dq

dd_refdd_ref

dq_refdq_ref

dqo-αβγ

dd dq

3-D Modulator

dα dβ

da db dc

Start

Start

construction approaches have similarities. For the user of
Simulink and Real-Time Workshop package, the main task is
using Simulink as a graphical interface to drag and pull
blocks from design libraries and then chooses a desired target
for the Real-Time Workshop to compile into C code. When
using the dataflow approach, the designer only needs to
provide a dataflow description file to describe ECOs and their
connections.

B. Code structure and performance analysis

Though there is a significant similarity in Fig. 5 and Fig. 6,
both composed of function blocks and data connections, the
generated code are in different structures because of different
block implementation methods and block connection
mechanisms.

The generated code from Real-Time Workshop Embedded
Coder [6] is in main-program-and-subroutine style as
presented in section III. A block in a Simulink model has two
tasks during one time step: compute output and update states
if necessary. In the generated C code, output computation for
individual blocks are combined into MdlOutput, while states
updating for individual blocks are combined into MdlUpdate.

Inter-procedure calls are reduced in order to optimize the
generated code for real-time execution. The block execution
sequences inside MdlOutput and MdlUpdate are
prescheduled. Arrows in Fig. 5 are translated into singular
storage units and used to decide the prescheduled block
execution sequence.

Blocks in Fig. 6 are independent processes in dataflow
software, while arrows are data channels. Each process has its

self-contained functionality. The execution sequence of
processes can be statically scheduled, or dynamically
scheduled. In dynamically scheduling, Each ECO process can
be activated at its own sample rate and the activation depends
on its input data channels status. There is no constraint
between sample rates of different ECO process. However,
context switching between ECO processes and maintaining
data channels introduce run-time performance overhead.

Fig. 7 shows the DSP execution cycles during one
switching period for Embedded Coder generated C code and
dataflow software with different real-time kernel features.
The code efficiency of Embedded Coder generated C code is
compared to that of dataflow C code with mailbox data
channels and static single thread scheduling. From Fig. 7, it
can be seen that the Embedded Coder generated C code
actually takes more time on computation than any dataflow
counterparts. What the Embedded Coder optimized during its
code generation is mainly reduced inter-procedure calls.

Since the Embedded Coder generated C code is in main-
program-and-subroutine style, it has the drawbacks inherent
to its software style. First, the generated code is naturally fit
in centralized control structure. Significant extra engineering
effort is needed to split the generated code into distributed
control system since the blocks in Simulink model are
combined. Second, there is possibility that the generated code
is not absolutely compatible with the target compiler, which
makes the software debug task tedious because the generated
code contains MATLAB specific definitions. Small changes
in the generated code may cause the designer goes back to the
Simulink models.

For dataflow software, though it introduces run-time

Fig. 7. Code performance comparison.

0

1000

2000

3000

4000

5000

6000

7000

Queue Mailbox Queue Mailbox Queue Mailbox Queue Mailbox

Preemptive Multithread Nonpreemptive
Multithread

Dynamic Schedule
Single Thread

Static Schedule Single
Thread

Embedded
Coder

Generated
D

SP Execution C
ycles

Computation Data channel Ready queue
Context switching ECO scheduling

5726
6090

5507
5172

3415
3043

1339
869 712

performance overhead, every ECO process is independent,
which makes the software easily run in distributed control
system or multi-processor system. The inter-process
communications is carried through data channels, which can
be designed upon network communication protocols. The
ECO processes allocation mechanisms have been designed
and the ECO inter-processes communication protocol is
under research [7].

V. CONCLUSION AND FUTURE WORK

In this paper, two software design approaches to construct
control software for power electronics systems, dataflow
architecture and MATLAB Simulink and Real-Time
Workshop package, are compared at their design
methodologies and code infrastructures. A 3-phase close loop
control is used as an example to show the performance of
software generated from these two approaches. The causes
for performance differences are analyzed.

From the analysis, it can be seen that Simulink and Real-
Time Workshop package takes the advantage of graphical
design and modeling environment and automatic code
generation to reduce software design period and cost. The
generated embedded C code is featured with reduced inter-
procedure calls to optimize run-time performance. On the
other hand, dataflow architecture provides more flexible real-
time control options, felicitates distributed control design and
requires less system redesign efforts.

MATLAB provides ways to design customized target
compiler, which can be used by Real-Time Workshop to
generate customer C code. This opens the possibility to use
Simulink as high-end graphical design interface and let Real-
Time Workshop generate dataflow styled C code with
optimized inter-procedure calls. The future work thus is to
investigate the feasibility of combine advantages of both
approaches to construct a better platform to design control
software for power electronics systems, featured with intense
real-time requirements and distributed control structure.

REFERENCES
[1] Jinghong Guo, Stephen Edwards, and Dushan Boroyevich. "Desinging

reusable, reconfigurable control software for power electronics systems.”
CPES 2002 Power Electronics Seminar and NSF/Industry Annual
Review, April, 2002

[2] Jinghong Guo, Stephen H. Edwards, and Dushan Borojevic. “Elementary
control objects: Toward a dataflow architecture for power electronics
systems.” IEEE . In Proceedings of the IEEE 33rd Annual Power
Electronics Specialists Conference, PESC 02, 2002, pp. 1705-1710.

[3] MathWorks Simulink web site,
http://www.mathworks.com/products/simulink/.

[4] MathWorks Real-Time Workshop web site,
http://www.mathworks.com/products/rtw/.

[5] K.Singh and S. H. Edwards, ”DARK: Designing A High Performance
Micro-kernel for Power Electronics Controllers,” CPES Seminar,
Virginia Tech, Blacksburg, VA, 2002, pp. 362-367.

[6] MathWorks Real-Time Workshop Embedded Coder web site,
http://www.mathworks.com/products/rtwembedded.

[7] Parool Mody and Stephen H. Edwards, “Distributed Communication
Protocol for Power Electronics Systems,” CPES Seminar, Virginia Tech,
Blacksburg, VA, 2003, in publishing.

