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 Abstract— Dataflow software architecture has been proposed 
to design reusable and reconfigurable control software for 
power electronics systems. Mathwork’s Real-time Workshop is 
a commercial software tool supports fast prototyping and 
automatic program building. In this paper, the proposed 
dataflow architecture approach will be compared with the Real-
time Workshop from software infrastructure, control 
functionality and flexibility. Several power electronics control 
applications will be used to compare the performance of code 
generated from the two approaches.  

I. INTRODUCTION  

Dataflow architecture has been proposed to address 
software development and maintenance issues encountered 
by legacy “main-program-and-subroutine” software style [1] 
[2] in control software design for power electronics systems. 
Within the dataflow architecture, the control software is 
composed with function bodies (ECOs) and data channels. 
The dataflow approach provides a way to design reusable and 
reconfigurable control software from a design library of 
standard software modules. A real-time kernel, named 
DARK, is also developed to support fast context switching, 
distributed control and real-time scheduling. The generated 
control software could be tailored with different scheduling 
methods and code optimization levels to meet application 
real-time requirements as well as performance, without 
affecting the application code.  

Mathworks Simulink [3] is a widely used software package 
for modeling, simulating and analyzing dynamical systems. 
Real-time Workshop [4] generates optimized, portable and 
customizable code from Simulink models, which could run 
on many production targets. These two software packages 
together provide a software platform for rapid prototyping 
process and automatic program building.  

From software construction point of view, both approaches 
attempt to reduce engineering effort. Dataflow architecture 
allows users to design software from functional self-
contained library blocks at the C code level. Simulink and 
Real-Time Workshop save software design effort by 
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providing a graphical modeling environment and automatic C 
code generation. Though dataflow approach requires a 
dataflow graph description, which is handwritten so far, this 
software architecture has the potential to incorporate a 
graphical design interface to further reduce the software 
design period and cost. 

However, the two approaches differ from each other at the 
constructed software. A real-time kernel designed for 
dataflow architectural software provides abundant real-time 
control features to meet requirements from different kinds of 
applications. These real-time control features range from 
static single thread scheduling to preemptive multithread 
scheduling. The bare board embedded C code generated from 
Simulink and Real-Time workshop only supports single 
tasking or preemptive multitasking. The dataflow 
architectural software is easy to design for distributed control 
application, while Simulink and Real-Time Workshop do not 
have special mechanism to facilitate distributed control 
software design. 

In this paper, the differences rooted in the software 
infrastructure, such as the basic software component division, 
component interaction mechanisms and system organization, 
are analyzed. Section II will give an overview of dataflow 
architecture infrastructure. Section III will introduce 
Simulink/Real-Time Workshop package and analyze the 
software structure of the generated embedded C code. After 
these qualitative comparisons between these two approaches, 
a 3-phase close loop inverter control is used as examples in 
section IV to quantitatively show the performance 
comparison of software generated from these two approaches. 
It will also be analyzed how those software style features 
discussed in section II and III relate to the generated software 
performance.  

II. DATAFLOW ARCHITECTURE 

Software written using a dataflow architecture consists of a 
collection of independent components running in parallel that 
communicate via data channels; such a design can be 
succinctly depicted graphically.  A node is a computational 
component, and an arrow is a buffered data channel.  A 
control algorithm is divided into nodes first.  Each 
concurrently executing node is a self-contained software part 



with well-defined functionality.  Data channels provide the 
sole mechanism by which nodes can interact and 
communicate with each other, ensuring lower coupling and 
greater reusability.  Data channels can also be implemented 
transparently between processors to carry messages between 
components that are physically distributed.  Choosing this 
component model for embedded control software alleviates 
many of the negative aspects of the more traditional main-
program-and-subroutine organization.  More importantly, 
however, it also opens up the possibility of developing a 
library of commonly recurring, standardized control software 
functions encapsulated in reusable data flow components.  To 
best capitalize on the reusability features of the dataflow 
architecture style, the design of a library of standardized 
software components will be discussed.  Based on the design 
library, a new system can be rapidly configured from an 
existing collection of components. 

In the dataflow architecture, a control application is 
composed of ECOs and data channels, and the connections 
between ECOs and data channels are described in a dataflow 
graph. Consequently, designing a control application mainly 
involves constructing such a dataflow graph by selecting 
ECOs from the design library and connecting them together.  
Additional user-defined or application-specific ECOs are also 
easily supported.  Annotations on the graph specify ECO 
startup parameters, ECO priorities, ECO execution policies, 
data channel property choices, and data channel buffering 
policies. Fig. 1 shows how a control application built up from 
individual ECOs and run-time system structure.  

 
Fig. 1 Dataflow programming. 

Unlike applications that are built up from simple 
subroutines, dataflow applications require support for their 
unique features, including support for concurrent execution 
data channel buffering, inter-process synchronization, and 
interrupt handling. To explore the overhead required to 
support dataflow applications, the control application is 
working with a custom designed real-time micro-kernel, 
Dataflow Architecture Real-time Kernel (DARK) [5], which 
supports lightweight process management, data channel 

management, system resource allocation, device driver 
support, and interrupt handling. 

DARK supports a set of OS features, designed as 
compilation parameter, from which allow users to choose to 
satisfy their application requirements. For example, DARK 
supports four ECO scheduling methods: preemptive multi-
thread, non-preemptive multi-thread, single thread with 
dynamic scheduling and single thread with static single 
thread. For data channel connection, DARK supports two 
ways: queued data channel, or mailbox data channel. The 
combination of ECO scheduling and data channel connection 
methods provides different real-time kernel features to meet 
specific applications requirements. For applications that all 
ECOs have the same sample rate (or update rate), the 
execution sequence can be predefined. Thus, the static 
scheduled single thread and mailbox features can be applied, 
which introduces the least runtime overhead. 

III. MATHWORKS SIMULINK AND REAL-TIME WORKSHOP 
SOFTWARE 

In recent years, Mathwork’s Simulink and Real-Time 
Workshop software packages have been widely used in 
industry and academia for modeling and simulating dynamic 
systems and generating C code for rapid prototyping or 
embedded control. Simulink is a software package for 
modeling and simulating dynamic systems. It provides a 
graphical design environment that allows designers to build 
models as block diagrams. Real-Time Workshop generates 
optimized, portable and customizable ANSI C code from 
Simulink models to create stand-alone implementations of 
models that operate in real-time and non-real-time in a 
variety of target environments. The relationships between 
Mathworks’ MATLAB, Simulink and Real-Time Workshop 
are shown in Fig. 2. 

 
Fig. 2.  Relationships between Mathwork’s MATLAB, Simulink and 

Real-time Workshop software packages. 

 
The overall software design procedure using Simulink and 

Real-Time Workshop package is first draw block diagram 
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based system model in Simulink, and then build target C code 
using Real-Time Workshop. Simulink provides standard 
block libraries and a graphical design environment. It 
supports hierarchical design, which means a block can be 
composed of several sub blocks. It also allows users to create 
their customized library to simplify their specific design 
procedure. The designed model can be simulated in Simulink 
to adjust system model structure or model parameters. After 
several such iterations, when the simulation results match the 
design specifications, the model can be translated into C code  
through Real-Time Workshop. Real-Time Workshop allows 
users to choose from several code formats for different code 
running targets. To generate C code that can be complied for 
embedded systems, Embedded Coder format is applied for 
the design example in this paper. 

The overall software design procedure using Simulink and 
Real-Time Workshop package is first draw block diagram 
based system model in Simulink, and then build target C code 
using Real-Time Workshop. Simulink provides standard 
block libraries and a graphical design environment. It 
supports hierarchical design, which means a block can be 
composed of several sub blocks. It also allows users to create 

their customized library to simplify their specific design 
procedure. The designed model can be simulated in Simulink 
to adjust system model structure or model parameters. After 
several such iterations, when the simulation results match the 
design specifications, the model can be translated into C code 
through Real-Time Workshop. Real-Time Workshop allows 
users to choose from several code formats for different code 
running targets. To generate C code that can be complied for 
embedded systems, Embedded Coder format is applied for 
the design example in this paper.  

To generate embedded C code, there are some constrains 
on model blocks. It requires that all blocks in the model are 
either discrete time block or continuous time block but can be 
sampled at discrete time. If multiple sample rates are used in 
a system, it requires that the lowest sample will be chosen as 
the base rate and other higher sample must be multiple time 
of the base rate. The purpose of these constraints is for the 
Embedded Coder to generate C code with some basic real-
time scheduling support.   

The C code generated from Embedded Coder is in legacy 
main-program-and-subroutine style, composed of a sample 
main program, an interrupt service routine (ISR) to 
implement the control algorithm and data structure 
descriptions. The pseudo code of the main program and the 
ISR, rt_OneStep (), is shown in Fig. 3. In the main program, 
after initialization, the DSP enters an infinite loop to wait for  
interrupts. The interrupts occur at the base sample specified 
in the Simulink model. And in the ISR, ModelStep is called 
to implement control in the current time step. The structure of 
ModelStep is shown in Fig. 4, where MdlOutput computes 
the outputs of a model, MdlUpdate updates model states, and 
MdlDerivatives computes derivates for model states if 
necessary. 

 

Fig. 4 ModelStep structure. 

main() 

{ 

 Initialization (including installation of rt_OneStep as  

an interrupt service routine for a real-time clock) 

 Initialize and start timer hardware 

 Enable interrupts 

 While(not Error)and (time <final time) 

    Background task 

 EndWhile 

 Disable interrupts (Disable rt_OneStep from 

executing) 

 Complete any background tasks 

 Shutdown 

} 
(a) Pseudo main program. 

rt_OneStep() 

{ 

 Check for interrupt overflow or other error 

 Enable "rt_OneStep"(timer)interrupt 

 ModelStep—Time step combines output, logging, 

update 

} 
(b) Pseudo ISR program. 

Fig. 3 Pseudo code of Embedded Coder generated C program. 



  

 

IV. COMPARISON OF DATAFLOW APPROACH AND SIMULINK & 
REAL-TIME WORKSHOP PACKAGE 

In this paper, a 3-phase voltage source inverter (VSI) with 
closed voltage loop is chosen as the design example. The 
specifications of the 3-phase VSI are: 

Input: Vdc = 200 V; 
Outputs: balanced 3-phase sinusoidal with line-to-line 

voltage 100V; 
Switching frequency: fs = 10kHz; 
Output inductance L = 300 uH at each phase; 
Output capacitance C = 100 uF at each phase. 

The voltage loop is design to have phase margin 35 degree 
and 10 dB gain margin. 

The dp transformation technology is used to simplify the 
close loop control design and SVM technology is used to 
implement the modulator. The digital controller is assumed to 
run in an Analog SHARC DSP (ADSP 21160). Analog 
Device also provides a software development environment 
Visual DSP/Visual DSP ++, which support ANSI C. 

A. Software design procedure  

Fig. 5 shows the Simulink model of the close loop control 
of the 3-phase VSI, while Fig. 6 shows its dataflow graph. 
From the high end user point of view, the two software 

 
Fig. 5 Simulink Model of voltage close loop control of 3-phase inverter. 

 
Fig. 6 Dataflow graph of voltage close loop control of 3-phase 

inverter. 
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construction approaches have similarities. For the user of 
Simulink and Real-Time Workshop package, the main task is 
using Simulink as a graphical interface to drag and pull 
blocks from design libraries and then chooses a desired target 
for the Real-Time Workshop to compile into C code. When 
using the dataflow approach, the designer only needs to 
provide a dataflow description file to describe ECOs and their 
connections.  

B. Code structure and performance analysis 

Though there is a significant similarity in Fig. 5 and Fig. 6, 
both composed of function blocks and data connections, the 
generated code are in different structures because of different 
block implementation methods and block connection 
mechanisms.  

The generated code from Real-Time Workshop Embedded 
Coder [6] is in main-program-and-subroutine style as 
presented in section III. A block in a Simulink model has two 
tasks during one time step: compute output and update states 
if necessary. In the generated C code, output computation for 
individual blocks are combined into MdlOutput, while states 
updating for individual blocks are combined into MdlUpdate.  

Inter-procedure calls are reduced in order to optimize the 
generated code for real-time execution. The block execution 
sequences inside MdlOutput and MdlUpdate are 
prescheduled. Arrows in Fig. 5 are translated into singular 
storage units and used to decide the prescheduled block 
execution sequence.  

Blocks in Fig. 6 are independent processes in dataflow 
software, while arrows are data channels. Each process has its 

self-contained functionality. The execution sequence of 
processes can be statically scheduled, or dynamically 
scheduled. In dynamically scheduling, Each ECO process can 
be activated at its own sample rate and the activation depends 
on its input data channels status. There is no constraint 
between sample rates of different ECO process. However, 
context switching between ECO processes and maintaining 
data channels introduce run-time performance overhead. 

Fig. 7 shows the DSP execution cycles during one 
switching period for Embedded Coder generated C code and 
dataflow software with different real-time kernel features. 
The code efficiency of Embedded Coder generated C code is 
compared to that of dataflow C code with mailbox data 
channels and static single thread scheduling. From Fig. 7, it 
can be seen that the Embedded Coder generated C code 
actually takes more time on computation than any dataflow 
counterparts. What the Embedded Coder optimized during its 
code generation is mainly reduced inter-procedure calls. 

Since the Embedded Coder generated C code is in main-
program-and-subroutine style, it has the drawbacks inherent 
to its software style. First, the generated code is naturally fit 
in centralized control structure. Significant extra engineering 
effort is needed to split the generated code into distributed 
control system since the blocks in Simulink model are 
combined. Second, there is possibility that the generated code 
is not absolutely compatible with the target compiler, which 
makes the software debug task tedious because the generated 
code contains MATLAB specific definitions. Small changes 
in the generated code may cause the designer goes back to the 
Simulink models.  

For dataflow software, though it introduces run-time 

 
Fig. 7. Code performance comparison. 
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performance overhead, every ECO process is independent, 
which makes the software easily run in distributed control 
system or multi-processor system. The inter-process 
communications is carried through data channels, which can 
be designed upon network communication protocols. The 
ECO processes allocation mechanisms have been designed 
and the ECO inter-processes communication protocol is 
under research [7]. 

V. CONCLUSION AND FUTURE WORK  

In this paper, two software design approaches to construct 
control software for power electronics systems, dataflow 
architecture and MATLAB Simulink and Real-Time 
Workshop package, are compared at their design 
methodologies and code infrastructures. A 3-phase close loop 
control is used as an example to show the performance of 
software generated from these two approaches. The causes 
for performance differences are analyzed.  

From the analysis, it can be seen that Simulink and Real-
Time Workshop package takes the advantage of graphical 
design and modeling environment and automatic code 
generation to reduce software design period and cost. The 
generated embedded C code is featured with reduced inter-
procedure calls to optimize run-time performance. On the 
other hand, dataflow architecture provides more flexible real-
time control options, felicitates distributed control design and 
requires less system redesign efforts.  

MATLAB provides ways to design customized target 
compiler, which can be used by Real-Time Workshop to 
generate customer C code. This opens the possibility to use 
Simulink as high-end graphical design interface and let Real-
Time Workshop generate dataflow styled C code with 
optimized inter-procedure calls. The future work thus is to 
investigate the feasibility of combine advantages of both 
approaches to construct a better platform to design control 
software for power electronics systems, featured with intense 
real-time requirements and distributed control structure.       
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