
Modeling, simulation and synthesis: From Simulink to VHDL generated hardware

Ian A. GROUT
Department of Electronic and Computer Engineering, University of Limerick,

Limerick, Ireland

ABSTRACT

Today, many systems designers use software tools such
as Matlab to model a complex, mixed-technology system
prior to physically building and testing the system. These
tools, along with their associated toolboxes provide an
effective means for the initial modeling and simulation
stages in a project. Such software tools also provide
means to extract information in a relevant format to aid
the physical realisation. This paper will describe the use
of a toolbox that can analyze and process a Simulink
block diagram model in order to produce a VHDL
representation of the model. The derived VHDL model
will consist of definitions mapped from the Simulink
model. This approach may enable a user to develop and
simulate a digital control algorithm using Matlab and
once complete, convert this to VHDL code. This would
then be synthesized into digital logic hardware for
implementation on devices such as FPGAs and ASICs.

Keywords: VHDL, control, Simulink, conversion

1. INTRODUCTION

In today’s engineering environment, a rapid move from
design concept through to solution requires suitably
defined formal methods, along with effective software
support tools. Much of the initial work is performed
through modeling and simulation. This is most
noticeable in digital IC (Integrated Circuit) designs for
applications from communications through to embedded
control. VHDL (VHSIC Hardware Description
Language, IEEE Standard 1076-1993)[1] embeds the
philosophy for the modeling and simulation and allows,
with the adoption of suitable coding styles, the synthesis
of the code into digital logic hardware systems[2].
These digital systems are essential in the development of
modern electronic products. Whilst the use of VHDL is
commonplace for digital system design, these designs
will require interfacing and use within a real-world
environment, typically mixed-signal or mixed-
technology systems. In this context, mixed-signal refers
to analogue and digital electronics operating together
within a single circuit (may also referred to as mixed-
mode), whereas mixed-technology refers to electronic,
electrical and non-electrical parts operating together to

form a system (may also be referred to as mixed-
nature)[3]. Such mixed-technology systems are
commonly referred to as mechatronic systems. The area
of mechatronics has become a major engineering
discipline involving an integrated approach to the design
of systems, which include electrical/electronic, computer
and mechanical parts. Mechatronics is considered from a
number of viewpoints. Bradley et al[4] describe this as
being “concerned with the bringing together and
integration of certain key technologies”, although a
range of alternative definitions have also been
developed. A microcontroller based embedded system
for robotic manipulator control provides an example of
such a system. Within the overall design process,
Computer Aided Control System Design (CACSD) tools
are used to model and simulate, usually mathematical,
models for the entire system. The typical tools used at
the initial design stages include Matlab[5], along with its
associated toolboxes, and Mathcad[6].

This paper describes an approach to enable the system
level designer to utilise the simulation model derived in
the development of a digital algorithm, typically used
but not exclusively used in closed-loop control systems,
in the development of the underlying electronic
hardware implementation. The approach discussed here
aims to provide benefits in terms of:

v Ability to perform data conversion between
language descriptions on an automatic or semi-
automatic basis (user guidance to set a number of
key parameters)

v Analysis of a complete system at various stages in
the design process

v Ability to utilise the initial system level simulation
model in the development of the underlying
electronic hardware implementation

The paper is presented as follows. Section 1 , this section,
provides an introduction for the design approach
adopted. Section 2 will provide an overview of relevant
aspects of modeling and simulation, both with the
VHDL language used for simulation and synthesis of the
resulting digital hardware system, along with
mechatronic control system modeling and simulation
with Matlab. The conversion toolbox will be introduced
and discussed in Section 3, and this is used in a simple

case study in section 4. Section 5 discusses future work
in this area and section 6 provides the paper conclusions.

2. MODELLING AND SIMULATION OVERVIEW

Digital System Synthesis with VHDL

The VHSIC Hardware Description Language (VHDL) is
an industry standard language used within the design of
digital circuits and systems. Over the last decade, a
number of toolsets based on the language have become
available and allow the designer to model, simulate and
ultimately synthesise[7] into hardware logic complex
digital designs commonly encountered in modern
electronic devices. VHDL is one of two standard
languages used, the other being Verilog[8]. Such an
approach allows the designer to use the same model
description in the generation and simulation of the initial
design concept and once this has been completed
successfully, to re-use this model to generate the digital
logic implementation via synthesis. Using a top-down
design methodology and starting from a high level
description at the system/algorithm level, the models are
initially analysed for functional correctness. More
detailed models are then generated, increasing the
description detail and considering the hardware
implementation aspects. These models are developed to
be suited for synthesis, by typically developing RTL
(Register Transfer Level) code. The functionally correct
code, describing the Entities and Architectures, may then
be synthesised into actual hardware. These Entity and
Architecture structures provide a format and detail,
which have parallels with the method in which other
languages model structures and systems. Figure 1 shows
an example of a register which, within a digital control
algorithm, may be used to temporarily store data, as well
as providing a delay by one sample operation.

This has parallels within digital control as it can
implement a z-transform operation z-1. Cascading these
would then produce z-2, z-3, etc. A more realistic model
would however be required to have more functionality,
for example to incorporate data format conversion
(where necessary) and to provide suitable block control
signals.

Mechatronic Control System simulation with Matlab

Modeling and simulation of systems is achieved by
developing and using mathematical models of various
system sub-blocks, both continuous time and discrete
time in nature. With the Simulink[9] toolbox, these
models are represented by a graphical block diagram, in
a form which may aid the designer’s understanding of
the problem. It is the Simulink block diagram which is of
main interest, in particular a sub-set of the available
library blocks which can be used to develop a discrete
time algorithm (in particular the inport, outport, gain,
unit delay, discrete time filter and zero-order hold)
blocks. By taking the text based model (.mdl file) which
represents the block diagram and extracting relevant
information, this may be used to map the model
functions to a VHDL representation, for logic level
modeling, simulation and synthesis.

To illustrate this, Figure 2 identifies an example of a
Simulink block and its description within the .mdl file. In
this, information contained in the block description may
be extracted and used alongside the user defined
parameters to complete a template model of the Unit
Delay (i.e. z-1 block) based on the simplified VHDL
entity and architecture structure defined in figure 1.
Individual blocks are connected together to form the top
level design, with block name and I/O information.

Additionally, in the digital logic domain, the design is to
be synchronous in nature and this requires suitable
control signal inputs to be defined, along with timing
information (sequence of control signals and time
separation between signals). Within the hardwareFigure 1: 8-bit data register example

--
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
USE IEEE.STD_LOGIC_ARITH.all;
--
ENTITY register1 IS
PORT(Input: IN STD_LOGIC_VECTOR(7 downto 0);

Output: OUT STD_LOGIC_VECTOR(7 downto 0);
Sample: IN STD_LOGIC;
Resetn: IN STD_LOGIC);

END register1;
--
ARCHITECTURE model OF register1 IS

BEGIN
processsample:PROCESS(Sample, Resetn)
BEGIN
if (Resetn = '0') then

Output <= "00000000";
elsif (Sample'event and Sample = '1') then

Output <= Input;
end if;

END PROCESS processsample;
END model;
--

Figure 2: Unit delay model example

Block {
 BlockType
UnitDelay
 Name "Unit Delay"
 Position [205, 85, 240, 125]
 X0 "0"
 SampleTime "1"
 }

implementation, the arithmetic operations are performed
using 2’s complement arithmetic. In an overall model
description, the Inport and Outport blocks are used to
define the system inputs and output. The Unit Delay
block model is used to define part of these blocks, but
these also contain conversion functions to set an external
binary I/O signal to its 2’s complement equivalent within
the design. This is achieved automatically and the user
will be aware that the arithmetic within the design is 2’s
complement allowing for positive and negative values.

3. SIMULINK TO VHDL CONVERSION
TOOLBOX OVERVIEW

Introduction

The conversion routine is to be considered as part of a
larger design flow and development system[10]. An
overview of the Simulink to VHDL conversion process
and subsequent model use is shown in figure 3 [11].
Here, the main steps from initial modelling through to
design data output for design realisation are shown.

The three main steps involved are (i) initial system
modeling and simulation, (ii) data conversion and
synthesis with technology targeting, and (iii) post-
synthesis hardware implementation.

Toolbox functionality

Figure 4 shows the GUI developed in TCL/TK.
However, this interface calls a C-program routine which
implements the conversion process.

In this arrangement, it is also set-up to run the
conversion process by:

v Directly from the UNIX command line
v Via the TCL/TK GUI
v Via a GUI developed in Matlab (using Guide)
v Via a GUI developed using SKILL routines with the

Cadence DFWII IC design toolsuite[12], which is
part of a larger set of SKILL routines enabling the
design database to be integrated into the IC design
tool database and to enable Matlab to be run from
DFWII

This was considered to provide a range of possible
design entry points and to investigate the ability to
integrate the approach into other software toolsets.
Whilst it is possible to develop a range of user interfaces
to such a tool, the final implementation was based on the
following considerations:

• To minimise the required user input to a set of basic
requirements

• To automate, where possible, conversion operations
• To provide flexibility in the choices for the available

solutions
• To enable the system to be updateable

Critique of conversion process

A number of issues are still outstanding and in part are
specific to the synthesis target technology. Firstly, there
is the timing of control signals within the design for
updating and delaying signals internal to the device.
With the design being synchronous in nature, the control
signals are to be generated from an external clock
source. Delays due to cell loading can be estimated and
simulated for within the design prior to final layout, and
can be used to derive a suitable control signal timing,
given a range of possible design scenarios. However, the
additional delays due to interconnect capacitance must
be taken into account and may currently require
modifications to the automatically generated control unit

Figure 4: Conversion toolbox GUI

Figure 3: Conversion routine within a design process

Simulink model
(.mdl file)

Simulink model
(.mdl file)

System Digital part for
conversion

Conversion
utility

VHDL models
(.vhd files)

SynthesisVHDL models
(.vhd files)

Netlist/schematic:
simulation

Layout place &
route

FPGA/PLD:
configuration data

Logic simulation

ASIC: silicon foundry
interface

System
level

simulation

logic. This would be a modification to the control unit
VHDL code and re-synthesis of this block. A second
issue relates to the fixed wordlength and rounding errors
in the calculations. Currently, the internal wordlength
between blocks is set to twice that of the input
wordlength and internally to each block may exceed this,
with value limiting at the block output where required.
With this arrangement, the 6 LSBs have been set to
represent fractional parts, which are truncated at the
circuit output. A third issue relates to the efficiency of
the mapping process. For the simpler blocks, it is
reasonable to anticipate the expected results from the
synthesis, over a range of possible operating conditions,
but different coding styles and taking a design through to
layout is required to assess the implementation of the
more complex designs. The fourth issue relates to the
ability to optimise the code after the initial conversion
(mapping) and whether looking at the initial design,
serial processing or parallel processing is a better
approach to adopt. This in turn relates to the required
sampling frequency, the master clock frequency and
number of internal calculations. A higher clocking
frequency may help here, but the intention is to where
possible, minimise the required signal frequencies in the
design. Where a 1MHz clock would be adequate, there is
no need to implement the design with a 10MHz clock.
The fifth issue relates to test insertion[13]. Currently,
scan test I/O is automatically inserted into each block
and connected at the top level of the design, but is not
internally connected to scan D-type bistables. It is left to
the individual designer to implement scan test, either
during the synthesis process (test insertion in Synopsys
Design Compiler), or manually in the resulting
schematic, enabling full or partial scan to be considered.

4. CASE STUDY DESIGN

Introduction

The case study design is based around the simulation,
synthesis and generation of an ASIC solution for a
biquad filter structure. This solution was chosen to
investigate aspects relating to the required silicon area
and costs associated with a dedicated hardware based
device, given available fabrication process data. The
filter is based on an overall transfer function detailed in
equation 1. This form is that of a continuous time filter,
where the coefficients require suitable definition. This
general form is configured as a 2nd order low pass filter
in discrete time form using z-transforms, mapping from
the s-domain to z-domain using the bilinear transform.

For a cut-off frequency of 100Hz, a filter Q of 1 and a
sampling frequency of 1kHz, the filter implements the
following (z-domain) transfer function (equation 2):

In the hardware implementation, the coefficients are
represented by their closest binary equivalent, where
internally to the algorithm, there is a fixed number of
bits (6 by default) which are used to represent the partial
numbers. Hence, there will be a small degree of
rounding errors involved.

Model simulation

The filter design was generated and initially simulated
using Matlab/Simulink. Three models were produced,
see figure 5 .

The top model (Discrete1, in terms of unit delays (z-1,z-2,
etc.) is the discrete time filter to be converted to the
VHDL model. The other two models (Discrete2, in
terms of z, z2, etc.) and (Continuous, the Laplace
Transform model in terms of s, s2, etc.) were used as
simulation comparisons to ensure the simulation results
for different model formats are comparable. As an
example, figure 6 shows the response of the filters to (i)
Unit step input and (ii) Sine wave input at 100Hz.

In this study, having successfully simulated the filter, the
next stage was to take the Discrete Filter block and to
place it inside its own Simulink model along with Inport
and Outport blocks. These blocks define the system to be
converted, without any additional blocks for simulation
purposes. This three block model, see figure 7, could
have also been grouped and placed within the above
model, figure 5. The 3 block model is defined by (i)
individual entities and architectures for each block and
(ii) a top level entity and architecture to define block
interconnections and top-level I/O.









+−
++

= −−

−−

6514.52104.71381.3
3948.078961.03948.0

)(
)(

12

12

zz
zz

zin
zout

Equation 2: Discrete time transfer function

2
0

02

01
2

2

.

..
)(

ω
ω

+







+

++
=

s
Q

s

ksksk
sH

Equation 1: 2nd order filter equation (s-domain)

Figure 5: Filter simulation model

Discrete1

Discrete2

Continuous

Conversion parameters

Figure 7 shows the model for conversion. During the
conversion process, the algorithm is automatically
remodelled to generate an equation of the form output(z)
= f(input(z) + f(output(z)) where the output is some
function of the input signal and delayed values of the
output signal.

Each term within the function is modelled as a hardware
block, which will be addition, subtraction, multiplication
and storage blocks, with each block requiring suitably
defined externally generated control signals.
The multiplication coefficients for each multiplication
will be generated to their nearest binary equivalents.
This is due to the fixed wordlength within the hardware
implementation. As such, the actual filter coefficients
used and the initial coefficients considered may be
compared by entering the new values into the Simulink
model and re-simulating to check the results are within
acceptable tolerances, see equation 3 .

Synthesised schematic

Synthesis of the resulting VHDL files was undertaken
using the Design Compiler toolset from Synopsys and
targeting a 0.6µm CMOS process. Figure 8 shows the
final core and top level schematics. The master clock
frequency was set to 1MHz. The top schematic is the top
level filter cell design consisting 3 main parts in the final
ASIC core: an input circuit (the inport block), the
filter circuit (the Discrete Filter block) and the
output circuit (the Outport block). This is the
schematic/netlist synthesised through Design Compiler.

The bottom schematic shows the core cell integrated into
the final design with the master control unit, digital I/O
pads and power supply. This is the schematic
representation of the complete design and is used for top
level simulation and as the starting point to develop the
layout using Automatic Place and Route tools. The
control unit accepts the 1MHz master clock frequency
and through a counter with decoded outputs provides the
required control signals. Simulation at this stage and
after final place and route is required to ensure that
(i) the synthesis was successful and (ii) the design will
operate at the required speed, taking into account the cell
loading and interconnect delays.

Figure 7: Filter model for conversion

Equation 3: Implemented Discrete time
transfer function

out(z) = (0.0625.in(z))z-2 + (0.140625in(z))z-1 +
(0.0625.in(z)) – (0.546875.out(z))z-2 -
(1.28125.out(z))z-1

Figure 6: Filter simulation response (time domain)

(i)
Unit
step
input

(ii)
Sine
wave
input

Figure 8: Filter cell schematic: filter design excl.
control unit, I/O and power supply pads (top) and

complete design (bottom)

Digital Filter layout

The filter is considered here as the core of an ASIC,
designed specifically to implement this function and
with the predefined filter coefficients. It is not
considered to be programmable. In this case, whilst a
dedicated ASIC is considered, it would more probably
be used as part of a more complex design, implementing
a dedicated hardware part of a programmable design. In
addition, a designer may require to implement the design
in an FPGA in order for design analysis, reconfiguration
and for low volume production, a more cost-effective
solution. However, the ASIC solution does provide for
the ability to obtain a range of packaging solutions and,
for Multi-Chip Module (MCM) integration, bare die
devices. Through the Automatic Place & Route tools, the
following layout was developed, see figure 9. This
shows the filter (core) and digital I/O (incl. power supply
pads) which contribute to produce the die. Here, the
design is purely digital in nature and where analogue I/O
capabilities is required, external ADC and DAC devices
would be an additional need.
The core contains two main parts. Firstly, the filter
design itself and secondly, a state machine based control
unit to control the storage of internal signals. Here, to aid
testability, a scan-path was inserted after synthesis into
the netlist/schematic. The overall die size, including
periphery, is 1782µm x 1790µm (core size: 940µm x
948µm.

The control unit was set-up to provide the necessary
control signals to update signals within the ASIC in
addition to providing an active low output at the start of
each sample as a control signal for an external ADC. A
100µS conversion time for the ADC was set-up by
default.

5. FUTURE WORK

The work described here is currently on-going and is
part of a larger approach incorporating this utility. The
work is concentrating on a number of aspects. Firstly, to
address the issues described in this paper. Secondly, to
extend the approach to develop VHDL-AMS models
(the analogue and mixed-signal extension to VHDL,
IEEE standard 1076.1-1998) and to allow for non-digital
functions to be modelled from the Simulink block
diagram. Thirdly to further integrate the approach into
the IC design toolsuite, Cadence DFWII, in order to
allow for increased ability to develop a single design
database for a mixed-signal/mixed-technology design
and movement between model and simulation formats.

6. CONCLUSIONS

This paper has described an approach and
implementation of a toolkit which is capable of
converting a Simulink model of a digital control
algorithm into a VHDL representation suitable for a
hardware based implementation via synthesis. The paper
identified the approach taken, which was demonstrated
with a discrete time filter design example. The concept
allows for discrete time algorithms to be modelled in
Simulink and semi-automatically converted to a VHDL
entity and architecture representation.

7. REFERENCES

[1] “IEEE Standard VHDL Language Reference Manual”,
ANSI/IEEE Std 1076-1993
[2] Sjoholm S. and Lindh L. (1997). “VHDL for Designers”,
Prentice-Hall, 1997, ISBN 0-13-473414-9
[3] Vachoux A. et al., “Analog and Mixed-Signal Hardware
Description Languages”, Kluwer Academic Publishers, 1997,
ISBN 0-7923-9875-0
[4] Bradley D. et al, “Mechatronics: Electronics in products
and processes”, Chapman & Hall, 1996, ISBN 0-412-58290-2
[5] “Matlab”, Version 6, The MathWorks Inc., USA.
[6] “Mathcad”, Mathsoft Inc. USA
[7] “Synopsys Design Compiler”, Synopsys Inc., USA
[8] Blair G., “Verilog: accelerating digital design”, IEE
Electronics and Communication Engineering Journal, pp68-72,
April 1997
[9] “Simulink”, Version 4, The MathWorks Inc., USA.
[10] Grout I., and Winsby A, and Burge S., “Design and
analysis tool integration for microelectronic-mechatronic
systems design”, European Microelectronics Packaging and
Interconnection Symposium (IMAPS Europe Prague 2000),
Prague, Czech Republic, 18th-20th June 2000, pp188-193
[11] I.A. Grout and K. Keane, “A Matlab to VHDL conversion
toolbox for digital control”, IFAC Symposium on Computer
Aided Control Systems Design (CACSD 2000), Salford, UK,
11th – 13th September 2000
[12] “Design Framework II”, Cadence Design Systems Inc.,
USA
[13] S.L. Hurst, “VLSI testing: digital and mixed analogue /
digital techniques”, IEE, 1998, ISBN 0 85296 901 5

Figure 9: Filter cell layout (top level incl. I/O and
power supply pads)

