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Abstract.  Three-dimensional simultaneous localization and mapping is a topic 

of significant interest in the research community, particularly so since the intro-

duction of cheap consumer RGB-D sensors such as the Microsoft Kinect. Cur-

rent algorithms are able to create rich, visually appealing maps of indoor envi-

ronments using such sensors. However, state-of-the-art systems are designed for 

use in static environments, which severely limits the application space for such 

systems. We present an algorithm to explicitly identify and remove moving ob-

jects from multiple views of a scene. We do this by finding corresponding ob-

jects in two views of a scene. If the position of an object with respect to the oth-

er objects changes between the two views, we conclude that the object is mov-

ing and should therefore be removed. After the algorithm is run, the two views 

can be merged using any existing registration algorithm. We present results on 

scenes collected around a university building. 
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1 Introduction 

Although point clouds and sensors that provide point cloud data have been around for 

several decades, the introduction in 2010 of the Microsoft Kinect RGB-D (RGB color 

+ per-pixel depth) sensor reinvigorated the field. One popular area of research has 

been using RGB-D sensors for Simultaneous Localization and Mapping (SLAM) in 

primarily indoor environments. State of the art systems have achieved impressively 

accurate results, producing visually-appealing maps of moderately-sized indoor envi-

ronments [1]. Such algorithms typically rely on the Iterative Closest Point (ICP) for 

point cloud registration, and also incorporate loop-closing techniques to detect when 

an agent has returned to a previously visited area [2]. 

In published work on SLAM using RGB-D sensors in indoor environments, such 

as [1], [3], and [4], the maps are created in static environments: there are no moving 

objects, and, in particular, no people walking around. In more dynamic environments, 

not addressing moving objects can lead to maps that contain moving objects as per-

manent features, inconsistent maps, or even registration failure. Our work addresses 

this issue by introducing a novel preprocessing step to explicitly identify and remove 

moving objects from point cloud frames prior to registration. A sample result of our 

algorithm is in Fig. 1, and an overview of our approach is in Fig. 2. 
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To identify moving objects, we compare two frames with significant overlap. The 

viewpoint between the two frames can change, and some amount of time must elapse 

before the second frame is captured so that the position of moving objects changes 

between the frames. For each frame, we segment out individual clusters, and find 

which cluster from the first frame corresponds to each cluster from the second. We 

then analyze the spatial relationship of each cluster in a frame to all other clusters in 

the frame. If this relationship changes from one frame to the next, we conclude that 

the cluster in question must be moving and remove it. Having done this, we can apply 

any existing registration algorithm to register, align, and merge the two clouds. 

 

Fig. 1.  A sample result of our algorithm. The top row shows two input point clouds. Our algo-

rithm identified the person as a moving object and removed him from each point cloud. We 

then aligned and merged the clouds to produce the cloud in the bottom row. 

2 Related Work 

3D SLAM has been an area of immense research interest. Over the years, a number of 

approaches using different technologies have been developed, including range scans 

[3, 4], stereo cameras [7], monocular cameras [8], and recently also consumer RGB-D 

cameras [1][3][4]. However, explicitly identifying and removing moving objects from 

point cloud data has not been a topic of great interest in the research community.  

In their RGB-D mapping work, Henry et al. [1] do not address moving objects, and 

do not present any results from environments with moving objects. However, the use 

of a surfel representation [9] allows them to deal with some instances of moving ob-

jects. Because surfels have an area, they permit reasoning about occlusion. This ulti-

mately enables this representation to remove moving objects by eliminating surfels 

which occlude other surfels. However, this approach will fail to eliminate moving 

objects when these objects do not occlude other known objects. Furthermore, convert-

ing all data to surfels is computationally inefficient. 

Similarly, the Kinect Fusion work [10], which implements a real-time version of 

ICP that runs on CUDA-enabled GPUs, deals with moving objects implicitly by using 

a volumetric representation. Kinect Fusion is not primarily a SLAM algorithm; as a 

result, the approach does not scale to larger environments. In particular, with current 



   

 

 

GPUs, the approach cannot be used for environments larger than a moderately small 

room (approximately a 5m x 5m x 5m volume).  

Other volumetric approaches, such as the Octree-based OctoMap [6], also identify 

moving objects only implicitly. The OctoMap’s probabilistic nature means that it may 

require a substantial amount of measurements until a moving object is discarded. 

Unlike previous work, which deals with moving objects in only an implicit and in-

complete way, this paper presents a focused and systematic approach for removing 

moving objects from point cloud scenes captured from a moving platform. An ad-

vantage of our approach is that it deals directly with the point cloud data. This means 

that after eliminating moving objects with our approach, any existing algorithm for 

point cloud registration – or any other application – can be applied straightforwardly. 

3 Technical Approach 

A high-level overview of our approach is given in Fig. 2. For notational clarity, we 

will refer to the first point cloud we process as the “source” cloud, and to the second 

cloud we process as the “target” cloud. Our approach is symmetric, however, and 

which cloud is designated as “source” does not affect our results. For some of the 

point cloud manipulation tasks, we rely on the Point Cloud Library (PCL) [11]. 
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Fig. 2. An overview of our system. 

3.1 Preprocessing 

Before identifying moving clusters, we temporarily remove large planes, filter outlier 

points, and run segmentation to identify individual clusters.  

We identify planes using a Random Sample Consensus (RANSAC) algorithm. The 

reason for removing large planes is twofold: first, we can safely assume that large 

planes are not parts of moving objects, so we do not need to consider them in subse-

quent steps of the algorithm. Second, removing large planes – in particular, the floor – 



improves the performance of our segmentation algorithm. Having completed this step, 

we filter out outlier points to remove artifacts due to sensor noise. 

We now use a Euclidean Cluster Extraction algorithm to get individual clusters. 

This algorithm places points that are less than the cluster tolerance apart in the same 

cluster. Since large planar objects as well as statistical outliers have already been 

removed from the clouds at this point, this is an acceptable approach. Due to quanti-

zation of the depth data, which is inevitable with consumer RGB-D sensors, we need 

to use a somewhat large cluster tolerance value. We settled on 15 cm, meaning two 

points will be in the same cluster if they are less than 15 cm apart. We use a k-d tree 

to speed up the cluster extraction process. 

Each point cloud can now be represented as a set of clusters. Let    
            

  be the source point cloud, and                
  be the target point 

cloud. Here,    is the set of points representing the     cluster in the source cloud, and 

   is the set of points representing the     cluster of the target cloud.  

3.2 Cluster Descriptors and Identifying Correspondences 

We use the Viewpoint Feature Histogram (VFH) proposed by Rusu et al. [12] as our 

feature descriptor. The VFH has good object classification performance, outperform-

ing spin images for these tasks [12]. The VFH stores the relationships between the 

pan, tilt, and yaw angles between pairs of normals in a cluster, as well as the relation-

ships between the viewpoint direction and the surface normals. 

We now find cluster correspondences, or which cluster from the target cloud corre-

sponds to each cluster from the source cloud. We calculate the distance between a pair 

of clusters in feature space in two ways and compare the performance in Section 4.  

The first distance measure is the sum of absolute differences between two clusters’ 

VFH descriptors, while the second distance measure comes from an insight on the 

ordering of the VFH: the bins for each angle “category” are consecutive. For example, 

if the yaw angle between two points changed slightly, the pair would move from one 

bin into a bin immediately next to it. As a result, small object deformations (such as a 

person’s pose changing as he walks) as well as changes in sensor position cause non-

linear local deformations to the object’s histogram. Fig. 3 illustrates the local defor-

mations of a part of the VFH due to sensor motion. 

Such issues have been addressed in the literature with Dynamic Time Warping 

[13]. Dynamic time warping finds a nonlinear, monotonic mapping from one se-

quence to the other, allowing for small shifts and deformations between the series. To 

limit the amount of warping, plausible values, we use the Sakoe-Chiba band [14] to 

limit warping to 2% of the total histogram length, corresponding to the shift in histo-

gram resulting from a camera pan of about 45 degrees. 

To identify correspondences, we iteratively take the closest pair of clusters (     ) 

in feature space as corresponding to each other, until there are no clusters left in at 

least one cloud. Due to sensor and/or object motion, there may be leftover objects, 

which we remove from their cloud. This may remove objects that could provide use-

ful data, but this is an acceptable tradeoff to ensure the removal of any moving objects 

that appear in only one frame. This step leaves               clusters for each 



   

 

 

cloud. Before proceeding further, we reorder the clusters in    such that cluster    
corresponds to cluster       . 

 

 

Fig. 3.    Local deformations of the yaw component of the Viewpoint Feature Histogram of the 

mannequin extracted from the two views above. Histogram for the mannequin on the left is 

solid blue; right is dashed red. Dynamic Time Warping addresses such local deformations. 

3.3 Identifying and Removing Moving Objects 

We now calculate the Euclidean distance in world-coordinate space between each pair 

of clusters for each cloud. Let     
  be the world-coordinate-space Euclidean distance 

between cluster   and cluster   in the source point cloud, and     
  be the world-

coordinate-space distance between the corresponding clusters in the target cloud. 

To get a measure of how the position of each cluster has changed from one cloud 

to the next, we calculate the displacement vector   [          ]
 , where    is the 

displacement of cluster  , 
 

   ∑|    
      

 |

 

   

 (1)  

In essence,    is the sum of how much the distance of cluster   to each other cluster 

has changed from one cloud to the other cloud. 

 

 

Fig. 4. Object removal threshold ROC curve. A true positive is a removed moving object, and a 

false positive is a removed static object. 
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We now iteratively remove the cluster which has the greatest displacement value 

as long as this value is above a threshold  . After removing each cluster, we recalcu-

late  . In order to find the optimal value of  , we generated a ROC curve (Fig. 4). For 

the ROC curve, a true positive is a moving object that was removed from the scene, 

and a false positive is a static object that was removed from the scene. See Section 4 

for details regarding the data used.  

We now iteratively remove the cluster which has the greatest displacement value 

as long as this value is above a threshold  . After removing each cluster, we recalcu-

late  . In order to find the optimal value of  , we generated a ROC curve (Fig. 4). For 

the ROC curve, a true positive is a moving object that was removed from the scene, 

and a false positive is a static object that was removed from the scene. See Section 4 

for details regarding the data used.  

We ran our algorithm for different thresholds for both the histogram difference and 

dynamic time warping distance measures, achieving better results with dynamic time 

warping. In particular, we were able to correctly remove all moving objects with 

      meters when using dynamic time warping. We therefore use this value in our 

experiments (Section 4). 

Having removed all of the moving objects from    and   , we reconstruct each 

cloud from its remaining clusters as well as the planes that had been removed from it. 

After this, the clouds are in a standard point cloud format, and any existing registra-

tion, alignment, and merging algorithms can be used to concatenate the clouds. The 

result of this operation is a point cloud model of the environment with no moving 

objects in the point cloud, even though such objects might have been present in one or 

both of the original clouds. 

4 Experiments 

We tested our algorithm on 14 scenes collected around a university building. Each 

scene consists of two views, and each view has up to 2 moving people. Fig. 5 shows 

some results, demonstrating several different scenarios our algorithm can deal with. 

Fig. 5(a) shows a scene with multiple moving people, as well as significant camera 

motion between the two frames. As a result of this, we cannot find good correspond-

ences for some objects in the scene, such as the desk to the right of the second view. 

Note that there is a third person in the scene, sitting at a desk in the background. This 

person is put into the same cluster as the desk he is sitting at by our algorithm, and 

since he is not moving he is included in the recreated cloud. 

Fig. 5(b) shows scene where a person who is not present in one point cloud moves 

into view by the time the second point cloud is captured. Our algorithm correctly 

identifies that there is no equivalent object for the person in the other frame, and re-

moves the person from the point cloud. 

Fig. 5(c) shows a scene where a walking person completely changes direction from 

one frame to the next. Nevertheless, our algorithm matches the person in one frame to 

the person in the next frame and correctly removes him from both clouds. 



   

 

 

 

Fig. 5. Example results. (a) office scene with three people (two walking, one sitting). The top 

two frames from columns (a) and (b) were merged together to produce the bottom point cloud. 

(b) corridor scene where the person just entered the corridor through a doors on the right. (c) a 

walking person changing direction.  

4.1 Quantitative Analysis 

Fig. 4 shows the ROC curve obtained by running our algorithm on the dataset, 

where a true positive is defined as a moving object that is removed from the scene and 

a false positive is defined as a static object that was removed from the scene. We get 

better results with the dynamic time warping distance measure than with the simple 

histogram difference. In particular, for the object removal threshold      , we cor-

rectly remove all moving objects while also removing 47% of the static objects. In a 



SLAM scenario, we would keep a greater fraction of static objects, since objects that 

are removed due to occlusion or sensor motion at first would likely be seen again at a 

later time and thus ultimately kept. 

We also evaluate what fraction of the total points that belong to stationary objects 

we keep in the recreated clouds. For each scene, we calculate this number separately 

for each of the two frames, and then report their mean and standard deviation. Fig. 6 

shows the results. On average, we keep 85% of the static points in a scene. 

 

 
Fig. 6. Fraction of static points kept for each of the 14 scenes on which we evaluated our algo-

rithm. Numbers along the x-axis indicate which figure corresponds to the particular scene, if 

applicable. The mean is 85% of static points retained. 

5 Conclusions and future work 

We introduce early work on an algorithm for identifying moving objects in point 

cloud scenes. We can eliminate moving objects from scenes while retaining most of 

the static objects. Thus, when used as a preprocessing step, our approach can com-

plement existing point cloud-based SLAM algorithms. This will allow existing SLAM 

approaches to create consistent maps even in the presence of moving objects, making 

the system applicable in more scenarios.  

Future work will include incorporating the approach presented here into an auton-

omous SLAM system, and making any necessary adjustments necessary to make the 

system work properly in real-time. Considerations will include tuning plane removal 

as well as segmentation, and studying the temporal stability of the approach. 
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