
1

Applying Machine Learning Techniques to improve
Linux Process Scheduling

Atul Negi, Senior Member, IEEE, Kishore Kumar P.
Department of Computer and Information Sciences

University of Hyderabad
Hyderabad, INDIA 500046

atulcs@uohyd.ernet.in, kishoregupta os@yahoo.com

Abstract— In this work we use Machine Learning (ML) tech-
niques to learn the CPU time-slice utilization behavior of known
programs in a Linux system. Learning is done by an analysis of
certain static and dynamic attributes of the processes while they
are being run. Our objective was to discover the most important
static and dynamic attributes of the processes that can help best
in prediction of CPU burst times which minimize the process
TaT (Turn-around-Time). In our experimentation we modify the
Linux Kernel scheduler (version 2.4.20-8) to allow scheduling
with customized time slices. The “Waikato Environment for
Knowledge Analysis” (Weka), an open source machine-learning
tool is used to find the most suitable ML method to characterize
our programs. We experimentally find that the C4.5 Decision
Tree algorithm most effectively solved the problem. We find that
predictive scheduling could reduce TaT in the range of 1.4%

to 5.8%. This was due to a reduction in the number of context
switches needed to complete the process execution. We find our
result interesting in the context that generally operating systems
presently never make use of a program’s previous execution
history in their scheduling behavior.

Index Terms— Machine learning, Process Scheduling, turn-
around-time.

I. INTRODUCTION

GENERALLY process schedulers allocate CPU time
slices to a process according to a scheduling algorithm

that does not use any previous execution history of the
process. It might be possible to better utilize resources if
we could “recognize” a program and predict its resource
requirements. For example, consider a process which was
allocated a fixed CPU time is pre-empted while having a
very small CPU time needed for completion. Such preemption,
increases number of context switches (also called as a process
switch or task switch), it causes invalidation of caches and
pipelines, swapping of buffers and so on [6]. Thus ultimately
this increases TaT of the program. (TaT is the delay between
process submission and process completion). Thus we observe
that by characterizing or recognizing programs it may be
possible to understand their previous execution history and
predict their resource requirements. In this paper we address
the problem of, how to minimize the TaT of programs by
using ML techniques.We discover certain static and dynamic
characteristics of a program are taken as features which the
machine learning techniques use to predict CPU burst times.
We call Special Time Slice or STS as the CPU burst time that
minimizes turnaround time.

The rest of this paper first discusses related work in Section II,
an overview of machine learning techniques in Section III, we
rerview Linux process scheduling in Section IV, and then de-
scribes our implementation in Section V. Section VI describes
our experimentation. Section VII presents the conclusions and
describes possible future work.

II. RELATED WORK

The work [10] by Suranauwarat and Taniguchi, presents
an approach to remember the previous execution behavior of
certain well-known programs. They study the process times
of these programs in variousimilaritys states. The knowledge
of the program flow sequence (PFS) is used to extend the
CPU time slice of a process. PFS of a process is computed
from its past execution history. PFS characterizes the process
execution behavior and is used to decide whether the program
executing currently needs additional time. They set a threshold
Tm called as maximum dispatch delay time, which determines
the time limit for context switching; and is a multiple of the
delay for minimum process switching time. They control the
CPU time of a process Tp, by either reducing or increasing
some scaling feature. They conclude from experimental results
that overall processing time is reduced for known programs.
To schedule a process they search for its name in the PFS
knowledge base and thus improve its behavior.

In the paper by Smith et al. [7], the authors predicted
the application run times using historical information. They
present a technique for deriving predictions for the run
times of parallel applications from the run times of similar
applications that have executed in the past. They use the
following characteristics to define similarity: user, queue, load
leveler script, arguments, network adapter, number of nodes,
maximum run time, submission time, start time, run time.
These characteristics are used to make a template which can
find the similarity by matching. They use genetic algorithms
for identifying ”good templates” for a particular workload.
A template defines the similarity between two applications.
They use Genetic Algorithm (GA) techniques to determine
those application characteristics that yield the best definition
of similarity for making predictions. GAs are probabilistic
techniques and are well known for exploring large search
spaces. However from a machine learning perspective, GAs
are expensive in terms of computation [15] and also their

2

results are considered fragile.

In the paper by Gibbons [5], the authors used Statistical
Regression methods for prediction. Wh ile regression methods
work well on numeric data but cannot readily be used for
nominal data. In the paper by Fredrik et al. [4], the authors
described an application signature model used for predicting
application performance on a given set of grid resources.
In this model, they introduced the notion of application
intrinsic behaviour to separate the performance effects of the
runtime system from the behaviour inherent in the application
itself.The signature model is used as the basis for performance
predictions. So their approach combines the knowledge of
application intrinsic behaviour with run-time predictions of
resources. They also define application intrinsic metrics as
metrics that are solely dependent on the application code and
problem parameters.
From this brief review of related literature, we draw the
following conclusions:

• It is possible to profitably predict scheduling behavior.
• However the success of the approach depends upon

the ML technique used to train on previous programs
execution behavior.

• More importantly for the ML techniques to succeed, it
needs a suitable characterization of the program attributes
(features) that are most significant for prediction.

III. AN INTRODUCTION TO MACHINE LEARNING
TECHNIQUES USED

In this section we bring in some background information
about the machine learning techniques which were used in
the experimentation. The field of machine learning (ML) [15]
is concerned with the question of how to construct computer
programs that automatically improve with experience. ML
methods are also similar to Pattern Recognition methods
as [16]. The most important aspect is that while training
or learning stage several attributes are used to describe the
objects being studied. In our case the objects being studied
are programs and we have come up with the best attributes
that can desribe programs for prediction. [8]. However the
success of a ML method also depends upon the classifiers
used. Certain classifiers are more successful for different
data or problem domains. Here we just give a cursosry
introduction to the two most effective which were used [8]

The Learning Algorithms (Classifiers): For our experi-
ments, we selected a representative set of standard machine
learning algorithms with different model classes. All of these
are available in the ”Waikato Environment for Knowledge
Analysis (Weka) [9] , an open source machine learning tool.
The selected learner types (classifier types) were: ”Trees and
Lazy which are listed below:

• C4.5 (or J48 in Weka [9]) is a Reduced-Pruned Decision
Tree Learner. Decision Tree learning is one of the most
widely used and practical methods for inductive infer-
ence. It is a method for approximating discrete-valued
functions, and is robust to noisy data and capable of
learning disjunctive expressions.

• IB k Learner (k-NN): This is an instance based learner
antd assumes all instances are points in an n-dimensional
space. The nearest neighbors (nn) of an instance are
defined in terms of the standard Euclidean Distance. The
class label of a new instance is found from the k instances
nearest to it by assigning to it the majority label of the
k-NN [15] [9].

IV. A REVIEW OF LINUX PROCESS SCHEDULING
CONCEPTS

In this section, we review the Linux process scheduling
concepts which we use to develop the modified scheduler as
described in Section V.

Scheduler: The idea behind a scheduler is simple. Its
objective is to best utilize processor time. Assuming there are
runnable processes, a process should always be running. If
there are more processes than processors in a system, some
processes will not always be running. These processes are
waiting to run. Deciding which process runs next, given a
set of runnable processes, is the fundamnetal decision the
scheduler must take.

Time slice: Linux uses a tick to allocate processor time
to individual processes. There are several different hardware
timers that the kernel can access. One is loaded at boot time
with values to interrupt the system every tick. The kernel
uses the CPU clock speed given as HZ in the kernel to set
the length of a single tick to approximately 2.5 nanoseconds
[2]. Consequently, every 2.5 nanoseconds, the system takes
over, decrements the amount of ticks that the current process
has, and returns the CPU to the process for another tick.
If the process running is out of CPU time, the scheduler
is invoked. If there are more processes in the run-queue
that have been allocated CPU time, the scheduler will find
the best one and switch to it. The best process is selected
using the task timeslice() macro defined in sched.c. This
task timeslice() macro calculates a weight for the process
using bonus which is calculated from nice values etc.. The
highest weight is the best process to schedule [14] [2].

Process Descriptor: The process descriptor [13] is defined
in sched.h and holds all information about a process. The
amount of ticks of CPU time that a process receives before
another process is scheduled is stored in the process descriptor.
When all processes in the run-queue have exhausted their
CPU time, the scheduler recalculates the amount of CPU
time for each process using the macro task timeslice(). The
task timeslice() uses the process’ nice value in the process
descriptor to determine the number of ticks the process gets.
Here a process is referred to as p. Variables in the process
descriptor are referred to as p→variable. For example p→nice
refers to the nice value of process p.

Context switching: The context of a process [3] consists
of the contents of its (user) address space and the contents of
hardware registers and kernel data structures that relate to the
process. In multi-processing environments, a context switch
(or process switch or task switch) is when one process is
suspended from execution , its context is recorded and another
process starts its execution in the CPU.

3

V. IMPLEMENTATION

In this section, we briefly desribe about kernel modifications
and process charcterization. The kernel modifications subsec-
tion shows the kernel data structures modified for finding STS.
The process characterization section shows, how to find the
static and dynamic characteristics of a process.

A. Kernel modifications
Our idea of kernel modifications is similar to that of [12],

but the difference is that we describe the modifications to
O(1) scheduler of Linux Kernel 2.4.20-8.

1) Process descriptor: The Linux process descriptor is
defined in sched.h as a structure called task struct. More than
one process can request a larger amount of processor time and
the amount of extra time to be given is specific to the process.
Therefore the extra time a process gets is stored in the
process descriptor. A single integer field, special time slice is
added to the process descriptor and is sufficient to store the
number of ticks that a CPU-bound process should receive.
This single variable can also be used to distinguish between
CPU-bound process from the other processes in the system.
If p→special time slice is less than 0 then this process should
be allocated the standard amount of ticks defined by the
macro task timeslice() in sched.c. If p→special time slice
is greater than 0 then the process is given special time slice
ticks of processing time instead of using the standard macro,
task timeslice(). This requires that when processes are created,
the special time slice variable must be initialized to −1 in
fork.c. The next sections describe how the modified scheduler
uses the special time slice variable in the process descriptor.

2) System calls: Two system calls have been added to
the kernel for controlling CPU-bound processes. One system
call is necessary to allocate more processor time for a single
process. This system call performs two simple tasks. First,
the special time slice variable is set to the number of ticks
requested by the process via an argument to the system call.
Second, the time slice variable of the process descriptor is set
to the value passed to the system call. The process then returns
to run on the processor with an increased amount of processor
time and special handling from the scheduler. Therefore the
process gets special time slice ticks of processor time, each
time the scheduler recalculates the process time slices.

The second system call is used to return a process to
the normal state in which p→time slice is calculated using
task timeslice() and p→special time slice is less than 0.
The next time the scheduler runs the time slice is set to
task timeslice(p), which is the standard method of assigning
p→time slice.

3) Modifications to O(1) scheduler data structures: The
scheduler tick() function of sched.c has been modified to
handle any process with special time slice > 0 differently
from other processes.If this value is exhausted (decremented to
0) then the scheduler gives the processor to the next process.
The run-queue is a circular doubly linked list of process

descriptors in the TASK RUNNING state.The first thing that the
new scheduler does is check whether process currently running
has been granted more processor time (p→ special time slice
> 0). If this is true, and the process still has some CPU time
left (p→time slice > 0), then the scheduler immediately gives
the processor back to the current process. This guarantees that
each processor-bound process uses all of its processor time
immediately, even if the scheduler is called in the middle
of its running. If the CPU-bound process has used all of its
CPU time (p→time slice > 0), then the scheduler continues
its normal operation and switch to the next process.

Calculating the goodness [2] for each process remains
the same. Since CPU-bound processes have large time slice
values, they are not favored over other processes. This is
acceptable since the CPU-bound processes are typically the
only things using the processor on a system. The CPU-
bound process may be last to run, but there should not be
much waiting to run in front of them, and from the previous
modification these processes is guaranteed to stay on the
processor until they have used all of there CPU time.

A slight modification to the recalculation of the time slice
variables checks each process to see if it can be allot-
ted more than task timeslice(p) ticks of processing time. If
the p→special time slice > 0, then p→time slice is set to
p→special time slice. There is a small amount of overhead
added to the scheduling algorithm, because each process has
to be checked to see if it is a CPU-bound process. All other
processes receive the same time slice value, as they would
under normal operation of the scheduler. The rest of the
scheduling algorithm remains the same.

B. Process characterization
This section describes , how we characterized the programs.

We studied the execution behaviour of several programs to find
out the characteristics that can be used to predict the STS. We
have taken representative programs : matrix multiplication,
sorting programs, recursive fibnocci number generating pro-
grams and random number generator programs. Any Machine
learning technique [15] requires fully labeled (categorized)
data for training. We categorized our data into classes and
trained the classifiers (machine-learning techniques) [15].

The experimental procedure is divided into two phases. In
the first phase, we create the data set from the program’s run
traces and make the data base with the static and dynamic
charactersitics of the programs and train it with machine
learning techniques. In the second phase, we classify this data
according to the fitness function, ”STS” by using machine-
learning techniques. The trained classifiers are then used on
a different data set called as a test data set. Often due to
limitations in size of the data, we train classifiers using a leave-
one-out technique [16] which is a standard technique.

1) Creating the dataset: To characterize the program ex-
ecution behaviour , we need to find the static and dynamic
characteristics. We used readelf [1]and size commands to
get the attributes as shown in Table I. To find STS, a script
ran the matrix multiplication program of size 700 x 700
multiple times with different values of STS on P4 Linux

4

TABLE I
ATTRIBUTES AND THEIR MEANING

Attribute Definition
Hash This is symbol hash table size in bytes.
Dynamic This dynamic linking information size in bytes.
Dynstr This is size (bytes)of strings needed for

dynamic linking.
msh This is symbol hash table size in bytes.
Dynamic This dynamic linking information size in bytes.
Dynstr This is size (bytes)of strings needed for dy-

namic linking, most commonly the strings that
represent the names associated with symbol
table entries .

Dynsym This is size (bytes) of the dynamic linking
symbol table .

Got This is the global offset table size in bytes.
Plt This is the procedure linkage table size in

bytes.
RoData This is read-only data size (bytes) that typically

contribute to a non-writable segment in the
process image.

Ryl.Dyn This is the size (bytes) of the rellocation infor-
mation size.

Text This is the ”text” or ”executable instructions”,
size (bytes)of a program.

Data This is the size(bytes) of the initialized data
that contribute to the size of the program’s
memory image size.

Bss This section holds uninitialized data size
Total size This is total size (bytes) of the program.
Program Name This is name of the program and a nominal

attribute.
Input Size Value of InputSize which depends on the pro-

grams type.
Input Type Type of the Input which is a nominal value.
SpecialTimeSlice(STS) Value of the best time slice.
STSclass Class of the STSs

System and selected the STS, which gives minimum TaT. The
first 18 (characteristics) attributes are used to predict the target
attribute STSclass.

We build the data set of 84 execution instances of five
programs: matrix multiplication, quick sort, merge sort, heap
sort and a recursive Fibonacci number generator and the
Table II shows an example of a training example or an
instance. We collected the data like the above for 5 programs
with different input sizes and different best STSs. Data of 84
instances of the five programs was collected and made into
11 categories based on the attribute STSclass with each class
having an interval of 50 ticks.

2) Training and Testing methodology: We performed two
types of tests on the training examples with all the learners
described in the section, ”Overview of machine learning
algorithms”, on the data sets collected in the first phase. The
tests are:

• Use Training Set [9]: The classifier is evaluated on how
well it predicts the class of the instance it was trained on.

• Cross-Validation [9]: The classifier is evaluated by cross-
validation, using the number of folds that are entered
in the Folds text field (Weka). Recognition accuracy
was tested via cross-validation. In this test, the training
examples are divided into 10 parts and the classifier
classifies by taking one part as a test set and other 9
parts as training set. Likewise, we continue for all parts.

TABLE II
THE INSTANCE

Attribute Value
Hash 44
Dynamic 12
Dynstr 32
Dynsym 56
Got 8
Plt 32
RoData 208
Ryl.Dyn 48
Text 2400
Data 5200
Bss 12000
Total size 18000
Program Name mm
Input Size 800
Input Type i1 input type1
SpecialTimeSlice (STS) 110
STSclass t2 (101 ticks-149 ticks)

Program X

Decision Tree Program Execution History of Programs

Knowledge Base

User Space

Modified Scheduler

STS

CPU

TimeSlice = STS ticks

Now CPU allocates
 STS ticks to Program X

Kernel Space

Hardware

Our System call

1

2

3

4
5

Fig. 1. The design of modified scheduling process.

The results of these tests explained in the next section ”Eval-
uation and Results”.

3) Extracting the best attributes: Attributes selection1 [11]
involves searching through all possible combinations of at-
tributes in the data to find which subset of attributes works best
for predicting the program execution behavior. Here our goal
is to predict the target attribute. To do this, two objects must
be set up ; “an attribute evaluator ”and “a search method”. The
evaluator determines what method is used to assign a value
(weight or worth) to each subset of attributes. Here, we used
Exhaustive and Genetic search methods, and Co-rrelation
based feature selection (CfsSubsetval) [9] evaluation method.
A detailed description of feature selection is presented in [11].

C. The design of modified scheduling process
The Figure 1 shows the design of modified scheduling

process and the steps to minimize TaT of a program. The steps
to minimize TaT of a program are as shown in the Figure 1
with numbers from 1 to 5.

1) The program ’X’ is given to C4.5 decision tree as an
input.

1Extracting the best attributes is nothing but feature selection

5

2) The decision tree will classify ’X’ and output the STS.
3) We send this STS information to modified scheduler

through a system call.
4) The scheduler instructs the CPU such that CPU allocates

STS ticks to ’X’.
5) The CPU allocates STS ticks to ’X’ and it will run with

minimum TaT.

D. Overall method
Our method is explained as follows :
1) Run the programs with different special time slices

with modified O(1) scheduler and find STS (best spe-
cial time slice) which gives minimum turn-around-time
(TaT).

2) Build the knowledge base of static and dynamic char-
acteristics of the programs from the run traces obtained
in step 1 and train them with the C4.5 decision tree
algorithm.

3) If a new program comes, classify it and run the program
with this predicted STS.

4) If the new program instance is not in the knowledge-
base, go to step 1.

E. Experimental environment
For this work, we used GNU/Linux 2.4.20-8 operating sys-

tem, 1.6GHz Intel P4 processor, 128MB RAM main memory,
512KB Cache memory, Vi editor and GNU gcc compiler and
so on. WEKA(Waikato Environment for Knowledge Analysis),
an open source machine-learning tool was used to find the
most suitable ML method to characterize our programs.

VI. EXPERIMENTS AND RESULTS

We explain the experimentation process by taking the matrix
multiplication program as an example.

A. Effectiveness of STS
A script ran the matrix multiplication program of size 700

x 700, multiple times with different values of STS on P4
Linux System. The table III shows how the turn-around-
time changed as the CPU burst time (STS) of the process
changed. From the table III, STS (or Best special time slice)

TABLE III
EFFECT OF SPECIAL TIME SLICE ON TURN-AROUND-TIME(TAT).

Average TaT(secs) special time slice (no.of ticks)
16.372123 100
16.900567 150
15.863590 200
.....
15.880436 1200
... ...

is 200 and corresponding TaT = 15.863590sec. Standard
TaT (with unmodified scheduler) is 16.466sec. The microsec-
onds saved per second = (16.466880 - 15.863590) / 16
= 60320 micro-seconds. About 60320 micro-seconds saved

per second.file:///usr/share/doc/HTML/index.html Therefore
on 1.6GHz Intel P4 machine , we can save 1600MHz = 16 x
108 clocks/second = [16 x 108 x no.of pipelines x (60320)]
low-level operations , with special time slice (STS) = 200.

B. Selecting the best machine Learning technique
We used WEKA for training and testing the data set of 84

instances of those five programs to find a good ML technique
[8]. The table IV shows the best machine learning technique
particularly for our data set. From the table IV, C4.5 is the

TABLE IV
MACHINE LEARNING TECHNIQUES AND PREDICTION ACCURACIES ON 84

INSTANCES.

ML Technique % Classfication with
CrossValidation Test

% Classification with
Use Training Set Test

C4.5(J48) 91.1667% 94.0476%
IBK 89.5432% 93.6480%

best technique2 to predict the STS [8].

C. Finding the best attributes which can characterize STS
class

We applied, exaustive search with CfsSubset [11] evaluation
method on the training set and find the best attributes, which
can characterize the STS Class. The Table V shows the best
attributes.

TABLE V
THE BEST ATTRIBUTES.

Attribute Its Rank
InputSize 1
ProgramSize 2
BSS 3
RoData 4
Text 5
InputType 6

D. Effectiveness of our method in reducing the Turn-around-
time.

The table VI shows that how our Modified Scheduler 3

reduces turn-around-time of Matrix Multiplication program
with different input sizes. In table VI, MS is Modified
Scheduler and UMS is Unmodified Scheduler.

Influence of STS on a heavy load system : We ran the matrix
multiplication programs as a batch on a heavy load system
to test the effectiveness of our modified scheduler. There are
10 programs in a batch. The table VII shows the results. We
ran four programs which have operations like opening several
files, writing large number of random numbers in them and
closing them to make the system as a heavy load system. We
monitored the load-average using ”top” command.

2IBK is also a good technique but it is costly in terms of computation as
compared to C4.5

3UnModified Scheduler is O(1) Scheduler of Linux Kernel 2.4.20-8 and
Modified scheduler is modified O(1) Scheduler of Linux Kernel 2.4.20-8.

6

TABLE VI
THE COMPARISION OF UNMODIFIED SCHEDULER AND MODIFIED

SCHEDULER OF MATRIX MULTIPLICATION PROGRAMS.

Matrix Sizes TaT with UnModi-
fied Scheduler

TaT with Mod-
ified Scheduler

Reduction in
TaT

700 x 700 16466 millisecs 15864 millisecs 602 millisecs
750 x 750 19568 millisecs 19228 millisecs 340 millisecs
800 x 800 23820 millisecs 23190 millisecs 630 millisecs
850 x 850 28789 millisecs 28112 millisecs 677 millisecs
900 x 900 33540 millisecs 32029 millisecs 1511 millisecs
950 x 950 39997 millisecs 39388 millisecs 609 millisecs
1000 x 1000 47370 millisec 46110 millisecs 1260 millisecs
1050 x 1050 54912 millisecs 54204 millisecs 708 millisecs
1100 x 1100 63782 millisecs 61580 millisecs 2200 millisecs
1150 x 1150 72704 millisecs 70264 millisecs 2440 millisecs
1200 x 1200 85776 millisecs 80654 millisecs 5122 millises

TABLE VII
COMPARISON OF MODIFIED SCHEDULER AND UNMODIFIED SCHEDULER

ON A HEAVY LOAD SYSTEM.

Matrix Sizes Batch
Size

load-
average

TaT
with
UMS

TaT
with
MS

Reduction
in TaT

800 x 800 10 7.38 165.57
secs

163.23
secs

2.34
secs

900 x 900 10 10.34 469.23
secs

463.86
secs

5.37
secs

Decision tree overhead: We implemented C4.5 decision
tree for training and testing and its running time is around
220 milliseconds. The overhead of this is around 4% when
compared to the reduction in turn-around time in case of
matrix multiplication program of size 1200 x 1200. So we
can neglect the overhead of decision tree.

Limitations of our method.: The characteristics of the
programs and the gain in the turn-around-time depends on
the architecture and operating system. Our modified scheduler
is not designed with any security features that would prevent a
user from writing their own process and requesting INT MAX
processor time via system call which is described in the
Section V-A.2. Setting p− >special time slice to INT MAX
could significantly slow down a system.

VII. CONCLUSIONS

By considering the static and dynamic characteristics of
a program, we can schedule it using modified scheduler

such that the turn-around-time of it is minimized. We show
that machine learning algorithms are very efficient in the
process characterization process. The C4.5 decision tree
algorithm achieved good prediction (91% − 94%), which
indicates that when suitable attributes are used, a certain
amount of predictability does exist for known programs. Our
experiments show that 1.4% to 5.8% reduction in turn-around-
time is possible and this reduction rate slowly increases with
the input size of the program. From our experiments, we
find the best features : input size, program size, bss, text,
rodata and input type of a program that can characterize
its execution behavior. We conclude that our technique can
improve the scheduling performance in a single system.

Future work: Our future work will include extending our
technique to parallel programs, more comprehensive study
of high performance application characteristics is being con-
ducted on an 8-node Linux cluster, and will also include to
add our idea of predictability to Portable Batch Scheduler of
Linux Cluster.

ACKNOWLEDGMENT

We would like to thank Sasi Kanth Ala for giving valuable
advice through out of our work.

REFERENCES

[1] Hongjiu Lu, ELF: From The Programmer’s Perspective, Technical Report,
NYNEX Science and Technology, 500 Westchester Avenue, White Plains,
NY 10604, USA, May,1995.

[2] Aivazian, Tigran, Linux Kernel 2.4 Internals, The Linux Documentation
Project, August, 2002.

[3] Maurice Bach, The design of the Unix operating system, Pearson
Education Asia, pp:159-170, 2002.

[4] Fredrik Vraalsen, ”Performance Contracts: Predicting and monitoring grid
application behavior”, In Proceedings of the 2nd Internationsl Workshop
on Grid computing, November, 2001.

[5] Richard Gibbons, A Historical Application Profiler for Use by Parallel
Schedulers , Lecture Notes on Computer Science, Volume : 1297, pp:
58-75, 1997.

[6] Hyok-Sung Choi and Hee-Chul Yun, Context Switching and IPC
Performance Comparison between uClinux and Linux on the ARM9
based Processor , Linux in embedded applications, Jan., 2005.
http://www.linuxdevices.com/articles/AT2598317046.html.

[7] Warren Smith, Valerie Taylor, Ian Foster, ”Predicting Application Run-
Times Using HistoricalInformation”, Job Scheduling Strategies for Par-
allel Processing, IPPS/SPDP’98 Workshop, March, 1998.

[8] Kishore Kumar. P and Atul Negi, Characterizing Process Execution
Behaviour Using Machine Learning Techniques, In DpROM WorkShop
Proceedings, HiPC 2004 International Conference, December, 2004.

[9] Garner, S .R., ”WEKA: The Waikato Environment for Knowledge Anal-
ysis”, In Proc. of the NewZealand Computer Science Research Students
Conference, pp : 57-64, 1995.

[10] Surkanya Suranauwarat, Hide Taniguchi, ”The Design, Implementation
and Initial Evaluation of An Advanced Knowledge -based Process Sched-
uler”, ACM SIGOPS Operating Systems Review, volume: 35, pp: 61-81,
October, 2001.

[11] Mark A. Hall, Co-rrelation based feature selection for Machine Learn-
ing, Master Thesis, Department of Computer Science, University of
Waikato, pp: 7-9, 12-14, April, 1999.

[12] Andrew Marks, A Dynamically Adaptive CPU Scheduler, Master
Thesis, Department of Computer Science, Santa Clara University, pp :5-
9, June, 2003.

[13] Robert Love, Linux Kernel Development, 1st ed, The Pearson
Education,2004.

[14] Danie P. Bovet, Marc, Understanding the Linux Kernel, 2nd ed, O’
Reilly and Associates, Dec., 2002.

[15] Tom Mitchell, Machine Learning, 1st ed, pp: 52-75, 154-183, 230-244,
The Mc-Graw Hill Company.Inc.International Edition,1997.

[16] O. Duda, P. E.Hart , Pattern Classification, Wiley, NewYork,1973.

Atul Negi works as a reader in the Department of Computer and Informations
Sciences, University of Hyderabad, Hyderabad. He is presently the IEEE
Computer Society Chapter Chair for IEEE Hyderabad Section. His interests
are in applications of Machine Learning, Pattern Recognition and Document
Image Analysis.

Kishore Kumar P. is a Masters student in the Department of Computer and
Informations Sciences, University of Hyderabad, Hyderabad. His interests are
in Operating Systems and Cluster computing.

