
Characterizing Process Execution Behavior Using Machine Learning
Techniques

Kishore Kumar P. Atul Negi*
Department Of Computer and Information Sciences
University of Hyderabad, Hyderabad-500046, India

atulcs@uohyd.ernet.in, kishoregupta_os@yahoo.com
*all correspondence to atulcs@uohyd.ernet.in

Abstract

A deep knowledge of process execution behavior is very useful in formulating better

scheduling techniques. In this paper we study the approaches to the process characterization

problem. Also we propose a novel method to characterize and categorize process execution

behaviors by using machine learning techniques that learn from previous execution instances of

programs. The “ Waikato Environment for Knowledge Analysis (Weka)” , an open source

machine-learning tool is used for training and performance evaluation. We hope this study shall

ultimately help in the design of an advanced knowledge-based process scheduler. Finally we

propose an architecture that may improve the PBS scheduler in grid systems.

Keywords: Process Scheduling, Process Characterization, Machine Learning.

1. Introduction

In high performance environments, a request to execute a program is not serviced

immediately but instead serviced only when resources are available. Many grid applications have

varying resource requirements and the problem with these applications is that current scheduling

systems (as in PBS scheduling for grids) [1] rely on user's estimates of the resource requirements.

Scheduling in such systems could benefit by scheduling of resources using the knowledge of

previous process execution behavior. Thus there is a need to characterize the process execution

behavior and resource utili zation (li ke total CPU time). Such knowledge could help to improve

the scheduling policy, guide the resource selection and balance the workload distribution. In this

paper we present an approach to characterize the process execution behavior and thereby predict

the required resources for processes using data from previous executions of programs.

Our approach to characterize process execution behavior combines the program

intrinsic behavior and also the execution history of the programs [2]. The success of prediction

based on process characterization and categorization hinges on a characterization method, which

determines similarity [3] between two processes. Mainly we use two broad categories within

which we compare programs and find similarities. These are the interactive and non-interactive

classes of programs. Since we would like to study the program characterization in general, we

include the interactive class of programs also although the practical utility of such programs in

batch systems may not be meaningful. In each category, we run the programs with different input

sizes [4]. By using these run traces, we collect data such as system time, user time etc., and

prepare a knowledge base. Applying machine-learning techniques on this knowledge base, we

extract the most effective parameters that can characterize the process execution behavior [6].

These isolated parameters were used to predict the resource requirements of similar process.

 The remainder of this paper is organized as follows: first, in section 2, we describe

the related work, section 3 describes the detailed methodology and section 4 shows experimental

results and our proposed model to improve the PBS scheduler.

2.Related Work

In the paper by Smith et al. [3], the authors use genetic algorithms for identifying

"good templates" for a particular workload. They use Genetic Algorithm (GA) search techniques

to determine those application characteristics that yield the best definition of similarity for

making predictions. GAs are probabilistic techniques and are well known for exploring large

search spaces. However from a machine learning perspective, GAs are expensive in terms of

computation and also their results are considered fragile. That is, essentially due to their

probabilistic nature, it is not clear how well the end results from GAs can generalize to data

outside the training set. In the thesis [5], the author used Statistical Regression methods for

prediction. However regression methods have limitations; since they work well for numeric data

and cannot readily be used for nominal data. Also in this work, we note that the template for

defining similarity between applications was "predefined" and not arrived at by some criterion.

The work [7] by Suranauwarat and Taniguchi, presents an approach to remember

the previous execution behavior of certain well-known programs. They study the process times

of these programs in various states. The knowledge of the program flow sequence (PFS) is used

to extend the CPU time slice of a process. PFS of a process is computed from its past execution

history. PFS characterizes the process execution behavior and is used to decide whether the

program executing currently needs additional time. They set a threshold Tm called as maximum

dispatch delay time, which determines the time limit for context switching; and is a multiple of

the delay for minimum process switching time. They control the CPU time of a process Tp, by

either reducing or increasing a scaling feature. The information for computing the PFS and Tp

adjustment thresholds are based on observations from the 4 phases:

1) when a process is created,
2) when a process uses up its time-slice,
3) when a process blocks itself, and
4) when a process terminates.

They conclude from experimental results that overall processing time is reduced for known

programs. To schedule a process they search for its name in the PFS knowledge base and thus

improve its behavior.

From this brief sample of literature, we see that it is really very diff icult to derive

clear directions as to the specific technique used to learn or characterize program behavior. In our

study we use varied machine learning techniques like Decision Trees, K-NN and Decision Tables

for finding robust and accurate predictions. The techniques we use are more generic and

eff icient. Another important difference in our work is that we did not rely merely on a label as

done previously [7], but we try to go deeper and analyze dynamic process attributes in predicting

the process execution behavior. We find that prediction of the total execution time (and process

execution behavior) of a process is possible to a large extent.

3. Experimental Methodology

In our study to make for a larger variety of programs to be studied (merely for the

purpose of prediction), we divide programs to be either interactive or non-interactive programs.

For the non- interactive programs, we have taken as representative examples: gunzip, matrix

multiplication, sorting and searching programs and for the interactive programs, we have taken the

examples, acroread and ghostview, which are Linux benchmark programs [4]. The experimental

procedure is divided into two phases. In the first phase, we create the data set from the above

program's run traces. In the second phase, we train and classify this data according to the fitness

function, “ total execution time” by using machine-learning techniques. While other fitness

functions could have been used we considered this to be the most important for scheduling

performance.

Since any machine learning technique requires fully labeled (categorized) data for

training we categorized our data into twenty classes and trained the classifiers [8]. The trained

classifiers are then used on a different data set called as a test data set. Often due to limitations in

size of the data, we train classifiers using a leave-one-out technique [9] which is a standard

technique.

 3.1 Creating the Dataset

To characterize the process execution behavior, we need to find the attributes (the

characteristics or parameters), which most affect the prediction of the process execution behavior

(here we take total execution time). So In this first phase, we used gprof, readelf and size

commands to get the following attributes as shown in Table 1.

Attribute Definition (the values of the attributes are in terms of bytes)

. bss This section holds uninitialized data that contribute to the program's memory image.

. data This section holds initialized data that contribute to the program’s memory Image.

. comment This section holds version control information.

. debug This section holds information for symbolic debugging.

. dynamic This section holds dynamic linking information

. dynstr This section holds strings needed for dynamic linking, most commonly the strings that represent the

names associated with symbol table entries.

.dynsym This section holds the dynamic linking symbol table.

. fini This section holds executable instructions that contribute to the process termination code.

.got This section holds the global offset table.

.hash This section holds a symbol hash table.

.init This section holds executable instructions that contribute to the process initialization code.

.interp This section holds the path name of a program interpreter.

.line This section holds line number information for symbolic for symbolic debugging, which describes

the correspondence between the source program and the machine code.

.plt This section holds the procedure linkage table.

.rodata This section holds read-only data that typically contribute to a non-writable segment in the process

image.

.text This section holds the “text” or “executable instructions” , of a program.

.strtab This section holds strings, most commonly the strings that represent the names associated with

symbol table entries.

Table 1. Attribute Template for Computing Similarity Between Processes

In addition, we use three other attributes: input size (in Kbytes), number of page reclaims and

number of page faults. The last two and the user_time and system_time are found using the

system calls getrusage [8], profil [10] and times [11]. Totally we collected 24 attributes

(characteristics) and we use these to predict the attribute total_execution_time

(user_time+system_time). We have taken the (non-interactive) programs: gzip, gunzip and two

other test programs with loops and array operations and collected the sets of training examples of

sizes 400 and 800 for the next phase (as shown in Tables 3 and 4).

3.1.1 An Example of A Training Example (or Instance)

 The following is an example of data gathered for “gunzip” instance (Table 2):

Attribute The value

Total_execution time Class t3 (20001—30000 microseconds)

Input size 1000kilo bytes

Minimum Page reclaims 36 bytes

Maximum Page faults 83 bytes

.dynsym 912 bytes

.dynstr 525 bytes

.gnu.version 114 bytes

.gnu.version_r 80 bytes

.rel.dyn 48 bytes

.rel.plt 384 bytes

.init 23 bytes

.plt 784 bytes

.text 38804 bytes

.fini 27 bytes

.rodata 5700 bytes

.dynamic 200 bytes

.ctors 8 bytes

.dtors 8 bytes

.dynbss 20 bytes

.bss 333372 bytes

.got 208 bytes

.jcr 4 bytes

.data 2784 bytes

.eh_frame 92 bytes

.eh_frame_hdr 28 bytes

Total 386160 bytes

Table 2. Template Data for the program "gunzip"

We used the same method for data collection as shown in the example for gunzip

program. Data was collected and made into 20 categories based on the attribute total execution

time, with each class having an interval of 10000 microseconds. This data set was gathered for a

system with GNU/Linux on Intelx86 platform. Following the methodology shown in [4], we

collect the data for the acororead and ghostview programs. That is, these two programs are

interactive programs, so we used the run traces of these programs when displaying successive

pages of the pdf and ps files.

3.2. The Machine Learning Techniques

In this section we bring in some background information about the machine learning techniques

so that our work may be better appreciated, readers familiar with this material could skip ahead

to section 3.3.

3.2.1. The Important of Machine Learning

The field of machine learning (ML) is concerned with the question of how to

construct computer programs that automatically improve with experience. Machine Learning

Theory [8] attempts to answer questions such as “ How does learning performance vary with the

number of training examples presented” and “ which algorithms are most appropriate for

various types of learning tasks?” Overtime several ML techniques have been proposed in the

literature. In recent years many successful machine-learning applications have been developed,

ranging from data-mining methods that learn detection of fraudulent credit card transactions, to

information-filtering systems that learn user’s reading preferences etc.

3.2.2. The Learning Algorithms (Classifiers)

For our experiments, we selected a representative set of standard machine learning

algorithms with different model classes. All of these are available in the “Waikato Environment

for Knowledge Analysis (Weka) [6], an open source machine learning tool. The selected learner

types (classifier types) were: “Trees, Lazy, Rules, which are listed below:

3.2.2.1. Trees

C4.5 (or J48 in Weka [6]) is a Reduced-Pruned Decision Tree Learner. Decision

Tree learning is one of the most widely used and practical methods for inductive inference. It is a

method for approximating discrete-valued functions, and is robust to noisy data and capable of

learning disjunctive expressions.

3.2.2.2. Lazy (or Instance Based Learner)

In contrast to learning methods that construct a general, explicit description of the

target function when training examples are provided, instance-based learning methods [6] simply

store the training examples. Generalizing beyond these examples is performed until a new

instance must be classified. Each time a new query instance is encountered, its relationships to

the previously stored examples is examined in order to assign a target function value for the new

instance. In this category, we use the IB family.

IB k Learner (K-NN):

This assumes all instances are points in an n-dimensional space. The nearest

neighbors (NN) of an instance are defined in terms of the standard Euclidean Distance. The class

label of a new instance is found from the K instances nearest to it by assigning to it the majority

label of the K-NN [6].

3.2.2.3. Rules

One of the most expressive and human readable representations for learned

hypotheses is a set of if-then rules. In this category, we studied the following:

Decision Table Learner:

This produces rules formatted as a table from a selected set of attributes (following a wrapper-

type feature selection prior to the training phase).

3.3. Training and Testing Methodology

We performed two types of tests on the training examples with all the above

learners on the data sets collected in the first phase. The tests are:

Use Training Set: The classifier is evaluated on how well it predicts the class of the instance it

was trained on.

Cross-Validation: The classifier is evaluated by cross-validation, using the number of folds that

are entered in the Folds text field (Weka). Recognition accuracy was tested via cross-validation.

In this test, the training examples are divided into 10 parts and the classifier classifies by taking

one part as a test set and other 9 parts as training set. Likewise, we continue for all parts.

4. Experimental Results

The results of the “Cross-Validation” and “Use Training Set” experiments are

summarized in the following tables, which give the percentage of correct prediction achieved by

the individual classifiers on different sizes of the set of training examples.

%Classification

 10 Fold Cross-Validation

%Classification

Use Training Set

Classifier

Type

 Classifier

Non-
Interactive
Programs

Interactive
Programs

Non-Interactive
Programs

Interactive
Programs

Trees C4.5 94.8670 92.6532 95.2135 98.0769

Lazy IB K (K-NN) 94.9550 94.2308 95.3153 98.0769

Rules Decision Table 91.53 91.4320 95.5 99.1250

Table-3: Classification for 400 Training Examples (Instances)

%Classification

10 Fold Cross-Validation

%Classification

Use Training Set

Classifier

Type

 Classifier

Non-Interactive
programs

Interactive
Programs

Non-Interactive
Programs

Interactive
Programs

Trees C4.5 96.8563 93.0230 96.8563 98.1459

Lazy IB K(K-NN) 96.6250 94.2430 96.7813 98.1459

Rules Decision Table 95.8745 92.2640 96.3135 99.6750

Table-4 Classification For 800 Training Examples (Instances)

Looking at the tables (3-4) in terms of learning algorithms first, we observe that all

algorithms are giving significant recognition rates (%prediction). Some learners may be better

suited to this task than others and the overall prediction accuracy varies between 91.4% and

99.7%. A closer look on the above result is very encouraging – most results are significantly

near to the perfect recognition rate (prediction) of 100%. The results also show that the

prediction is better with the larger number of training instances. The following charts show the

above results.

Cross-Validation Test on 400 Training
Instances

88
90
92
94
96

1

%
P

re
d

ic
ti

o
n

 o
f

T
o

ta
l_

E
xe

cu
ti

o
n

_T
im

e

C4.5

K-NN

Decision
Table

Non -Intearctive Interactive

Use Training Test on 400 Training
Instances

92

94

96

98

100

%
P

re
di

ct
io

n
of

T

ot
al

_E
xe

cu
ti

on
_T

im
e

C4.5

K-NN

Decision
Table

Non-Interactive Interactive

Chart (a) Chart (b)

Cross Validation Test on 800 Training Instances

85

90

95

100

Non-Inter Interactive

%
P

re
di

ct
io

n
of

T

ot
al

_E
xe

cu
ti

on
_T

im
e c4.5

k-nn

decision
table

Use Training Test on 800 Training Examples

94

95

96

97

98

99

100

Non-Interactive Interactive

%
P

re
di

ct
io

n
of

T

ot
al

E
xe

cu
ti

on
T

im
e

c4.5

k-nn

decision
table

Chart(c) Chart (d)

 4.3.1. Extracting the Best Attributes

For this we used “Waikato Environment for Knowledge Analysis (Weka) as

follows: Attributes selection involves searching through all possible combinations of attributes in

the data to find which subset of attributes works best for predicting the program execution

behavior. Here our goal is to predict “the total execution time (this is one aspect of characterizing

the process execution behavior)”. To do this, two objects must be set up ; “an attribute evaluator

“and “a search method”. The evaluator determines what method is used to assign a value (weight

or worth) to each subset of attributes. The search method determines what style of search is

performed. The attribute selection mode has two options:

Use full training set: The worth of the attribute subset is determined using the full set of training

data.

Cross-validation: a process of cross-validation determines the worth of the attributes subset. The

Fold and Seed field set the number of folds to use and the random seed used when shuffling the

data.

We applied the search methods such as Genetic Search [6], Best First Search [6] and Rank

Search [6] and the evaluation methods such as CfsSubsetEval [6] and Consistency SubsetEval for

both the above attribute selection mode options. We found the below attributes as "good

attributes", that is those attributes which effectively characterize the process execution behavior.

From the two searches genetic and bestfirst and the above two evaluation methods, the best

attribute found is input size and page reclaims is the second best. Other good attributes are .text,.

data, .rel.plt, .dynamic,page faults and .plt.

By applying rank search [6] with CfsSubsetEval [6] the ranking of the above good attributes is

summarized in the below table.

Attribute Input size Page Reclaims Page faults .dynamic .text .data .rel.plt .plt

Rank 1 2 3 4 5 6 7 8

Table 4: The Effectiveness of attributes and their Ranks

4.4. Improved PBS Scheduler:

From our study above now we attempt to propose a scheme for PBS scheduling. In the PBS

scheduling of grid systems [1], users need to give the resource requirements along with the job

for execution. Then the PBS executes them in the future, according to the site policy, to best

satisfy the site production needs.

As shown in our proposed model, which is shown in Figure 1, the advanced

knowledge module predicts the resources required by the submitted job using machine-learning

techniques. We maintain a knowledge base of the previous program run traces (execution

behaviors). The advanced knowledge module updates the knowledge base when a new program

comes. The advanced resource manager takes the information from the advanced knowledge

module and compares the current system resources with the predicted resources of the submitted

program. If the resources are available, it instructs the local process scheduler to schedule the

submitted job.

This proposed model may remove the burden of the users when they are submitting

the jobs to PBS, since the advanced resource manager would predict their job' s resource

requirements. Optionally, the predictions about resource requirements are used as suggestions by

the users who may modify their job submissions, to give an improved performance. Hence our

proposed model of advanced knowledge based PBS may improve the scheduling process of grid

systems.

Figure 1: Advanced Knowledge Based PBS Scheduler

 User

User space

Kernel

 Allocation Ready Queue
 Of processes

Hardware

Advanced
Knowledge
Module

Knowledge
Database

Local OS
Scheduler

Advanced
Resource
Manager

5. Conclusions and Future Work

This paper has presented experimental results to show that machine learning

techniques can successfully characterize process execution behavior. The machine learning

algorithms achieved good prediction (91.4%-99.7%), which indicates that when suitable

attributes are used, that a certain amount of predictability does exist for known programs. A more

comprehensive study of High Performance Application characteristics and execution behavior is

being conducted on an 8-node Linux cluster. We are also exploring the portability of the

characteristic set of parameters for parallel applications on this cluster. A more detailed study on

AIX UNIX systems with different processors is also underway.

Acknowledgments: We would like to thank Sasi Kanth.A and Dr.C.R.Rao for their valuable suggestions.
We also thank the referees for improving the paper with their most useful comments.

References

[1] Albeaus Bayacan, Portable Batch System, Administrator Guide, NASA Ames Research Center,
Release: 1.1.12, August 7, 1998.

 [2] F.Vraalsen, R.A. Aydt, C.L. Mendes and D.A. Reed, "Performance Contracts: Predicting and
monitoring grid application behavior", in Lee, Craig A. (Ed.), Grid Computing – Grid 2001: Proceedings
of the 2nd International Workshop on Grid computing, Denver, CO, USA, November 12, 2001, LNCS
2242: Lecture Notes in Computer Science, Springer, 2001

[3] Warren Smith, Valerie Taylor, Ian Foster, "Predicting Application Run-Times Using Historical
Information", In Job Scheduling Strategies for Parallel Processing, IPPS/SPDP'98 Workshop, Orlando,
Florida, USA, March 30, 1998 Lecture Notes in Computer Science, LNCS-1459: 122 – 142, Springer
1998.

[4] Krisztian Flaunter, Rich Uhlig, Steve Reinhardt, Trevor Mudge, "Thread Level Parallelism and
Interactive Performance of Desktop Applications", Architectural Support for Programming Languages
and Operating Systems, ASPLOS-IΧ proceedings. Pp.129-138, Cambridge, MA ,USA., Dec.2000

[5] Hui Li. Master’s Thesis. Predicting Job Start Times on Clusters. Internal Report 03-11, Leiden
Institute of Advanced Computer Science, Leiden University, 2003.

[6] Garner, S.R., "WEKA: The Waikato Environment for Knowledge Analysis". In Proc. of the New
Zealand Computer Science Research Students Conference, pp 57-64., 1995.

[7] Surkanya Suranauwarat and Hide Taniguchi, "The Design, Implementation and Initial Evaluation of
An Advanced Knowledge -based Process Scheduler", ACM SIGOPS Operating Systems Review, Volume
35, pp. 61-81. Issue 4, October 2001.

 [8] Tom Mitchell, Machine Learning., pp.: 55-56,230-244 and 274-304., The Mc-Graw Hill
Company.Inc.International Edition, 1997.

[9] R.O.Duda and P.E.Hart, Pattern Classification, Wiley, NewYork NY. 1973.

[10] Maurice J Bach, The Design of Unix Operating System, Prentice Hall, pp. 260-266, 1983.

[11] Richard Stevens, Advanced Programming in the Unix Environment, Pearson Education, pp. 232-235,
2004 (Reprint).

