Characterizing Process Execution Behavior Using M achine Learning
Techniques

Kishore Kumar P. Atul Negi*
Department Of Computer and Information Sciences
University of Hyderabad, Hyderabad-500046,India

atulcs@uohyd.ernet.in, kishoregupta os@yahoo.com
*al correspondence to atulcs@uohyd.ernet.in

Abstract

A deep knowledge of processexeaition kehavior isvery useful in formulating ketter
scheduling techniques. In this paper we study the approaches to the process characterization
problem. Also we propcse a novd method to characterize and categorize process execution
behaviors by using machine learning techniques that learn from previous exeaition instances of
programs. The “Waikato Environment for Knowledge Analysis (Welka)”, an @en source
machine-learning tod is used for training and @rformance ewaluation. We hope this gudy shall
ultimately help in the design d an adranced knowledge-based process €heduler. Finaly we
propcse an achitedure that may improvethe PBS scheduler in grid systems.

Keywor ds. ProcessScheduling, ProcessCharaderization, Madine Leaning.

1. Introduction

In high performance eavironments, a request to exeaute aprogram is not serviced
immediately but instead serviced orly when resources are avail able. Many grid appli cations have
varying resource requirements and the problem with these goplicaionsis that current scheduling
systems (asin PBS scheduling for grids) [1] rely on user's estimates of the resource requirements.
Scheduling in such systems could benefit by scheduling of resources using the knowledge of
previous processexeadtion behavior. Thus there is a need to characterize the process exeaution
behavior and resource utili zation (like total CPU time). Such knowledge @uld help to improve
the scheduling pdlicy, guide the resource seledion and balance the workload distribution. In this
paper we present an approad to charaderize the processexeaution kehavior and thereby predict
the required resources for processes using data from previous exeautions of programs.

Our approach to characterize process exeaution behavior combines the program
intrinsic behavior and also the exeaution history of the programs [2]. The successof prediction

based on pocesscharacterization and categorization hinges on a charaderization method, which

determines similarity [3] between two processes. Mainly we use two broad categories within
which we compare programs and find similarities. These are the interactive and non-interactive
classes of programs. Since we would like to study the program characterization in genera, we
include the interactive class of programs also although the practical utility of such programsin
batch systems may not be meaningful. In each category, we run the programs with different input
sizes [4]. By using these run traces, we collect data such as system time, user time etc., and
prepare a knowledge base. Applying machine-learning techniques on this knowledge base, we
extract the most effective parameters that can characterize the process execution behavior [6].
These isolated parameters were used to predict the resource requirements of similar process.

The remainder of this paper is organized as follows: first, in section 2, we describe
the related work, section 3 describes the detailed methodology and section 4 shows experimental

results and our proposed model to improve the PBS scheduler.

2.Related Work

In the paper by Smith et al. [3], the authors use genetic algorithms for identifying
"good templates” for a particular workload. They use Genetic Algorithm (GA) search techniques
to determine those application characteristics that yield the best definition of similarity for
making predictions. GAs are probabilistic techniques and are well known for exploring large
search spaces. However from a machine learning perspective, GAs are expensive in terms of
computation and also their results are considered fragile. That is, essentialy due to their
probabilistic nature, it is not clear how well the end results from GAs can generalize to data
outside the training set. In the thesis [5], the author used Statistical Regression methods for
prediction. However regression methods have limitations; since they work well for numeric data
and cannot readily be used for nomina data. Also in this work, we note that the template for
defining similarity between applications was "predefined” and not arrived at by some criterion.

The work [7] by Suranauwarat and Taniguchi, presents an approach to remember
the previous execution behavior of certain well-known programs. They study the process times
of these programs in various states. The knowledge of the program flow sequence (PFS) is used
to extend the CPU time dlice of a process. PFS of a process is computed from its past execution
history. PFS characterizes the process execution behavior and is used to decide whether the
program executing currently needs additional time. They set a threshold Ty, called as maximum

dispatch delay time, which determines the time limit for context switching; and is a multiple of
the delay for minimum process svitching time. They control the CPU time of a process Ty, by
either reducing or increasing a scding feature. The information for computing the PFS and T,
adjustment threshalds are based on olservations from the 4 pheses:

1) when aprocessis credaed,

2) when aprocessuses upitstime-glice,
3) when aprocessblocksitself, and

4) when aprocessterminates.

They conclude from experimental results that overall processng time is reduced for known
programs. To schedule aprocessthey seach for its name in the PFS knowledge base and thus
improve its behavior.

From this brief sample of literature, we see that it is redly very difficult to derive
clea diredions as to the specific technique used to learn ar characterize program behavior. In our
study we use varied machine learning techniques like Decision Trees, K-NN and Decision Tables
for finding robust and accurate predictions. The techniques we use ae more generic and
efficient. Another important differencein ou work is that we did na rely merely on a label as
dore previously [7], bu wetry to go ceger and analyze dynamic processattributes in predicting
the processexeaution behavior. We find that prediction d the total exeaution time (and process

exeaution kehavior) of aprocessis possbleto alarge extent.

3. Experimental M ethodology

In our study to make for a larger variety of programs to be studied (merely for the
purpose of prediction), we divide programs to be ather interactive or non-interactive programs.
For the non interadive programs, we have taken as representative examples. gunzip, matrix
multiplication, sorting and searching programs and for the interactive programs, we have taken the
examples, acroread and ghostview, which are Linux benchmark programs [4]. The eperimental
procedure is divided into two pheses. In the first phase, we aede the data set from the @dowve
program’s run traces. In the seand phase, we train and classfy this data according to the fitness
function, “total exeaution time” by using machine-learning techniques. While other fitness
functions could have been used we @nsidered this to be the most important for scheduling
performance

Since ay madine leaning technique requires fully labeled (categorized) data for

training we categorized our data into twenty classes and trained the classifiers [8]. The trained
classifiers are then used on a different data set called as atest data set. Often due to limitations in
size of the data, we train classifiers using a leave-one-out technique [9] which is a standard
technique.
3.1 Creating the Dataset

To characterize the process execution behavior, we need to find the attributes (the
characteristics or parameters), which most affect the prediction of the process execution behavior
(here we take total execution time). So In this first phase, we used gprof, readelf and size

commands to get the following attributes as shown in Table 1.

Attribute Definition (thevaluesof the attributes arein terms of bytes)

. bss This dion holds uninitialized datathat contribute to the program’'s memory image.

. data This edion holdsinitialized datathat contribute to the program’s memory Image.

. comment This sdion holds version control information.

. debug This dion holdsinformation for symbalic debugging.

. dynamic This dion holds dynamic linking information

. dynstr This £dion holds grings needed for dynamic linking, most commonly the strings that represent the
names asociated with symboal table entries.

.dynsym This dion holds the dynamic linking symbal table.

. fini This dion holds exeautable instructions that contribute to the processtermination code.

.got This £dion holdsthe global off set table.

.hash This £dion holds a symbal hash table.

.init This £dion holds exeautable instructions that contribute to the processinitiali zation code.

.interp This £dion holdsthe path name of a program interpreter.

line This ®dion holds line number information for symbalic for symbalic debugging, which describes
the crrespondence between the source program and the macine mde.

plt This £dion holds the procedure linkage table.

.rodata This dion holds read-only data that typicdly contribute to a non-writable segment in the process
image.

text This £dion holdsthe “text” or “exeautable instructions’, of a program.

.strtab This ®dion holds drings, most commonly the strings that represent the names associated with

symbal table entries.

Table 1. Attribute Templatefor Computing Similarity Between Processes
In addition, we use three other attributes: input size (in Kbytes), number of page reclaims and
number of page faults. The last two and the user_time and system time are found wsing the
system calls getrusage [8], profil [10] and times [11]. Totaly we wlleded 24 attributes
(charaderisticsy and we use these to predict the dtribute total execution time
(user_time+tsystem_time). We have taken the (norrinteradive) programs. gzip, gunzip and two

other test programs with loops and array operations and coll eded the sets of training examples of
sizes 400and 800for the next phase (as snown in Tables 3 and 4).
3.1.1 An Example of A Training Example (or Instance)

The following is an example of data gathered for “gunzip” instance (Table 2):

Attribute Thevalue
Total_execution time Classt3 (20001—30000 microseconds)
Inpu size 1000kilo bytes
Minimum Page reclaims 36 bytes
Maximum Page faults 83 bytes
.dynsym 912 bytes
.dynstr 525 bytes
.gnu.version 114 bytes
.gnu.version_r 80 bytes
rel.dyn 48 bytes
.rel.plt 384 bytes
.init 23 bytes

plt 784 bytes
text 38804 bytes
fini 27 bytes
.rodata 5700 bytes
.dynamic 200 bytes
.ctors 8 bytes
.dtors 8 bytes
.dynbss 20 bytes

.bss 333372 bytes
.got 208 bytes
Jjer 4 bytes

.data 2784 bytes
.eh_frame 92 bytes
.eh_frame_hdr 28 bytes
Total 386160 bytes

Table 2. Template Data for the program " gunzip”

We used the same method for data llection as sown in the example for gunzip
program. Data was colleded and made into 20 categories based onthe dtribute total execution
time, with ead classhaving an interval of 10000microseconds. This data set was gathered for a
system with GNU/Linux on Intelx86 datform. Following the methoddogy shown in [4], we
collea the data for the acororeal and ghostview programs. That is, these two programs are
interadive programs, so we used the run traces of these programs when dsplaying successve
pages of the pdf and psfil es.

3.2. The Machine L earning Techniques

In this sction we bring in some badkgroundinformation abou the madine learning tedhniques
so that our work may be better appredated, readers familiar with this material could skip aheal
to sedion 3.3.

3.2.1. Thelmportant of Machine Learning

The field of machine learning (ML) is concerned with the question d how to
construct computer programs that automaticaly improve with experience Madine Learning
Theory [8] attempts to answer questions guch as “ How does learning performance vary with the
number of training examples presented” and “which agorithms are most appropriate for
various types of learning tasks?” Overtime several ML techniques have been proposed in the
literature. In recent yeas many succesful madhine-leaning applicaions have been developed,
ranging from data-mining methods that learn detection d frauduent credit card transactions, to
information-filtering systemsthat learn user’s reading preferences etc.

3.2.2. TheLearning Algorithms (Classifiers)

For our experiments, we seleded a representative set of standard machine learning
algorithms with dfferent model classes. All of these are available in the ‘Waikato Environment
for Knowledge Analysis (Weka) [6], an open source machine leaning todl. The seleded leaner
types (clasdfier types) were: “Trees, Lazy, Rules, which are listed below:

3221 Trees
C4.5 (or J48 in Weka [6]) is a Reduced-Pruned Decision Tree Learner. Decision

Treelearning is one of the most widely used and pradicad methods for inductive inference. It isa
method for approximating discrete-valued functions, and is robust to nasy data and cgpable of
leaning disjunctive expressons.
3.2.2.2. Lazy (or Instance Based L earner)

In contrast to learning methods that construct a general, explicit description d the

target function when training examples are provided, instance-based learning methods [6] simply
store the training examples. Generalizing beyond these examples is performed urtil a new
instance must be dasdfied. Each time anew query instance is encourtered, its relationships to
the previously stored examplesis examined in order to assgn atarget function value for the new

instance In this caegory, we usethe IB family.

IB k Learner (K-NN):
This assumes all instances are points in an n-dimensional space. The nearest

neighbors (NN) of an instance are defined in terms of the standard Euclidean Distance. The class
label of anew instance is found from the K instances nearest to it by assigning to it the majority

label of the K-NN [6].
3.2.2.3. Rules
One of the most expressive and human readable representations for learned

hypotheses is a set of if-then rules. In this category, we studied the following:
Decision Table L earner:

This produces rules formatted as a table from a selected set of attributes (following a wrapper-
type feature selection prior to the training phase).
3.3. Training and Testing M ethodology

We performed two types of tests on the training examples with al the above
learners on the data sets collected in the first phase. Thetests are:
Use Training Set: The classifier is evaluated on how well it predicts the class of the instance it
was trained on.
Cross-Validation: The classifier is evaluated by cross-validation, using the number of folds that
are entered in the Folds text field (Weka). Recognition accuracy was tested via cross-validation.
In this test, the training examples are divided into 10 parts and the classifier classifies by taking

one part as atest set and other 9 parts astraining set. Likewise, we continue for al parts.

4. Experimental Results

The results of the “Cross-Validation” and “Use Training Set” experiments are
summarized in the following tables, which give the percentage of correct prediction achieved by
theindividual classifiers on different sizes of the set of training examples.

Classifier Classifier % Classification % Classification
Type 10 Fold Cross-Validation Use Training Set
Non- Interactive Non-Interactive Interactive
Interactive Programs Programs Programs
Programs
Trees C4.5 94.8670 92.6532 95.2135 98.0769
Lazy IB K (K-NN) 94.9550 94.2308 95.3153 98.0769
Rules Decision Table 91.53 91.4320 95.5 99.1250

Table-3: Classification for 400 Training Examples (I nstances)

Classifier Classifier % Classification % Classification

Type 10 Fold Cross-Validation Use Training Set
Non-Interactive [nteractive Non-Interactive Interactive
programs Programs Programs Programs

Trees C4.5 96.8563 93.0230 96.8563 98.1459

Lazy IB K(K-NN) 96.6250 94.2430 96.7813 98.1459

Rules Dedsion Table 95.8745 92.2640 96.3135 99.6750

Table-4 Classification For 800 Training Examples (Instances)

Looking at the tables (3-4) in terms of learning algorithms first, we observe that all

algorithms are giving significant recognition rates (%prediction). Some leaners may be better

suited to this task than athers and the overal prediction accuracy varies between 91.446 and

99.®46. A closer look onthe @owe result is very encouraging — most results are significantly

nea to the perfect recognition rate (prediction) of 100%. The results aso show that the

prediction is better with the larger number of training instances. The following charts siow the

abowe results.

Cross-Validation Test on 400 Training

Use Training Test on 400 Training

Instances Instances
) ()
£ OcC45 £ 100
< 96 ! ks] '_I D c45
£ c C 98
el EK-NN B =
8 92 1 % g 9% B K-NN
£ 90 - = %5 04
e O Decision c O becis:
E 88 Table S| 92 ecision
5 Non-Intearctive Interactive e Table
2 Non-Interactive Interactive
s
Chart (a) Chart (b)
Cross Validation Test on 800 Training Instances Use Training Test on 800 Training Examples
100
(9}
SE 100 Oc4.5 . 9 []
5§65 S
5= 95 A 4= = 98 —
58 Ek-nn = Dc4.5
g) 90 - % S 97 — .
SE . S 3] | -nn
g 85 Odecision|| |88
Non-Inter Interactive table % £ 95 [| Odecision
S 94 table

Non-Interactive Interactive

Chart(c)

Chart (d)

4.3.1. Extracting the Best Attributes

For this we used “Wakato Environment for Knowledge Analysis (Weka) as
follows: Attributes selection involves searching through all possible combinations of attributesin
the data to find which subset of attributes works best for predicting the program execution
behavior. Here our goal isto predict “the total execution time (thisis one aspect of characterizing
the process execution behavior)”. To do this, two objects must be set up; “an attribute evaluator
“and “a search method”. The evaluator determines what method is used to assign a value (weight
or worth) to each subset of attributes. The search method determines what style of search is
performed. The attribute sel ection mode has two options:
Use full training set: The worth of the attribute subset is determined using the full set of training
data.
Cross-validation: a process of cross-validation determines the worth of the attributes subset. The
Fold and Seed field set the number of folds to use and the random seed used when shuffling the
data.
We applied the search methods such as Genetic Search [6], Best First Search [6] and Rank
Search [6] and the evaluation methods such as CfsSubsetEval [6] and Consistency SubsetEval for
both the above attribute selection mode options. We found the below attributes as "good
attributes’, that is those attributes which effectively characterize the process execution behavior.
From the two searches genetic and bestfirst and the above two evauation methods, the best
attribute found is input size and page reclaims is the second best. Other good attributes are .text,.
data, .rel.plt, .dynamic,page faults and .plt.
By applying rank search [6] with CfsSubsetEval [6] the ranking of the above good attributes is

summarized in the below table.

Attribute Input size Page Reclaims Page faults .dynamic text .data .rel.plt plt

Rank 1 2 3 4 5 6 7 8

Table4: The Effectivenessof attributesand their Ranks
4.4. Improved PBS Scheduler:
From our study above now we attempt to propose a scheme for PBS scheduling. In the PBS
scheduling of grid systems [1], users need to give the resource requirements along with the job
for execution. Then the PBS executes them in the future, according to the site policy, to best
satisfy the site production needs.

As shown in our proposed model, which is shown in Figure 1, the advanced
knowledge module predicts the resources required by the submitted job using machine-learning
techniques. We maintain a knowledge base of the previous program run traces (execution
behaviors). The advanced knowledge module updates the knowledge base when a new program
comes. The advanced resource manager takes the information from the advanced knowledge
module and compares the current system resources with the predicted resources of the submitted
program. If the resources are available, it instructs the local process scheduler to schedule the
submitted job.

This proposed model may remove the burden of the users when they are submitting
the jobs to PBS, since the advanced resource manager would predict their job' s resource
requirements. Optionally, the predictions about resource requirements are used as suggestions by
the users who may modify their job submissions, to give an improved performance. Hence our

proposed model of advanced knowledge based PBS may improve the scheduling process of grid
systems.

User

Advanced Knowledge
Knowledge Database
Module

User space

Kernel Advanced
Local OS 4«— | Resource
Scheduler Manager

Allocation& Ready Queue

Of processes

Hardware

Figure 1: Advanced Knowledge Based PBS Scheduler

5. Conclusions and Future Work

This paper has presented experimental results to show that machine learning
techniques can successfully characterize process execution behavior. The machine learning
algorithms achieved good prediction (91.4%-99.7%), which indicates that when suitable
attributes are used, that a certain amount of predictability does exist for known programs. A more
comprehensive study of High Performance Application characteristics and execution behavior is
being conducted on an 8-node Linux cluster. We are also exploring the portability of the
characteristic set of parameters for parallel applications on this cluster. A more detailed study on

AIX UNIX systems with different processorsis also underway.

Acknowledgments: We would like to thank Sasi Kanth.A and Dr.C.R.Rao for their valuable suggestions.
We a so thank the referees for improving the paper with their most useful comments.

References

[1] Albeaus Bayacan, Portable Batch System, Administrator Guide, NASA Ames Research Center,
Release: 1.1.12,August 7, 1998.

[2] F.Vraasen, RA. Aydt, C.L. Mendes and D.A. Reed, "Performance Contracts: Predicting and
monitoring grid application behavior”, in Lee, Craig A. (Ed.), Grid Computing —Grid 200L: Proceedings
of the 2" International Workshop onGrid computing, Denver, CO, USA, November 12, 2001, LNCS
2242 Ledure Notesin Computer Science, Springer, 2001

[3] Warren Smith, Valerie Taylor, lan Foster, "Predicting Application Run-Times Using Historical
Information”, In Job Scheduling Strategies for Parallel Processing, IPPS'SPDP'98 Workshop, Orlando,
Florida, USA, March 30, 1998 Lecture Notes in Computer Science, LNCS-1459: 122 — M2, Springer
1998.

[4] Krisztian Flaunter, Rich Uhlig, Steve Reinhardt, Trevor Mudge, "Thread Level Paralelism and
Interactive Performance of Desktop Applications®, Architedural Support for Programming Languages
andOperating S/stems, ASPLOS | X proceedings. Pp.129-138, Cambridge, MA ,USA., Dec.2000

[5] Hui Li. Master's Thesis. Predicting Job Start Times on Clusters. Internal Report 03-11, Leiden
Institute of Advanced Computer Science, Leiden University, 2003

[6] Garner, SR., "WEKA: The Waikato Environment for Knowledge Anaysis'. In Proc. of the New
Zealand Computer Science Research Students Conference, pp 57-64., 1995.

[7] Surkanya Suranauwarat and Hide Taniguchi, "The Design, Implementation and Initial Evaluation of
An Advanced Knowledge -based Process Scheduler”, ACM S GOPS Operating Systems Review, Volume
35, pp. 61-81. Issue 4, October 2001

[8] Tom Mitchell, Machine Learning., pp.. 55-56,230-244 and 274-304., The Mc-Graw Hill
Company.Inc.International Edition, 1997.

[9] R.O.Dudaand P.E.Hart, Pattern Classification, Wiley, NewYork NY. 1973.
[10] MauriceJ Bach, The Design of Unix Operating System, Prentice Hall, pp. 260-266, 1983.

[11] Richard Stevens, Advanced Programming in the Unix Environment, Pearson Education, pp. 232-235,
2004 (Reprint).

