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Abstract— Time series clustering has become an increasingly 

important research topic over the past decade. Most existing 

methods for time series clustering rely on distances calculated 

from the entire raw data using the Euclidean distance or 

Dynamic Time Warping distance as the distance measure. 

However, the presence of significant noise, dropouts, or 

extraneous data can greatly limit the accuracy of clustering in 

this domain. Moreover, for most real world problems, we 

cannot expect objects from the same class to be equal in length. 

As a consequence, most work on time series clustering only 

considers the clustering of individual time series “behaviors,” 

e.g., individual heart beats or individual gait cycles, and 

contrives the time series in some way to make them all equal in 

length. However, contriving the data in such a way is often a 

harder problem than the clustering itself. 

In this work, we show that by using only some local 

patterns and deliberately ignoring the rest of the data, we can 

mitigate the above problems and cluster time series of different 

lengths, i.e., cluster one heartbeat with multiple heartbeats. To 

achieve this we exploit and extend a recently introduced 

concept in time series data mining called shapelets. Unlike 

existing work, our work demonstrates for the first time the 

unintuitive fact that shapelets can be learned from unlabeled 

time series. We show, with extensive empirical evaluation in 

diverse domains, that our method is more accurate than 

existing methods. Moreover, in addition to accurate clustering 

results, we show that our work also has the potential to give 

insights into the domains to which it is applied. 
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I.  INTRODUCTION 

Time series analysis is an important topic within many 
fields of research including, aerospace, finance, business, 
meteorology, medical science, motion capture, etc. 
[8][26][34]. However, most research on time series analysis 
is limited by the need for costly labeled data. This has led to 
an increase of interest in clustering time series data, which, 
by definition, does not require access to labeled data 
[33][8][4][9].  

A decade old empirical comparison by Keogh and 
Kasetty in [11] reveals the somewhat surprising fact that the 
simple Euclidean distance metric is highly competitive with 
other more sophisticated distance measures, and more recent 
work confirms this [3]. However, the time series must be of 
equal length for the Euclidean distance to be defined. 
Dynamic Time Warping (DTW) can both solve this problem 
and handle the difficulty of clustering time series containing 
out-of-phase similarities as shown in [12][1][25][3].  

In this work, however, we argue that the apparent utility 
of Euclidean distance or DTW for clustering may come from 
an over dependence on the UCR time series archive [13], for 

testing clustering algorithms [33][12][19]. The problem is 
that the data in this archive has already been hand-edited to 
have equal length and (approximate) alignment. However, 
the task of contriving the data in this format is almost 
certainly harder than the task of giving labels to the data, i.e., 
the clustering itself.  

As a concrete example, consider the famous Gun-Point 
dataset, which has been used in hundreds of studies for both 
clustering and classification, in every case reporting near 
perfect accuracy [3]. This dataset was contrived to have 
perfect alignment/length by audible cues that both signaled 
the actor and started/stopped the video recording. Figure 1 
shows two examples of data from the archive (just the parts 
highlighted in red/bold); however, by examining the original 
archive we are able to show the data with the three seconds 
proceeding/trailing data used in the UCR archive.   

 

Figure 1. A Euclidean distance clustering of two exemplars from the “raw” 

Gun-Point dataset, together with a random walk sequence. The hundreds of 
papers that have used the Gun-Point dataset have only considered the 

human edited version, corresponding to just the red/bold data. 

Our central argument is that this less “clean” example is 
a much more realistic format in which the data is likely to 
appear in any real world problem worthy of our attention. 
Note, however, that if we attempt to cluster the data with the 
Euclidean distance (e.g. the dendrogram in Figure 1), we get 
a very poor result. In Figure 2, we show the result of 
clustering these time series if we are allowed to ignore some 
of the data. Here, we use the section from random walk 
sequence that has minimum distance to the Gun-Point 
gestures. 

 
Figure 2. Clustering Gun-Point after ignoring some data. 

As we can see, the situation has improved drastically. For 
the moment, we gloss over the question of how we knew 
which sections to ignore. However, as we shall see, we can 
do this without any human intervention and introducing this 
ability is the core contribution of this work. 

We believe that this observation, that for most datasets 
we must ignore some (potentially the vast majority of) data, 
is a critical insight in allowing time series clustering in 
realistic problem settings.  
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We are aware of the “chicken-and-egg” nature of our 
claim. We must ignore some data to allow a good clustering, 
and a good clustering is the obvious way to reveal the best 
data to keep (and ignore). However, we will show that time 
series shapelets [32] can be adapted to resolve this paradox. 

Time series shapelets are small, local patterns in a time 
series that are highly predictive of a class. The idea of 
shapelets was introduced by Ye [32] as a primitive for time 
series data mining. Since then, numerous other researchers 
have shown the utility of shapelets for classifying time series 
data [21][16][7][30].  

In this work, we show for the first time that shapelets can 
also be highly competitive in clustering time series data. 
Since we do not know the labels of the time series in the 
dataset, this begs the question, “How can we discover 
shapelets from a dataset without having any knowledge of 
the class labels?” We propose a new form of shapelet that 
we call unsupervised-shapelet (or u-shapelet) and 
demonstrate its utility for clustering time series data. 

The rest of the paper is organized as follows: In Section 2 
we define the necessary notation; in Section 3, we discuss 
previous work on clustering time series; Section 4 explains 
our method for obtaining shapelets in the absence of class 
labels; Section 5 shows forceful empirical evidence of our 
algorithm working on many datasets from diverse domains; 
lastly, Section 6 concludes and gives direction of future 
research. 

II. DEFINITIONS AND BACKGROUND 

We present the definitions of key terms that we use in 
this work. For our problem, each object in the dataset is a 
time series, which may be of different lengths. 

Definition 1: Time Series, a time series T = T1, T2, …, Tn 
is an ordered set of real values. The total number of real 
values is equal to the length of the time series. A dataset 
D = {T1, T2, … TN} is a collection of N such time series. 

In this work, we demonstrate that if we can find small 
subsequences of few time series that best represent their 
clusters (e.g. red/bold subsequences of Figure 1), then those 
subsequences may give us a better clustering result than 
using the entire time series. 

Definition 2: Subsequence, a subsequence Si,l, where 
1≤l≤n and 1≤i≤n, is a set of l continuous real values from 
a time series, T, that starts at position i. 

For a time series of length n, there can be in total, 
      

 
 

subsequences of all possible lengths. If there are N time 
series in the dataset with length n, then there will be in total, 

  
      

 
 subsequences.  

Previous research efforts on shapelet discovery [32][21], 

had to consider all the   
      

 
 subsequences to find 

optimal shapelets for building the classifier. However, as we 
shall see, we need to explore only a tiny subset of these 
subsequences to find the optimal u-shapelets.  

Our clustering algorithm thus inherits much of the 
discriminating power of shapelets, but little of their well-
documented lethargy. We will formalize the definition of u-
shapelets shortly.  

We can compute the distance between two time series of 
equal length, by simply calculating the Euclidean distance 
between them. To make our distance measure invariant to 
scale and offset, we need to z-normalize the time series 
before computing their Euclidean distance. As demonstrated 
in [11], even tiny differences in scale and offset rapidly 
swamp any similarity in shape. 

 In order to compare or rank candidate u-shapelets we 
need to consider the utility (i.e. discriminating power) of 
subsequences of different lengths, as in most cases we expect 
the distance between shorter subsequences will be less than 
the distance between longer subsequences. Thus we 
normalize the distance by the length of the subsequence. We 
call this the length-normalized Euclidean distance. The 
length-normalized Euclidean distance between two time 
series    and    can be computed using, 

√
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    which takes time linear on the length 

of the time series.  
We can reduce the amortized time complexity of this 

calculation from linear to constant by caching the results of 
some calculations. The five results to cache 
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    . This method has been adopted and described in [21]. 
For brevity, we refer the interested reader to that work [21]. 
Using these numbers we can compute the mean µ (1) and 
standard deviation (std) σ (2). 
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The positive correlation (3) and the length-normalized 
Euclidean distance (4) can be computed as follows [22]. 

          
∑          
 
           

       
 

             √ (          ) 

We are now in a position to explain how we calculate the 
distance between a (typically short) subsequence S and a 
(typically much longer) time series T. We need to “slide” S 
against T to find the alignment that minimizes the distance. 

Definition 3: The Subsequence distance between a 
subsequence S of length m and a time series T of length n 
is the distance between S and the subsequence of T that 
has minimum distance. We denote it as sdist(S, T). 

                                           

Note that we generally expect m << n, and that both 
sdist(S, T) and sdist(T, S) are only defined if  n = m.  

In previous works, a definition similar to sdist was used 
to support a definition of shapelets; small subsequences that 
separate time series into two or more distinct groups by their 
“nearness” or “distance” to that subsequence [32][21]. Since 
we cannot use the class labels of the time series to discover 
the shapelets, we call our definition of informative 
subsequences unsupervised-shapelets or u-shapelets to 



 

differentiate them from the classic shapelets which assume 
access to class labels [32][21]. 

Definition 4: An unsupervised-shapelet   is a 
subsequence of a time series T for which the sdists 

between   and the time series from a group DA are much 

smaller than the sdists between   and rest of the time 
series DB in the dataset D (6). 

                         

We will expound on how we formalize “much smaller” 
below. The reader may wonder how we identify DA and DB 
without class labels. In Section IV.B we have formalized an 
algorithm to discover u-shapelets from a dataset. The 
algorithm will rigorously clarify the concept of DA and DB, 
so we defer a detailed discussion about it until then.  

Note that, unlike the trivial example shown in Figure 2, 
many problems may require more than one u-shapelet. Thus 
we need to generalize our representation to allow for 
multiple u-shapelets. We call the matrix that contains the 
sdists vectors between u-shapelets and each time series in 
the dataset a Distance map. 

Definition 5: A Distance map contains the sdists between 
each of the u-shapelets and all the time series in the 
dataset. If we have m u-shapelets for a dataset of N time 
series, the size of the distance map is [N × m] where each 
column is a distance vector of a u-shapelet. 

For any dataset, once we have this distance map of the 
u-shapelets’ distances, we can simply pass it into an off-the-
shelf clustering algorithm such as k-means. Thus the focus 
of our work is in algorithms for obtaining high quality 
distance maps. Note that the distance map representation is 
somewhat similar to the vector space model, which is a 
cornerstone of most text mining algorithms [27]. 

A. A Discrete Analogue of U-Shapelet 

In order to enhance the reader’s understanding of u-
shapelets and to lay the groundwork for the intuition about 
our proposed distance map building method, we present a 
very simple example from a discrete (rather than real-
valued) sequence domain. This example is a close analogue 
of the task at hand. The use of the discrete data simply 
allows us to explain our ideas in a domain where the reader’s 
intuitions are highly developed and without the need of 
resorting to figures.   

Consider the following collection of phrases, which is an 
analogue of a dataset of time series: 

San Jose; Earth Day; San Francisco; Memorial Day; Fink 
Nottle; Labor Day; Bingo Little.  

If we are asked to cluster this set of phrases into three 
groups, then as intuitive humans we would almost certainly 
split the data based on the presence/absence of the two 
substrings “San” and “Day”. 

However, doing this algorithmically is a little more 
challenging. Since the phrases differ in length, we cannot 
apply Hamming distance, which is analogous to Euclidean 
distance, to compute the distance vector of the full phrases. 
The problem of length difference is solved by using Edit 
distance, which is the discrete version of DTW, but the Edit 

distance produces a clustering that looks essentially random, 
as it needs to “explain” the irreverent sections e.g., Earth, 
Francisco, Memorial etc. 

Instead, we can try to find representative substrings of 
the above phrases. By visual inspection the obvious 
candidates are “San” and “Day”. We compute the Hamming 
distances of these words to their nearest substrings in all 
phrases, and produce the distance map shown in Table I. 

TABLE I. DISTANCE MAP OF “DAY” AND “SAN” 

 San Jose Earth Day San Fran.. Mem.. Day Fink Nottle Labor Day Bingo Little 

San 0 2 0 2 2 2 2 

Day 2 0 2 0 3 0 3 

Using this distance map, we can cluster the phrases 
perfectly by using k-means on the columns. Moreover, 
examining the key-phrases (u-shapelet analogues) chosen for 
clustering gives us some intuition about the domain. For 
example, we may notice that the second, fourth, and sixth 
phrases are some kinds of “day”. 

The above example is rather simple and the reader may 
wonder if this method works only if some u-shapelets have 
zero distance to the nearest neighbors of their own group. 
The answer is no, this method can handle more complex 
datasets. Consider the following set of sentences, 

        Abraham Lincoln lived here for many years.       (English) 
        She is looking for Ibrahim.                                     (Arabic) 
        You can find Abrahan in that house.                  (Portuguese) 
        Michael is singing a song for her.                         (English) 
        She bought a gift for Michaël.                                (Dutch) 
        She can teach Michales chess                               (Hebrew) 

The Hamming distances from the key-phrase Abraham to 
its nearest neighbors is [0, 2, 1, 7, 7, 7] respectively, and this 
distance vector is only entry necessary in a distance map that 
can cluster the sentences correctly into two groups. Note, 
however, that the choice of Abraham is somewhat arbitrary, 
as the data can also be correctly clustered by using either the 
similar key-phases Ibrahim/Abrahan or by any of the three 
variants of Michael. 

We conclude this section by summarizing what we have 
learned from this analogy. First of all, to cluster data, we are 

generallysomewhat paradoxicallybetter off ignoring large 
sections of the data. Secondly, while sometimes a single key 
element (i.e. Abraham) may be enough to separate the data 
into meaningful clusters, in some cases we may need two or 
more (i.e. Day and San) elements to separate the data.  

III. RELATED WORK 

The literature on clustering time series is vast; we refer 
the reader to [14] which offers a useful survey. Much of the 
work can be broadly classified into two categories: 

 Shape-based clustering, which attempts to cluster the 
data based on the shape of the entire time series [4], 
using Euclidean distance, DTW, or one of a host of 
other distance measures [3]. Note that our method 
contrasts with these ideas in that we explicitly allow 
our representation to ignore much of the data. 

 Statistical-based clustering, which attempts to cluster 
the data based on statistical features extracted from the 
time series. These features include common measures 



 

such as mean, standard deviation, skewness, etc., in 
addition to more exotic features such as coefficients of 
ARIMA models [10], and fractal measures [29], etc. 

One problem with the latter approaches is that they 
typically require a great many parameters and (at least 
apparently) ad-hoc choices. The problem with the former 
approaches is that the distance measures consider all data 
points, even though (as hinted in Figure 1 and Figure 2) we 
may be better off ignoring much of the data. Note that there 
are a handful of methods that combine both ideas by using 
statistics/features which are derived from time series shapes 
[8][34][3] . 

The work closest to ours in spirit is that of 
Rakthanmanon et al., which shows the importance of 
ignoring some data for clustering within a single time series 
stream [23].  

IV. OUR ALGORITHM 

We are finally in a position to present a more direct 
insight and formal description of our algorithm. 

A. An Intuition of our Clustering Algorithm 

Consider the Trace dataset from the UCR archive [13]. It 
contains 50 instances from each of four classes, all with a 
length of 275. In Figure 3, we present ten random instances 
from each class. Note that while the global patterns within 
each class are the same, they are not aligned perfectly. As a 
result, if we use entire time series for k-means clustering 
with the Euclidean distance as distance measure, we will get 
poor results (we formally measure the quality of the results 
using the Rand index in the experimental section below, for 
the moment it is suffice to note the results are poor). 

 
Figure 3. Sample time series from four classes of Trace dataset. 

However, suppose that we use subsequences that are 
prominent in one class but not in other classes as u-shapelets 
(e.g. the red subsequences in Figure 4 (left). We can then use 
their distance map to separate all the time series. In Figure 4 
(right), we plot the distance map of the two u-shapelets in 
two-dimensional space. In this plot, the X-axis represents the 
sdists of the first u-shapelet while the Y-axis encodes the 
sdists of the second u-shapelet. From this plot, it is clear that 
by using the distance map, we could get perfect clustering.  

 
Figure 4. (left) two u-shapelets (marked with red) used for clustering Trace 

dataset. (right) a plot of distance map of the u-shapelets.  

The choice of u-shapelets here is not arbitrary. For 
example, if we slide u-shapelet 2 to the right, the cloud of 
blue points (class 3) will rise up and intermingle with the 
clouds of red and orange points (classes 1 and 2). In a sense,                                                                                                                                           
this would be like trying to use a stop-word to cluster text 
documents [18]. Stop-words simply do not have any such 
discriminating power. 

Note that in this example we are “cheating” in so much 
as that in our (visual) evaluation we know the class labels. In 
the next section, we introduce an algorithm that we can use 
to discover the u-shapelets without using class labels. 

B. A Formal Description of Our Algorithm 

The high-level idea of our algorithm is that it searches for 
a u-shapelet which can separate and remove a subset of time 
series from the rest of the dataset, then iteratively repeats this 
search among the remaining data until no data remains to be 
separated. 

As hinted at before, an ideal u-shapelet   has the ability 
to divide a dataset D into two groups of time series, DA and 
DB. DA consists of the time series that have subsequences 

similar to   while DB contains the rest of the time series in D. 

Simply stated, we expect the mean value of sdist(    ) to be 

much smaller than the mean value of sdist(    ). Since we 
ultimately use a distance map that contains distance vectors 
to cluster the dataset, the larger the gap between these two 
means of these distances vectors, the better.  

We use the algorithm in Table II to extract u-shapelets. In 
essence, this algorithm can be seen as a greedy search 
algorithm which attempts to maximize the separation gap 
between two subsets of D. This separation measure is 
formally encoded in the following equation: 

                   

Here,    and    represent mean(sdist(     )) and 

mean(sdist(    )) respectively, while     and    represent 

std(sdist(    )) and std(sdist(    )), respectively. 
In the nested for loop of lines 6-9, we consider all 

subsequences of the time series as candidate u-shapelets and 
compute their distance vectors. We can represent a distance 
vector as a schematic line which we call an orderline. In line 
10, we search these orderlines for the location that 
maximizes the gap function introduced in (7). We refer to 

this point as dt. Points to the left of dt represent            , 
while points to the right correspond to            . 

Figure 5 presents the orderline of the words “Abraham” 
and “Lincoln” from the discrete toy example of Section II.A.  
Several tentative locations of dt are shown with gray/light 
lines and are annotated by their gap scores. However, the 
locations of the actual dt are shown with blue/bold lines.  

 
Figure 5. Orderline for (left) “Abraham”, (right) “Lincoln”. 

Note that the maximum gap score for “Lincoln” is larger 
than the maximum gap score for “Abraham”. Nevertheless, 
we would rather use “Abraham” as the key phrase. This is 

class 1 class 2 class 3 class 4

u-shapelet 1

u-shapelet 2

0 1.4

0

sd
is

ts
o
f 

u
-s

h
ap

el
et

 2

sdists of u-shapelet 1

class 1 class 2

class 3 class 4
0 7

1.8 2 5

dt

DB

DA

0 7

5.7 -0.5

dt
DB

DA



 

because we want a u-shapelet to have discriminative power. 
If all but one time series belong to either DB or DA, then we 
do not have discriminating ability, but rather have a single 
outlier or universal pattern, both of which are undesirable. In 
order to exclude such pathological candidate u-shapelets, we 
check if the ratio of    and    is within a certain range (8). 
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)                             

TABLE II. ALGORITHM TO EXTRACT U-SHAPELETS 

Algorithm 1. extractU-Shapelets(D, sLen) 

Require: D: dataset; sLen: shapelet length 

Ensure: Ś: set of u-shapelets  

1: 
2: 

3: 
4: 

5: 

6: 
7: 

8: 

9: 
10: 

11: 

12: 
13: 

14: 

15: 
16: 

17: 

18: 
19: 

20: 

Ś ← []          // set of u-shapelets, initially empty 
ts ← D(1,:)  // a time series of the dataset 

while true 
  cnt ← 0             // count of candidate u-shapelets from ts 

  ŝ ← []               // set of subsequences, initially empty 

  for sl ← sLen(1) to sLen(end) do // each u-shapelet length 
    for i ← 1 to |ts|-sl+1 do        // each subsequence from ts 

      ŝ(cnt+1) ← ts(i:i+sl-1)       // a subsequence of length sl 

      [gap(cnt+1), dt(cnt+1)] ← computeGap(ŝ(cnt+1), D)         
  index1 ← max(gap)    // find maximum gap score 

  Ś ← ŝ(index1)      // add the u-shapelet with max gap score 

  dis ← computeDistance(ŝ(index1), D) 
  DA ← find(dis < dt)     // points to the left of dt 

  if length(DA) ==1, break;       

  else 

    index2 ← max(dis), ts ← D(index2, :) // ts to extract next u-shapelet 

    Ɵ ← mean(disDA)+std(disDA) 

    Ď ← find(dis < Ɵ) , D ← D-Ď // remove ts with distance less than Ɵ        

end 

return Ś                        // set of u-shapelets  

The algorithm shown in Table III is called as a 
subroutine in line 9 of Table II to compute the maximum gap 
score (7) and dt of a candidate u-shapelet. This subroutine 
takes a candidate u-shapelet and the dataset as input. In line 1 
the algorithm computes the distance vector of the candidate 
u-shapelet. The for loop is then used to compute the gap for 
every possible location of dt. Note that for a distance vector 
with N values, there are just N-1 possible locations to check. 
The first if block is used to check the condition of (8), while 
the second if block is used to find the maximum gap.  

TABLE III. ALGORITHM TO COMPUTE GAP 

Algorithm 2 computeGap(ŝ, D) 

Require: ŝ: candidate u-shapelet; D: dataset 

Ensure: maxGap: maximum gap score; dt 

1: 
2: 

3: 

4: 
5: 

6: 

7: 
8: 

9: 

10: 
11: 

12: 

13: 
14: 

dis ← computeDistance(ŝ, D)  //distance vector of ŝ 
dis ← sort(dis)        //sort distance vector in ascending order 

maxGap ← 0, dt ← 0 

for l ← 1 to |dis|-1 do,       // all possible location of dt 
  d ← (dis(l) + dis(l+1))/2 

  DA ← find(dis<d)             // points to the left of dt 

  DB ← find(dis>d)             // points to the right of dt 
  r ← |DA|/|DB|                     // ratio of |DA| and |DB| 

  if  1/k<r <(1-1/k),             // k: number of clusters 

    mA ← mean(dis(DA)), mB ← mean(dis(DB)) 
    sA ← std(dis(DA)), sB ← std(dis(DB)) 

    gap ← mB-sB-(mA+.sA)  

    if gap > maxGap, { maxGap ← gap; dt ← d }  
return maxGap, dt             //max gap score and dt for ŝ 

The algorithm in Table IV is used to compute the 
distance vectors. It takes a subsequence and the dataset as 
input and computes the sdists between the subsequence and 
each time series in the dataset. In order to return the length 
normalized Euclidean distance it divides the sdists by the 
square root of the subsequence length (cf. line 9). 

TABLE IV. ALGORITHM TO COMPUTE DISTANCE VECTOR 

Algorithm 3 computeDistance(ŝ, D) 

Require: ŝ: subsequence, D: dataset 

Ensure: dis: distances from all the time series in the dataset 

1: 

2: 
3: 

4: 

5: 
6: 

7: 

8: 
9: 

dis ← []                              //set of distances, initially empty 

ŝ ← zNorm(ŝ)                    //z-normalize ŝ 
for i ← 1 to |D|, do 

  ts ← D(i, :); dis(i) ← INF 

  for j ← 1 to |ts|-|ŝ|+1 do, //every start position of ts 

    z ← zNorm(       ) 

    d ← euclideanDistance(z, ŝ) 

    dis(i) ← min(d, dis(i)) 
return dis/sqrt(|ŝ|)             // set of distances  

Once we know the gap scores for all the subsequences of 
a time series, we add the subsequence with maximum gap 
score in the set of u-shapelets (cf. lines 11, 12 of Table II).  

Given that we have selected a u-shapelet, we do not want 
subsequences similar to it to be selected as u-shapelets in 
subsequent iterations. Thus we remove the time series (cf. 
line 18 of Table II) that have subsequences similar to the u-
shapelet from the dataset and use only the remaining dataset 
to search for the next u-shapelet. 

To illustrate with our toy example phrases of Section 
II.A, once we identify the key-phrase “San” as a high quality 
key-phrase (i.e. “u-shapelet”) we remove “San Jose” and 
“San Francisco” from the set of phrases and search for the 
second key-phrase within just:  

Earth Day, Memorial Day, Fink Nottle, Labor Day, Bingo Little 

When we identify the second key-word “Day,” we 
remove the relevant phrases and search only within: 

Fink Nottle, Bingo Little 

…and so on, until the terminating condition in line 14 is true. 
For our real-valued time series we use the threshold   to 

exclude the time series that have sdists less than   from the 
dataset (cf. line 17-18). 

       (     (    ))     (     (    )) 

The reader may wonder why we use   instead of just 
directly removing DA from D. In simple terms, the use of (9) 
is more selective than use of (7). 

Imagine that we add the phrases “Hoover Dam” and 
“Alamo Dam” to the above set of phrases. If we observe the 
orderline of “Day” in Figure 6, we find “Hoover Dam” and 
“Alamo Dam” are included in DA. Using  , we are more 
selective and only remove the phrases that contain the word 
“Day”, a tighter cluster.  

 
Figure 6. Orderline for “Day”. Ɵ is shown with red/thick line and dt is 
shown with blue/thin line. 
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The extraction algorithm terminates when the search 
reveals that for the best u-shapelet choice, the size of DA is 
just one. In practice, this means the algorithm tends to run 
beyond the point where the u-shapelets are useful and we 
must do some post-pruning, an idea we discuss in detail in 
Section IV.C.  

Note that our algorithm only requires the users to provide 
a single parameter: the desired length, or range of lengths for 
the u-shapelets. Moreover they can even abrogate this 

responsibilityat the expense of speedby choosing the 
range of [2:inf]. 

While the distance map created by our algorithm can be 
used by essentially any clustering algorithm, for concreteness 
in TABLE V we show how we use the ubiquitous k-means. 

Because the result of k-means clustering may differ from 
run to run, we call k-means multiple times (cf., for loop of 
lines 7-11). In the if block of lines 9-11, we compute the 
objective function and keep the clustering that minimizes it. 

TABLE V. ALGORITHM TO CLUSTER TIME SERIES 

Algorithm 4 clusterData(D, Ś, k) 

Require: D: dataset; Ś: set of u-shapelets; k: number of clusters 

Ensure: cls: cluster label for each time series in the dataset 

1: 

2: 

3: 
4: 

5: 

6: 
7: 

8: 

9: 
10: 

11: 

12: 
13: 

14: 

DIS ← []       //distance map that contains all the distance vectors 

cls(0) ← c  // assign same cluster label to all the time series 

for cnt ← 1 to length(Ś) 
  ŝ ← Ś           // a u-shapelet 

  dis ← computeDistance(ŝ, D) //distance vector of a u-shapelet 

  DIS ← [DIS dis], sumDis ← INF 
  for i ← 1 to n 

    [IDX, SUMD] ← k-means(DIS, k) 

    if sum(SUMD) <sumDis   // SUMD: distances to the cluster  

      sumDis ← sum(SUMD) // centers, i.e. the objective function 

      cls(cnt) ← IDX              // IDX: cluster labels returned by k-means 

  CRI(cnt)←1-RI(cls(cnt-1), cls(cnt)) //RI:Rand index, CRI: change in RI 

a ← min(CRI) // a:index when CRI is minimum 

return cls(a)   //class labels when CRI is minimum 

C. Stopping Criterion 

For any non-trivial time series dataset, the algorithm in 
Table II will almost certainly extract too many u-shapelets. 
Thus the last step of our approach involves pruning away 
some u-shapelets (much like decision-tree post-pruning 
algorithms [20]). Our task is made easier by the fact, the 
order in which our algorithm selects the u-shapelets is “best 
first,” thus our task reduces to finding a stopping criterion.  

Many iterative improvement algorithms (e.g. k-means, 
EM) have stopping criteria based on the observation that the 
model does not change much after a certain point. We have 
adopted a similar idea for our algorithm. In essence, our idea 
is this; for i equals 1 to the number of u-shapelets extracted, 
we treat the i

th
 clustering as though it were correct, and 

measure the Change in Rand index (CRI) the i
th
 +1clustering 

produces. The value of i which minimizes this CRI (i.e., the 
clustering is most “stable”) is the final clustering returned. 
Ties are broken by choosing the smaller set. 

The clustering algorithm in Table V takes the dataset, the 
set of u-shapelets returned by algorithm 1, and the user-
specified number of clusters as input. The distance map is 
initially empty. Inside the for loop of lines 3-11, the 
algorithm computes the distance vector of each u-shapelet, 

and adds the distance vector to the distance map. For each 
addition of a distance vector to the distance map, we pass the 
new distance map into k-means. The k-means algorithm 
returns a cluster label for all the time series in the dataset. In 
line 12, we use the labels of the current step and the labels of 
the previous step to compute the change in Rand index. 
Finally, in line 14, we return the cluster labels for which the 
CRI is minimum. 

In Figure 7 (left) we present all six u-shapelets returned 
by the Trace dataset experiment shown in Figure 3. The first 
two u-shapelets are sufficient to cluster the dataset (cf. 
Figure 4 (right)) and the remaining four u-shapelets are 
spurious. The red curve in Figure 7 (right) shows the value 
of CRI as u-shapelets are added. This curve predicts that we 
should return two u-shapelets, but how good is this 
prediction? Because in this case we happen to have ground 
truth class labels for this dataset, we can do a post-hoc 
analysis and add a measurement of the true clustering quality 
to Figure 7 (right) by showing the Rand index with respect to 
the ground truth. As we can see, at least in this case our 
method does return the minimal set that can produce a 
perfect clustering. 

 

Figure 7. (left) The six u-shaplets returned by our algorithm on the Trace 

dataset. (right) The CRI (red/bold) predicts the best number of u-shapelets 
to use is two. By peeking at the ground truth labels (blue/light) we can see 

that the choice does produce a perfect clustering.  

V. EXPERIMENTAL EVALUATION 

Due to space limitations we could not include all our 
results. Thus we created a (anonymous) webpage [30], where 
we have further results in addition to all datasets and code in 
order to ensure reproducibility.   

A. Evaluation Metrics and Experimental Setup  

Many different measures for measuring the quality of 
time series clustering have been proposed, including Jaccard 
Score, Rand Index, Folkes and Mallow index etc. [6]. For 
brevity and clarity of presentation we only consider the Rand 
index [24]. This appears to be the most commonly used 
clustering quality measure, and many of the other measures 
can be seen as minor variants of it. 

To compute the Rand index, we need the cluster labels 
cls1, returned by a clustering algorithm and the set of ground 
truth class labels cls2. Let A be the number of object pairs 
that are placed in the same cluster in cls1 and cls2, B be the 
number of object pairs in different clusters in cls1 and cls2, 
C be the number of object pairs in the same cluster in cls1 
but not in cls2 and D be the number of object pairs in 
different clusters in cls1 but in same cluster in cls2. We can 
then compute the Rand index as follows [24]: 

                         ⁄  



 

Values close to one indicate a high quality clustering. 
For fairness, we do not present results on execution times 

for the various algorithms, as we have optimized rival 
methods only for quality not for speed. For example, it has 
been shown that for DTW the quality of implementation can 
make at least a two-order magnitude difference [3]. 
Moreover, where possible we take the results directly from 
other authors’ papers. This is possible for quality, but 
essentially meaningless for timing results. Note that in our 
real world case studies presented below (geology, 
cardiology, electrical demand, etc.) the time to cluster the 
data is an inconsequential fraction of the time to gather the 
data.  

Unless otherwise stated, we use k-means as the 
underlying clustering algorithm. We give the algorithm the 
objectively correct value of k where known, and report the 
best of twenty runs. Here, best means the run that minimized 
the objective function, before we see the class labels and 
compute the Rand index. We do all this in order to allow 
meaningful comparisons between various methods, as we 
have “factored out” anything extraneous that might influence 
the results. However, note that our algorithm (and most of 
the others) also allows spectral clustering, hierarchical 
clustering etc. 

B. Comparison to Rival Methods 

We begin by comparing the performance of our method 
with the clustering method proposed in [33]. Zhang et al. 
proposed an unsupervised feature extraction algorithm for 
time series clustering [33]. They used an orthogonal wavelet 
transform (Haar wavelet) for automatically choosing the 
dimensionality of features. They showed a performance 
improvement over other feature extraction techniques, such 
as Singular Value Decomposition (SVD) and Discrete 
Fourier Transform (DFT). 

In TABLE VI we compare the clustering quality of 

extracted featuresZhang’s methodand the clustering 
quality of u-shapelets. We tested our method on three 
benchmark datasets: Trace, Synthetic Control, Gun Point, 
from the UCR time series archives [13] and four datasets 
from [33][10]. Below, we present a brief description of all 
the datasets.  

 Synthetic Control: contains 100 instances for each of the 
six different classes of control chart [3]. 

 Gun Point: contains 100 instances for each of the two 
classes and the dimensionality of the data are 150 [3]. 

 ECG: contains seventy time series from three different 
groups of people. Each time series is two seconds long. 
The groups are {malignant ventricular arrhythmia; 
normal sinus rhythm, supraventricular arrhythmia}. 

 Population: contains time series representing the 
population estimates from 1900-99 in 20 U.S. states. 
The data is partitioned based on demographics [33]. 

 Temperature: contains thirty time series of the daily 
temperatures. The given ground truth is based on 
geographical distance and climatology [33].  

 Income: contains 25 time series representing the per 
capita income from 1929-99 in 25 states of the USA. 

Note that in order to be rigorously fair to Zhang et al. we 
use the Rand index numbers they reported (i.e. Table 8 of 
[33]) on these datasets, not our own reimplementation.  

TABLE VI. COMPARISON TO RIVAL METOHDS 

Dataset 

(# of class) 

Rand index Number of 

u-shapelets 

used 
Extracted  

Features [33] 
u-Shapelets 

Time Series  

ED 

Trace (4) 0.74 1 0.75 2 

Syn-Control (6) 0.85 0.94 0.87 5 

Gun Point (2) 0.49 0.74 0.49 1 

ECG (3) 0.4 0.7 not-defined 1 

Population (2) 0.8 0.9 0.5 1 

Temperature (2) 0.8 0.9 1 1 

Income (2) 0.5 0.5 0.5 1 

From the results in TABLE VI, it is clear that the use of u-
shapelets generally gives us a better clustering result than the 
feature extraction method [33]. In Table VI, we also present 
the result when entire time series is used for clustering, as 
this has shown to be a surprisingly good straw man [11][3].  

In the following sections, we present case studies from 
diverse domains, showing that our general technique is 
competitive with specialized techniques, even when we test 
on the datasets proposed by the original authors as ideal 
showcases for their own techniques.    

C. Rock Categorization 

Hyperspectral Remote Sensing collects and processes 
optically recorded information from the electromagnetic 
spectrum. It is used worldwide in applications as diverse as 
agriculture, mineralogy and environmental monitoring, and 
has seen lunar and Martian deployments in the last decade.   

We consider a dataset used in [2] to test a proposed 
compression-based similarity measure for time series, the 
Normalized Compression Distance (NCD). The authors in 
[2] compared NCD with Euclidean Distance, Spectral Angle, 
Spectral Correlation, and Spectral Information Divergence 
on a set of 41 spectra from three different classes of rock, 
and showed that their proposed distance measure gives the 
best clustering results in this domain.  

As shown in Figure 8 (right) in this dataset our method 
extracts just two u-shapelets.  

 
Figure 8. (left) 41 spectra analyzed. (right) u-shapelets used for clustering.  

We present the result of hierarchical clustering using the 
u-shapelets in Figure 9 (left). To help the reader compare our 
clustering result with [2], we have included a screen capture 
of their best clustering result.  

Because they produce an unrooted tree, it is difficult to 
calculate formal metrics of success. Cerra et al. in [2] noted, 
“The evaluation is done by visually inspecting if spectra 
belonging to the same class are correctly clustered in some 
branch of the tree, i.e. by checking how much each class can 
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be isolated by ‘cutting’ the tree at convenient points.” If we 
cut the tree of Figure 9 (right) at the points where we placed 
the pink lines, we find that the eleven nodes encircled are not 
clustered correctly. Whereas if we use the two shapelets only 
three Felsic and two Mafic rocks are clustered incorrectly. 
This simple experiment suggests that our clustering method 
can be used to cluster spectral signatures and it outperforms a 
variety of methods tuned for this application domain. 

 
Figure 9. Hierarchical clustering (left) using u-shapelets, (right) using NCD 

(screenshot of Fig. 4 from [2]). All pink lines are annotations added by us. 

D. Synthetic Dataset 1 

While real datasets such as the one used in the last 
section are the most convincing demonstrations of our 
algorithm, in this section (and the next) we consider synthetic 
datasets created by other researchers. We do this to 
demonstrate two things. First, the u-shapelets returned by our 
algorithm can offer insight into the data, and second, our 
very general unsupervised approach is competitive even with 
approaches where researchers design an algorithm, design 
synthetic datasets to showcase it, and provide supervision 
(i.e. class labels to their algorithm).  

 We first consider a synthetic dataset consisting of ten 
examples from two classes of univariate sequences [28] (the 
small size we consider is to allow direct comparison to the 
original paper [28], as it happens we get perfect results over 
a wide ranges of data sizes). The first class is a sinusoidal 
signal while the second class is a rectangular signal, both of 
which are randomly embedded within segments of Gaussian 
noise. In Figure 10, we show two examples of sequences 
from each class. Because the time series are of different 
lengths, the Euclidean Distance is not defined here. DTW 
can be used, but as the authors [28] show, the presence of 
noise and the misalignment of sinusoidal and rectangular 
signals greatly degrade DTW’s performance. 

In order to deal with the noise and the misalignment of 
signals, Shahriar et al. in [28] proposed an approach for 
sequence alignment based on canonical correlation analysis 
(CCA). Their method, Isotonic CCA (IsoCCA), generalizes 
DTW to cases where the alignment is accomplished on 
arbitrary subsequence segments, instead of on individual 
samples. They used a 1-NN classifier and the leave-one-out 
cross validation to classify the twenty signals and reported 
that the classification accuracy is 90% when using IsoCCA, 
and 60% when using DTW.  

It is important to note that these results are for 
classification accuracy; that is to say, this method requires 
class labels during training time. In contrast, our clustering 
algorithm does not see class labels when it runs, and 

evaluates the clusters using classification accuracy on 
holdout data after the clustering is complete. 

Using our method, the sinusoid signal is extracted as the 
sole u-shapelet and by using that u-shapelet, we can get 
100% classification accuracy. In Figure 10, we mark the 
sinusoid u-shapelet discovered with its nearest neighbors in 
three other randomly chosen time series in red/bold. The 
orderline illustrates the subsequence distances to the sinusoid 
u-shapelet. We can see from the orderline in Figure 10 that 
the Rand index will be one when we cluster the dataset using 
the subsequence distances of the sinusoid u-shapelet. 

 
Figure 10. Two examples of sinusoidal signals and rectangular signals. 

Sinusoid u-shapelet and its nearest neighbors in the signals are marked with 

red. The orderline shows the subsequence distances of the u-shapelet. 

To summarize, here we can beat a rival approach, on the 

data created by the proposed authors, even though they 

exploit class labels during training time, a luxury that we 

deny our approach.    

E. Synthetic Dataset 2 

The attentive reader may wonder whether the superior 
performance of u-shapelets in the previous section was due 
to the fact that there is no intra class variability within the 
sinusoidal or rectangular signals. Fortunately, the datasets 
created in [7] allows us to test this. The dataset consists of 
four classes. All the time series are composed of embedded 
class signals and additional noise; however, the class signals 
have significant randomly generated variations in length and 
height. Moreover, the defining shapes of classes two and 
three are composed of the “sub-signal” shape of classes one 
and four. In Figure 11, we present two time series from each 
class of the dataset. 

 
Figure 11. Sample Time series of Synthetic Dataset 2. Classes 1 and 2, and 

classes 3 and 4 are confused by most clustering methods. 

Hartmann et al., [7] shows that when they use their 
method on just class one and class four, they can get good 
results. However, their method performs poorly if required to 
consider all four classes. We applied our algorithm to the 
same set of permutations of classes as the original paper [7]. 
In all cases, the Rand index is much better than the original 
author’s results (modulo slight difference in how the results 
are reported [7]). For example, only one u-shapelet is used 
for the class-1 vs. class-4 variant, and the Rand index is 
perfect (equal to one); Figure 12 illustrates the u-shapelet 
and the corresponding orderline. The Rand index is also 
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perfect when we consider the more difficult class 2 vs. class 
3 variant, but our algorithm uses four shapelets in this case.  

 
Figure 12. u-shapelet from class 1 and the corresponding orderline. 

Note that, once again, we are comparing with an 
algorithm that was co-developed with a synthetic dataset 
designed to showcase the algorithms strength, and once 
again we easily beat the proposed algorithm.  

  Furthermore, the original authors solved the problem of 
supervised learning by using prototypes or subsequences of 
the data which they learned from the training data. In 
contrast, we are clustering time series using u-shapelets or 
without any prior knowledge about the dataset. 

This experiment provides us with the perfect opportunity 
to clarify an important point. There is no strict relationship 
between the number of clusters k, and the number of u-
shapelets required to create k clusters. In particular, our 
algorithm requires four shapelets to cluster class-2 and class-
3 into the correct two clusters. To illustrate, we show all the 
u-shapelets extracted by our method in Figure 13, and show 
the change in the Rand index as we add seven u-shapelets 
one by one. The last two u-shapelets are just random noise, 
because by that stage of the extraction, all meaningful 
patterns have been discovered by our algorithm. Note that 
even though essentially random u-shapelets are extracted in 
the late stages of our algorithms run, they do not affect the 
clustering result, as shown by the blue curve in Figure 13.  

 
Figure 13. All the u-shapelets from class-2 vs class-3 version of [7]. bottom 

right) The blue curve shows Rand index relative to the ground truth, as we 

add u-shapelets. The gray line shows the Rand index if the whole time 
series is used for clustering. The red curve shows the change in Rand index 

with the addition of u-shapelets. This curve correctly predicts that four u-

shapelets is best for this problem 

F. Clustering Household Devices: 

In order to reduce carbon emissions, the UK government 
has planned to equip 27 million households with an 
intelligent metering system (cf. Figure 14) at a cost of 
approximately £10 billion. As a useful by-product, these 
devices allow individuals to observe their electricity 
consumption and decrease their carbon footprint. This 
project is supported by a Cambridge-based company, Green 
Energy Options (GEO), which has installed the monitoring 
devices in 187 homes across East Anglia and recorded the 

usage of individual devices (cf. Figure 14 (left)) at 15 minute 
intervals for approximately a year. 

 

Figure 14. (left) Examples of electricity usage profiles of a single day for 

the seven devices considered (screen shot from [15]), (right) smart energy 

management display system. 

The clustering problem here is difficult because of the 
high intra-class variability. Different houses use different 
devices during different times of the day. Moreover, there is 
also variability among the power consumption of the devices 
depending on the brand, etc. 

Bagnall et al., in [15] classifies household appliances 
using these electricity usage profiles. They derived a set of 
features (min, max, mean, skewness etc.) to classify the data. 
We used a subset of the dataset that contains 2,073 time 
series to test our clustering method. Each time series 
corresponds to the electric usage profile of a household item 
over 24 hours. If we use whole time series to cluster the 
dataset, the Rand index is 0.56, whereas by using the u-
shapelets, we can achieve a Rand index of 0.86.  

In Figure 15, we have shown some of the u-shapelets that 
also provides insight about the data. For example, domain 
experts tell us that the two spikes shown in the dishwasher 
class correspond to the rinse and clean cycles. 

 
Figure 15. Sample u-shapelets used for clustering. 

G. Clustering Non-Invasive Fetal ECG: 

Automatic analysis of ECG signals is needed to improve 
diagnostic systems. For this experiment, we have collected 
non-invasive fetal electrocardiograms (ECGs) signals from 
PhysioNet [5], an online medical archive containing digital 
recordings of physiological signals. As we have mentioned 
before, most classification and clustering algorithms consider 
only single heartbeats. We have extracted signals which are 
3,000 points long. Each signal contains multiple heartbeats. 
The signals are taken from a single subject during the 22

nd
 

and 38
th
 weeks of pregnancy. The dataset contains 948 such 

signals. As the reader can see from Figure 16, the signals are 
not aligned perfectly. As a result, when we use entire time 
series for clustering the Rand index is 0.63 which is close to 
random. However using the u-shapelets we achieve a Rand 
index of 0.99. 

 
Figure 16. The misalignment between ECG signals (indcated by the gray hatch lines) 

recorded during (left) 22nd week and (right) 38th week of pregnancy. 
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Figure 17 presents the first u-shapelet and the 
corresponding orderline. Note that for visual clarity, we 
plotted subsequence distances for ECG signals of week 22 
and week 38 in two different lines with two different colors. 
When we asked cardiologist, Dr. (redacted for blind review) 
about the u-shapelets, he suggested that it corresponds to the 
p-wave of the ECG signal, known to change as a function of 
the developing fetus’s changing heart morphology.  

 
Figure 17. (left) The 1st u-shapelet (red/bold) and (right) its corresponding orderline. 

VI. CONCLUSION AND FUTURE WORK 

We have illustrated the importance of ignoring some data 
in order to cluster time series in real world applications under 
realistic settings. We have introduced unsupervised shapelets 
and showed their utility. Our method can select 
representative u-shapelets from a time series without any 
human intervention. We have shown the utility of our 
algorithm in rock categorization, clustering household 
devices based on their electricity usage profiles, and 
clustering ECG signals. Our very general method is 
competitive even when tested it on synthetic datasets 
generated by other authors to explain their own proposed 
algorithms. We have also tested our method with statistical 
based clustering, the most obvious strawman. 

Currently, we search for one u-shapelet (at at time) that 
can separate subsets of a dataset. However, one can imagine 
that in some circumstances, a linear combination of u-
shapelets may be better able to create a single split. We leave 
this as a direction for future research.  

Finally, we have not explained why u-shapelets work so 
well, given their unintuitive “chicken-and-egg” paradoxical 
nature noted above. We have definite ideas about this, 
supported by initial tentative empirical evidence. However, 
we will defer a detailed discussion about this topic until we 
can do it justice. 
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