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1 Introduction

The quickest and easiest way to secure a TCP-based network application is with SSL. If you’re
working in C, your best choice is probably to use OpenSSL, (the web site is at
http://www.openssl.org/). OpenSSL is a free (BSD-style license) implementation of
SSL/TLS based on Eric Young’s SSLeay package. Unfortunately, the documentation and sample
code distributed with OpenSSL leaves something to be desired. Where they exist, the manual
pages are pretty good, but they often miss the big picture, as manual pages are intended as a ref-
erence, not a tutorial.

We provide an introduction to OpenSSL programming. The OpenSSL API is vast and com-
plicated so we don’t attempt to provide anything like complete coverage. Rather, the idea is to
teach you enough to work effectively from the manual pages. In this article, the first of two, we
build a simple Web client and server pair that demonstrates the basic features of OpenSSL. In
the second article we introduce a number of advanced features, such as session resumption and
client authentication.

We assume that you’re already familiar with SSL and HTTP at least at a conceptual level. If
you’re not, a good place to start is with the RFCs (see the end of this article for references).

2 Source Code

For space reasons, this article only includes excerpts from the source code. The complete source
code is available in machine-readable format from the author’s web site at
http://www.rtfm.com/openssl-examples/

3 Our Programs

Our client is a simple HTTPS (see RFC 2818) client. It initiates an SSL connection to the server
and then transmits an HTTP request over that connection. It then waits for the response from the
server and prints it to the screen. This is a vastly simplified version of the functionality found in
programs like fetch and cURL.

The server program is a simple HTTPS server. It waits for TCP connections from clients.
When it accepts one it negotiates an SSL connection. Once the connection is negotiated, it reads
the client’s HTTP request. It then transmits the HTTP response to the client. Once the response
is transmitted it closes the connection.

3.1 Context Initialization

Our first task is to set up a context object (an SSL_CTX). This context object is then used to cre-
ate a new connection object for each new SSL connection. It is these connection objects which
are used to do SSL handshakes, reads, and writes.

This approach has two advantages. First, the context object allows many structures to be ini-
tialized only once, improving performance. In most applications, every SSL connection will use
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the same keying material, certificate authority (CA) list, etc. Rather than reloading this material
for every connection, we simply load it into the context object at program startup. When we
wish to create a new connection, we can simply point that connection to the context object. The
second advantage of having a single context object is that it allows multiple SSL connections to
share data, such as the SSL session cache used for session resumption.

Context initialization consists of four primary tasks, all performed by the initial-
ize_ctx() function, shown in Figure 1.

42 SSL_CTX *initialize_ctx(keyfile,password)

43 char *keyfile;

44 char *password;

45 {

46 SSL_METHOD *meth;

47 SSL_CTX *ctx;

48

49 if(!bio_err){

50 /* Global system initialization*/

51 SSL_library_init();

52 SSL_load_error_strings();

53

54 /* An error write context */

55 bio_err=BIO_new_fp(stderr,BIO_NOCLOSE);

56 }

57

58 /* Set up a SIGPIPE handler */

59 signal(SIGPIPE,sigpipe_handle);

60

61 /* Create our context*/

62 meth=SSLv23_method();

63 ctx=SSL_CTX_new(meth);

64

65 /* Load our keys and certificates*/

66 if(!(SSL_CTX_use_certificate_chain_file(ctx,

67 keyfile)))

68 berr_exit("Can’t read certificate file");

69

70 pass=password;

71 SSL_CTX_set_default_passwd_cb(ctx,

72 password_cb);

73 if(!(SSL_CTX_use_PrivateKey_file(ctx,

74 keyfile,SSL_FILETYPE_PEM)))

75 berr_exit("Can’t read key file");

76

77 /* Load the CAs we trust*/

78 if(!(SSL_CTX_load_verify_locations(ctx,

79 CA_LIST,0)))

80 berr_exit("Ca’t read CA list");

81 #if (OPENSSL_VERSION_NUMBER < 0x0090600fL)

82 SSL_CTX_set_verify_depth(ctx,1);

83 #endif

84

85 return ctx;

86 }

Figure 1 initialize_ctx()



Initializ e the library and create the context
Before OpenSSL can be used for anything, the library as a whole must be initialized. This is
accomplished with SSL_library_init(), which primarily loads up the algorithms that
OpenSSL will be using. If we want good reporting of errors, we also need to load the error
strings using SSL_load_error_strings(). Otherwise, we won’t be able to map
OpenSSL errors to strings.

We also create an object to be used as an error printing context. OpenSSL uses an abstrac-
tion called a BIO object for input and output. This allows the programmer to use the same func-
tions for different kinds of I/O channels (sockets, terminal, memory buffers, etc.) merely by
using different kinds of BIO objects. In this case we create a BIO object attached to stderr to be
used for printing errors.

Load our own keys
If you’re writing server--or a client which is able to perform client authentication--you’ll need to
load your own public/private key pair and the associated certificate. The certificate is stored in
the clear and is loaded together with the CA certificates forming the certificate chain using
SSL_CTX_use_certificate_chain_file(). We use SSL_CTX_use_Private-
Key_file() to load the private key. For security reasons, the private key is usually encrypted
under a password. If the key is encrypted, the password callback (set using
SSL_CTX_set_default_passwd_cb()) will be called to obtain the password.

Load root CA list
If you’re going to be authenticating the host you’re connected to OpenSSL needs to know what
certificate authorities (CAs) you trust. The SSL_CTX_load_verify_locations() call is
used to load the CAs.

Load Randomness
In order to have good security, SSL needs a good source of strong random numbers. In general,
it’s the responsibility of the application to supply some seed material for the random number
generator. Howev er, OpenSSL automatically uses /dev/urandom to seed the RNG, if it is
available. Since /dev/urandom is standard on Linux, we don’t hav e to do anything for
this--which is convenient since gathering random numbers is tricky and easy to screw up. Note
that if you’re on a system other than Linux you may get an error at some point because the ran-
dom number generator is unseeded. OpenSSL’s rand(3) manual page provides more informa-
tion.

4 The Client
Once the client has initialized the SSL context, it’s ready to connect to the server. OpenSSL
requires us to create a TCP connection between client and server on our own and then use the
TCP socket to create an SSL socket. For convenience we’ve isolated the creation of the TCP
connection to the tcp_connect() function (which is not shown here but is available in the
downloadable source).

Once the TCP connection has been created, we create an SSL object to handle the connec-
tion. This object needs to be attached to the socket. Note that that we don’t directly attach the
SSL object to the socket. Rather, we create a BIO object using the socket and then attach the
SSL object to the BIO.

This abstraction layer allows you to use OpenSSL over channels other than sockets, pro-
vided you have an appropriate BIO. For instance, one of the OpenSSL test programs connects
an SSL client and server purely through memory buffers. A more practical use would be to sup-
port some protocol that can’t be accessed via sockets. For instance, you could run SSL over a
serial line.



Handshake
The first step in an SSL connection is to perform the SSL handshake. The handshake authenti-
cates the server (and optionally the client) and establishes the keying material that will be used
to protect the rest of the traffic. The SSL_connect() call is used to perform the SSL hand-
shake. Because we’re using blocking sockets, SSL_connect() will not return until the hand-
shake is completed or an error has been detected. SSL_connect() returns 1 for success and 0
or negative for an error. This call is shown in Figure 2.

114 /* Connect the TCP socket*/

115 sock=tcp_connect(host,port);

116

117 /* Connect the SSL socket */

118 ssl=SSL_new(ctx);

119 sbio=BIO_new_socket(sock,BIO_NOCLOSE);

120 SSL_set_bio(ssl,sbio,sbio);

121 if(SSL_connect(ssl)<=0)

122 berr_exit("SSL connect error");

123 if(require_server_auth)

124 check_cert(ssl,host);

Figure 2 connecting to the server

Ser ver Authentication
When we initiate an SSL connection to a server, we need to check the server’s certificate chain.
OpenSSL does some of the checks for us but unfortunately some of the checks are application
specific and so we have to do those ourselves. The primary test that our sample application does
is to check the server identity. This check is performed by the check_cert() function, shown
in Figure 3.

31 void check_cert(ssl,host)

32 SSL *ssl;

33 char *host;

34 {

35 X509 *peer;

36 char peer_CN[256];

37

38 if(SSL_get_verify_result(ssl)!=X509_V_OK)

39 berr_exit("Certificate doesn’t verify");

40

41 /*Check the cert chain. The chain length

42 is automatically checked by OpenSSL when

43 we set the verify depth in the ctx */

44

45 /*Check the common name*/

46 peer=SSL_get_peer_certificate(ssl);

47 X509_NAME_get_text_by_NID

48 (X509_get_subject_name(peer),

49 NID_commonName, peer_CN, 256);

50 if(strcasecmp(peer_CN,host))

51 err_exit

52 ("Common name doesn’t match host name");

53 }

Figure 3 check_cert() function



Ser ver Identity
Once you’ve established that the server’s certificate chain is valid, you need to verify that the
certificate you’re looking at matches the identity that we expect the server to have. In most
cases, this means that the server’s DNS name appears in the certificate, either in the Common
Name field of the Subject Name or in a certificate extension. Although each protocol has slightly
different rules for verifying the server’s identity, RFC 2818 contains the rules for HTTP over
SSL/TLS. Following RFC 2818 is generally a good idea unless you have some explicit reason to
do otherwise. to

Since most certificates still contain the domain name in Common Name rather than an
extension, we show only the Common Name check. We simply extract the server’s certificate
using SSL_get_peer_certificate() and then compare the common name to the host
name we’re connecting to. If they don’t match, something is wrong and we exit.

Chain Length
Before version 0.9.5, OpenSSL was subject to a certificate extension attack. To see what this is,
consider the case where you a server authenticates with a certificate signed by Bob, as shown in
Figure 4. Bob isn’t one of your CAs but his certificate is signed by a CA you trust.

Root
CA

Bob

Server

Figure 4 An extended certificate chain

If you accept this certificate you’re likely going to be in a lot of trouble. The fact that the CA
signed Bob’s certificate means that the CA believes that it has verified Bob’s identity, not that
Bob can be trusted. If you know that you want to do business with Bob, that’s fine, but it’s not
very useful if you want to do business with Alice and Bob (who you’ve nev er heard of) is vouch-
ing for Alice.

Originally, the only way to protect yourself against this sort of attack was to restrict the
length of certificate chains so that you knew that the certificate you’re looking at was signed by
the CA. X.509 version 3 contains a way for a CA to label certain certificates as other CAs. This
permits a CA to have a single root that then certifies a bunch of subsidiary CAs.

Modern versions of OpenSSL (0.9.5 and later) check these extensions so you’re automati-
cally protected against extension attacks whether or not you check chain length. Versions prior
to 0.9.5 do not check the extensions at all, so you have to enforce the chain length if using an
older version. 0.9.5 has some problems with checking so if you’re using 0.9.5, you should prob-
ably upgrade. The #ifdef-ed code in initialize_ctx() provides chain length checking



with older versions. We use the SSL_CTX_set_verify_depth() to force OpenSSL to
check the chain length. In summary, it’s highly advisable to upgrade to 0.9.6, particularly since
longer (but properly constructed) chains are becoming more popular.

When To Check Cer ticates
The code shown here allows the entire handshake to complete, whether or not the peer has a
valid certificate. It’s important to note that this is not the only way to check the server’s
certificate. Only after the handshake completes do we check the certificate and possibly termi-
nate the connection. This approach has the advantage that it’s easy to implement but the disad-
vantage that if we don’t like the server’s certificate the server just sees a generic error rather than
one indicating that the certificate was bad.

An alternative is to use the SSL_CTX_set_verify() API call to have OpenSSL require
valid certificates during the handshake—if the server presents an invalid certificate the hand-
shake will fail and the server will receive an error indicating that it had a bad certificate. You can
also use SSL_CTX_set_verify() to set a callback to be called during certificate checking,
allowing you to apply extra checks or permit certificates which OpenSSL might otherwise not
accept.

Request
We use the code shown in Figure 5 to write the HTTP request. For demonstration purposes, we
use a more-or-less hardwired HTTP request, found in the REQUEST_TEMPLATE variable.
Because the machine we’re connecting to may change we do need to fill in the Host header.
This is done using the sprintf() in line 30. We then use SSL_write() to send the data to
the server. SSL_write()as write(), except that we pass in the SSL object instead of the
file descriptor.

Experienced TCP programmers will notice that instead of looping around the write we
throw an error if the return value doesn’t equal the value we’re trying to write. In blocking
mode, SSL_write() semantics are ’all-or-nothing’: the call won’t return until all the data is
written or an error occurs, whereas write() may only write part of the data.

Note: The SSL_MODE_ENABLE_PARTIAL_WRITE flag (not used here) enables partial
writes, in which case you’d need to loop.

Response
In old-style HTTP/1.0, the server transmits its response and then closes the connection. In later
versions, persistent connections that allow multiple sequential transactions on the same connec-
tion were introduced. For convenience and simplicity we will not use persistent connections. We
omit the header that allows them, causing the server to use a connection close to signal the end
of the response. Operationally, this means that we can keep reading until we get an end of file,
which simplifies matters considerably.

OpenSSL uses the SSL_read() API call to read data, as shown in Figure 6. As with
read() we simply choose an appropriate sized buffer and pass it to SSL_read(). Note that
the buffer size isn’t really that important here. The semantics of SSL_read(), like the seman-
tics of read(), are that it returns the data available, even if it’s less than the requested amount.
On the other hand, if no data is available, then the call to read blocks.

The choice of BUFSIZZ, then, is basically a performance tradeoff. The tradeoff is quite dif-
ferent here than when we’re simply reading from normal sockets. In that case, each call to
read() requires a context switch into the kernel. Because context switches are expensive, pro-
grammers try to use large buffers to reduce them. However, when we’re using SSL the number
of calls to read()—and hence context switches—is largely determined by the number of
records the data was written in rather than the number of calls to SSL_read().



26 request_len=strlen(REQUEST_TEMPLATE)+

27 strlen(host)+6;

28 if(!(request=(char *)malloc(request_len)))

29 err_exit("Couldn’t allocate request");

30 sprintf(request,REQUEST_TEMPLATE,

31 host,port);

32

33 /* Find the exact request_len */

34 request_len=strlen(request);

35

36 r=SSL_write(ssl,request,request_len);

37 switch(SSL_get_error(ssl,r)){

38 case SSL_ERROR_NONE:

39 if(request_len!=r)

40 err_exit("Incomplete write!");

41 break;

42 default:

43 berr_exit("SSL write problem");

44 }

Figure 5 writing the HTTP request

For instance, if the client wrote a 1000-byte record and we call SSL_read() in chunks of 1
byte, then the first call to SSL_read() will result in the record being read
in and the rest of the calls will just read it out of the SSL buffer. Thus, the choice of buffer size
is less significant when we’re using SSL than with normal sockets.

Note that if the data were written in a series of small records, you might want to read
all of them at once with a single call to read(). OpenSSL provides a flag
SSL_CTRL_SET_READ_AHEAD that turns on this behavior.

48 while(1){

49 r=SSL_read(ssl,buf,BUFSIZZ);

50 switch(SSL_get_error(ssl,r)){

51 case SSL_ERROR_NONE:

52 len=r;

53 break;

54 case SSL_ERROR_ZERO_RETURN:

55 goto shutdown;

56 case SSL_ERROR_SYSCALL:

57 fprintf(stderr,

58 "SSL Error: Premature close0);

59 goto done;

60 default:

61 berr_exit("SSL read problem");

62 }

63

64 fwrite(buf,1,len,stdout);

65 }

Figure 6 reading the response



Note the use of the switch on the return value of SSL_get_error() in line 12. The con-
vention with normal sockets is that any neg ative number (typically −1) indicates failure and that
one then checks errno to determine what actually happened. Obviously errno won’t work
here since that only shows system errors and we’d like to be able to act on SSL errors. Also,
errno requires careful programming in order to be thread safe.

Instead of errno, OpenSSL provides the SSL_get_error() call. This call lets us
examine the return value and figure out whether an error occurred and what it was. If the return
value was positive, we’ve read some data and we simply write it to the screen. A real client
would of course parse the HTTP response and either display the data (e.g. a web page) or save it
to disk. However, none of this is interesting as far as OpenSSL is concerned so we don’t show
any of it.

If the return value was zero, this does not mean that there was no data available. In that case,
we would have blocked as discussed above. Rather, it means that the socket is closed and there
will never be any data available to read. Thus, we exit the loop.

Error Handling
If the return value was something negative then some kind of error occurred. There are two
kinds of errors we’re concerned with: ordinary errors and "premature closes". We use the
SSL_get_error() call to determine which kind of error we have. Error handling in our
client is pretty primitive so with most errors we simply call berr_exit() to print an error
message and exit. Premature closes have to be handled specially.

Closure
TCP uses a FIN segment to indicate that the sender has sent all of its data. SSL version 2 simply
allowed either side to send a TCP FIN to terminate the SSL connection. This allowed for a
"truncation attack": the attacker could make it appear that a message was shorter than it was
simply by forging a TCP FIN. Unless the victim had some other way of knowing what message
length to expect it would simply believe that it had received a shorter message.

In order to prevent this security problem, SSLv3 introduced a close_notify alert. The
close_notify is an SSL message (and therefore secured) but is not part of the data stream itself
and so is not seen by the application. No data may be transmitted after the close_notify is sent.

Thus, when SSL_read() returns 0 to indicate that the socket has been closed, this really
means that the close_notify has been received. If the client receives a FIN before receiving a
close_notify, SSL_read() will return with an error. This is called a "premature close".

A naive client might decide to report an error and exit whenever it received a premature
close. This is the behavior that is implied by the SSLv3 specification. Unfortunately, sending
premature closes is a rather common error, particularly common with clients. Thus, unless you
want to be reporting errors all the time you often have to ignore premature closes. Our code
splits the difference. It reports the premature close on stderr but doesn’t exit with an error.

Shutdown
If we read the response without any errors then we need to send our own close_notify to the
server. This is done using the SSL_shutdown() API call. We’ll cover SSL_shutdown()
more completely when we talk about the server but the general idea is simple: it returns 1 for a
complete shutdown, 0 for an incomplete shutdown, and -1 for an error. Since we’ve already
received the server’s close_notify, about the only thing that can go wrong is that we have trouble
sending our close_notify. Otherwise SSL_shutdown() will succeed (returning 1).

Cleanup
Finally, we need to destroy the various objects we’ve allocated. Since this program is about to
exit, freeing the objects automatically, this isn’t strictly necessary, but would be in a real pro-
gram.



5 Ser ver

Our web server is mainly a mirror of the client, but with a few twists. First, we fork() in order
to let the server handle multiple clients. Second, we use OpenSSL’s BIO APIs to read the
client’s request one line at a time, as well as to do buffered writes to the client. Finally, the
server closure sequence is more complicated.

Accept and Fork
On Linux, the simplest way to write a server that can handle multiple clients is to create a new
server process for each client that connects. We do that by calling fork() after accept()
returns. Each new process executes independently and just exits when it’s finished serving the
client. Although this approach can be quite slow on busy web servers it’s perfectly acceptable
here. The main server accept loop is shown in Figure 7.

94 while(1){

95 if((s=accept(sock,0,0))<0)

96 err_exit("Problem accepting");

97

98 if((pid=fork())){

99 close(s);

100 }

101 else {

102 sbio=BIO_new_socket(s,BIO_NOCLOSE);

103 ssl=SSL_new(ctx);

104 SSL_set_bio(ssl,sbio,sbio);

105

106 if((r=SSL_accept(ssl)<=0))

107 berr_exit("SSL accept error");

108

109 http_serve(ssl,s);

110 exit(0);

111 }

112 }

Figure 7 server accept loop

Ser ver Accept
After forking and creating the SSL object, the server calls SSL_accept() which causes
OpenSSL to perform the server side of the SSL handshake. As with SSL_connect(),
because we’re using blocking sockets, SSL_accept() will block until the entire handshake
has completed. Thus, the only situation in which SSL_accept() will return is when the hand-
shake has completed or an error has been detected. SSL_accept() returns 1 for success and 0
or negative for error.

Buffered I/O
OpenSSL’s BIO objects are to some extent stackable. Thus, we can wrap an SSL object in a
BIO (the ssl_bio object) and then wrap that BIO in a buffered BIO object, as shown in Fig-
ure 8. This allows us to perform buffered reads and writes on the SSL connection by using the
BIO_* functions on the new io object. At this point you might ask: why is this good? Primarily,
it’s a matter of programming convenience: It lets the programmer work in natural units (lines
and characters) rather than SSL records.



13 io=BIO_new(BIO_f_buffer());

14 ssl_bio=BIO_new(BIO_f_ssl());

15 BIO_set_ssl(ssl_bio,ssl,BIO_CLOSE);

16 BIO_push(io,ssl_bio);

Figure 8 creating a buffered BIO

Request
An HTTP request consists of a request line followed by a bunch of header lines and an optional
body. The end of the header lines is indicated by a blank line (i.e., a pair of CRLFs, though
sometimes broken clients will send a pair of LFs instead). The most convenient way to read the
request line and headers is to read one line at a time until you see a blank line. We can do this
using the OpenSSL BIO_gets() call, as shown in Figure 9.

The BIO_gets() call behaves analogously to the stdio fgets() call. It takes an arbi-
trary size buffer and a length and reads a line from the SSL connection into that buffer. The
result is always null terminated (but includes the terminating LF). Thus, we simply read one line
at a time until we get a line which consists of simply a LF or a CRLF.

Because we use a fixed length buffer, it is possible though unlikely that we will get an over-
long line. In that event the long line will be split over two lines. In the (extremely unlikely) event
that the split happens right before the CRLF, the next line we read will consist only of the CRLF
from the previous line. In this case we’ll be fooled into thinking that the headers have finished
prematurely. A real Web server would check for this case but it’s not worth doing here. Note that
no matter what the incoming line length there’s no chance of a buffer overrun. All that can hap-
pen is that we’ll misparse the headers.

Note that we don’t really DO anything with the HTTP request. We just read it and discard it.
A real implementation would read the request line and the headers, figure out of there was a
body and read that too. However, none of these things show anything interesting about SSL so
they don’t add anything to this demonstration.

18 while(1){

19 r=BIO_gets(io,buf,BUFSIZZ-1);

20

21 switch(SSL_get_error(ssl,r)){

22 case SSL_ERROR_NONE:

23 len=r;

24 break;

25 default:

26 berr_exit("SSL read problem");

27 }

28

29 /* Look for the blank line that signals

30 the end of the HTTP headers */

31 if(!strcmp(buf,"
0) ||

32 !strcmp(buf,"0))

33 break;

34 }

Figure 9 reading the request

Response
The next step is to write the HTTP response and close the connection. Figure 10 shows this
code. Note that we’re using BIO_puts() instead of SSL_write(). This allows us to write



the response one line at a time but have the entire response written as a single SSL record. This
is important because the cost of preparing an SSL record for transmission (computing the
integrity check and encrypting it) is quite significant. Thus, it’s a good idea to make the records
as large as possible.

It’s worth noting a couple of subtleties about using this kind of buffered write:

1. You need to flush the buffer before you close. The SSL object has no knowledge that you’ve
layered a BIO on top of it, so if you destroy the SSL connection you’ll just leave the last
chunk of data sitting in the buffer. The BIO_flush() call in line 46 takes care of this.

2. By default, OpenSSL uses a 1024-byte buffer size for buffered BIOs. Because SSL records
can be up to 16K bytes long, using a 1024-byte buffer cause excessive fragmentation (and
hence lower performance.) You can use the BIO_ctrl() API to increase the buffer size.

36 if((r=BIO_puts

37 (io,"HTTP/1.0 200 OK\r\n"))<0)

38 err_exit("Write error");

39 if((r=BIO_puts

40 (io,"Server: EKRServer\r\n\r\n"))<0)

41 err_exit("Write error");

42 if((r=BIO_puts

43 (io,"Server test page\r\n"))<0)

44 err_exit("Write error");

45

46 if((r=BIO_flush(io))<0)

47 err_exit("Error flushing BIO");

Figure 10 writing the response

Shutdown
Once we’ve finished transmitting the response we need to send our close_notify. As before, this
is done using SSL_shutdown(). Unfortunately, things get a bit trickier when the server
closes first. Our first call to SSL_shutdown() sends the close_notify but doesn’t look for it on
the other side. Thus, it returns immediately but with a value of 0, indicating that the closure
sequence isn’t finished. It’s then the application’s responsibility to call SSL_shutdown()
again.

It’s possible to have two attitudes here:

1. We’v e seen all of the HTTP request that we care about. we’re not interested in anything else.
Hence, we don’t care whether the client sends a close_notify or not.

2. We strictly obey the protocol and expect others to as well. Thus, we require a close_notify.

If we have the first attitude then life is simple: We call SSL_shutdown() to send our
close_notify and then exit right away, reg ardless of whether the client has sent one or not. If we
take the second attitude (which our sample server does), then life is more complicated, because
clients often don’t behave correctly.

The first problem we face is that client’s often don’t send close_notifys all. In fact, some
clients close the connection as soon as they’ve read the entire HTTP response (some versions of
IE do this). When we send our close_notify, the other side may send a TCP RST segment, in
which case the program will catch a SIGPIPE. We install a dummy SIGPIPE handler in ini-
tialize_ctx() to protect against this problem.

The second problem we face is that the client may not send a close_notify immediately in
response to our close_notify. Some versions of Netscape require you to send a TCP FIN first.
Thus, we call shutdown(s,1) before we call SSL_shutdown() the second time. When
called with a "how" argument of 1, shutdown() sends a FIN but leaves the socket open for
reading. The code to do the server shutdown is shown in Figure 11 (see next page).



6 What’s Missing

In this article, we’ve only scratched the surface of the issues involved with using OpenSSL.
Here’s a (non-exhaustive) list of additional issues.

Better Certificate Checking
A more sophisticated approach to checking server certificates against the server hostname is to
use the X.509 subjectAltName extension. In order to make this check, you would need to extract
this extension from the certificate and then check it against the hostname. Additionally, it would
be nice to be able to check host names against wildcarded names in certificates. We don’t show
how to do this either.

51 r=SSL_shutdown(ssl);

52 if(!r){

53 /* If we called SSL_shutdown() first then

54 we always get return value of ’0’. In

55 this case, try again, but first send a

56 TCP FIN to trigger the other side’s

57 close_notify*/

58 shutdown(s,1);

59 r=SSL_shutdown(ssl);

60 }

61

62 switch(r){

63 case 1:

64 break; /* Success */

65 case 0:

66 case -1:

67 default:

68 berr_exit("Shutdown failed");

69 }

Figure 11 calling SSL_shutdown()

Better Error Handling
Note that these applications handle errors simply by exiting with an error. A real application
would, of course, be able to recognize errors and signal them to the user or some audit log rather
than just exiting.

6.1 Coming Soon
In the second part, we’ll be discussing a number of advanced OpenSSL features, including...

Session Resumption
SSL handshakes are expensive but SSL provides a feature called session resumption that allows
you to bypass the full handshake for a peer you’ve communicated with before.

Multiplexed and Non-blocking I/O
We used blocking sockets for all of our reads and writes. This means that while the application
is waiting for data from the peer it’s completely stalled. This wouldn’t be acceptable in a real
GUI application like a browser. Instead, you need to use the select() call to multiplex
between SSL and other sources of I/O.



Client Authentication
Server authentication occurs as a part of almost every SSL connection. However, SSL also offers
certificate-based client authentication, at the server’s request.

6.2 External Resources

Parts of this article were adapted from my book "SSL and TLS: Designing and Building Secure
Systems", Addison-Wesley 2000. "SSL and TLS" offers a comprehensive guide to the SSL pro-
tocol and its applications. See http://www.rtfm.com/sslbook for more information.

Machine readable source code for the programs presented here can be downloaded from the
author’s web site at: http://www.rtfm.com/openssl-examples/. The source code is
available under a BSD-style license.

You can get OpenSSL from http://www.openssl.org/. The docs are online here as well.

The relevant specifications are at:

SSLv2: http://www.netscape.com/eng/security/SSL_2.html
SSLv3: http://home.netscape.com/eng/ssl3/index.html
TLS (RFC 2246): http://www.ietf.org/rfc/rfc2246.txt
HTTPS (RFC 2818): http://www.ietf.org/rfc/rfc2818.txt
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