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Abstract

Nowadays network traffic has been modeled as self-similar process and identified as long-
range dependence (LRD) in large time scales compared with the Poisson process around ten
years ago. In our project, we employ the WIDE backbone traces and try to demonstrate the
existence of LRD in large time scales. The data we use here include two-day trace files, as well
as the aggregated traffic over the last four years. We examine various statistics characteristics
of the original network traces, including auto-correlation function, cross-correlation function,
as well as the evaluation of differrent Hurst estimators. In order to eliminate the effect of
short-range dependence, we also apply to the trace files with internal shuffling buckets. After
numerous statistical data analysis of the result from the experiments, we show that LRD does
exist in WIDE daily traces at large time scales. Since the non-consistent estimations for Hurst
exponent from different methods have been shown in our results, we believe that it is unreliable
to use only one or several estimators to verify the existence of long-range memory. At the end
of the report, we propose some future work.

1 Introduction

When modeling the network traffic, the commonly assumed model for packet and connection
arrivals has been Poisson process for a long time in community. Its theoretical properties have
been widely accepted [1]. Poisson process states that the packet arrival process is memory-less
and interarrival times follow the exponential distribution [2].

Following the Poisson process, the traffic would have a characteristics burst length, which
would tend to be smoothed by averaging over a long enough time scale. However, in [3], mea-
surements of Ethernet network traffic indicate that significant traffic burstiness is present on a wide
range of time scales. The authors demonstrate that the network traffic is statistically self-similar
and the burstiness of traffic typically intensifies as the number of active traffic sources increases
using the degree of self-similarity (measured inHurst estimatorH to denote the overall utilization
of the Ethernet).

One year after the self-similarity characteristics of network traffic have been established, [4]
shows the wide-area traffic is much burstier than Poisson models predicting over many time scales.
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Thus, its correlation function persists across large time scales, which is calledlong-range depen-
dence(LRD). The simplest models with LRD are self-similar process, which are characterized by
hyperbolically decayingautocorrelation functions(ACF). From the experiment, author also states
that even if the finite arrival process derived from a particular packet trace does not appear self-
similar, if it exhibits large-scale correlations suggestive of long-range dependence, that process is
almost certainly better approximated using a self-similar process than using Poisson processes.

The reason why self-similar process is a particular attractive model is because a single estimator
can characterize the long-range dependence, as I mentioned above, Hurst exponent (H). We can
infer that LRD characterizes a time series of network traffic if0.5 < H < 1. As H → 1, the
dependence is stronger [3]. However, identifying LRD is far from straightforward. Firstly, the
Hurst exponent can’t be calculated in a definitive systematic way, it can only be estimated as a
scalar. Second, although there are several different methods to estimate it, they often produce
conflicting and misleading estimates [2].

Despite the overwhelming evidence of LRD’s presence in network traffic, a few findings in-
dicate that Poisson models and independence could still be applicable as the number of sources
increases in fast backbone links that carry vast numbers of distinct flows, leading to large volumes
of traffic multiplexing [5]. In addition, other studies [6] point out that several end-to-end network
properties seem to agree with the independence assumptions in the presence of nonstationarity
(that is, statistical properties vary with time).

Due to the tremendous growth of the Internet backbone in recent years, in [7] author reexam-
ines the Poisson traffic assumption and shows the coexistence of Poisson distributions and long-
range dependence in traces from WIDE backbones. Internet arrivals show three different situations
as below: 1) they appear Poisson at sub-second time scales. Packet sizes and interarrival times ap-
pear uncorrelated. 2) They appear nonstationary at multi-second time scales. The traffic oscillates
around a global mean, in a piecewise linear manner. 3) They appear long-range dependence at
scales of seconds and above. Here, author challenges the trend of abandoning Poisson process
completely and draws the community’s attention back to the different traffic modeling according
to different time scales.

In our project, we use network WIDE backbone trace to demonstrate whether LRD exists in
large time scale. We particularly adopt the traces on Nov. 04 and Nov.05, 2004, as well as the
aggregated traffic from Jan. 01, 2001 to Nov. 19, 2004. Here, we use the software package
SELFIS (publicly distributed at www.cs.ucr.edu/ tkarag) [8] to do the experiments below.

In order to demonstrate the existence of LRD for the independence of packet sizes and inter-
arrival times of the traffic trace, we apply various experiments including auto-correlation function
(ACF), cross-correlation function (XCF), as well as the evaluation of Hurst estimator. While com-
puting the ACF, we employ the normal trace files for two days, the aggregated traffic for four years,
as well as the trace files with internal shuffling buckets (bucket size = 10, 50, 100) to eliminate the
effect of short-range dependence. During the evaluation of Hurst estimator, we divide the traffic
series by 20ms time intervals from 20ms to 500 ms and apply seven different estimators for those
divided series to estimate the value of H. We also employ randomized series with internal shuffling
buckets (bucket size = 10, 30, 50, 70, 100) for the evaluation of H. From the experiments above,
we demonstrate that the LRD do exist in our daily trace.

The rest of this report is structured as follows: Section 2 gives a brief description of self-
similarity and long-range dependence. Section 3 describes the data for experiments. Section 4
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presents the detailed experimental procedure as well as the result analysis. Section 5 concludes the
paper and expresses the future work.

2 Definition

Before deducting our analysis on daily network trace files from the WIDE backbone archives,
we first briefly describe the concept onself-similarityand long-range dependencein the context
of time-series analysis. Please refer to [9] and [10] for detailed discussion of self-similarity,
long-range dependence and the corresponding statistical tests. In a more vigorous sense, self-
similarity and long-range dependence are not equivalent to each other though they are often used
interchangeably in the literature.

2.1 Self-Similarity in Internet Traffic

Self-similaritydescribes the phenomenon where certain properties are preserved irrespective of
scaling in space or time. LetX(t) be a stochastic process. In some cases,X can take the form of a
discrete time series{Xt}, t = 0, 1, ..., N , either by periodic sampling or averaging its value across
a series, which is of fixed length intervals. We say thatX(t) is stationary if its joint distribution
across a collection of timest1, ..., tN is invariant to time shifting. We may give the definition of
self-similarity over the mathematically more convenient definition of a self-similar continuous-
time stochastic processX = (Xt : t ≥ 0) with stationary increments, namely, for alla > 0,
X(at) = aHX(t), where equality is understood in the sense of equality of the finite-dimensional
distributions, and the exponent H is the self-similarity parameter, namely theHurst Exponent.

Of interest to network traffic processes is second-order self-similarity. Second-order self-
similarity describes the property that the correlation structure of a time-series is preserved irre-
spective of time aggregation. This correlation is captured by theautocorrelation function(ACF),
which isρ(k). The ACF measures the similarity between a seriesXt and a shifted version of itself
Xt+k.

ρ(k) =
E[(Xt − µ)(Xt+k − µ)]

σ2

whereµ, σ are the sample mean and standard deviation respectively.
Simply put, a second-order self-similar time series ACF is the same for either coarse or fine

time scales. A stationary processXt is second-order self-similar if

ρ(k) =
1

2
[(k + 1)2H − 2k2H + (k − 1)2H)

(0.5 < H < 1)

and asymptotically exactly self-similar if

lim
k→∞

ρ(k) =
1

2
[(k + 1)2H − 2k2H + (k − 1)2H)

(0.5 < H < 1)
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2.2 Long-range dependence

Long-range dependence(LRD)measures the memory of a process. Intuitively, distant events in
time are correlated. If the ACF decays hyperbolically to zero, that is , then we say the process
is long-range dependent. The strength of the long-range dependence is quantified by the Hurst
exponent (H). A series exhibits LRD when0.5 < H < 1. Furthermore, the closerH is to 1, the
stronger the dependence of the process is.

Another way to characterize long-range dependence is to study the properties of the aggregated
processX(m)(k) which is defined as follows:

X(m) =
1

m

km∑
i=(k−1)m+1

Xi

k = 1, · · · , [ N
M

]

Intuitively, {X(m)(k)} describes the average value of the time series across windows ofm con-
secutive values from the original time series. If{X(m)(k)} were independent and identically
distributed, thenV ar(X(m)) = σ2

m
. However, if the sequence exhibits long memory, then the

aggregated process s variance converges to zero at a much slower rate than1
m2 .

Second-order self-similarity usually implies long-range dependence (i.e., nonsummable ACF),
but the reverse is not necessarily true. In addition, not all self-similar processes are long-range
dependent (e.g., Brownian motion).

3 Data description

The data in our study comes from the WIDE (Widely Integrated Distributed Environment) project,
which monitors Internet traffic between USA and Japan. The daily network trace is taken for
several consecutive years from the WIDE backbone maintained by the MAWI Working Group
Traffic Archive and the WIDE project.

Traffic traces are captured in a trans-Pacific line (18Mbps CAR on 100Mbps link). They are
15-minute traces taken daily at 14:00 local time (JST). We use the daily network traces from Dec.
2000 to Nov. 2004 to analyze the aggregated behavior of the traffic. Specifically, we also examine
the backbone traces captured on 11/04/2004 and 11/05/2004. Table 1 shows some specific details
about the data on these days, such as Total Packets, Total Bytes, AvgRate, NO. of flows per second,
TCP bytes (packets) and UDP bytes (packets) in 15 minutes every day.

The traces are in thetcpdumpraw format so that all header information is available and can be
used for detailed analysis.Tcpdump[11] is the most popular packet-capturing tool in the UNIX
community. It is based on a powerful filtering mechanism called BSD packet filter (BPF) [12]. The
packet capturing and filtering facilities oftcpdumpare implemented in separate library,pcap[13].
In the tcpdump file, user private data is removed from traces. Traffic traces have only protocol
headers. Protocol payload which contains user data should be removed. Besides, IP address,
which is unique and can be used to identify a user, is scrambled to provide anonymity to users. We
use tcpdump to obtain traffic traces because tcpdump is widely used, and installed as part of the
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Table 1: Summary of the WIDE backbone traces used in section 4

11-04-2004 (14:00-14:15, JST)11-05-2004 (14:00-14:15)
Bytes 2774.33MB 2293.26MB

Packets 6892509 5590762
Bytes/packet 422.07 430.11

AvgRate 25.86Mbps 21.38Mbps
TCP bytes/packets(%) 92.35 (84.56) 93.02 (86.41)
UDP bytes/packets(%) 7.08 (11.43) 6.43 (10.03)

default tools on many systems. In addition, there are many tools that integrate the pcap library and
be able to read tcpdump output files. Those tools include tcptrace, tcpslice, tcpdstat and ttt.

In the protocol breakdown, we can see that the TCP is dominant in the traffic trace, about 93%
of the total packets and 85% of the total bytes. While UDP accounts for approximately 11% in
packets and 7% in bytes.

4 Analysis

In order to examine the independence of the packet sizes and interarrival times of the WIDE traffic
trace, we use various tests as following. First, we calculate the auto-correlation (ACF) of the traffic
traces for 11/04/2004 and 11/05/2004 respectively, and observe how they decay. Next, we compare
these two traffic trace files by using the cross-correlation (XCF) functions to detect their possible
similarity. In order to quantify the self-similarity property, the Hurst exponent value is estimated
in several ways. Finally, to further ensure the existence of long-range dependence, we employ the
original traffic traces with internal shuffling of different bucket sizes. With the randomized data,
we repeat the same analysis methods and compare these results with those done before.

4.1 Autocorrelation Function and Cross-correlation Function

For the 15-minute network trace on 11/04/2004 and 11/05/2004, we calculate the accumulative
traffic by counting the total bytes arrived during every 20ms interval. Figure 1 (a), (b) represents
a sequence of simple plots of the byte count for 45,000 consecutive samples over a 15-minute
window for two days respectively. In order to eliminate the difference between the busy hour
and the low hour, we analyze the data which is in the same fifteen minutes during the daytime
over 4 years. We calculate the total traffic during 15-minute interval (14:00-14:15 JST) daily,
from 01/01/2001 to 11/19/2004. Figure 2(a) depicts the sequence of plots of the total byte counts
for 1383 samples during this 15-minute interval over 4-year period. From the three per-interval
graphs which show the original traffic data, we can only see that the byte count during consecutive
intervals varies chaotically.

In order to examine the existence of long-range dependence in our sampled traces, first we
calculate auto-correlation (ACF) for the two 15-min traces and aggregate traffic trace. As shown
in Figure 3, plot (a), (b) presents the autocorrelation functions calculated for the byte counts per
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Figure 1:Traffic byte count per time unit (20msec) from the 15-minute network trace.
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Figure 2:Aggregated Traffic : (a) shows the daily byte count for the total traffic arrived in 15 minutes
over a four-year period (1383 samples). (b) The ACF calculated for aggregated traffic, which also
shows the power-law behavior.
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20mec from 14:00-14:15 on 11/04/2004 and 11/05/2004, respectively. Similarly, in Figure 2, plot
(b) represents the autocorrelation function calculated for aggregated traffic, which are byte counts
of total packet arrival in 15 minutes every day from 01/01/2000 to 11/19/2004. There is a 24-hour
difference between two adjacent intervals.

The correlation structure of a time-series is preserved irrespective of time aggregation. This
correlation is captured by the autocorrelation function (ACF), which measures the similarity be-
tween a seriesXt, and a shifted version of itself,Xt+k. Both of two ACF curves in Figure 3 have
a heavy-tail shape: as time lags increase, the normalized ACF value stay above 0.9 and does not
converge to zero. The ACF curve in 2 (b) also shows power-law like behavior. Besides, we can
see that their power-law behavior is similar to each other, both in small lags and in large lags. The
figures show that the autocorrelation function (ACF) of the series decays hyperbolically to zero
and implies long-range dependence.

To determine the similarity between the traffic traces taken on different days, we also calculate
the cross-correlation function using these traces from 11/04/2004 and 11/05/2004 as inputs. In
Figure 4, the cross-correlation value is always above 0.99 over the 400 lags, which further indicates
that the traffic flow in the 15 minutes of the two days correlate to each other and the self-similarity
property of the network traffic.

We apply internal shuffling mechanism to our original data with random buckets. The idea
behind randomized buckets is to decouple the short-range from long-range correlations in a series
to facilitate the study of the effects of long range dependence [14]. This is achieved through
partitioning the time series into a set of buckets of lengthb. Thus, we define the contents of the
uth bucket to be itemsXub, · · · , X(u+1)b−1 from the series, and the home of itemXi to be bucket
. Also, we say that two items(Xi, Xj) form an inbucket pair ifH(i) = H(j); otherwise, they
form an outbucket pair with an offset of| H(i) − H(j) | buckets. For the network trace taken
on 11/04/2004, we randomize it with different bucket sizes (10, 30, 50, 70, 100). As shown
in Figure 5 we also draw the ACF curves for each randomized series with bucket size 10, 50,
100 respectively. Compared with the ACF curve for original series in Figure 3, we find internal
randomization almost has no effect on the behavior of ACF: these four curves are almost the same
with each other. The ACF curves show the same power-law behavior as the original series. Since
the effect of equalizing the inbucket correlations on ACF is minimal, we can further verify that
long-range dependence dominates the original series.

4.2 Hurst Exponent Estimators

As we have described in Section 2, the Hurst exponent can be used to quantify the strength of the
long-range dependence. But there is no definitive way to calculate the value of H exponent, they
can only be estimated. These estimators can be classified into two main categories: time-domain
based and frequency-domain based [14]. Time-domain methodology are based on examining the
power-law relationship between a specific statistic of the time-series and the aggregation blockm,
which includesAbsolute method, Aggregate Variance method, R/S methodandVariance of Resid-
ual. Other estimators, such asPeriodogram method, Whittle estimatorandAbry-Veitch, operate in
the frequency or the wavelet domain. [9] provides a general overview of Hurst exponent estimation
methods.

It is not suggested that relying on single estimator to justify the long-range dependence [14].
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(a) ACF: 2004-11-04
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(b) ACF: 2004-11-05

Figure 3: Autocorrelation Function: (a) The ACF calculated for the byte count per 20mec from
14:00-14:15 on 11/04/2004. (b) The ACF calculated for the byte counts per 20mec from 14:00-14:15
on 11/05/2004. Both (a) and (b) show the similar power-law behavior and both decay to zero hyper-
bolically.
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Figure 4:Cross-Correlation Function, using the traces from 11/04/2004 and 11/05/2004 as inputs. It
shows the similarity between the network traffic taken on two differrent days.

Table 2: H estimators for aggregated traffic(from 01/01/2001 to 11/19/2004)

AV R/S Periodogram Absolute Variance of Residual Abry Veitch Whittle
0.807 0.446 0.774 0.299 1.011 0.901 0.812

In this project, we use SELFIS tool to estimate the value of Hurst exponent of network trace series.
To obtain a higher accuracy in verifying the possible existence of long-range dependence, we apply
all the estimators implemented in SELFIS.

For each day’s traffic trace, we produce sample series at different time intervals, from 20ms to
500ms. In fig 6 a) and fig 6 b), we calculate the value of H estimator at different time scales for
each sample series, using the methodologies described above. TheX axis represents time scales
and theY axis shows the value of H estimator. We also calculate the H estimator values for the
aggregated traffic, as shown in table 2. By comparing the H estimator values for two different
series taken on 11/04/2004 and 11/05/2004 respectively, we find the all the estimators have quite
similar trend on different day, and they are compatible with the value calculated for the aggregated
traffic as shown in table 2.

Clearly we can also see non-consistent estimations from different methodologies: some of the
H estimators show the long-range dependence and others not. We find that the scaling behavior of
Periodogram method, Whittle estimator, Variance of ResidualandAbry-Veitchfollow the similar
pattern: start from 0.6 at smaller time scales and smoothly increase to 0.8 at larger time scales,
and we conclude that these four H estimators can provide sufficient estimations in our case. The
value ofAggregate Varianceestimator fluctuates a little, but it’s always above 0.5. As forAbsolute
andR/Sestimators, their behavior are quite different from others:R/Sestimator begins at approx-
imately 0.6 and decreases as time scales become larger, and theAbsoluteestimator is generally
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ACF after internal shuffling with bucket size = 100
Original trace from 2004−11−04

(c) ACF: bucket sizeb = 100

Figure 5: Internal randomization with different bucket sizes = 10, 50, 100 : we can see that internal
shuffling almost has no effect on the behavior of ACF: the three curves are almost the same as the orig-
inal ACF curve of the same day(11/04/2004). It further verifies that long-range dependece dominates
the original series.
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below 0.4 and even decrease to zero at some points. To this point, we can not deny the accuracy
and robustness of the last three estimators, because each estimator relies on different statistics (e.g.
power spectrum, variance) of the signal to detect the existence of long-range dependence [15]. The
other possible reason for this inconsistence is that the number of samples decrease as time scale
becomes larger, thus resulting in loss of statistics certainties.

Because most estimators can report the H exponent value to be greater than 0.5, we can defer
the existence of long-range dependence in these two day-pair’s traces. Try to eliminate the effect
of short-range dependence on these estimators, we randomize the original series with internal
shuffling buckets. Intuitively, internal bucket randomization can break the short-range correlation,
while preserve the long-range dependence character. So, if the original signal do show long-range
memory, the estimator values should not be affected even after applying internal randomizations
which destroy only the short-rangecorrelations. We apply to the original series of 2004-11-04 with
buckets of various sizes (b = 10, 30, 50, 70, 100). As we can see in fig 7, theX axis presents
different bucket sizeb, and theY axis shows the estimated H value. In this graph, we only choose
five estimators whose values for original series are above0.5, because only Whenb = 1, that is, no
shuffling at all, the estimated H values for initial series are revealed. Generally speaking, all the five
estimation of H exponent look stable as expected. In particular, Variance of Residual, Abry Veitch
and Whittle estimators do not seem to be affected by the internal randomization irrespective of
the different bucket size. However, Periodogram estimator drops 0.07 as the bucket size increases.
At this point, based on the behavior of all the estimators, we can tell that long-range dependence
exists in our daily trace taken from WIDE backbone trace.

5 Conclusion and future work

The main purpose of this project is to demonstrate the existence of long-range dependence in
the large time scales. Using the SELFIS tool, we analyze recent two-day trace files from WIDE
backbone as well as the aggregated traffic in the past four years. We apply multiple experiments
including auto-correlation function curves of two days’ traffic, cross-correlation function between
those two, as well as the evaluation of Hurst estimator by seven different methods. Besides the
normal interval series, we also employ the trace files with internal shuffling buckets mechanisms
to eliminate the effect of short-range dependence of traffic.

From our experiments of tremendous statistical data analysis, we draw the conclusion for the
following points: (1) WIDE backbone trace is statistically self-similar and long range dependent in
large time intervals. (2) The self-similarity characteristics of network traffic can be scaled in Hurst
estimator. Due to the non-consistent estimators for different methods shown in our experiments,
however, we can’t reply on one or several methods to decide the existence of LRD. Some of
estimators are optimistic but some of them are deceived by trend and periodicity.

Since we have observed the non-consistent estimators for different methodologies here, we
realize that different estimators reveal distinctive statisctical characteristics. Therefore, they can
predict H vulue correctly only under certain circumstances. In the future, we can explore the most
suitable scenarios they can be applied.

In our project, we have applied the internal shuffling buckets mechanism to eliminate the impact
of short-range dependence. We can try to find some other adoptable methods to better evidence
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Figure 6: Scaling behavior of Hurst exponent estimators: The Hurst values estimated by various
estimators at different time scales (20ms, 40ms,...,500ms). The estimators have quite similar trend for
traces taken on two differrent days. Most of the H estimators have values greater than 0.5, which
verify the existence of long-range dependence, but some others (Aggregate Variance, Absolute and
R/S estimators) don’t.
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Figure 7:H estimators after internal bucket shuffling with various buckets sizes (10, 30, 50, 70, 100).
All the five estimations of H exponent look stable as expected. In particular, Variance of Residual,
Abry Veitch and Whittle estimators do not seem to be affected by the internal randomization irre-
spective of the differrent bucket size. However, Periodogram estimator drops 0.07 as the bucket size
increases. As a special case, bucket sizeb = 1 represent the original trace.

the existence of LRD afterwards.
Due to the limited time, we only use WIDE backbone traces in our study, in which all the

daily traces are of 15-min length. It is far from enough to further reveal the statistics properties
of traffic. In the future, we can observe different kinds of backbone traffic and examine a much
longer network trace intervals (maybe 24 hours) to discover the characteristics of the network
traffic. Moreover, we are interested in extending our analysis to network traces on access links,
more specifically, on mobile and wireless networks later.
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