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ABSTRACT
Establishing pairwise keys for each pair of neighboring sensors is
the first concern in securing communication in sensor networks.
This task is challenging because resources are limited. Several ran-
dom key predistribution schemes have been proposed, but they are
appropriate only when sensors are uniformly distributed with high
density. These schemes also suffer from a dramatic degradation
of security when the number of compromised sensors exceeds a
threshold. In this paper, we present a group-based key predistribu-
tion scheme, GKE, which enables any pair of neighboring sensors
to establish a unique pairwise key, regardless of sensor density or
distribution. Since pairwise keys are unique, security in GKE de-
grades gracefully as the number of compromised nodes increases.
In addition, GKE is very efficient since it requires only localized
communication to establish pairwise keys, thus significantly reduc-
ing the communication overhead. Our security analysis and per-
formance evaluation illustrate the superiority of GKE in terms of
resilience, connectivity, communication overhead and memory re-
quirement.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: secuirty and protec-
tion; C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design—Wireless communication

General Terms
Security, Design, Algorithms

Keywords
Wireless sensor networks, group-based key pre-distribution, secu-
rity

1. INTRODUCTION
Sensors are typically small battery-equipped devices with very

limited communication, computation, and memory capacity. They
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are becoming cheap enough for them to be deployed on demand,
and in environments where access or maintenance is ruled out.
Sensors typically need to communicate with their neighboring sen-
sors [24, 21, 22], aggregating sensing data into a more compact re-
port and then transmitting it to the base station over multiple hops.
Messages sent between neighboring sensors may contain sensitive
data or commands from the base station, so it is crucial to secure
these communications. Unfortunately, resource limitations at sen-
sor nodes rule out the use of expensive public key cryptosystems
such as RSA [18] or Diffie-Hellman key agreement [5] for this pur-
pose.

Key predistribution schemes are typically considered as an ef-
ficient way to establish pairwise keys between neighboring sen-
sors [2, 1, 16, 24]. This task, however, is complicated by the ad-
hoc and on-demand nature of sensor deployments. Since a sensor’s
neighbors are only known after deployment, it is not possible to
preload these shared keys in any simple way.

The obvious approach of preloading each sensor with keys shared
pairwise with every other sensor requires memory linear in the
number of sensors in the network. For large networks, this is im-
practical. Recently, Random key predistribution (RKP) schemes [9,
4, 6] have been proposed for large scale sensor networks. The basic
idea is to randomly preload each sensor before deployment with a
set of keys from a global key pool. Since these subsets are cho-
sen randomly, any pair of sensors will share a key with a certain
probability. Two neighboring nodes can choose any element in
the intersection of these subsets to be their pairwise key. When
these subsets are disjoint, two neighboring nodes may establish a
path key using intermediary nodes. These schemes are based on re-
sults from random graph theory [8], which guarantee that a random
graph is connected with high probability if the number of edges in
it exceeds a threshold. To further improve the network resilience
of RKP schemes against node capture, [7, 14, 15] proposed struc-
tured random key predistribution (SRKP) schemes, which have a
nice threshold property: when the number of compromised sen-
sors is less than a threshold, any other keys shared between non-
compromised sensors are affected with probability close to zero.

RKP and SRKP have attractive features. A small number of
preloaded keys (say, 250) are able to almost ensure the connectivity
of a large sensor network (say, 10,000 nodes) [9]. Also, each sen-
sor incurs small communication overhead for key establishment,
regardless of network size.

However, these random key predistribution schemes suffer from
two major problems, which make them inappropriate for many ap-
plications. First, these schemes require that the deployment density
is high enough to ensure connectivity (see Section 2.1). This re-
quirement seriously hinders the use of RKP and SRKP when sen-
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sor networks are sparse, as is likely when sensors fail over time and
new sensors are added, or when the deployments are themselves
sparse.

Second, the idea of key sharing in RKP or key space sharing
in SRKP, a requisite for high network connectivity, also degrades
resilience against node capture. A node compromise also compro-
mises the set of keys (or key spaces, respectively) in it, so that the
security of all other sensors having these keys (or key spaces) will
be weakened. Consequently, all the schemes based on key shar-
ing or key space sharing show exponential degradation of security,
when a small fraction of sensors are compromised [3]. This short-
coming seems unavoidable for RKP and SRKP schemes.

In their recent PIKE proposal [3], Chan et al. have addressed the
problem of high density requirements in RKP and SRKP. In PIKE,
each sensor is assigned an ID of the form (i; j), which corresponds
to a location on a

p
n � p

n grid, where n is the network size.
Each sensor is also preloaded with pairwise keys, each of which is
shared with a sensor that corresponds to a location on the same row
or the same column of the grid. Now, any pair of sensors that do
not share a preloaded pairwise key can use one or more peer sen-
sors as trusted intermediaries to establish a path key. PIKE shows
significantly improved security over SRKP due to the uniqueness of
pairwise keys. However, since the intermediaries may not always
be in the vicinity, PIKE requires network-wide communication to
establish path keys, each of which requires O(

p
n) communication

overhead [3]. In addition (see Section 7.2.2), a large fraction (>
99%) of neighboring sensor pairs in PIKE do not share preloaded
keys, and thus need to establish path keys. Consequently, the PIKE
scheme involves relatively high communication overhead, making
it unsuitable for large sensor networks.

1.1 Our Work
We present GKE, an efficient Group-based Key Establishment

scheme to establish pairwise keys between each pair of neighbor-
ing sensors in a large sensor network. As in previous work [15,
6, 11], we use the fact that sensors are often deployed in groups,
so that sensors in the same group are more likely to be neighbors.
In our scheme, each sensor will be preloaded with unique pairwise
keys shared with all other sensors in the same group. This is fea-
sible, with a reasonable group size (see Section 4.2.1). For every
pair of neighboring sensors from different groups, we use a tech-
nique for path key establishment that requires only local communi-
cation. Each path key establishment involves at most two interme-
diate nodes, each of which is selected from multiple candidates.

The uniqueness of pairwise keys allows GKE security to de-
grade gracefully as the number of compromised sensor increases,
hence significantly improving the resilience against node compro-
mise over RKP or SRKP. Further, in GKE, the communication re-
quired for a path key establishment is localized to two adjacent
groups. Therefore, as our analysis shows, GKE significantly re-
duces the communication overhead compared to PIKE, which re-
quires network-wide communication for path key establishment.

Previous work [6, 11] typically assumes that the group adjacen-
cies are known prior to sensor deployment. Our scheme is more
flexible, and can be applied to deployment models that violate that
assumption. Our scheme has the following salient features:

� Density and distribution independence: GKE establishes pair-
wise keys between any pair of neighboring sensors, regard-
less of sensor density or distribution. It is more general than
RKP or SRKP, which require uniform sensor deployment
with high density.

� Graceful resilience degradation: GKE degrades gracefully

as the number of compromised sensors increases. Even with
a large fraction of nodes compromised, only a small fraction
of secure links are compromised in the rest of the sensor net-
work. GKE provides stronger resilience against node capture
than random key predistribution schemes.

� Localized communication: Pairwise key establishment be-
tween sensors pairs in GKE requires no communication when
the sensors are from the same group, and only local commu-
nication when they are in neighboring groups.

� Low memory requirements: For a network of n sensors, with
group size , GKE requires each sensor to be preloaded with
d 1
2
( � 1)e+ d (n�)t

22
e keys. If n = 10; 000,  = 100 and

t = 10, we need preload each sensor with around 55 keys.
If n = 100; 000, we need only 75 keys, showing that our
method scales very well to very large sensor networks.

� Flexible deployment models: GKE is applicable to more flex-
ible group deployment models. (See Section 3)

� Mobility support: GKE is directly applicable both when sen-
sor networks are static or when sensor groups move in swarm
fashion.

The rest of this paper is organized as follows. Section 2 mo-
tivates our work. We present two flexible deployment models in
Section 3 and present our solution in Section 4. In Section 5, we
describe the metrics that we use to evaluate the security and per-
formance. We analyze the security of our scheme in Section 6, and
evaluate its performance in Section 7. Finally, we make a conclu-
sion in Section 8.

2. MOTIVATION
We now motivate our approach more fully with a discussion of

issues in sensor networks.

2.1 High Density Deployment with Uniform
Distribution

RKP and SRKP require sensor deployments to form connected
graphs, since they can not guarantee key establishment between
neighbors without the use of path keys.
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Figure 1: Density vs. mem-
ory

As indicated in [3, 12],
both RKP and SRKP require
high density deployment. Let
the sensor density Æ be the av-
erage number of sensors de-
ployed in a sensor’s transmis-
sion range. RKP and SRKP
require high Æ to ensure that
the number of edges in the
key sharing graph exceeds the
Erdös-Renyi threshold for en-
suring connectivity [8]. For
the random key predistribu-
tion scheme in [9], Figure 1
uses the analysis in [9] to plot the sensor density against the mem-
ory requirement, when a 10; 000-sensor network is to be securely
connected with a probability of 99%. For the configuration as
in [9], where the key pool size ! is 100; 000, Æ � 42.

Further, as pointed in [3], in a network with non-uniform density,
the RKP or SRKP could result in network partition, when a few
critical pairs of nodes fail to perform key establishment.

High-density deployments are expensive. Consequently, current
random key predistribution schemes may be unsuitable when cost
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Figure 2: Group-based deployment methods

is a factor. In contrast, our GKE scheme ensures that every pair of
neighboring sensors can establish a unique pairwise key, regardless
of the density or the distribution of sensors, as long as the underly-
ing network is physically connected.

2.2 Degradation of Resilience
As the work in [11] shows, the compromise of a mere 100 out

of 10; 000 sensors in the original RKP scheme [9] leads to the
compromise of around 30% of the secure links between uncompro-
mised sensors. The SRKP scheme [7] does have the nice property
that when the number of compromised sensors is below a threshold,
the links between uncompromised sensors remain secure. How-
ever, the security of these other links decreases dramatically when
the number of compromised links exceeds a threshold. This thresh-
old can be as low as 140 for a network of 10; 000 sensors [11].

The resilience of RKP and SRKP degrades so dramatically be-
cause each key or key space is shared across a subset of sensors.
Once a key or key space is compromised, the security of all other
sensors which have this key or key space is weakened. We might
expect clever adversaries to maximize their benefit by attacking
sensors whose key subsets contain the fewest number of keys al-
ready compromised. RKP and SRKP face a dilemma in this re-
spect. They require a high degree of sharing to ensure that the key
sharing graph has a high enough edge density, but this requirement
compromises resiliency.

3. FLEXIBLE GROUP-BASED
DEPLOYMENT METHODS

Since sensors are deployed randomly, the exact location of a sen-
sor, or the set of its neighbors will be unknown. However, the
choice of a suitable deployment method may help in determining
neighborhood relationships to some extent.

Group-based deployment is generally seen as reasonable in a
large sensor network [6, 11]. In this approach, sensors are arranged
into groups, and each group is deployed as a unit. As a result,
sensors from the same group are more likely to be neighbors. A
reasonable strategy is to allocate more resources for key establish-
ment between sensors in the same group, and to provide an effi-
cient mechanism for establishing pairwise keys between neighbor-
ing sensors from different groups.

Current group-based deployment models typically divide the tar-
get region into sub-regions that may [6] or may not [11] overlap,
and require each group of sensors deployed into a predetermined
sub-region.

Figure 2(a) illustrates the group-based deployment approach adopted

Figure 3: PRGD Model.

by Huang et.al in [11]. The target deployment region is divided
into 4 � 4 sub-regions Rij (1 � i; j � 4). The n sensors are ac-
cordingly arranged into 16 subgroups Gij (1 � i; j � 4). Sen-
sors in Group Gij are deployed into the sub-region Rij . Sen-
sors in group G22 have neighbors either in group G22 or in group
G11; G21; G31; G32; G33; G23; G13; G12.

In this deployment method [6, 11], each group of sensors has
eight predetermined adjacent groups. It is hence relatively easy for
a sensor to establish a pairwise key with a neighboring node which
is either in its own group, or in the eight predetermined adjacent
groups. However, this deployment method is quite inflexible, and
makes the following assumptions.

� Sub-regions are predefined. For example, each sub-region
in [11] is a cell in a k � k grid.

� Each sensor group is deployed into a specified sub-region.
For example, Gij may have to be deployed into Rij .

These assumptions will not hold in demanding or hostile envi-
ronments, such as battlefields or emergencies. When sensors are
scattered from an airplane in a battlefield, for example, it is un-
wise for the airplane fly in a predefined (and predictable) deploy-
ment pattern. Even if sensors are dropped from missiles, wind and
weather can make it impossible for deployments to follow prede-
termined patterns.

We propose two more flexible deployment models. The first
model, referred to as Random Region Group Deployment (RRGD),
only assumes that sub-regions are predefined, but allows a sub-
region to receive any sensor group. RRGD provides more deploy-
ment flexibility, making it suitable for a wider variety of applica-
tions. Figure 2(b), illustrates one instance of sensor deployment
under the RRGD model.

Our second model, which we call Pure Random Group Deployment
(PRGD), relaxes both the assumptions made in [6, 11]. In PRGD,
a sub-region could be anywhere in the target region. PRGD rep-
resents the most general group-based deployment model. Figure 3
shows one deployment of n sensors which are arranged in 16 groups,
under PRGD.

Sensors might not be evenly deployed throughout the entire re-
gion under the PRGD model. However, this is an artifact of the
deployment method, and is orthogonal to the performance of our
key distribution scheme. Our work focuses on pairwise key estab-
lishment, and works under any group-based deployment method.

It is more challenging to establish pairwise keys for neighboring
sensors from different groups under RRGD or PRGD, since it is
difficult to predetermine group adjacencies. We next show how
GKE addresses this problem.

4. THE GKE SCHEME
Let there be n sensors, and let sensor si have ID i, 1 � i � n.

We arrange these sensors into g groups Gi; 1 � i � g, each of
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Notation Description
si a sensor with identity i
Gu a group with identity u
n the network size
 the group size
g the number of groups
Æ the average number of sensors in a sensor’s

transmission range
Kij the unique pairwise key shared between si and sj
m the number of preloaded keys that a sensor shared with

sensors that are in the different groups
t the number of agents (see Definition 1 in Section 4.2.2)

for a group in every other group

Table 1: Our Notation

which has  = n=g sensors. Group Gu will comprise sensors with
IDs i such that (u� 1) < i � u.

Let hGu; sii denote sensor si from group Gu. We will replace
hGu; sii by si, when no confusion can arise.

4.1 Outline of GKE
The central idea in GKE is to preload each sensor with a carefully

chosen set of keys, each shared pairwise with one other sensor. We
exploit the fact that unique pairwise keys have perfect resilience
against node captures.

We say that two sensors are associated if they share a preloaded
pairwise key. We preconfigure each sensor so that it is associated
with every other sensor in its own group. We also ensure that each
sensor is associated with sensors from one or more other groups, in
a pattern designed to ensure several sensor associations across each
pair of groups.

A sensor si can now establish a unique pairwise key with any of
its neighbors sj . If si and sj are from the same group, they start
off associated. If they are from different groups, there will exist
multiple associations between their groups, so they can establish a
pairwise key using any pair of these associated nodes as intermedi-
aries. This process involves only localized communication, which
differentiates our scheme from PIKE [3].

4.2 Key predistribution
We now present the key predistribution schemes in GKE.

4.2.1 Intra-group Key predistribution
We preload each pair of sensors from the same group with a

unique pairwise key. This strategy is feasible even with limited
memory if we choose the group size  appropriately. For exam-
ple, let the group size  be 100 as in [6, 11], so that each sensor
must store 99 keys. If the key size is 64 bits, each sensor requires
792 bytes. This is doable for a Mica2 Mote sensor that has 4KB
SRAM [19]. We can further halve this memory requirement buying
using the techniques adopted in [3], so that allocating 396 bytes for
keys suffices to ensure that any pair of neighboring sensors from
the same group share a unique preloaded key.

4.2.2 Inter-group Key Predistribution
We begin with a few definitions.

DEFINITION 1 (AGENT). hGu; sii is called an agent for Gv

in Gu, if hGu; sii is associated with some hGv; sji in Gv .

DEFINITION 2 (t-ASSOCIATED GROUP). GroupsGu andGv

are said to be t-associated if they have t agents for each other.

G Gu v

Figure 4: Gu and Gv are 3-associated.

Since each pair of agents share a pairwise key, neighboring sen-
sors from groups Gu and Gv can establish path keys using any pair
of agents as intermediaries. As group adjacencies are unknown
prior to sensor deployment under RRGD and PRGD, the problem
of key establishment between sensors in different groups reduces
to that of creating group associations.

We will require each group to be associated with every other
group. If there are g groups, and each sensor has enough memory
to hold m inter-group pairwise keys, each group can have up to
t = d m

g�1
e agents in each of the other groups. Algorithm 1 shows

how to define group associations. We use functions Fi (1 � i �
t) which uniformly map group pairs from [1; g] � [1; g] to [1; n].
Fi(Gu; Gv) selects the ith agent for Gv in Gu, and is defined as
follows

Fi(Gu; Gv) =
�
t(v � 1) + i

�
(mod ) + (u� 1):

Gu comprises the sensors si with (u � 1) < i � u. Hence
F1(Gu; Gv); � � � ;Ft(Gu; Gv) select t sensors, with IDs between�
t(v� 1)+ 1

�
mod +(u� 1) and tv mod +(u� 1) as

agents for Gv .

Algorithm 1 Inter-group key predistribution

t = d m
g�1

e
for each pair of groups Gu, Gv do

for i = 1 to t do
sx = Fi(Gu; Gv)
sy = Fi(Gv; Gu)
assign a unique pairwise key to sx and sy

end for
end for

Algorithm 1 has the following attractive features:

� Uniformity: Each sensor is agent for the same number of
groups. This balances loads and creates no high-value tar-
gets, since no sensor holds more keys than any other.

� Resilience: Multiple agents improve resilience for establish-
ing path keys.

� Easy agent discovery: Agents can be discovered using the
functions F1; � � � ;Ft, rather than by lookups.

Figure 5 shows the inter-group key predistribution for sensors in
group G22 . For simplicity, we only show the scenario when each
group pair has one agent pair. Accordingly, each sensor is required
to be preloaded with m = 2 keys shared with sensors in distinct
groups.

4.3 Pairwise Key Establishment

4.3.1 Intra-group Key Establishment
A unique pairwise key is preloaded for every intra-group sensor

pair.
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4.3.2 Inter-group Key Establishment
We adopt the Highest Random Weight technique [20] to choose

agents for path key generation, using a hash function H to realize
distributed agreement. The work in [20] discusses how to select H.
Sensors hGu; sii and hGv; sji generate a path key as follows.

1. One principal, say hGu; sii, first computes H(si; sj ; p) for
1 � p � t, and selects the p that yields the biggest H value.
It now uses the function Fp to pick an associated sensor pair
hGu; sxi and hGv; syi for path key generation. Now, si then
randomly generates a key Kij and sends it to agent sx, en-
crypted with the association key Kix it shares with sx.

si ! sx : (Kij ; Gv)Kix

2. Upon receipt, sx decrypts this message and re-encrypts it
with the association key Kxy it shares with sy , and sends
it to sy.

sx ! sy : (Kij)Kxy

3. sy decrypts this packet, re-encrypts it with the key Kjy it
shares with sj , and sends it to sj .

sy ! sj : (Kij)Kjy

4. sj first applies H to select the same associated pair hGu; sxi
and hGv; syi that si selected for path key establishment. It
then recovers Kij using Kjy , its preloaded association key
with sy.

Features of GKE

� Resilience to impersonation: All messages above are secured
with the preloaded pairwise keys shared between the sender
and the receiver. It is hence impossible for an attacker to
impersonate the intermediaries, since it does not have the
preloaded keys.

� Failure resilience: We can use the techniques in [20] to guar-
antee resilience. Each pair of groups has t = d m

g�1
e agent

pairs. If there are n = 10; 000 sensors arranged into g = 100
groups, and each sensor is preloaded with m = 80 pairwise
keys shared with sensors in other groups, we will get t = 80
agent pairs for each pair of groups. Let a pair of intermedi-
aries be selected for a path key request using function H. If
this agent pair fails, we simply select the pair corresponding
to the index q that yields the second biggest H value, and use
Fq to determine the new agent pair for path key generation.
We can continue until we find an agent pair that is alive.

� Routing protocol: Routing is an issue orthogonal to our work.
PIKE uses the geographic routing protocol GPSR [13] with a
globally addressable infrastructure GHT [17] to find routes to
the intermediate nodes. GKE can also use GPSR and GHT
to find the route either from a sensor si to the agent sx, or
between the agents sx and sy .

G

s
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u v
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Figure 6: Inter-Group Key Establishment

However, there is a major difference between PIKE and GKE
in this respect. Finding a route to the trusted intermedi-
ary nodes in PIKE involves network-wide routing discovery,
since these intermediaries may not always be in the vicin-
ity. In contrast, since sensor si and agent sx are within the
same group in GKE, discovering a route to the agent only
involves route discovery within the group. Route discovery
between sx and sy is also local since they are in adjacent
groups. GKE can accomplish key establishment even with-
out a globally addressable infrastructure. The overhead of
routing in GKE is much smaller than that in PIKE.

4.4 Supporting Node Mobility
Consider a type of mobile sensor networks where groups of sen-

sor move in a swarm fashion [23]. Previous group-based key pre-
distribution schemes [6, 11] cannot adapt to group mobility, since
they assume that group adjacencies are predetermined and preserved.
When groups of sensors move, the neighborhood relationships be-
tween these groups cannot be maintained. In contrast, every pair of
groups is associated in GKE, and sensors from associated groups
are always able to establish a shared key. Group mobility is not a
problem.

5. EVALUATION METRICS
We evaluate GKE in terms of security and performance. We

measure security in terms of resilience against node capture and
connectivity, and measure performance in terms of communication
and memory overhead.

5.1 Security Metrics

5.1.1 Resilience
This metric measures how the capture of some sensors affects

the security of the rest of the network. Let U be the set of un-
compromised sensors. Let L(U) and L̂(U), respectively, be the
sets of total and compromised links between sensors in the set U .
Resilience is defined as the ratio L̂(U)=L(U).

This definition of resilience is similar to those used in previous
random key predistribution schemes [9, 4, 7, 14, 6, 11]. However,
our meanings of link is different. In our definition, a link exists
between every pair of neighboring sensors, and is secured either by
a preloaded pairwise key or by a path key. In contrast, the previ-
ous schemes consider only the links between pairs of neighboring
sensors secured by preloaded keys [9, 4, 6] or keys derived from
preloaded key space [7, 14, 11].

As [7] points out, a path key is compromised if an attacker can
decipher the messages during key establishment or compromise
any of the intermediaries. It is hence important to consider the
security of path keys to properly evaluate the effects of sensor com-
promise. In Section 6.1, we present some analytical and simulation
results of resilience, considering the security of both preloaded keys
and path keys.

5



5.1.2 Connectivity
Connectivity is defined as the probability that a sensor network is

securely connected. In Section 6.2, we show that the GKE scheme
can enable a sensor network securely connected with 100% proba-
bility, as long as the network is physically connected.

5.2 Performance Metrics

5.2.1 Communication Overhead
We compare the communication overhead of GKE with that of

PIKE, since only GKE and PIKE show graceful security degrada-
tion as the number of compromised sensors increases (see Section6.1).
For both GKE and PIKE, we only measure the communication
overhead of transmitting the encrypted path keys among the sen-
sors, neglecting the routing communication overhead. First, as in-
dicated in [3], the routing communication highly depends on the
underlying routing protocol, which is out of the scope of our paper.
Second, as analyzed in Section 4.3.2, with the same routing proto-
col, GKE will introduce smaller routing communication overhead
than PIKE. Therefore, neglecting the communication overhead of
routing for both GKE and PIKE does not favour our scheme GKE
in any aspect, when compared to PIKE. Rather, such processing
will help us focus on the efficiency of key establishment technique.

More specifically, the communication overhead is measured as
the average number of hops that a message has to be transmitted in
order to establish a key between any pair of neighboring sensors.

5.2.2 Memory Overhead
As in earlier schemes, we quantify memory overhead in terms of

the number of keys preloaded into each sensor. We do not count
the temporary storage during the execution of our scheme, or the
memory to store the newly established pairwise keys.

5.3 System Setting
We used the following configuration in our analysis and simula-

tions. The size of the sensor network n varied between 10,000 and
50,000, with 10; 000 being the default value. The wireless commu-
nication range for each sensor was 40m. The deployment density Æ,
the average number of sensors in a sensor’s transmission range, var-
ied from 20 to 100, to represent low- to high-density deployments.
The deployment areaA is determined by the network size n, sensor
density Æ, and the communication range. A = n�r2

Æ
. The group

size  was set to be 100 as previous group-based schemes [6, 11],
and the number of groups varied from 100 to 500 accordingly. For
simplicity, we assume that sensors in each group were uniformly
distributed within a region of area A=g.

6. SECURITY ANALYSIS
In this section, we compare the security of GKE with SRKP [7],

the group-based random key predistribution scheme in [6], and
PIKE [3] in terms of resilience against node capture and connec-
tivity.

6.1 Resilience
Let si and sj be two uncompromised neighbors. Let Lij be the

communication link between them, and let Kij be the key used to
secure this link. Let �(Kij) be the event that Kij is a preloaded
key, and let �(Kij) be the event that Kij is a path key. Let �Lij

be the event that link Lij is compromised, and C(x) be the event
that x sensors have been compromised. The probability that �Lij

has occurred given that x sensors have been compromised is

Pr[�LijjC(x)] =Pr[�LijjC(x) ^�(Kij)]� Pr[�(Kij)]

+ Pr[�LijjC(x) ^�(Kij)]� Pr[�(Kij)]:

Schemes such as [9, 4, 7, 14, 6, 11] consider only the links se-
cured by preloaded keys in evaluating resilience. Since pairwise
keys are established by randomly selecting them from a global
pool, the compromise of one sensor may compromise a number
of pairwise keys for other sensors.

This is impossible in GKE since preloaded pairwise keys are
unique. A link secured by a preloaded key can not be compro-
mised unless one of its endpoints is compromised. Therefore, GKE
achieves perfect resilience against node capture by their definition.

By our definition of resilience, for GKE,

Pr[�LijjC(x)] = Pr[�LijjC(x) ^�(Kij)]� Pr[�(Kij)]:

Now, Pr[�(Kij)] is simply the ratio of the number of path keys
to the total number of keys among all pairs of neighboring sensors.
Let�2(Kij) be the event that the path key Kij is generated using
two agents, and �1(Kij) be the event that the path key Kij is
generated using a single agent, as in the case when si or sj is itself
the agent for the other’s group. Now,

Pr[�LijjC(x)] =
�
Pr[�LijjC(x) ^�1(Kij)]� Pr[�1(Kij)]

+ Pr[�LijjC(x) ^�2(Kij)]� Pr[�2(Kij)]
�� Pr[�(Kij)]:

Let there be g groups each of size , and let each sensor hold
m preloaded keys for sensors in other groups. As shown in Sec-
tion 4.3.2, each group has t = m

g�1
agents in every other group. If

� is the probability that either si or sj is the agent of its neighbor’s
group, then

� =

�
�1
t�1

�

�


t

� =
t



Pr[�1(Kij)] is equivalent to the probability that one endpoint
of the link Lij is the agent for the other group, while the other
endpoint is not. Thus we get

Pr[�1(Kij)] = 2�(1� �):

Similarly, Pr[�2(Kij)] is equivalent to the probability that neither
si nor sj is an agent for the other group, and can be computed as

Pr[�2(Kij)] = (1� �)2:

Now,
�
n�3
x

�
=
�
n�2
x

�
is the probability that the agent used to trans-

mit the path key Kij is not compromised, when si and sj are un-
compromised, but x other sensors are compromised. Thus
Pr[�LijjC(x) ^�1(Kij)] can be computed as

Pr[�LijjC(x) ^�1(Kij)] = 1�
�
n�3
x

�

�
n�2
x

� =
x

n� 2
:

Similarly,

Pr[�LijjC(x) ^�2(Kij)] = 1 �
�
n�4
x

�

�
n�2
x

�

= 1 � (n� 2 � x)(n� 3� x)

(n� 2)(n� 3)
:
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Therefore,

Pr[�LijjC(x)] =
�
(1� �)2

�
1� (n� 2� x)(n� 3� x)

(n� 2)(n� 3)

�
+ 2�(1� �)

� x

n� 2

��

� Pr[�(Kij)]:

Pr[�(Kij)], the ratio of the number of path keys to the total
number of keys among all pairs of neighboring sensors, is depen-
dent on sensor deployment. Based on our simulation results, Fig-
ure 13(b) plots Pr[�(Kij)] in GKE under the RRGD and PRGD
models.

Figure 7(a) shows that our analytical and experimental results for
the number of compromised links match each other closely.

Figure 7(b) compares the resilience of GKE with that of SRKP [7],
the group-based scheme in [6], and PIKE [3]. The resilience of
SRKP is derived based on the analysis in [7], and each sensor is
preloaded with 200 keys drawn from 4 key spaces randomly cho-
sen from 50 key spaces. The resilience of the group-based scheme
in [6] is derived based on their analysis with a key space size of
100,000 and connectivity of 99.99% [6]. (The connectivity of GKE
is 100%. See Section 6.2.) We note that their analysis only con-
sider links secured by preloaded keys, and hence the fraction of
compromised links should be higher if the security of path keys is
also considered. For GKE and PIKE, we consider the security of
both preloaded keys and path keys. If only the links secured by
preloaded keys were considered, the resilience graphs of PIKE and
GKE would both be lines of zero, representing perfect resilience
against node capture.

Figure 7(b) shows that when around 350 of 10,000 sensors are
compromised, the resilience of SRKP decreases dramatically. It
also shows that when around 400 of 10,000 sensors are compro-
mised in [6], 43% of the links among uncompromised sensors will
be compromised. In contrast, both PIKE and GKE show graceful
degradation of resilience with respect to the number of compro-
mised nodes, so that attackers are unable to compromise a large
fraction of other communication links by compromising a small
number of sensors.

Although both GKE and PIKE shows graceful degradation of
resilience, Figure 7(b) shows that the resilience of GKE is about
twice as high as that of PIKE. In Section 7.2, we will show that
this improvement of resilience is achieved with even significantly
smaller communication overhead, compared to that of PIKE.

6.2 Connectivity
As shown in Section 2.1, RKP and SRKP require high density

deployments to ensure the entire sensor network is securely con-
nected with high probability. In contrast, GKE ensures that any
two neighboring sensors are able to establish a path key, regardless
of the sensor density or distribution, as long as the sensor network
is physically connected. This guarantee is achieved since (1) any
pair of sensors from the same groups have preloaded pairwise keys,
(2) sensors from associated groups are able to establish path keys,
and (3) the inter-group key predistribution scheme ensures that any
two groups are t-associated (see Section 4.2.2).

Figure 8 compares the connectivity of SRKP, PIKE and GKE in
a sensor network with 10,000 sensors. For SRKP, each sensor has
4 key spaces chosen from a pool of 50 key spaces, and preloaded
with 200 keys. This is a typical configuration from [7].

As Figure 8 clearly shows, the connectivity of SRKP decreases
dramatically when the sensor density is less than 50, and is almost
surely disconnected when the density is around 25. In contrast,
PIKE and GKE retains full connectivity regardless of sensor den-
sity. Remarkably, only 55 keys are required for the GKE scheme to
achieve full connectivity, when any pair of groups are 10-associated
(See Section 7.1).
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7. PERFORMANCE EVALUATION
As shown in Section 6, PIKE and GKE have substantially better

resilience against node compromises than random key predistribu-
tion schemes, and guarantee that any two neighbors can establish a
path key if needed. We now compare PIKE and GKE in terms of
memory and communication overhead.

7.1 Memory Overhead
The GKE scheme imposes low memory requirements. For a sen-

sor network of n sensors, with group size , GKE requires each
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sensor to be preloaded with  � 1 pairwise keys shared with sen-
sors from the same group and t(g � 1)= pairwise keys shared
with sensors that are in the different groups. Further, we use the
method in [3] to reduce the memory requirement by a factor of
two. Therefore, the total memory overhead per sensor is d 1

2
( �

1)e + d (n�)t
22

e keys.
In contrast, the memory overheads of PIKE-2D and PIKE-3D

are dpne + 1 and 3d 3
p
ne + 1 separately [3]. Figure 9 shows the

memory requirements of PIKE-2D, PIKE-3D and GKE separately.

7.2 Communication Overhead
Messages are transmitted in GKE only for path key establish-

ment. Let H denote the the average number of hops that a message
traverses when any path key Kij is established. Therefore, the av-
erage communication overhead is simply H � Pr[�(Kij)].

Two major differences between PIKE and GKE result in a big
difference in their communication overheads. First, nodes use local
intermediaries when establishing path keys in GKE, so only local
communication is needed to transmit key establishment messages.
In contrast, intermediaries in PIKE could be anywhere in the entire
target region, so that network-wide communication is required.

Second, the fractions of keys that are path keys is much higher
in PIKE than in GKE. Sensors are deployed in groups in GKE, so
that sensors from the same group are more likely to be neighbors.
In GKE, all pairs of sensors from the same group are preloaded
with pairwise keys. In PIKE, only sensors on the same grid column
or row share preloaded pairwise keys. No deployment knowledge
can be predetermined on constructing the grid makes the fraction
of path keys in PIKE significantly higher than that of GKE.

7.2.1 Communication Overhead for Path Key Estab-
lishment

Establishing a path key between si and sj in GKE (see Fig-
ure 10(a)) requires messages from si to sx, from sx to sy , and
from sy to sj . If h(sp; sq) denotes the hop distance between sp
and sq , the number of hops required for path key establishment is
H(si; sj) = h(si; sx)+h(sx; sy)+h(sy; sj). If HGKE is the ex-
pected number of hops for path key establishment in GKE, linearity
of expectation leads to

HGKE = 2 � �hGKE + �h0GKE ;

where �hGKE is the expected hop distance between any two nodes
in a group, and �h0GKE is the expected hop distance between any
two nodes from adjacent groups.

Establishing a path key between neighboring sensors si and sj in
PIKE (Figure 10(b)) includes the round trip from the neighboring
sensors to the intermediary sk, who may be anywhere in the region.
The number of hops required is h(si; sk) + h(sk; sj). If �hPIKE

is the average hop distance between any two nodes in the entire
region, the expected communication overhead in PIKE is

s

i

x

s s j

s y

G Gu v

(a) Path Keys in
GKE

s k

s i s j

(b) Path Keys in
PIKE

Figure 10: Path Key Establishment in GKE and PIKE

HPIKE = 2 � �hPIKE

Next, we give lower bounds for HPIKE and for HGKE under
the RRGD deployment model. If two nodes are separated by phys-
ical distance ��, we will need at least ��=r hops, where r is the trans-
mission radius. Therefore, we can use ��=r as a lower bound for the
average hop distance.

In PIKE, the expected physical distance between si and sk is the
expected distance between two randomly picked points in a square
of area A, and is known [10] to be ��PIKE = 0:52

p
A.

In GKE, each group of sensors is in a square of size of a � a,
where a =

p
A=g. Since si and sx are in the same square, the ex-

pected physical distance between them [10] is ��GKE = 0:52a. To
get ��0GKE , the expected distance between sx and sy, we note that
two adjacent squares may touch (see Figure 11) along an edge or
at a corner. Let ��0� be the expected distance between two random
points picked randomly from neighboring squares that are verti-
cally (or horizontally) disposed. Let ��0
 be the expected distance
between two random points picked from neighbors that are diag-
onally disposed. Clearly, we now have ��0GKE = Pr[

L
] ��0� +

Pr[
N

] ��0
, where Pr[
L

] (or Pr[
N

]) is the probability that neigh-
boring squares are horizontally or diagonally disposed, respectively.
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Figure 11: Adja-
cencies

It is known [10] that the expected dis-
tance between two random points in an
a� 2a rectangle is 0:804a. Since these
two points are from the same square half
with probability 0.5 and from different
square halves with probability 0.5, we
can use linearity of expectation to get
0:804a = 0:5 ��0� + 0:5��GKE . That
is, ��0� = 1:088a.

To get ��0
, consider two random
points in a 2a � 2a square, which con-
sists of four a� a squares. Clearly, the expected distance between
two random points in a 2a � 2a square is 0:52 � 2a = 1:04a.
Since these two points are from the same a� a square with prob-
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(c) Communication Overhead vs. Net-
work Size (Æ = 50)
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Figure 13: Average Number of Hops, Path Key Fraction and Communication Overhead.

ability 0.25, from two horizontally or vertically adjacent a � a
squares with probability 0.5, and from two diagonally disposed
a � a squares with probability 0.25, we can use linearity of ex-
pectation to write 1:04a = 0:25��GKE +0:5 ��0�+0:25 ��0
. Since
we know ��GKE = 0:52a, ��0� = 1:088a, we get ��0
 = 1:464a.

We estimate Pr[
L

] and Pr[
N

] as follows. si will need to com-
municate with a neighbor sj from a vertically adjacent square (see
Figure 11) only when si is within distance r from the top edge of
its cell. Similarly, si will need to communicate with a neighbor
from a diagonally disposed square only when si is within distance
r from the corner, that is, inside the quarter circle shown. Hence,
we will have Pr[

L
] = ar

ar+0:25�r2
, and Pr[

N
] = 0:25�r2

ar+0:25�r2
.

Now, ��0GKE = ar
ar+0:25�r2

��0L + 0:25�r2

ar+0:25�r2
��0N. This yields

��0GKE = 4:35a2+1:46�ra
4a+�r

. Now,

HGKE = 2 � �hGKE + �h0GKE

� 1:04
p
A=g

r
+

4:35A=g + 1:46�r
p
A=g

(4
p
A=g + �r)r

;

and

HPIKE = 2 � �hPIKE � 1:04
p
A

r
:

In Figure 12, the solid line shows the experimental results and the
dashed line shows theoretical lower bound H for PIKE and GKE,
using a density Æ = 50. For both schemes, the experimental results
match the lower bound quite closely. Therefore, we may use this
lower bound to approximate H .

Figure 13(a) plots simulation results for the average number of
hops H to establish a path key in PIKE and GKE, varying the net-
work size from 10; 000 to 50; 000, for a density of 50. For a fixed
group size, HGKE remains constant as the network grows, indicat-
ing that network size has no impact on the expected communication
overhead. This is because the communication of establishing a path
key in GKE is localized to two adjacent groups. In contrast, estab-
lishing a path key in PIKE requires network-wide communication,
and thus HPIKE increases as the network size increases.

7.2.2 Fraction of Keys Which are Path Keys
Let the path key fraction be the fraction of keys which are path

keys. Figure 13(b) shows the path key fraction in PIKE and GKE
vs. network size, respectively. Almost all (about 99%) of the links
in PIKE are secured by path keys. This is expected, since only sen-
sors at the same column or row of the logical grid have preloaded
keys. This logical grid used to predistribute pairwise keys, includes
no deployment information, so that sensors sharing preloaded keys
are rarely neighbors. In contrast, although deployment informa-
tion is not available in GKE, sensors in the same group, which are
preloaded with pairwise keys shared with one another, are more
likely to be neighbors. As a result, GKE has a much smaller path
key fraction, around 30% under RRGD and 60% under PRGD.
PRGD will have higher path key fraction than RRGD, since the
coverage areas of two groups might overlap, resulting more neigh-
boring sensors that are in different groups.
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7.2.3 Communication Overhead
We plot the communication overhead, which isH�Pr[�(Kij)],

in Figure 13(c), for network size from 10; 000 to 50; 000. Clearly,
GKE reduces the communication overhead by a factor of about 6
for a network of size 10; 000, with the improvement proportional to
the network size. This demonstrates that GKE is especially suitable
for very large sensor networks.

7.2.4 Comparison for Low Density Deployments
We also compare the communication overhead of GKE with PIKE

for low density deployments. Figure 13(d) plots the average num-
ber of hops for establishing a path key in PIKE and GKE, for net-
work densities from 20 to 100, for a network size of 10,000. The
number of neighbors increases with network density, so the average
number of hops decreases in both PIKE and GKE. Again, GKE re-
quires much lower communication overhead to establish path keys
than PIKE. Figure 13(e) shows the ratio of path keys in PIKE and
GKE, and Figure 13(f) plots the communication overhead in PIKE
and GKE, varying the network density from 20 to 100. Clearly,
GKE has much lower communication overheads than PIKE even
when the network density is low, demonstrating pretty good effi-
ciency.

8. CONCLUSIONS
We have presented GKE, a new group-based key predistribution

scheme for large sensor networks. GKE has a number of advan-
tages over current methods. First, it accommodates two very flexi-
ble deployment models, RRGD and PRGD. Second, it enables any
pair of neighboring sensors to establish a unique pairwise key, re-
gardless of sensor density or distribution, making our scheme suit-
able for a wide range of applications. Third, GKE is nearly per-
fectly resilient against node capture attacks, due to the uniqueness
of pairwise keys. Unlike SRKP, which also establishes unique pair-
wise keys, system security in GKE does not degrade dramatically
beyond a certain threshold. Instead, GKE is remarkably resilient,
and degrades gracefully. Finally, GKE involves only local commu-
nication to establish pairwise keys, and has very low communica-
tion overhead.
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