
PA-Tree: A Parametric Indexing Scheme for
Spatio-temporal Trajectories

Jinfeng Ni and Chinya V. Ravishankar

Department of Computer Science and Engineering,
University of California, Riverside
{jni, ravi}@cs.ucr.edu

Abstract. Many new applications involving moving objects require the collec-
tion and querying of trajectory data, so efficient indexing methods are needed
to support complex spatio-temporal queries on such data. Current work in this
domain has used MBRs to approximate trajectories, which fail to capture some
basic properties of trajectories, including smoothness and lack of internal area.
This mismatch leads to poor pruning when such indices are used. In this work,
we revisit the issue of using parametric space indexing for historical trajectory
data. We approximate a sequence of movement functions with single continuous
polynomial. Since trajectories tend to be smooth, our approximations work well
and yield much finer approximation quality than MBRs. We present the PA-tree,
a parametric index that uses this new approximation method. Experiments show
that PA-tree construction costs are orders of magnitude lower than that of com-
peting methods. Further, for spatio-temporal range queries, MBR-based methods
require 20%–60% more I/O than PA-trees with clustered indicies, and 300%–
400% more I/O than PA-trees with non-clustered indicies.

1 Introduction

GPS has been widely used for a number of years in support of a variety of new ap-
plications, including tracking of vehicle fleets, navigation of watercraft and aircraft,
the emergency E911 service for cellular phones [13]. Such applications would benefit
greatly from an ability to make complex spatio-temporal queries on databases contain-
ing huge amounts of trajectory data about objects moving in two or higher dimensional
space.

Work already exists on developing indices to support spatio-temporal queries. Such
work is typically either in support of predictive queries, which require the future loca-
tion of objects based on their current locations and velocities (for example, “find all
objects that will be within Union Square in 10 minutes”), or in support of historical
queries, which query the past locations of moving objects (for example, “find all ob-
jects which were at the intersection of Freeway 10 and 15 an hour ago”). In this paper,
we focus on historical queries, intended to search a large set of historical trajectories.

In general, we can classify indexing methods into Native Space Indexing meth-
ods (NSI), and Parametric Space Indexing methods (PSI) [18]. In NSI, motion in a
d-dimensional space is represented as a series of line segments (or curves) in d + 1 di-
mensional space, using time as an additional dimension. PSI can be regarded as the dual

C. Bauzer Medeiros et al. (Eds.): SSTD 2005, LNCS 3633, pp. 254–272, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

PA-Tree: A Parametric Indexing Scheme for Spatio-temporal Trajectories 255

transformation of NSI, where a parametric space defined by the motion parameters is
used. PSI has be shown to be an efficient approach for predictive queries, for example,
TPR-tree [19], TPR*-tree [22], STRIPES [16].

PSI has not been advocated in the literature for historical queries. Indeed, Porkaew
et al. [18] showed that PSI was actually outperformed by NSI for historical queries.
Unlike the predicted trajectory case, which uses only one predicted motion function
for each object, each historical trajectory could consist of hundreds or even thousands
motion functions. PSI will hence introduce large storage overheads, and significantly
degrades query performance. As a result, much previous work on historical queries has
attempted to index each trajectory in the native space, using approximations such as
Minimum Bounding Rectangles (MBRs) [9,8], Octagons [25], or regular grid cells [4].
However, as shown by Kollios et al [10], MBRs are rather coarse approximation for
trajectory. A trajectory typically consists of a series of line segments or curves, and does
not have any internal area. Consequently, using MBRs may result in a large amount of
dead space, leading to a significant loss in pruning power.

1.1 Our Work

In this paper, we revisit the issue of indexing historical trajectory in parametric space.
Unlike previous work in the area [18], we do not represent each line segment or curve
with a parametric function. Instead, we try to approximate a series of line segments
or curves with a single continuous polynomial. This approximated trajectory may not
perfectly match the original trajectory. However, if we also keep track of the maximum
deviation between the approximation and the original movement, we can still ensure
that the approximation is conservative, and will not generate false negatives. Therefore,
as long as the maximum deviation is small, the approximated polynomial function and
the maximum deviation together provide a much tighter approximation than the gener-
ally used MBRs. We are therefore able to improve query performance significantly.

The fundamental observation behind our scheme is that trajectories, in general, have
a certain degree of smoothness, as suggested in [3]. First, object movements are gov-
erned by the laws of physics, resulting in smooth motion trajectories. Second, many
objects are constrained to move along road networks, which usually have some degree
of smoothness. Indeed, for similarity-based queries, exploiting the smoothness of tra-
jectories has yielded performance far better than that of previous methods[3].

The work in [3] also uses polynomials to approximate trajectories, but there are ma-
jor differences between our work and theirs. First, [3] targets similarity-based queries,
and defines similarity over entire trajectories of equal length, ignoring the time com-
ponents. Hence the techniques in [3] are generally not applicable to spatio-temporal
databases, where the time component is crucial in answering timestamp or time in-
terval queries [17]. Second, the lower-bound lemma in [3] is only valid for similar-
ity queries, so that other approaches are needed to deal with spatio-temporal queries
using polynomial approximations. Further, [3] uses approximations of the same de-
gree for all the trajectories, which can cause serious difficulties when the approxima-
tion degree is high. In contrast, we use different polynomials of different degrees for
different trajectories, and develop a two-level index structures to avoid this problem.

256 J. Ni and C.V. Ravishankar

In this work, we make the following contributions:

– We revisit the issue of indexing historical trajectory in parametric space. Observing
the smoothness of object movements, we show that parametric indexing using poly-
nomial approximations can improve query performance significantly over current
schemes using native space indexing.

– We develop a cost model to optimize the degree of the polynomial approximation
given a trajectory segment. Further, we present the PA-tree, a new index scheme for
historical trajectory data, based on polynomial approximations.

– We evaluate the performance of our schemes using synthetic trajectory datasets.
Our empirical results indicate that in most cases, the MVR-trees require 20% - 60%
more IO than PA-trees with clustered indicies, and 300%–400% more IO than PA-
trees with non-clustered indicies. More importantly, the cost of constructing PA-
trees is orders of magnitude faster than the construction of MVR-trees, suggesting
that PA-trees may be suitable for on-line indexing of trajectories.

2 Related Work

MBRs have been widely used to approximate multi-dimensional data, and consequently
R-trees are the most common index structure for multidimensional data. Earlier work
using MBRs for trajectories includes the RT-tree [24] and 3D R-tree [23]. However
since the RT-tree does not take temporal attributes into account during the
insertion/deletion, timestamp or time interval queries are inefficient. 3D R-tree is in-
efficient for timestamp queries, since the query time depends on the total number of
entries in the history [21].

Kollios et al. [11] present methods for indexing linear historical trajectories. They
model a long-lived trajectory with multiple MBRs by splitting it into segments to reduce
the large dead space resulting from the use of a single MBR, and use partial-persistent
R-trees (“PPR-tree”) to index the multiple MBRs. This work is extended in [9,8], where
the motion function could be arbitrary (In the latest work [8], term “MVR-tree” is used
in stead of “PPR-tree”). This method can be more efficient than 3D R-tree, since the
total empty volume after splitting would be reduced. However, since this method still
uses MBRs for approximating each segment, there remains significant dead space.

Zhu et al [25] used octagonal prisms, which are MBRs whose four corners are
cut off to approximate trajectory. However, their experiments demonstrate only small
differences between octagonal prisms and MBR when the number of splits increases
to a certain point, since little gains will result from cutting off MBR corners when the
number of splits becomes large.

Some previous work has been based on a discrete event model, under which an
object is assumed to stay at its current position until it issues an update to the server.
However, this model can not be used to represent gradual changes in object locations,
limiting its applicability[4]. The basic idea is to build a separate R-tree for each times-
tamp, as in HR-tree [14] and MR-tree [24]. Unchanged nodes are not duplicated in
consecutive R-trees to reduce the storage cost. However, these index structures are only
efficient for timestamp queries, but are not efficient for time interval queries [4,21]. The
MV3R-tree [21] is a hybrid structure that uses a multi-version R-tree for timestamp

PA-Tree: A Parametric Indexing Scheme for Spatio-temporal Trajectories 257

queries, and a small 3D R-tree for time-interval queries. The two indices share the same
leaf pages, in order to reduce the storage cost, resulting in a quite complex algorithm
for maintaining the indices [4].

SETI [4] is an indexing method which can support both inserts and searches. SETI
uses two-level index structures to decouple the spatial and the temporal dimensions.
Space is partitioned into multiple cells, and the temporal attributes of all line segments
intersecting a cell will be indexed with a 1-dimensional index structure. However, since
multiple line segments of the same trajectory may overlap the query range, SETI must
eliminate duplicates, which may be expensive. Also SETI does not have the trajectory
preservation property [17], since each data page may contain segments of multiple tra-
jectories, with no guarantee all line segments of one trajectory will be stored together.
Hence, SETI may not be able to efficiently support trajectory-based queries [17].

Polynomial approximations have been used to approximate predictive trajectories
by Tao et al. [20], who use STP-trees to index the polynomial coefficients. Several
major differences exist between their work and ours. First, our query types are different.
Second, [20] applies the same degree of approximation for all trajectories, assuming the
same motion type for all objects. In practice, different objects may have trajectories with
different complexities. In contrast, we choose the degree of polynomial approximation
based on the complexities of trajectory, a strategy applicable in more general scenarios.
Further, in [20], when a k degree polynomial is used for each axis in a d-dimensional
space, the STP-tree becomes an index structure in the parametric space of (k + 1)d
dimensions, leading to the problem of curse of dimensionality for large k. Unlike [20],
we adopt a two-level structure (see Section 6) to address this problem.

3 Problem Definition and Data Model

Data Model. In many location-based services, location data are obtained by periodic
sampling. Specifically, the trajectory for an object Oi has the form

Trj(Oi) = {IDi, t0, t1, · · · , tn, f1(t), f2(t), · · · , fn(t)}
Function fj(t) is a movement function representing movement during time interval
[tj−1 : tj], 1 ≤ j ≤ n. The interval [t0 : tn] is the lifetime of the trajectory.

Our approach is applicable to any movement function f(t), as long as we can de-
termine the location of the object at any time instant during its lifetime from f(t). For
simplicity of exposition, we adopt a linear mobility model, which is widely used in the
literature [4,17]. Each fj(t) is now a linear function of time, so that a trajectory consists
of a series of connected line segments. This representation is refereed to as a polyline.

As in previous work [9,8], we assume time is discrete, and the dataset temporal
range [0, T] contains the lifetimes of all the trajectories. We assume an object moves in
a two-dimensional XY-space. The extension to higher dimensions is straightforward.

Query Types. We focus mainly on historical coordinate-based queries, in particular on
spatio-temporal range queries, since spatio-temporal range queries are essential build-
ing blocks for all other types of queries. A spatio-temporal range query may be a times-
tamp query, or a time interval query. A timestamp query Q(r, t) asks for all the objects

258 J. Ni and C.V. Ravishankar

 0.5

 0.6

 0.7

 0.8

 0.9

 0 25 50 75 100

X
 c

oo
ri

dn
at

e

time instants

 ε1

Original
Approximated
Lower bound
Upper bound

(a) Linear approximation.

 0.5

 0.6

 0.7

 0.8

 0.9

 0 25 50 75 100

X
 c

oo
ri

dn
at

e

time instants

 εk

Original
Approximated
Lower bound
Upper bound

(b) Polynomial approximation.

Fig. 1. Approximating a trajectory segment with polynomials

within spatial range r at timestamp t. Similarly, a time interval query Q(r, tb, te) asks
for all the objects which were within spatial range r at any timestamp t ∈ [tb : te].

The PA-tree also supports efficient execution of trajectory-based queries, which
may take the output of coordinate-based queries as input and retrieve the exact trajectory
so that certain properties, such as direction or speed can be derived [17,25]. As we
will explain, the PA-tree allows a series of consecutive line segments belonging to the
same trajectory to be stored together. This trajectory preservation property ensures the
trajectory-based queries can be answered efficiently with the PA-tree.

4 Overview of Our Approach

Our approach proceeds in two steps. In the first step, we calculate the parametric repre-
sentations used to approximate each trajectory. We will approximate a trajectory in the
XY-space with two polynomial functions: f̂x(t) and f̂y(t) modeling movement in the
X direction and in the Y direction, respectively, where t is time. We also determine the
maximum deviation of the polynomial approximation from the exact movement in X
and Y dimensions. The polynomial coefficients and the maximum deviation suffice for
us to make the approximation conservative, guaranteeing no false negatives.

Fig. 1(a) and Fig. 1(b) shows the X-component of a trajectory, and illustrates how
we construct a linear and an order-k polynomial approximation to it. Such approxima-
tions are not exact, so we create conservative upper and lower bounds for the object’s
position by offsetting the approximating polynomial upwards and downwards by an
amount equal to the maximum deviation between the trajectory and the polynomial.
We can now guarantee that the object will be located within these bounds.

In the second step, we build an index structure over the coefficients obtained in the
first step. However, not all trajectory are likely to be equally complex, so that we may
need polynomials of different degree for different trajectories. This causes problems
when building an index structure using the coefficients, since the dimensionalities of the
indexed items may be different. Current index structures assume that the dimensionality
of all data is the same. Adopting the same polynomial degree for all trajectories is not
advisable, since the curse of dimensionality will quickly degrade the performance of
any index structure in high dimensional space.

PA-Tree: A Parametric Indexing Scheme for Spatio-temporal Trajectories 259

trajectory

 0
 0.5

 1
X 0

 0.5

 1

Y

 0

 200

 400

 600

time instants

(a) Trajectory of vehicle.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

X
 c

oo
ri

dn
at

e

time instants

(b) MBR approximations.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600

X
 c

oo
ri

dn
at

e

time instants

Original
Lower bound
Upper bound

(c) Linear approximation.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600

X
 c

oo
ri

dn
at

e

time instants

Original
Lower bound
Upper bound

(d) Finer approximation.

Fig. 2. Comparison of approximations for a moving vehicle trajectory collected in [1]

Two-Level Indexing. We address this problem by using a two-level index structure.
The first-level index structure uses only the first two coefficients of each polynomial,
so that each data entry is a 6-tuple (two coefficients for each dimension, and the cor-
responding maximum deviations). This strategy ensures that we are not operating in a
high dimensional space, so that an R-tree or its variants can still be efficient for index-
ing. As we will illustrate in Section 5, by appropriately splitting the temporal domain
[0, T] into intervals, we can adopt a piecewise linear approximation in the first level
index structure, each linear approximation corresponding to multiple line segments in
the trajectory. However, even with this piecewise-linear approximation, we can achieve
much smaller dead space than the MBRs with the same size of representation.

The second-level index structure is elaborated within the leaf nodes of the first-level
structure. As noted earlier, some trajectories may be complex and require higher-degree
polynomial approximations. The higher-degrees coefficients are stored in the second
level structure. If we descend to the leaf nodes in the first level structure, and still are
unable to determine whether the trajectory satisfies the query predicates, the additional
coefficients can be retrieved and used in the filtering step. As our experiments will show,
most trajectories can be approximated very well with quadratic or cubic polynomials,
so that the second level structure does not introduce significant space overhead.

An Illustrative Example. Figure 2(a) plots the trajectory of a moving vehicle for
10 minutes, collected in the Intellishare project [1] at the University of California–
Riverside. Figure 2(b) plots the X-movement against time, and the eight MBRs ob-
tained with the LAGreedy algorithm proposed in [9,8]. We note that the eight MBRs
together requires 8 × 6 = 48 values. Figure 2(c) plots the result of our method, in

260 J. Ni and C.V. Ravishankar

which the trajectory is split into 6 segments, each of which is approximated with a
linear function. Each segment requires two coefficients, and one maximum deviation
each for X-movement or Y-movement, plus the temporal intervals. In all, 48 values are
required for the approximations. It is quite clear that our polynomial approximations
produce much smaller dead space than the MBR approximations. We should note that
since we split all the trajectories at the same split timestamps, there is no need to keep
the temporal intervals in the intermediate nodes in the index structure, which would
further save storage cost. Figure 2(d) plots the approximation with more coefficients,
with significantly reduced dead space. This example motivates our work.

5 Approximating Trajectories with Polynomials

In this paper, we propose an approximation in parametric space by using Chebyshev
polynomials. Chebyshev polynomials have been shown to have the near-optimal L∞
deviation among all approximations with the same degree [12], and perfectly match our
requirements. Further, the Chebyshev coefficients are easy to compute [12,3].

We have chosen to split each trajectory into multiple segments by dividing the tem-
poral domain [0, T] into m disjoint time intervals, each of which is approximated with
a polynomial. There are two reasons for such splitting. First, approximating the entire
trajectory with a single polynomial may require a polynomial of high degree, leading
to a high-dimensional indexing problem. Second, the marginal benefit for the first few
coefficients will be much larger than that of high-order coefficients. Therefore, it is
wise to split the trajectory into multiple segments, and approximate each segment with
a lower-degree polynomial.

5.1 Splitting the Time Domain

We split the temporal domain [0, T] into m equal time intervals: I1 = [0, T1), I2 =
[T1, T2), · · · , Im = [Tm−1, T), where T1, T2, · · · , Tm−1 are called splitting times-
tamps. Each trajectory is split into multiple segments using the same m − 1 splitting
timestamps. This strategy is different from that in [9], where each trajectory selects
different splitting timestamps. We choose our strategy for three reasons. First, since
we index in parametric space, a set of segments can not be clustered unless they have
the same temporal domain, since it would be meaningless to cluster coefficients cor-
responding to different temporal domains. Second, even with a equal-sized splitting
strategy, we can still use different numbers of coefficients for different trajectories. In-
deed, basing the number of coefficients for approximation on the trajectory complexity
is equivalent to using different splitting timestamps. Finally, using equal-length splitting
intervals obviates the need to maintain time intervals in index nodes. This could signif-
icantly reduce the storage cost of the index structure, and eventually lead to a reduction
of I/O cost during the filtering step.

One problem in using equal-sized intervals is that some trajectories may begin or
end within some time interval. For instance, in Figure 3(a), trajectory Tr2 begins in
the middle of interval I2. We can simply extend its lifetime to the beginning of I2,
and require that the object remain at its initial location during this extension. This will

PA-Tree: A Parametric Indexing Scheme for Spatio-temporal Trajectories 261

X−movement

Tr 2

Tr 1

I 1 I I I2 3 4

0 T

(a) Split temporal domain into
intervals.

X−movement

Tr 2

Tr 1

I 1 I I I2 3 4

0 T

(b) Extend the lifetime of tra-
jectories.

Fig. 3. Splitting the temporal domain

result in a “faked” trajectory. However, as long as we maintain the actual object lifetime
in the second level index structure, we will see no false positives. Figure 3(b) shows
the trajectories with extended lifetimes, where the dashed line segments represents the
extension.

An important issue is how to choose the number of intervals. This is a complex
problem, since we have to minimize the overall query cost. Similar as [8,4] which chose
the number of MBRs or grid cells through experiments, we also vary the number of
intervals in experimental evaluations, and choose the number of intervals which result
in the best query I/O cost.

5.2 Approximating a Trajectory Segment with a Polynomial

We now consider how to obtain polynomial approximation (PA) with Chebyshev poly-
nomials. Consider a trajectory segment in the temporal interval Ii = [Ti−1, Ti)

{IDj , t0, t1, t2, · · · , ts, f
x
0 (t), fy

0 (t), fx
1 (t), fy

1 (t), · · · , fx
s−1(t), f

y
s−1(t)}

where the linear functions fx
i and fy

i describe the X-movement and the Y-movement
during the interval [ti, ti+1], and t0 = Ti−1, ts = Ti. We illustrate the approximation
for the X-movement only, so we will omit the superscript x when no confusion can
arise. We can rewrite piecewise linear functions for X-movement in functional form as
follows: f(t) = fi(t), if t ∈ [ti, ti+1].

Given function f(t), we can use Chebyshev polynomials as the base functions to
get the approximated function f̂(t). We first normalize the temporal domain [t0, ts] to
the interval [-1,1], by substituting t′ = 2t−ts−t0

ts−t0
. Now, f(t) can be approximated as

f̂(t) = c0T0(t) + c1T1(t) + · · · + ckTk(t), (1)

where Ti(t) = cos(i arccos(t)), t ∈ [−1, 1] is the Chebyshev polynomial of degree
i, and the coefficients c0, c1, · · · , ck are to be determined. The Gauss-Chebyshev for-
mula leads to the following theorem [12], which gives an explicit way to compute the
coefficients:

262 J. Ni and C.V. Ravishankar

Theorem 1. Let f(t) be the function over interval [−1, 1] to be approximated. The
polynomial Tm(t) has m roots ρj = cos (j−0.5)π

m for 1 ≤ j ≤ m. Now,

c0 = 1
m

∑m
j=1 f(ρj)T0(ρj) = 1

m

∑m
j=1 f(ρj)

ci = 2
m

∑m
j=1 f(ρj)Ti(ρj), 1 ≤ i ≤ k

Since f̂(t) only approximates f(t), it may differ from f(t) at time instant t ∈
[t0, ts]. To ensure that this approximation leads to no false negatives, we must find a
conservative approximation such that the approximation is guaranteed to contain the
object’s location at all times. This goal can be achieved by computing the maximum

deviation εk = max
{
|f(t) − f̂(t)|

}
, t ∈ [t0, ts], after obtaining the k+1 coefficients.

Now the range [f̂(t) − εk, f̂(t) + εk] is guaranteed to contain f(t) for t ∈ [t0, ts].
The k + 1 coefficients can be computed in time O(mk), where m is the highest

degree of Chebyshev polynomial used in the approximation, and k is the number of
coefficients. The computation of maximum deviation error requires time O(lk), where
l is the number of instants between t0, ts. Therefore, the total cost is O(mk + lk).

5.3 Clustering Multiple Polynomials

As with any index, each level of the PA-tree must maintain a bound on the key at-
tributes of lower-level nodes. In our case, each non-leaf entry in the index structure
for interval Ii = [Ti−1, Ti) maintains certain coefficients {c�i } and {c⊥i } that enable
us to compute conservative upper and lower bounds for the values of the polynomi-
als f̂1(t), f̂2(t), · · · , f̂n(t) stored in the child node pointed by the entry. We will now
discuss how to compute these bounds if we are using order-k polynomial approxima-
tions. In Section 6.2 we discuss the use of these coefficients in query processing. As in
Section 5, we first normalize t to [−1, 1].

 0.93

 0.96

-1 0 1

t

lower bound
upper bound

Fig. 4. Bounds

Let f̂j(t) = c0,j + c1,jT1(t) + · · ·+ ck,jTk(t), where
1 ≤ j ≤ n. We store the values c�i = max{ci,j}, c⊥i =
min{ci,j}, where 1 ≤ j ≤ n, 0 ≤ i ≤ k in the index
node. For any t ∈ [−1, 1], the lower- and upper-bounds
are computed from the functions

φ⊥(t) = c⊥0 + a1(t)T1(t) + · · · + ak(t)Tk(t), and

φ�(t) = c�0 + b1(t)T1(t) + · · · + bk(t)Tk(t), where

ai(t) =

{
c�i , if Ti(t) ≤ 0

c⊥i , otherwise,
and bi(t) =

{
c⊥i , if Ti(t) ≤ 0

c�i , otherwise,
for all i.

Theorem 2. The bounds φ⊥(t) and φ�(t) are conservative.

Proof. Consider any f̂j(t) = c0,j + c1,jT1(t) + · · ·+ ck,jTk(t). We will have φ�(t)−
f̂j(t) =

∑
i(bi(t) − ci,j)Ti(t), and (bi(t) − ci,j) > 0 when Ti(t) > 0, and (bi(t) −

ci,j) < 0 when Ti(t) < 0, from bi(t)’s definition. Now, φ�(t) − f̂j(t) is the sum of
positive terms, and is positive. The proof for φ⊥(t) is similar.

PA-Tree: A Parametric Indexing Scheme for Spatio-temporal Trajectories 263

Figure 4 shows three solid curves representing three 3-order polynomials, while the
dotted lines represent the lower- and upper-bounding polynomials computed as above.
We note that this bound may not be tight for all t, but it is conservative, guaranteeing
that any polynomial f̂j(t) will be inside the bound. There is an issue with a possibly
high computation cost when the query interval [tb, te] is large, since we may have to
compute the bound for all t ∈ [tb, te]. Fortunately, in the first level of the PA-tree, only
the linear approximations in the form of co + c1T1(t) = c0 + c1t are used, which has
a much simpler way to compute the bound over [tb, te], due to the monotonicity of
c0 + c1t (see Section 6.2).

5.4 Comparing Approximation Quality

To gauge the potential for improvement with our scheme, we compare the dead space
obtained using our method with that obtained with the MBR approximation. This metric
captures the pruning power of index structures based on the respective approximations.
Larger amounts of dead space would suggest smaller pruning power, since it will result
in more refinement candidates.

 0

 250

 500

 100 200 300 400 500 600 700

V
ol

um
e

of
 d

ea
d

sp
ac

e

Size of representation (x 1k)

MBR
PA

Fig. 5. Dead space

We compare our scheme with the MBR approxi-
mations obtained using the LAGreedy algorithm [9].
The volume of each MBR, is simply the product of
the edge lengths along the X-dimension, Y-dimension
and the temporal dimension. Each entry is a 6-tuple,
as discussed in Section 4.

If we use k + 1 coefficients each to approximate
the X-movements and Y-movements, the volume of
dead space can be computed as 4εx

kεy
k(ts− t0), where

[t0, ts] is the temporal domain. The representation
size is 2(k + 1) + 5, since we represent 2(k + 1)
coefficients in all, the value of k, as well as the maximum deviation and the temporal
domain.

 0

 2

 4

 6

 200 300 400 500 600 700

R
at

io
 o

f
de

ad
 s

pa
ce

Size of representation (x 1k)

MBR/PA

Fig. 6. Ratio

Figure 5 and 61 compare the quality of our polynomial
approximation with that of MBR approximations for a
dataset of 5000 trajectories generated using the network-
based generator of [2]. The generator took the road net-
work in San Joaquin County, CA as its input and sim-
ulated the movements of objects moving along the road
network (see Section 7). Clearly, we see that for a given
representation size, the dead space with our our polyno-
mial approximation is much as to 2–5 times smaller than
the dead space with MBR approximations. This is ex-
pected, since the polynomial approximation captures the
inherent smoothness of the movement, and treats the tra-

1 The ratio is computed as the dead space of MBRs over the dead space of PA with the same or
smaller size of representation.

264 J. Ni and C.V. Ravishankar

jectory as a polyline, rather than a spatial object with extent. Therefore, there is signifi-
cant potential for improving the overall query performance.

5.5 Choosing the Degree of Approximating Polynomials

In general, the polynomial degree k should be determined based on the characteristics
of trajectories. Clearly, there is a trade-off between the approximation quality and the
degree k used for approximation. A smaller k value requires less space in the index, as
well as less I/O during the filter step. On the other hand, fewer coefficients may result
in poorer filtering, causing more trajectories to be examined during the refinement step,
increasing its I/O cost.

Another consideration is the complexity of the trajectory segment. Obviously, if the
trajectory segment has a relatively simple form, a few coefficients will suffice to get
small deviation error. However, since we are not aware of any well-defined notion of
complexity for this context, it is not easy to estimate the optimal degree.

We present a heuristic method to estimate the degree k, aimed at minimizing the
expected size of representations to be retrieved during query evaluation. We will make
the following reasonable assumptions. First, we assume the spatial range r of the query
is an lx × ly rectangle, with lx and ly uniformly distributed between 0 and some max-
imum value L. Second, the spatial range r itself is uniformly distributed in the region
normalized to a unit square.

uu−l

l

uu−l

l

uu−l

l

uu−l

l

uu−l

l

uu−l

l

xx− x+ε ε

refinement true hit

filtering true hit

refinement true hit

false hit

false hit

Fig. 7. True and false hits

Let Sk be the size of representa-
tion of k-degree polynomials approx-
imation. Let S be the size of the exact
representation for the trajectory seg-
ment. Next, we derive the expected
size of representations that have to be
retrieved for a random query.

If the approximation does not in-
tersect the query range, we can safely
prune it out during the filter step. If
a segment’s approximation lies com-
pletely inside r, we can safely say it is
a true hit during the filter step, and no
further checking is needed. We call
this category of true hit a filtering true
hit (FT). Otherwise, the segment becomes a candidate (CD) for the refinement step, in
which its exact representation must be retrieved. If a segment lies outside r, we have a
false hit (FH). If a segment truly lies inside r, we will record a true hit during refine-
ment, and refer to it as a refinement true hit (RT).

To estimate the expected I/O cost, we must estimate the probability that the trajec-
tory segment is a candidate for refinement. A candidate can be either a false hit or a
refinement true hit. In the following, we consider the X and Y dimensions separately,
and omit the x and y superscripts and the subscript k when no confusion is likely.

Let the query range r’s projection on X-dimension be [u − l, u]. Let the exact loca-
tion of an object on a trajectory segment at query timestamp be x. As shown in Figure 7,

PA-Tree: A Parametric Indexing Scheme for Spatio-temporal Trajectories 265

if u ∈ [x − ε, x) ∪ (x + l, x + l + ε], we have a false hit, since r will overlap with our
trajectory approximation, but x does not belong to [u− l, u]. Therefore, the probability
a false hit on the X-dimension is Pr[FHX] = 2ε.

Further, as shown in Figure 7, if l ≤ 2ε, there can be no filtering true hit, since
the segment’s approximation along the X-dimension can not be completely inside r’s
project on X-dimension. However, when l ≥ 2ε, and u ∈ [x + ε, x + l − ε], we have
a filtering true hit on the X-dimension. When u ∈ [x, x + ε] ∪ [x + l − ε, x + l],
we have a refinement true hit. Therefore, the probability of a refinement true hit on
X-dimension is Pr[RTX]= 1

L

(∫ 2ε

0 ldl +
∫ L

2ε 2εdl
)

=2ε − 2ε2/L. Now, the probability
the trajectory segment is a candidate for refinement on X-dimension is Pr[CDX] =
Pr[FHX] +Pr[RTX] = 4ε − 2ε2/L.

Now, since a candidate occurs only when it is a candidate on the X- or Y-dimensions,
the probability of a candidate is Pr[CD] = 1− (1−Pr[CDX])(1−Pr[CDY]) = 1− (1−
4εx

k + 2(εx
k)2/L)(1 − 4εy

k + 2(εy
k)2/L).

Now, the expected I/O cost for the trajectory segment when using degree k for ap-
proximation is IOk = Sk+Pr[CD]S. This metric provides us a heuristics for estimating
the degree k required to be used in the polynomial approximation. More specifically,
we would like to find k such that IOk is minimized.

6 PA-Trees and Query Processing

We now present the PA-tree, a new method for indexing polynomial approximations
of 2-D trajectories. PA-trees resemble R*-trees, but each entry consists of polynomial
coefficients, rather than MBRs. We recall that the temporal domain [0, T] is split into
m intervals. In a gross sense, the root node of a PA-tree has m index trees as children,
each responsible for indexing trajectory segments within one of these intervals.

Figure 8 shows a PA-tree. Indexing in PA-trees actually occurs at two levels. The
first level of indexing is an R*-tree like structure, and is used to index the two lead-
ing coefficients of the polynomial describing movement along each dimension. It is
reasonable to see this as a 4-dimensional indexing problem, with each dimension corre-
sponding to one coefficient. Each entry in the index structure also holds the maximum
deviation errors εx

1 and εy
1.

I1 I2

pa1 pa2 pa3 pa4

pa5 pa6 pa7 pa8

......

......

First Level

Data File

Second Level

Fig. 8. An example of PA-tree

As in R*-trees, an entry in a leaf node has
the form (ptr, pa), where ptr is the pointer
to the exact representation of the trajectory
segment, and pa is a tuple of 6 values:
〈cx

0 , cx
1 , cy

0, c
y
1 , ε

x
1 , εy

1〉. Entries in non-leaf nodes
are of the form (ptr, pa), where ptr is the
pointer to a child node, and pa has the form
〈cx⊥

0 , cy⊥
0 , cx⊥

1 , cy⊥
1 , cx�

0 , cy�
0 , cx�

1 , cy�
1 , εx

1 , εy
1〉,

representing the lower (upper) bounds of the co-
efficients for the entries stored in the child node
pointed by ptr. Also, pa maintains the maxi-
mum εx

1 and εy
1 for all the entries in the subtree.

266 J. Ni and C.V. Ravishankar

In the second level, we store more coefficients as well as the corresponding maxi-
mum deviation for each trajectory segment, if the estimated degree is larger than 1 (See
subsection 5). This information provides more pruning power than the linear approxi-
mation used in the first level structure.

Insertions and deletions are similar to the corresponding operations for R*-tree. The
primary difference is that we need to ensure that the εx

1 , εy
1 values in the non-leaf nodes

are the maximum εx
1 , εy

1 for all the segments in its subtree.

6.1 Improving Query Performance with Clustered Indices

As suggested in [9], clustered indices can significantly reduce the I/O cost for the re-
finement step. This optimization can also be applied to the PA-tree, so that all data
associated with a leaf node entry is stored sequentially on the disk next to the leaf node
itself, resulting in sequential retrieval of data. Clustered indices can be created in two
steps. In the first step, a non-clustered index is created. In the second step, we can reor-
ganize the disk pages to store data pages sequentially next to the leaf pages.

We note that clustered indices may not be an appropriate choice in some applica-
tions. For example, some applications may need indices clustered on other attributes,
say object ID. Also, some applications that may already have collected large amounts
of trajectory data, may not allow data reorganization due to its high cost. Consequently,
we consider both clustered and non-clustered indices in our experimental evaluation.
For both cases, PA-tree shows significant improvements over current methods.

6.2 Query Processing

Given a query Q(r, tb, te), we start with PA-tree root which contains the pointers to the
segment index roots and the corresponding temporal intervals. We check whether the
temporal interval intersects [tb, te]. If they do not, the subtree rooted at that root node is
discarded. Otherwise, we search the corresponding subtree.

Let Ii = [Ti−1, Ti] be the temporal interval corresponding to an entry in a non-leaf
node in the PA-tree. Given Q(r, tb, te), we must check whether there is a trajectory
segment inside r at any time t ∈ [max{tb, Ti−1}, min{te, Ti}]. Let the index entry be
〈cx⊥

0 , cy⊥
0 , cx⊥

1 , cy⊥
1 , cx�

0 , cy�
0 , cx�

1 , εx
1 , εy

1〉. In the following discussion, we will omit
the superscripts x and y for the sake of clarity.

As in Section 5, t is first normalized to [−1, 1]. Let t1 and t2 be the normal-
ized values of max{tb, Ti−1} and min{te, Ti}, respectively. Now, the non-leaf entry
represents all movement in the approximated linear form c0 + c1T1(t) = c0 + c1t,
where c0 ∈ [c⊥0 , c�0], and c1 ∈ [c⊥1 , c�1]. In principle, we can apply the dual trans-
formation technique of [10] to check whether there are linear trajectories intersect-
ing r during [t1, t2]. However, the slope c1 and the temporal attribute t could be ei-
ther positive or negative, making it hard to apply duality transformations. Instead, we
determine the upper and lower bounding polynomials for the motion segment in the
form c0 + c1t, where c0 ∈ [c⊥0 , c�0], c1 ∈ [c⊥1 , c�1], and t ∈ [t1, t2]. If ε1 is the
maximum deviation error, we use the monotonicity of c0 + c1t to compute the lower
bound as: x⊥ = c⊥0 + min{c⊥1 t1, c⊥1 t2, c�1 t1, c�1 t2} − ε1, and the upper bound as:

PA-Tree: A Parametric Indexing Scheme for Spatio-temporal Trajectories 267

Table 1. Characteristics of the datasets used in the experiments

Dataset Description Total objects Average movement Total num. Dataset size (MB)
functions per object of line segments

CA5k San Joaquin, CA 5,000 300 1,500,000 48
OD5k Oldenburg 5,000 258 1,290,000 41

(a) CA5k. (b) CA5k(3d). (c) OD5k. (d) OD5k(3d).

Fig. 9. A snapshot of datasets

x� = c�0 + max{c⊥1 t1, c⊥1 t2, c�1 t1, c�1 t2} + ε1. If the computed range intersects with
the query range r, we know there may be candidates satisfying the query predicates. We
now descend the tree and repeat the process for the subtree rooted at this entry, down to
the leaf nodes.

At the leaf node, we will first retrieve the k + 1 coefficients in the second level
structure, stored sequentially in the leaf nodes. The approximate location f̂(t) at any
normalized time instant t ∈ [t1, t2] can be computed using Equation 1, as well as the
spatial range [f̂(t) − εk, f̂(t) + εk]. If there is a time t ∈ [t1, t2] such that the spatial
computed compass is completely inside r, the trajectory segment is a filtering true hit,
its ID will be reported. If this range does not intersect query r for any t ∈ [t1, t2],
the trajectory segment is pruned out. Otherwise, refinement is required for determining
whether this trajectory segment is a true hit or false hit.

7 Experimental Evaluation

Since no real trajectory data sets are currently publicly available, we generated synthetic
data sets using Brinkhof’s network-based generator [2]. We used the TIGER data files
for the road network in San Joaquin County, CA, and the road network in the city of
Oldenburg, German. Our datasets were obtained by running the simulation for a total
of 1000 timestamps. We focus mainly on the results of the datasets generated by the
network-based generator, since it is has been extensively used in the previous work in
this area [4,8,25]. Further, as indicated by some recent work [15,6], movement along
roads has practical significance in real-world applications.

Datasets CA5k and OD5k have 5, 000 trajectories in all, and were generated with
6 object classes, 3 external object classes, 3, 000 initial objects, and 2 new objects per
time-instant. We note that each object reports its position and movement function at
every time instant during its lifetime, so the number of movement functions for each
object will be the same as the duration of its lifetime. Table 1 shows the characteristics
of our datasets.

We implemented the PA-tree with the Spatial Index Library of [7]. Our method
is compared with the MVR-tree approach [9,8], which uses the LAGreedy algorithm

268 J. Ni and C.V. Ravishankar

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

CA5k

C
PU

 c
os

t (
se

co
nd

s)

MVR-tree
PA-tree

(a) Index construction.

 0

 10

 20

 30

 40

 0 2 4 6 8 10 12

C
PU

 c
os

t (
m

s)

Size of Representation (x 1M)

MVR-tree (qlen=1)
PA-tree (qlen=1)

MVR-tree (qlen=50)
PA-tree (qlen=50)

MVR-tree (qlen=100)
PA-tree (qlen=100)

(b) Query evaluation.

Fig. 10. CPU cost

to model each trajectory with multiple MBRs. In the following figures, the legend
PA-tree represents our method, while MVR-tree represents the method of [9,8].

Our experiments were run on an Intel Pentium IV 1.7Ghz processor, with 512
Mbytes of main memory. The page size is 4Kbyte in all experiments. We use a buffer
with size being about 10% of the original dataset. Unlike [8], we do not reset the buffer
before executing every query, since reseting the buffer will render the buffer useless
when evaluating a workload of multiple queries. Further, we assume the ratio of cost of
sequential I/O to that of random I/O is 1 : 20 [5].

We use three types of query workloads, each containing 1000 queries with vary-
ing qlen, the length of temporal interval. The three workloads consist of queries with
qlen = 1 for timestamp queries, qlen = 50 and qlen = 100 for medium and large time
interval queries, respectively. Each query range is a rectangle uniformly distributed in
the unit square, with the edge length being uniformly distributed in [0, 0.1]. In the fol-
lowing figures, the average query performances per query are reported.

We evaluated performance with respect to the size of index structures, by varying
the number of MBRs for the MVR-tree or the number of interals for the PA-tree. For the
MVR-tree, let S% represents (1+S%)N MBRs are used for a dataset of N trajectories.
S is varied from 10 to 1000. For the PA-tree, we varied m, the number of intervals that
the temporal domain is split into, from 5 to 50.

Clustered Index vs. Non-clustered Index. We tested the query performance for both
clustered index and non-clustered index. For a clustered index, all the trajectory seg-
ments associated with the entries in a leaf node will be stored sequentially to that leaf
node. For non-clustered index, same as the TB-tree [17], each data page consists of line
segments belonging to the same trajectory. All the data page will be stored sequentially,
according to the order of the start-time of the line segments (in case of a tier, trajectory
id will be used), while each entry of leaf nodes will have a pointer to its data page.

Further, for clustered index, we notice that assigning all the available buffer to the
index structure can reduce the overall I/O cost. This is because the data pages are se-
quentially retrieved, while the index pages are retrieved via random I/O. In contrast, for
non-clustered index, both index pages and data pages could be random I/O. Therefore,
we assign 50% buffer to the index structure, while 50% buffer to the data file.

PA-Tree: A Parametric Indexing Scheme for Spatio-temporal Trajectories 269

7.1 Performance of Index Construction

For the MVR-tree, building the index structures involved assigning MBRs to each tra-
jectory, creating MBRs for each trajectory, and loading the MBRs into MVR-trees. As
pointed in [8], the first two steps are extremely expensive, since it requires one full
database scan in order to compute the best approximation per trajectory. In contrast,
building PA-trees is much more efficient, since each trajectory can be processed in-
dividually. We split each trajectory into segments according to the temporal domain
splits, estimate the degree of polynomial approximation and insert the polynomial ap-
proximations into the PA-tree. Therefore, as Figure 10(a) shows, the cost of building
the MVR-tree is about 50 times higher than that of building the PA-tree for the CA5k
dataset. This clearly demonstrates the PA-tree will be a more appropriate choice when
the dataset is extremely large, or when the trajectory data is collected at high rate, re-
quiring on-line processing.

7.2 Query Performance

Executing query over the PA-tree requires us to compute the polynomials during the
filtering step, so that the CPU cost will be higher than that of the MVR-tree. However,
since the PA-tree has higher pruning power, we have a much smaller candidate set for
the refinement step, so the CPU cost during the refinement step will be much smaller
than the MVR-tree. As a result, in Figure 10(b), we can see that in most cases the overall
CPU cost for the PA-tree is actually better than that of the MVR-tree. At any rate, the
bottleneck is typically I/O, since CPU speeds tend to improve much faster than I/O
speeds. We will therefore focus on the I/O cost, due to space limitations.

Figure 11 and 12 plots the IO performance for the dataset CA5k and OD5K, re-
spectively. We only discuss CA5k in detail, since results for OD5k are quite similar.
From Figure 11(a), we observe that both PA-tree and MVR-tree reduce the size of can-
didate set for the refinement step more effectively with larger index structures. This is
expected, since increasing index size implies smaller dead space, and higher approxi-
mation quality results in fewer candidates. However, we can clearly see the PA-tree has
significantly smaller candidate set than that of the MVR-tree, which is consistent with
the comparison shown in Figure 5. Further, this disparity increases with qlen, since
longer query period implies higher chance of false hits with MBR approximations.

Performance with Clustered Indices. Figure 11(b) shows the total I/O cost including
both filtering and refinement steps, in terms of the numbers of equivalent random I/O
operations. For all types of workloads, the PA-tree incurs lower overall I/O cost than
the MVR-tree. The improved approximation quality in the PA-tree requires checking of
fewer index nodes and fewer candidates.

Figure 11(b) captures some interesting trade-offs. A larger index allows better prun-
ing, lowering the number of candidates and I/O cost for the refinement step. However,
since the buffer size is fixed, increasing the index size beyond a certain point causes
the filtering-step I/O cost to overwhelm the benefits of better pruning. After that point,
increasing index size yields no benefit. This results in an upward trend in the I/O cost,
which is quite noticeable for the MVR-tree. This effect is stronger with clustered in-
dices, for which a larger fraction of I/O costs are incurred in the filter step.

270 J. Ni and C.V. Ravishankar

 0

 40

 80

 120

 160

 0 2 4 6 8 10 12

A
vg

 N
um

. o
f

C
an

di
da

te
s

Size of Representation (x 1MB)

MVR-tree (qlen=1)
PA-tree (qlen=1)

MVR-tree (qlen=50)
PA-tree (qlen=50)

MVR-tree (qlen=100)
PA-tree (qlen=100)

(a) Num. of candidates

 0

 4

 8

 12

 16

 20

 0 2 4 6 8 10 12

A
vg

 I
/O

 (
#)

Size of Representation (x 1MB)

MVR-tree (qlen=1)
PA-tree (qlen=1)

MVR-tree (qlen=50)
PA-tree (qlen=50)

MVR-tree (qlen=100)
PA-tree (qlen=100)

(b) IO (clustered)

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

A
vg

 I
/O

 (
#)

Size of Representation (x 1MB)

MVR-tree (qlen=1)
PA-tree (qlen=1)

MVR-tree (qlen=50)
PA-tree (qlen=50)

MVR-tree (qlen=100)
PA-tree (qlen=100)

(c) IO (non-clustered)

Fig. 11. CA5k

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

A
vg

 N
um

. o
f

C
an

di
da

te
s

Size of Representation (x 1MB)

MVR-tree (qlen=1)
PA-tree (qlen=1)

MVR-tree (qlen=50)
PA-tree (qlen=50)

MVR-tree (qlen=100)
PA-tree (qlen=100)

(a) Num. of candidates

 0

 20

 0 2 4 6 8 10

A
vg

 I
/O

 (
#)

Size of Representation (x 1MB)

MVR-tree (qlen=1)
PA-tree (qlen=1)

MVR-tree (qlen=50)
PA-tree (qlen=50)

MVR-tree (qlen=100)
PA-tree (qlen=100)

(b) IO (clustered)

 0

 20

 40

 60

 80

 0 2 4 6 8 10

A
vg

 I
/O

 (
#)

Size of Representation (x 1MB)

MVR-tree (qlen=1)
PA-tree (qlen=1)

MVR-tree (qlen=50)
PA-tree (qlen=50)

MVR-tree (qlen=100)
PA-tree (qlen=100)

(c) IO (non-clustered)

Fig. 12. OD5k

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100

B
es

t I
/O

 (
#)

qlen

MVR-tree(CA5k)
PA-tree(CA5k)

MVR-tree(OD5k)
PA-tree(OD5k)

(a) clustered

 5

 10

 15

 20

 25

 30

 0 50 100

B
es

t I
/O

 (
#)

qlen

MVR-tree(CA5k)
PA-tree(CA5k)

MVR-tree(OD5k)
PA-tree(OD5k)

(b) non-clustered

Fig. 13. Best IO

For a given index size, the MVR-tree is able to split a trajectory into more segments
than the PA-tree, since the PA-tree must hold more coefficients per segment. When a
clustered index is used, only the line segments of the candidate segment, stored sequen-
tially adjacent to the leaf nodes, will be retrieved. Therefore, the MVR-tree incurs lower
I/O cost per candidate trajectory segment. (This advantage disappears for non-clustered
indices, as we see shortly.) However, the PA-tree still requires lower refinement step
costs than the MVR-tree due to its superior ability to reduce candidate set size.

Figure 13(a) plots the best I/O performance for MVR-tree and PR-tree over all
possible index sizes. For clustered index, the MVR-tree is 20%–60% more expensive
than the PA-tree.

Performance with Non-clustered Indices. Figure 11(c) plots the overall IO cost us-
ing non-clustered indices. PA-tree performance shows even greater improvements over
the MVR-tree, and mirrors the improvements in candidate set size. For non-clustered

PA-Tree: A Parametric Indexing Scheme for Spatio-temporal Trajectories 271

indices, a candidate requires at least one disk I/O, except for a buffer hit. Overall, as
Figure 13(b) shows, the best I/O cost achieved with PR-tree is about 3–4 times lower
than that for MVR-tree.

8 Conclusions and Future Work

In this paper, we have presented a new parametric indexing method suitable for large
trajectory datasets, and for answering historical spatio-temporal queries efficiently. Our
polynomial approximations method achieves much better performance than the general
used MBR approximation. We present the PA-tree, a two-level structure for indexing
trajectories using polynomial approximations. Our comprehensive experimental eval-
uations demonstrate that the PA-tree significantly outperforms current methods which
uses MBR approximation, such as the MVR-tree. Consequently, the PA-tree is an ex-
tremely efficient and practical indexing structure for evaluating historical queries over
trajectory data. As a future work, we are investigating the applicability of our methods
to domains other than trajectory data, such as complex spatial objects.

Acknowledgments

This work was supported in part by grants from Tata Consultancy Services, Inc., the
Digital Media Innovations Program of the University of California, and by award FTN
F30602-01-2-0536 from the Defense Advanced Research Projects Agency.

References

1. M. Barth. UCR IntelliShare Project. http://evwebsvr.cert.ucr.edu/
intellishare/.

2. T. Brinkhoff. Generating Network-Based Moving Objects. In SSDBM’00, page 253. IEEE
Computer Society, 2000.

3. Y. Cai and R. Ng. Indexing Spatio-temporal Trajectories With Chebyshev Polynomials. In
SIGMOD Conference, pages 599–610. ACM Press, 2004.

4. V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing Large Trajectory Data Sets With
SETI. In CIDR, 2003.

5. L. Chung, B. Worthington, R. Horst, and J. Gray. Windows 200 Disk IO Performance.
Microsoft technical report, MS-TR-2000-55, June 2000.

6. S. Gupta, S. Kopparty, and C. V. Ravishankar. Roads, Codes and Spatiotemporal Queries. In
PODS, pages 115–124, 2004.

7. M. Hadjieleftheriou. Spatial Index Library. http://www.cs.ucr.edu/ marioh/
spatialindex/index.html.

8. M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and V. J. Tsotras. Indexing Spatio-temporal
Archives. The VLDB Journal. to appear.

9. M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos. Efficient Indexing of
Spatiotemporal Objects. In EDBT ’02, pages 251–268. Springer-Verlag, 2002.

10. G. Kollios, D. Gunopulos, and V. J. Tsotras. On Indexing Mobile Objects. In PODS ’99,
pages 261–272. ACM Press, 1999.

272 J. Ni and C.V. Ravishankar

11. G. Kollios, V. J. Tsotras, D. Gunopulos, A. Delis, and M. Hadjieleftheriou. Indexing Ani-
mated Objects Using Spatiotemporal Access Methods. TKDE, 13(5):758–777, 2001.

12. J. C. Mason and D. Handscomb. Chebyshev Polynomials. Chapman and Hall, 2003.
13. Federal Communications Commision. Enhanced 911. http://www.fcc.gov/911/

enhanced/.
14. M. A. Nascimento and J. R. O. Silva. Towards Historical R-trees. In Proceedings of the 1998

ACM symposium on Applied Computing, pages 235–240. ACM Press, 1998.
15. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query Processing in Spatial Network

Databases. In VLDB, pages 802–813, 2003.
16. J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: An Efficient Index for Predicted Trajecto-

ries. In SIGMOD Conference, pages 637–646, 2004.
17. D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel Approaches in Query Processing for

Moving Object Trajectories. In VLDB’00, pages 395–406. Morgan Kaufmann Publishers
Inc., 2000.

18. K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying Mobile Objects in Spatio-Temporal
Databases. In SSTD, pages 59–78, 2001.

19. S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the Positions of
Continuously Moving Objects. In SIGMOD Conference, pages 331–342, 2000.

20. Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and Indexing of Moving Objects
with Unknown Motion Patterns. In SIGMOD Conference, pages 611–622, 2004.

21. Y. Tao and D. Papadias. MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and
Interval Queries. In VLDB ’01, pages 431–440. Morgan Kaufmann Publishers Inc., 2001.

22. Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An Optimized Spatio-Temporal Access
Method for Predictive Queries. In VLDB, pages 790–801, 2003.

23. Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatio-Temporal Indexing For Large Multi-
media Applications. In ICMCS ’96. IEEE Computer Society, 1996.

24. X. Xu, J. Han, and W. Lu. RT-tree: An Improved R-tree Index Structure For Spatiotemporal
Databases. In Proc. of the 4th Intl. Symposium on Spatial Data Handling, 1990.

25. H. Zhu, J. Su, and O. H. Ibarra. Trajectory Queries and Octagons in Moving Object
Databases. In CIKM, pages 413–421, 2002.

	Introduction
	Our Work

	Related Work
	Problem Definition and Data Model
	Overview of Our Approach
	Approximating Trajectories with Polynomials
	Splitting the Time Domain
	Approximating a Trajectory Segment with a Polynomial
	Clustering Multiple Polynomials
	Comparing Approximation Quality
	Choosing the Degree of Approximating Polynomials

	PA-Trees and Query Processing
	Improving Query Performance with Clustered Indices
	Query Processing

	Experimental Evaluation
	Performance of Index Construction
	Query Performance

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

