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Abstract

In this paper we present an online algorithm that at-
tacks the problem of placing relay nodes in regions where
high localized congestion is detected. Congestion refers
to the network overload caused by excess concurrent at-
tempts of wireless devices to access the common shared
channel. Our algorithm uses the Expected Transmission
Delay (ETD) metric based on both current measurements
and history observations over a window of time and is used
by the nodes to identify the level of congestion in the local
environment of the node. ur algorithms use a dissemina-
tion probing mechanism to exchange statistical local infor-
mation periodically which are used to detect the congested
area. Our detailed simulation results illustrate the working
and benefits of our approach.

1 Introduction

Event-based distributed sensor systems have attracted a
lot of interest in the research community to track moving
objects and monitor events of interest in real-time. Exam-
ples include emergency response systems, medical systems,
command and control systems, military and surveillance ap-
plications. For example, in a battlefield surveillance sce-
nario, a network of wireless sensor devices with sensing
and radio communication capabilities can be deployed to
inspect a geographical zone and identify potential threatsin
the territory. In a retail store or warehouse environment,
RFID devices can be deployed for efficient supply chain
management. Sensors or RFID readers can detect certain
events, identify alarms and forward the information to a
central server or to some business application.

However, an increasing usage of wireless communica-
tion devices has increased the demand for the communica-
tion resource that they all share: theradio spectrum. Un-
fortunately, given the limited spectrum resource and the in-
creasing demand for the radio spectrum by the users, there is

an urgent need to improve the spectrum allocation and use.
In the United States, the Federal Communications Commis-
sion (FCC) has already identified this problem and taken
action by recently releasing to the public some portions of
the restricted radio spectrum as a measure to allocate more
resources. However, this measure is still not enough to ef-
ficiently satisfy the demand. Furthermore, the unique char-
acteristics of the sensor nodes, including the small queue
sizes, the short batter life and the limited computational
power, make the problem more challenging. In a sensor
network, the sink node is the single destination of all the
traffic generated at the sensor field. The initiation of a large
number of simultaneous flows is likely to cause congestion,
first, due to a large demand of bandwidth close to the sink,
and, second, due to collisions of packets from simultaneous
flows traversing interfering paths.

Current approaches that address congestion focus on re-
ducing the rate of the flows that enter the congested region,
such as [6], or reroute traffic through virtual relay node
sinks rooted at the actual sink [14]. Relay node placement
approaches currently place relay nodes a priory without
considering the network traffic load or congestion occurring
at run time and they rather concentrate on problems such as
maximal area coverage [9] or look for a fault-tolerant sensor
network [16].

The goal of this paper is to provide an on-demand relay
placement mechanism to react to a congested region and
reroute traffic to temporarily mitigate the problem. Conges-
tion refers to the network overload caused by excess con-
current attempts of wireless devices to access the common
shared channel. Congestion can be caused by several fac-
tors such as resource unavailability (channels, queues, etc.),
due to high load or hardware failures. Our idea is simple,
we want to add additional resources to a congested region
in the network in order to reroute the traffic and alleviate
congestion.We provide a distributed dissemination probing
mechanism that exchanges statistics locally in the network
that are used to determine the placement of therelay nodes
in the region. A relay node is a powerful node equipped



with several wireless interfaces1 and able to tune to distinct
wireless frequencies that do not interfere with one another.
In the sensor network, we use the relays to eliminate con-
gestion by creating additional paths to reroute traffic. Re-
lay nodes self-organize into a separate network, changing
the topology of the network and forming links with sensor
nodes, to minimize congestion and improve network perfor-
mance. Our goal is to provide a fast solution to the problem
while a more permanent solution can be implemented using
additional hardware. Therefore, our work is intended for
sensor networks currently deployed in an application set-
ting. We do not make many assumptions, but we assume
that the devices are organized in an ad hoc network and use
the 802.11 protocol to operate. Our experimental results il-
lustrate the working and benefits of our approach.

2 Related Work

The literature has several approaches on how to use the
channels and interfaces in a wireless network. Wan in [14]
utilizes virtual relay nodes to attack the “funneling effect”
generated at the sink. With an in-band signaling system en-
coded onto the packets, sensors may discover new routes
through the relays rooted at the sink. If the sink is equipped
with several interfaces, then the created overlay may be-
come completely independent of the existing network, thus
eliminating interference. We have a similar dynamic be-
havior with the difference that we do not modify any of
the packets from the underlying protocols that could make
the entire system non-standard. We prefer to adopt an im-
proved routing algorithm rather than changing the underly-
ing packet structure. Zhang and Misra [16] study four re-
lated fault-tolerant relay node placement problems and of-
fer a constant polynomial time complexity. Their work is
based on Steiner minimum trees where they try to minimize
the number of relay nodes into a fixed location placement.
Contrary to our work where we assume a dynamic environ-
ment where the network traffic varies with time, we found
that this approach is not appropriate for our setting. Instead,
we focus on covering the regions with high detected local-
ized congestion, rather than minimally cover the entire net-
work. Lloyd and Xue propose relay node coverage at the
initial setup of the network where all the nodes are required
to have a path to all the relay nodes in the overlay network
[9]. They also use Steiner Trees to minimize the number
of relay nodes. We adopt their method of placing the re-
lay nodes so that they are evenly placed on a straight line
that connects two points, but we perform this fix dynami-
cally, as opposed as in the initial setup. Wang, et al, inves-
tigate in [15] the problem of self-organizing topologies to
uniformly maximize the coverage area of a sensor network.

1We use the termsradio andwireless interfaceinterchangeably.

Their method of selecting a new location is similar to ours,
except that we need to address extra constraints when we
place a relay node close to a congested node. Srinivasan,
et al, in [10] address the problem of identifying the contour
of a region characterized by the sensed activity. We deter-
mine the contour of our congested region by calculating the
convex hull of the set of congested nodes.

Florea and Yanikomeroglu argue in favor of the use of
relays in a cellular network in [2]; they conclude that relay
nodes are an essential component to handle congestion in
a network but the number of relays must be minimized to
achieve efficiency. Although their work is based on the cel-
lular network system, their conclusions can also be applied
to sensor networks. We do not concentrate particularly on
placing the minimum number of relay nodes in our exper-
iments, but rather we try to minimize the expected end-to-
end delay of our traffic flows; however, we do not arbitrarily
place our relay nodes on the network. Although we do not
guarantee minimum number of relay nodes, we show in our
results that we utilize a considerably smaller amount of re-
lays than random placement.

Gupta, et al., make a pioneering capacity analysis on a
single-channel network in [3] and their work is further ex-
tended by others in [8, 7, 11, 1, 12, 5, 4]. We base our ca-
pacity analysis on their observations. Wan, et al, provide a
classical analysis and technique of congestion detection and
avoidance called CODA in [13]. They provide a channel
and congestion analysis to detect congestion. In our previ-
ous work [6], we provide an analysis of congestion based on
a queuing model. In this work we focus on the relay node
placement problem.

3 Network Model

We consider a wireless sensor network withn nodes, lo-
cated in a 2-dimensional plane. We represent the network
as an undirected graphG(V,E), whereV is the set of ver-
tices, or the nodes of our network, andE is the set of edges,
or communication links. Each node is characterized by its
transmission range,r. We associate a set of channelsCu to
each nodeu, whereCu is a subset ofC, the set of channels
that the wireless nodes can listen on. Assuming that the ge-
ographical location of two vertices in the graph,u andv on
the 2-dimensional plane, then the Euclidean distance that
separates the two vertices in the graph,u andv (or nodes in
the network), isd(u, v). An edgee = (u, v) belongs to the
setE if the following is true: (1)d(u, v) < r, (2) Cu

⋂
Cv.

In other words, two wireless nodes can communicate if they
are within their transmission range and they have a common
channel to use.

A nodeu is able to tune its interfaces to any one of its
channelsCu to generate a transmission signal to a neighbor-
ing node tuned on the same channel. We assume that a node



is either statically assigned channels to its interface, oralgo-
rithms can perform the channel assignment. Furthermore,
we make no assumption about how routing paths are estab-
lished in the sensor network. Our metric is orthogonal to the
routing protocol and can be used with many popular routing
protocols such as DSR and AODV. With today’s commod-
ity wireless cards, the time required to re-tune an interface
is on the order of tens of milliseconds; thus, a high demand
of channel retuning may introduce unnecessary complexity
to control a potential inefficient channel-switching behav-
ior. In our work we assume a wireless sensor network with
an initial setting, in which our aim is to identify the conges-
tion hot spots and bottlenecks, and then divert the traffic,
on-demand, to relieve these areas.

Figure 1. Wireless sensor network with relays.

3.1 Relay Nodes

The relay nodes are multi-interface, multi-channel wire-
less nodes, organized into a separate network, whose goal
is to create an alternative path across a congested geograph-
ical area. Since relays are multi-channel nodes, they may
tune to the currently congested channel to pick up traffic and
transport it with other relay nodes using an available non-
congested orthogonal channel. This way, the relay node net-
work will introduce new routing paths to a congested region
in an attempt to “patch” the network or “detour” the traffic
and thus eliminate congestion. In Figure 1 we show how
we can create a detour for the traffic flows using a network
of relays. In this multi-channel network we illustrate two
single-channel networks: one composed of the relay nodes
using channelb and another one composed of all the sensor
nodes using their common channela. This method does not
require any change of the underlying network because the
relay nodes may tune one of their interfaces to the channel
that the network uses to pick up some traffic that they for-
ward among the relay nodes themselves using another non-
interfering (orthogonal) channel. This approach effectively
reduces congestion. Moreover, it adds more resources to an
existing network.

4 Metrics

We define the following metrics to evaluate the perfor-
mance of our approach.

Expected Transmission Delay (ETD).The ETD met-
ric represents the time required to transmit a packet to a
neighbor hop. The metric is calculated as follows: Every
time a node receives a packet, be it a probe, data or control
packet, it measures the hop delayDec

that this packet ex-
perienced to get to this node. Notice that this delay takes
all the retransmissions, channel contentions, and queue ser-
vice delays into consideration2. This delay is stored on a
per-link basis. Then, we compute the expected transmis-
sion delay ETD as the weighted average of the past ETD
computations, within a sliding windoww and the current
packet delay recorded, as follows:

ETDec
(t) = α ∗ Dec

+ (α − 1) ∗ ETDec
(t − 1) (1)

This metric allows us to use both the past observations and
the current delay measurements at the node. In [1], De
Couto argues that current delay observation is not enough
to identify a path as better than another one because insta-
bility may cause oscillations in the decision. With this in
mind, we use the tunable parameterα. An α value closer to
1, puts greater weight on recent delay measures; while anα

value closer to zero, puts more weight on the past measure-
ments.

Path Cost. We can then compute the transmission cost
of a pathP between two nodesu andv as the sum of the
expected transmission delays of each link that constitute the
path, as follows:

PCPuv
=

∑

ec∈Puv

ETDec
,∀c ∈ C (2)

whereec is an edge inG(V,E) or a hop in the pathP .
Given a path, the transmission cost of the path is dominated
by the link with the largest delay. Therefore, one path is
determined to be better than another one by a simple com-
parison of their values.

Drop Count. Our nodes also keep a count of the num-
ber of dropped packetsdropped packetsec

observed over
a sliding window timew. We use the drop count statis-
tic as a supporting indication when identifying a congested
link. Usually, when congestion occurs, a ripple effect oc-
curs in the surrounding region where the congested link is
detected. A node that forwards packets might face a high
contention of a channel or due to a hidden-node problem.
Subsequently, the node may experience an abnormal in-
crease of its queue size, which eventually causes it to over-
flow, resulting in packet drops.

2Our metric assumes that the nodes are time synchronized; for example,
they can use the GPS network to synchronize their clocks.



5 Relay Node Placement

Our proposed mechanism aims (1) to identify regions
of high localized congestion in a wireless network and (2)
to determine the geographical placement of relay nodes in
the 2-dimensional planes in order to mitigate congestion.
The overlay network of relay nodes is capable of using the
underutilized orthogonal channels in the congested region
with the use of its several radio interfaces capable of estab-
lishing full-duplex paths. These paths are the new resources
that we try to add to the underlying congested network to in-
troduce new routing paths formed of non-interfering chan-
nels, in an attempt to reduce some of the traffic of the under-
lying congested region. We work under the assumption that
there exists a limited number of orthogonal channels that
any relay or sensor node may tune to at any time. Also, we
assume that we have a large number of relay nodes at our
disposal; although we do not impose a limit on the number
of relays that we have available, we try to use the smallest
number of relay nodes possible. When the locations are de-
termined, we assume that a human or a robot can place the
nodes in location. We describe this process below:

5.1 Identifying Congestion

The placement of relay nodes starts with the detection
of the congested region that will be “patched”; this task is
performed by ahead node that collects the region statistics
and executes the relay node placement algorithm. When a
node finds that it is congested, it assumes the role of the
head node of its region. It initiates a message exchange
protocol during which adjacent congested nodes merge their
regions to form one larger congested region with a single
head node3. The idea is to determine the congested region
so that we can introduce new resources in the form of new
route paths, thus “patching” the network with relay nodes.
Once we determine this region, thehead node proceeds to
patch it. A node can detect that it is congested when:

• There is a large variance in the ETD metric observed
when transmitting packets to a neighboring node. In-
stability in the transmission delays is a clear indication
that congestion occurs. Under high loads, the chan-
nel will be constantly busy, causing large delays for
packets in the queue that will be later dropped. Sud-
denly, the congested node becomes resource available
and its acceptance packet latency suddenly drops un-
til the queue fills up again. This unstable behavior is
therefore a clear indication of packet drops and high
demand of the channel.

3In the case that multiple nodes experience congestion, thus there are
multiple head nodes, a singlehead node can be elected, e.g. the one with
the smallest node id.

• There exist drops caused either by packet collisions or
queue overflows. The drop count keeps track of the
number of packets dropped within a sliding window
w. A high drop count value indicates a high load in the
congested area.

When a node detects that it is congested, it broadcasts
a congestion message to all its neighbors. Each neighbor
will determine if it is also congested, an if so, it will re-
ply. If the neighbor is congested, the congested regions will
merge and they will repeat the same process with their own
neighbor nodes. If the neighbor node is not congested, this
node becomes a “frontier” node, respond to the message,
and stop the dissemination of more congestion messages as
they have found the edge of the congestion region.

5.2 Placing Relay Nodes

Algorithm 1 Relay Node Placement
Input: Region of congested nodesC

Output: None

• Compute the Convex Hull of the congested nodes set
C

• For each frontier node in the Convex Hull :

– Find the non-congested neighbor nodes of the
frontier node that introduce traffic to the con-
gested region

– Use theCoverRegion algorithm to cover with
relay nodes the region composed of the frontier
node and all its neighbors. Let this set of relays
beR

• Compute the clusters of the setR using K-means with
a valuek = size(ConvexHull). Let this set of relay
clusters beCL

• While the size ofCL > 1 :

– Select cluster with the smallest size,cl1

– Select the closest clustercl2 to cl1

– Join these two clusters with the
CoverWithRelays algorithm by adding
relay nodes on the straight line that connects the
closest two relay nodes in these two clusters

Once a congested regionCR is detected, our aim is to
place relay nodes at a minimum distance ofr +∆ from any
congested nodenb that belongs toCR to guarantee that the
new relay nodes will not further contribute to congestion.



By definition, afrontier nodeis one that has a congested
node as a neighbor; however, a neighbor of a frontier node
might not be congested; these are calledentry nodes, see
Figure 2(c). We aim to place relay nodes at locations sur-
rounding the entry nodes of a congested region that forward
traffic flows that contribute to congestion.

Also note that at the edges of the congested region, the
entry and frontier nodes naturally form clusters. Relay
nodes that connect with the underlying network must cover
the entry nodes, thus also forming clusters. Therefore, to
cover a congested region, the relay nodes must cover the
entry nodes and form clusters in a first step; once all the re-
lay clusters are formed, in a second step, all these clusters
are linked together to form a single connected overlay net-
work and thus providing the new relay routing paths. Next
we explain how these two steps are performed. The high
level description of the relay node placement algorithm is
shown in Figures 2 and 3.

The Convex Hull and the Node Clusters.Before relay
nodes are placed, the head node of theCR needs to identify
the geographic locations of the frontier nodes. For this, the
Convex Hull of the region is calculated. This will return a
set of nodes with mostly all the frontier nodes and eliminate
the internal congested nodes of the region. It may be pos-
sible that some congested nodes are part of the convex hull
but they are ignored.

From Figure 2(a), the congested nodes neighbor with a
frontier nodes and these neighbor with entry nodes (non-
congested neighbors). Both frontier and entry nodes form a
local cluster at one entry point of the congested region, but
relay nodes are placed only within the transmission range of
the entry nodes, thus forming local clusters of relay nodes
for the congested region.

Once the entry nodes are identified at each local cluster,
we proceed to cover them with relay nodes using the routine
CoverRegion. At the end of this routine, relay nodes are
placed and a set of relaysR is returned and added to the
already existing setZ. At the end, all local clusters are
covered with relays ready to be joined to form the overlay
network.

Joining the Relay Clusters. After relays are properly
placed to cover the entry nodes, we need now to identify
the local relay clusters and join them. The head node takes
the setZ and runs theK-means algorithm with ak value
equal to the size of the Convex Hull set calculated in the
previous set. K-means is used because it uses the euclidean
distance to form the clusters and identify the members of
each cluster.

With all the relay clusters identified, the head node pro-
ceeds to join them one by one with theCoverWithRelays

routine. This routine takes two clusters and draws a line be-
tween the two relays (one per cluster) that are the closest
and covers it with equally distant relay nodes. The result is

two clusters joined into one single connected-component.
This process continues until only one network is formed.
Figure 2(b) shows how two clusters are joined together.

CoverRegion Routine. This routine places the neces-
sary relay nodes that cover a region denoted as the input set
S of nodes. The setS is composed of the congested nodes
(usually one)nb, the frontier node, and the entry nodes of
the cluster. A relay nodenr is placed at a location clos-
est to the frontier node and within the transmission range
of the entry nodes such that the following condition is not
violated:

d(nr, nb) ≥ r + ∆

The condition above is applied to prevent the use of the
congested channel by any relay node when it attempts to
communicate with the underlying network.

The first step is to find the extrema points of the region.
These two points are the two farthest points in the area com-
puted by the intersection of the transmission range of both
the frontiernf and the congestednb nodes. The extrema
points are defined as follows:

• dist(p′, nb) = r, c ∈ C

• dist(p′′, nf ) = r, c ∈ C

• p′ = p′′

If there are more than two extrema points, we select the
farthest two.

Each extreme point is used as the starting reference lo-
cation where a relay node is placed. The reasoning behind
the extreme points is the following: the extreme point is the
closest point that an entry node can be located such that it is
still not within the transmission range of the congested node
(otherwise the entry node would be a frontier node). For this
reason, entry nodes are on the extreme point or away from
the congestion region, see Figure 2(c).

Once the extrema points are identified, the routine
Cover is called to cover the entry nodes at each of these
two points. With this, we guarantee that all the entry nodes
that are closer to the congested node are covered; this is im-
portant because we want to place relay nodes the farthest
away from the congested node.

After the extreme points are covered, there may be other
entry nodes that are not covered yet; however, they are sim-
ply covered by calling theCover routine on their locations.
This step is simpler since the remaining entry nodes are the
farthest located from the congestion node.

At the end, a new set of relay nodesR is returned cover-
ing the region denoted by the input setS. The algorithm for
the CoverRegion in shown below:

Cover routine. This routine determines the actual
placement of the relay nodes. A noden is taken as input to



(a) The Convex Hull (b) CoverWithRelays routine (c) Area to cover with relays

Figure 2. Illustration of our approach.

Algorithm 2 CoverRegion
Input: Region of nodesS
Output: Set of relay nodesR that cover the region spanned
by nodesS

• Find the two extrema points of the setS

• Use theCover algorithm to cover the closest node to
any of the extreme points

• Use theCover algorithm to cover the 2nd closest node
to the other extreme point

• For any remaining node uncovered in the setS :

– Use theCover algorithm to cover this node

• Connect all the newly added relaysR to form one sin-
gle connected component

be covered. First, we find those nodes neighbors ofn that
introduce traffic into the congested region; these nodes form
the setN sorted in order of proximity ton. We then pro-
ceed as follows: we find theclosestpointp to n such thatp
is outside the interference range of the congested nodenb.
Then, for each neighbor nodeni in N we find theclosest
point q such thatq still covers all the nodes covered byp.
This stops untilq does not cover all nodes previously cov-
ered byp. We place a relay node atp and the routine ends.
Figure 3 shows the working of our approach. From this fig-
ure we see how the potential pointp moves away from the
extreme point and covering all closest neighbors of the in-
put noden until they are all covered or until the newp starts
uncovering nodes.

CoverWithRelays routine. This routine is very sim-
ple. It takes two points, namelyp1 andp2. It then calculates
the inter-relay node distance along the line (p1, p2) and it
places a relay node there. It lastly returns the setS with
relay nodes that connect these two points.

Algorithm 3 Cover
Input: Noden, set of uncovered nodesU , congested nodes
C, relay setR
Output: ReturnR

• Find the neighbor nodesN of n that introduce traffic
into the congested regionC

• SortN in order of proximity to the noden

• Find the closest pointp inside the transmission range
r of n such that the distance from any congested node
to p > r + ∆

• For all the nodesni in N :

– Find the closest pointq to ni such that the dis-
tance from any congested node toq > r + ∆

– If q does not cover all the nodes covered byp,
break this loop

– Let p = q // p is the current valid placement

• Place a relay node at the locationp and add it to the set
of relaysR

Algorithm 4 CoverWithRelays
Input: End pointsp1, p2 and set of relay nodesR
Output: Minimal set of relay nodesS that evenly cover the
line (p1,p2).

• Calculate the largest inter-relay spacingsp between the
pointsp1 andp2 such thatsp < r

• Cover the straight line (p1,p2) with relays such that for
each needed relay positionp, if there exists a relaynr

in R, usenr instead of adding a new relay; otherwise,
add a new relay located atp into S



(a) First placement ofp (b) A new pointq that still coversp (c) Final placement of a relay node atp

Figure 3. The Cover routine

6 Evaluation

We have implemented and tested our approach using
the the Network Simulator ns2, to implement the probing
mechanism, congestion detection, and node placement al-
gorithms. We used a sensor network of 25 nodes that use
a single channel for communication. The nodes are con-
figured to use the 802.11b protocol with a maximum data
rate of 2Mbps and control rate of 1Mbps and a transmission
range of 225m. We use the default channel of 2.472GHz
(channel 13) of the spectrum. Relay channels operate on
two other orthogonal channels in the range of 2.412GHz
(channel 1) and 2.437GHz (channel 6), separated at least by
30MHz to make them non-overlapping.

In our traffic simulation, we observe the network behav-
ior in periods of 100 seconds; we inject traffic flows with a
rate of 10 packets per second of size 1000 kilobytes (plus
the packet header bytes of the network protocols). These
correspond to a sudden congestion (such as the rush hour in
a cellular network or a fire in a forest covered with sensor
nodes).

Probing. In the first experiment we evaluate our prob-
ing mechanism. In Figure 4(a) we show the results of using
differentw values; we concluded that a period of 1 second
had the best balance between channel load measurement ac-
curacy and bandwidth consumption. Each node generates
and broadcasts a probe packet of 64 bytes that contains the
source node id and a time stamp to calculate the hop de-
lay among peers. The neighbors, in response, reply back
to the source to allow the original sender to calculate its re-
verse delay. All nodes calculate their local statistics in this
way and keep a history ofτ = 10s. We keep a value of
α = 0.5, which means that we equally weight the observed
average delay and theETD calculated with the expected
forwarding and reverse delays; this way, we equally weight
the historical observations with the current measurements
of delay.

Congestion Detection.We run several experiments on
several topologies with a common bottleneck connecting
two or more regions; however, due to the lack of space we

chose Figure 8(b) to present our results. The network in Fig-
ure 8(b) is composed of three clusters of sensors connected
by a ”Y” shaped bottleneck path. We introduced three flows
that go through the bottleneck to reach their destinations,
thus purposely creating congestion. The flows are the fol-
lowing:
• Flow 1: Node 8→ node 24

• Flow 2: Node 21→ node 15

• Flow 3: Node 18→ node 10

With the three sources injecting packets onto the net-
work, nodes in the bottleneck start experiencing delays de-
livering their packets creating a ripple effect back to the flow
sources. Figure 4(c) evaluates the accuracy of the ETD met-
ric by comparing ETD with the average delay and the cur-
rent transmission delay, when detecting congestion. The
figure shows a sudden increase in the drops recorded by
node 20 (the entry point to the bottleneck) at an approximate
time t = 18s. At this point, node 20 checks its statistics to
find out if it is congested by calculating the standard devi-
ation of its ETD. We observed that a standard deviation of
twice the window average is a good indication of a widely
spread ETDs, which indicates the presence of instability in
the network (periods of long delays followed short ones that
indicate a cleared/overloaded queue). At this point, we say
that node 20 is congested.

In Figure 4(b) we show that the solely use of the window
average is not a good indicator of the status of the network.
For example, in the period betweent = 18s to t = 21s we
observe how the average delay falsely detects prolonged de-
lay period when in fact it is an instability period. A similar
situation happens att = 23s. ETD does not suffer of this
problem and with the use of standard deviation to investi-
gate the severity of the instability, we determine if a node is
congested or not.

Placement of Relay Nodes.In the next set of experi-
ments we evaluate the placement algorithm. When a node
detects that it is congested, it starts to investigate the extend



 50

 100

 150

 200

 250

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5

A
ve

ra
ge

 D
el

ay
 (

m
s)

Time (s)

Probing Overhead
Probing Curve

(a) Probing Overhead

 0

 100

 200

 300

 400

 500

 600

 700

 15  16  17  18  19  20  21  22  23  24  25

M
et

ric
 T

im
e 

(m
s)

Time (s)

Congestion Metric Comparison (Hop 20-25)
Transmission Delay

Windowed Average Delay
ETD

(b) Metrics comparison at hop 20-25

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60  70  80  90  100

D
ro

p 
R

at
e 

(d
ro

ps
/s

ec
)

Time (s)

Drop Rate for node 20
Drop Rate

(c) Drop Count at node 20
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(b) Congestion on flow 21-15
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(c) Congestion on flow 18-10

Figure 5. End-to-end delays of the network without relays.
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(a) Flow 8-24 re-routed through overlay net-
work
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(b) Flow 21-15 on underlying network
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(c) Flow 18-10 re-routed through overlay net-
work

Figure 6. End-to-end delays of the flows with the presence of r elays.



of the congested region. From our experiments we observed
that the time that the congested node took to determine the
extent of the congested region is proportional to the size
of the congested region. For example, the largest conges-
tion region is the one of node 6 and it took approximately
1295ms to be calculated (node 20 took 1115ms and node 13
took 46ms). We assume that congestion messages are given
the highest priority and that the processing time to calcu-
late if a node is congested is negligible (table look-ups and
standard deviation calculation).

In Figure 5(a) we show the end-to-end delays of each of
the flows in the network without relays. The high spikes in
each figure represent clear periods of instability in the net-
work and similar conclusions can be derived from Figures
5(b) and 5(c). Also note the periods of zero end to end de-
livery at each of these three figures. In Figure 5(a), the zero
delivery att = 10s to t = 35s is caused by the dominant
flow 3 in the same period in Figure 5(c). A similar reason-
ing can be derived about the other two figures. As a result,
we observe that only flows 2 and 3 dominate the entire sim-
ulation time.

We also report the corresponding end-to-end delays of
the flows after the introduction of the relays. The new posi-
tion of the relay nodes is observed in Figure 8(c), in which
we can observe that the overlay network connects to the en-
try points of all the three congestion regions. Also note that
links among relays do not affect the underlying network be-
cause they use a distinct channel (these links are shown as
dotted). Flow 1 enters the overlay at relay R2 and leaves
at relay R1. Flow 3 also uses the overlay via R6 and R3.
Flow 2 remained on the underlying network. The results of
the end to end delivery of these three flows can be observed
in Figures 6(a), 6(b) and 6(c). Once congestion is detected
(indicated in high spikes), the relay nodes pick up the traf-
fic and thus reroute the traffic to eliminate congestion. This
shows in the figure with the decrease in the end-to-end de-
lays.

We also calculated the throughput of each flow measured
in packets delivered per second in Figures 7(a), 7(b), and
7(c). Remember that each flow is injecting 10 packets per
second, so this value is our upper limit and that congestion
is injected at time 5s. From the three graphs we can observe
the increase in packet delivery before and after the user of
relays and rerouting. It interesting to note the high through-
put delivery at times when the flow is dominating and re-
lays were not being used. For example, in Figure 7(c) we
can observe the high throughput delivery att = 25s which
coincides with Figure 5(c) at the same time. When relays
were used, this is also corroborated.

Lastly, we compared the performance of our approach to
a random placement allocation (given the same calculated
congestion region) in terms of number of relays used. In
the random placement you randomly select the location of

the relays in the congested region and you stop this process
when all entry nodes are connected. Our results are given in
a the histogram in Figure 8(a). In all three cases we beat the
random allocation by about four times the number of relays
that we used on average. We do not focus on minimizing
the number of relays used, but rather on the congestion de-
tection to trigger the algorithm; however, we observe that
we significantly reduced the number of relay nodes used to
achieve similar delivery delay results.

7 Conclusions and Future Work

This work provides a solution to the relay node place-
ment in a network of wireless sensor devices. Our algorithm
places a number of relays in the congested region with the
constraint that no relay node that communicates with the
underlying network is placed within a distance ofr + ∆,
to avoid the introduction of more traffic in an area already
congested. We use the ETD metric to identify a conges-
tion region. This work can be utilized in situations where
immediate action is required, such as emergency response
scenarios where a high rate of packets are generated. There
are many avenues for future work. One important line of
research is the channel assignment problem. Relays must
choose what channels they must tune to in the deployment
phase. Another future improvement is the incorporation of
distinct statistical analysis tools for the detection of conges-
tion.
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