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Abstract

We present the Internet Key Service (IKS), a distributed
architecture for authenticated distribution of public keys,
layered on Secure DNS (DNSSEC). Clients wishing to
manage or retrieve public keys use DNSSEC to securely
discover the identities of the relevant IKS key registra-
tion and distribution servers, and send their key lookup
/ management requests directly to these servers using a
special-purpose protocol. Clients can validate and au-
thenticate keys retrieved from IKS servers using key
commitments published in DNSSEC. Applications can
use the public keys obtained from IKS to authenticate
each other and establish secure end-to-end communica-
tions.

A feature of our approach is that IKS derives its
authentication authority from the authority DNS do-
mains have over names. The IKS architecture is loosely
coupled with DNS to minimize the overhead on DNS
servers. We also present the Riverside Internet Key
Server (RIKS), a prototype IKS implementation.

1 Introduction
Digital communication has become pervasive, but there
are few guarantees that such communications are secure
and private. Indeed, security and privacy threats, long
seen as hypothetical, are already real. In 2004, for the
first time ever, an arrest was publicly acknowledged as
having resulted from passive email monitoring [2].

Though cryptographic techniques exist that can ad-
dress these concerns, no infrastructure is available to
facilitate use by a variety of applications, and across
the Internet. Cryptography has been most successfully
deployed in protocols where a clear client-server rela-
tionship exists, such as Secure Socket Layer/Transport
Layer Security (SSL/TLS) [25, 15], and Secure Shell

(SSH) [68]. While proposals exist for securing less hi-
erarchical applications, such as the Privacy Enhanced
Mail (PEM) [41], and Secure Multimedia Internet Mail
Extensions (S/MIME) [37] specifications for securing
email, they have not been widely adopted.

1.1 The Internet Key Service

In this paper, we focus on a capability crucial to per-
vasive adoption of cryptography:simple, scalable, au-
thenticated public key distribution.We present the Inter-
net Key Service (IKS), a practical and deployable archi-
tecture for providing application-independent public key
distribution layered on top of Secure DNS (DNSSEC).
Our approach is flexible and extensible, it can store and
serve a variety of key types, supporting a variety of ap-
plications.

The Internet Key Service differs substantially from
earlier attempts to provide authenticated public key dis-
tribution. It bases its key-authentication authority on
DNS’s authority to manage Internet names. This is a sig-
nificant feature, since all Internet names are ultimately
DNS names, and DNS’ hierarchical namespace is the
Internet-wide standard for representing who has control
over which names. IKS is also loosely coupled to DNS,
so that it can provide specialized key distribution proto-
cols without changes to or significant overhead on DNS.

The remainder of this document is organized as fol-
lows: Section2 provides necessary background; the fun-
damentals of the domain name system (DNS), and a
brief look at efforts to secure DNS. Section3 briefly sur-
veys related work, including previous proposals for key
distribution. Section4 gives a high-level view of our
proposed solution, exploring the design philosophy and
constraints. Section5 delves deeper into the protocol de-
sign — detailing key query and registration, the server
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location mechanism, message marshaling and transport,
and authentication during key registration. Section6
presents the Riverside Internet Key Server (RIKS) our
proof-of-concept implementation of the IKS. Finally,
Section7 summarizes our findings, and points out av-
enues for future exploration.

2 Background

We assume familiarity with asymmetric (public key)
cryptography, digital signatures and one-way hash func-
tions. Readers unfamiliar with these topics are encour-
aged to consult a cryptography text, such as [56].

2.1 Key Authentication

Key authentication is the process of validating the bind-
ing of a cryptographic key to a named entity. Public key
cryptosystems simplify, but do not solve, the problem of
key distribution, since public keys must be authenticated
to prevent impersonation and man-in-the-middle attacks.
The most widely used approaches for solving the key au-
thentication problem are thecertifying authoritymodel,
exemplified by SSL/TLS, and theweb-of-trustmodel,
exemplified by Pretty Good Privacy (PGP).

Certifying Authorities
The certifying authority (CA) model assumes a small
number of highly trusted individuals (or organizations)
in the community. A new key is accompanied by an as-
sertion (digital signature) from one of these trusted certi-
fiers that the provided key is associated with the claimed
identity. All participants wishing to verify keys signed
by a certifying authority must somehow authenticate its
public key. In practice, a small set of so-calledroot cer-
tificates, which are public keys for various recognized
certifying authorities, are typically loaded into the cryp-
tographic application prior to use.

Webs Of Trust
The web-of-trust model, relies on peers to vouch for the
validity and trustworthiness of other peers. An unfamil-
iar key is accompanied by affirmations (digital signa-
tures) from a set of community members who assert that
the provided key is associated with the claimed iden-
tity. A recipient accepts the key only upon receiving
enough verifiable affirmations from individuals that he
trusts. Researchers have examined the characteristics of
these sorts of trust systems in different contexts [48, 36].

IKS follows the certifying authority model, the IKS
server for a domain acts as a CA for that domain and
its public key can be authenticated by checking its key
commitment with the one published via DNSSEC.

2.2 The Domain Name System (DNS)

The Domain Name System (DNS) [45] is the most ef-
fective and widely-used mechanism for name registra-
tion and resolution on the Internet. It has become a
critical component of the Internet infrastructure. As of
2001, DNS root servers were handling a peak load of
over 5000 queries per second [11].

In DNS names are assigned from a hierarchical
namespace in which organizations are granted control
over a sub-tree rotted at the domain they have registered.
The DNS top-level domains (e.g..com, .org, .edu, .us,
.uk, etc.) are administered by ICANN (Internet Corpo-
ration for Assigned Names and Numbers). Domain ad-
ministrators run DNS servers to provide authoratitive an-
swers to queries regarding the domain and to participate
in resolving DNS queries for clients belonging to the do-
main.

Efforts to Secure DNS
Unfortunately, security was not a primary consideration
during the design and implementation of DNS. Its secu-
rity shortcomings have long been understood, and first
discussed at length in [7, 64]. In [7], Bellovin described
attacks made possible by a combination of poor authen-
tication and authorization techniques and inherent limi-
tations of the DNS, and concluded that a healthy dose of
skepticism and cryptographic authentication help miti-
gate the threats discussed.

The Internet Engineering Task Force (IETF) launched
the DNSSEC effort in 1993 to secure DNS against these
and other attacks. Presently, the DNSSEC working
group proposal is nearing operational readiness, bring-
ing with it the promise of a trustworthy name ser-
vice. We use DNSSEC as a foundation for our key-
distribution architecture.

2.3 DNSSEC Overview

DNSSEC is a collection of proposals for securing the
data stored in DNS. Using cryptographic techniques,
queries and associated responses can be strongly authen-
ticated by the server and requesting client respectively,
greatly reducing the potential for abuse present in the
current DNS. An IETF draft by Atkins and Austein [5]
enumerates the threats DNSSEC is intended to guard
against. We focus here on the portions of DNSSEC rel-
evant to our work. A detailed overview appears in [3].

Zone Signing
DNSSEC offers two fundamental improvements over

traditional DNS: data origin authentication and data in-
tegrity verification. A DNSSEC-enabled DNS server re-
sponsible for a given domain (referred to as azone) cryp-
tographically signs the resource records comprising the
zone with a public/private key pair bound to that zone,
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and delivers those signatures to querying clients.
Resource Record SIGnatures are stored in a new DNS

record type,RRSIG, which contains a cryptographic sig-
nature that authenticates a specific named set of resource
records (termed anRRSet) for a specific duration. Each
named resource in a secured DNS zone will have at least
one associatedRRSIGrecord.

DNSSEC responds to a query from a DNSSEC-
enabled client with the DNS record for the name speci-
fied, along with the associatedRRSIGrecord. The client
obtains the public key associated with the zone contain-
ing the retrieved record and verifies the provided signa-
ture. If the signature is valid, the client can trust that the
response was provided by the authoritative source.

Key Distribution in DNSSEC
To verify signatures, the client must have been ei-

ther statically configured with the public key for the
queried zone (the zone key), or must be able to some-
how obtain and authenticate it. To facilitate distribu-
tion of these public keys, DNSSEC defines aDNSKEY
resource record type. Interestingly, theKEY resource
record, the predecessor to theDNSKEYtype, was origi-
nally intended as a general purpose public key distribu-
tion mechanism [17] but was subsequently restricted to
holding only DNSSEC keys [42] for reasons discussed
in Section2.4.

A DNS client can query for a zone key in the same
way it queries for any other DNS record type. To au-
thenticate the retrieved key, theDNSKEYrecord must
be signed by a key which the client has previously au-
thenticated, typically the key of the parent domain. As
with SSL/TLS, clients are expected to be preconfigured
with a small set of trusted keys. By recursively request-
ing keys while moving up the DNS name hierarchy, the
client will either reach a trusted key, or exhaust the name
space without reaching such a key, causing the key au-
thentication attempt to fail. (While this description is
conceptually sufficient, it is not technically precise. Full
details are in [31].)

DNSSEC Implementation Status
DNSSEC has recently matured into an implementable
system, and has been deployed in the medium scale. Its
signing hierarchy has been revised based on this opera-
tional experience [31]. Some documents concerning op-
erational and security concerns have also been written
and published in [16].

An IETF draft exists that updates RFC 2535 and
details the DNS protocol changes required to support
DNSSEC [4]. A DNSSEC deployment working group
has been formed with support of NIST and ICANN. In
April of 2004, invitation was sent [13] to interested par-
ties to build a road map for DNSSEC deployment. Con-
sensus is growing that DNSSEC is largely ready for de-

ployment, and that 2005 may see the beginnings of wide-
spread adoption.

2.4 Barriers to Distributing Keys in DNS
Unfortunately, DNSSEC does not fully solve the authen-
ticated key distribution problem. As observed in Sec-
tion 2.3, the KEY record defined by DNSSEC was in-
tended to store keys of many sorts, including end-user
application keys. This decision was explicitly reversed
in RFC 3445 for three primary reasons, scalability con-
cerns, query interface limitations, and administrative au-
thority mismatches [42].

Scalability
The original DNS RFC’s proposal to use DNS to house
per-user information clearly did not anticipate that the
growth in Internet user population would far surpass the
growth in DNS-registered host systems. Estimates for
2004 suggest about 945 million users [12], compared
with 230 million hosts [38].

Adding DNSSEC signature records to a zone in-
creases the size of the zone data by a factor of 8 or 9 [27],
and adding per-user keys and their signatures would fur-
ther increase the size of the zone data.

Finally, from a network perspective, DNS has been
designed and optimized for very small query/response
exchanges. Returning key data (and associated signa-
tures) in DNS responses is expected to significantly in-
crease network load, as would zone transfers between
primary and secondary servers.

Query Interface
The second reason for reclaiming theKEY record was a
mismatch between the resolver query interface and the
requirements of an application seeking a particular key.

Different types of keys stored inKEY records were to
be differentiated by subtype, so that a single named en-
tity may have multiple key records, each storing a differ-
ent type of key. Unfortunately, the DNS resolver inter-
face does not support query by subtype, so the client was
forced to retrieve all key records present for the named
entity before sifting through the results for the “right
one.” Since DNSSEC internally requires keys retrieved
from foreign servers, this affected not only applications
but the efficiency of the name service itself.

Administrative Authority
A third significant issue is that the administrative model
for DNS does not match the requirements for managing
end-user keys.

DNS data tends to change slowly and is under the
control of a domain administrator. Allowing users some
level of direct control over their keys, (mediated updates
of DNS key records, for example), would violate the ex-
isting administrative model. Supporting dynamic DNS
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update in the context of DNSSEC is difficult in gen-
eral; RFC 3007 [67] discusses it in detail and several
researchers have contributed solutions [23, 65].

3 Related Work
Here we briefly survey previous approaches to key distri-
bution, from application-specific to general approaches.

3.1 In-Band Key Transmission
A common approach to key distribution is to relegate it
to the communication protocol. The SSH and SSL/TLS
protocols both transmit the necessary keying informa-
tion during connection setup, but they use different
methods for authenticating the received key.

Secure Shell (SSH)
SSH performs initial key authentication by asking the
user to certify the key-host association. A hash of the
public key (akey fingerprint) is then stored locally. Sub-
sequent connections use this stored fingerprint to authen-
ticate known hosts without further user intervention.

This approach assumes that the end-user will know
the appropriate key fingerprint during initial connection
setup. While it limits the window for a successful attack
to the initial connection, it does not eliminate the threat.

This is generally an acceptable level of risk mitigation
when trust relationships are fairly static (users tend to
repeatedly connect to the same small set of hosts). How-
ever, this sort of manual, out-of-band, process is not vi-
able when the trust relationships are more dynamic (i.e.
end-user to end-user communication).

Secure Socket Layer (SSL/TLS)
SSL/TLS uses the certifying authority model; the con-
necting client is provided with the server’s certificate,
signed by one or more certifying authorities. Clients
(such as web browsers) are typically preconfigured with
a number of “root certificates,” which are public keys of
trusted certifying authorities. If the certificate provided
by the server has been signed by a statically known cer-
tifying authority, the connection is established without
user intervention. In principle, the SSL/TLS model per-
mits a hierarchy of intermediate signatories, but this fea-
ture is rarely used in practice.

3.2 Dedicated Key Distribution Services
Another approach to key distribution is to deploy a ded-
icated distributed service to handle the registration and
query of public keys. Several proposals have been made,
mainly differing on how keys are named and bound to
individuals, how clients verify the responses from the
service and how the servers distribute the responsibility
of key distribution.

PGP/GPG

The MIT Pretty Good Privacy (PGP) [70] key server
hosted athttp://pgp.mit.edu[35] is perhaps the best
known dedicated key distribution service. PGP and Gnu
Privacy Guard (GPG) [29] support locating and publish-
ing keys via the PGP key-server.

SPKI
Rivest and Lampson have proposed the Simple Dis-
tributed Security Infrastructure (SDSI) [50], an inte-
grated solution to authentication and authorization based
on capabilities. This proposal has subsequently been in-
corporated into the IETF’s Simple Public Key Infrastruc-
ture (SPKI) working group’s proposal [22]. In SPKI cer-
tificates bind specific authorizations to keys. Names in
SPKI can be assigned to keys and can either exist in a
local namespace or rooted in a global namespace such
as the DNS namespace.

SPKI requres that applications switch from the current
model of seperating authentication and authorization to
the joint authentication/authorization model of SPKI;
with this, the burden of key distribution is pushed onto
the applications making authorization choices about the
resources they control. The burden is upon the client
applications to register or obtain keys and their bound
certificates prior to requesting resources. These require-
ments have significantly impaired the fuller development
and implementation of SPKI. In recent years no sub-
stantial anvances have been made by the SPKI working
group.

COCA
Zhou, Shneider and Reese [69] have proposed COCA, a
distributed Certificate Authority based system that seeks
to improve security by distributing the role of a trusted
CA over a collection of servers. While the implemen-
tation of the CA is distributed to provide security the
logical functionality of the CA is flat, and does not uti-
lize a hierarchical namespace. The issue of user key-
registration in a large, distributed authority system, such
as the Internet, is not addressed.

Scalable Key Distribution Hierarchy
McDaniel and Jamin [43] describe a scheme for a hierar-
chical set of certificate servers similar in capabilities to
the certification authority requirements outlined in the
Privacy Enhanced Email (PEM) specification. The au-
thors describe their design, which is based on a well-
meshed trust graph and is not directly related to the DNS
namespace, and examine its behavior under hypothe-
sized load. They do not discuss operational issues such
as off-line signing keys and heterogeneous keys.

3.3 Distribution by Directory Service

Rather than inventing a dedicated key distribution ser-
vice, many proposals have chosen to incorporate key dis-
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tribution into existing directory services.

X.500, LDAP
ISO and CCITT maintain a set of recommendations for
building distributed replicable directory services under
the umbrella name X.500 [39]. Clients typically access
these directories using the “lightweight directory access
protocol” as defined in RFC 1487.

Configuration and maintenance of an X.500/LDAP di-
rectory is perceived as difficult and complex. Although
standard schemas exist for a wide variety of object types,
including X.509 certificates [9], implementors often ig-
nore or are unaware of these standards. As a result,
X.500 implementations meet the directory-related re-
quirements of the owning organization, but may not be
interoperable across administrative domains. Addition-
ally, LDAP is often not permitted across network bound-
aries, resulting in disconnected islands of information.

Perhaps most damagingly, X.500 complexity is ex-
posed beyond implementor and administrator. Users
searching an X.500/LDAP directory must specify values
for unfamiliar terms such as “Search Base” and “Search
Scope.” Correct values are required to obtain useful
search results, and most tools provide little guidance.
Such factors have prevented X.500/LDAP from becom-
ing a practical Internet-wide key distribution tool.

DNS
Efforts have been made to standardize storing keys of
various types [18, 21, 19, 20, 55] and X.509 certifi-
cates [21] within DNS. Recently, Yahoo! has submitted
an IETF draft [14] that describes using DNS to distribute
public keys for authenticating email delivery.

The FreeS/WAN Project [24], an open source IPSec
implementation, includes support for “opportunistic en-
cryption;” by automatically retrieving host keys from
DNS, end-to-end IPSec encryption could be setup with-
out user intervention. While the FreeS/WAN solution
made retrieving keys from DNS invisible, it did not ad-
dress key publication.

In [26], Galvin presented an overview of DNSSEC
and briefly discussed the potential for using DNSSEC
to distribute end-user public keys [26]. In a subse-
quent RFC [6] the author describes a DNS key exchange
record type with semantics similar to DNS mail ex-
change records. Though focus was on IPSec, the author
briefly describes the potential for this mechanism to del-
egate authority to a more general key distribution center.

3.4 Identity Based Encryption (IBE)
Identity-based cryptography addresses the authenticated
key distribution problem by allowing a sender to directly
derive a public key from a recipient’s name. Each re-
cipient obtains its secret key from a trusted key genera-
tor, which generates this private key from the receiver’s

name, public system parameters, and a system secret.
Since the key generator knows all private keys, this sys-
tem implies key escrow. It also requires secure and
trusted access to the system parameters, which a sender
needs to construct a recipient’s public key.

The work in [59] describes a domain-level key-
distribution scheme using the identity based encryption
scheme of Boneh and Franklin [10]. Since identity based
encryption implies key escrow, this work side-steps the
problem of key registration. Requiring key escrow, how-
ever, is often undesirable or unacceptable, and even care-
ful implementations carry significant risks [1].

4 The Internet Key Service
We now introduce the Internet Key Service (IKS), a ded-
icated key registration and distribution service capable
of publishing keys bound to DNS names. In this sec-
tion, we provide the design rationale and guidelines for
IKS. In Section5, we present an overview of the IKS
protocol. In Section6, we describe RIKS, a prototype
implementation of IKS we have developed to evaluate
IKS.

DNS’s role in naming is a fundamental aspect of the
Internet, so any mechanism to bind keys to named enti-
ties on the Internet must derive its authority from DNS.
All names are ultimately DNS names, and all authority
to bind names and derivatives to objects must ultimately
derive from the authority DNS has over names. This ba-
sic observation drives our design of IKS.

Previous mechanisms for authenticated key distribu-
tion in the Internet have failed either because they were
unable to root their authentication mechanisms in DNS,
or because they attempted to use DNS directly to man-
age keys, causing the problems discussed in Section2.4.

The Internet Key Service overcomes these deficien-
cies by using DNSSEC to effectively transfer DNS’s
authority over name resolution to a specialized service
designed to meet the requirements of authenticated key
distribution. Prior to DNSSEC becoming available, no
natural secure delegation mechanism existed for the In-
ternet. The imminent deployment of DNSSEC has made
the key distribution problem tractable.

4.1 IKS Overview
The IKS model allows public keys to be registered and
retrieved for any entity that can be assigned a DNS
name, such as a host, user, or service port. These keys
are stored in and managed by IKS servers, which may be
discovered securely through DNSSEC. The IKS server
responsible for a domainD accepts key registration re-
quests for keys being bound to names contained inD,
and provides authentic responses to lookup queries for
names contained inD.

A client wishing to register or retrieve a public key
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for an entity with a DNS name first uses DNSSEC to
discover and verify the identity of the IKS key server re-
sponsible for the entity’s domain. It then sends the key-
registration or lookup request to this server using the IKS
protocol, and authenticates the server’s responses using
key commitments placed in DNS, and authenticated by
DNSSEC’s zone signatures. Such authentication guar-
antees that the keys retrieved from IKS are registered
to the indicated name, allowing these keys to be used for
establishing secure communications channels or validat-
ing digital signatures. Figure1 shows high-level infor-
mation flows in the Internet Key Service architecture.

Since each domain administers its own IKS server (or
delegates this task to a trusted organization) there is no
communications between IKS servers of different do-
mains. This is substantially different from the structure
of DNS. This property prevents issues with bottlenecks
that plague DNS scalability. This is possible since IKS
can rely on DNS to provide service discovery of the ap-
propriate IKS server for clients.

4.2 Design Requirements/Constraints

We now discuss some requirements for an authenticated
and secure key distribution service for the Internet.

Authority: The service’s authority to bind DNS names
to keys must derive from DNS’s naming authority.

Scalability: The service must not result in a substantial
increase in load on DNS.

Compatibility: Changes to DNS must be avoided. In
particular, the service must not create new re-
source record types, as such a change requires
additionalper-client software deployment and re-
configuration.

Flexibility: Domain- and application- specific mecha-
nisms for authenticating users during key registra-
tion must be supported. Some services and domains
may be amenable to on-line authentication, while
others may require out-of-band authentication.

Efficiency: The protocol should simplify the common
case, and allow client applications to perform au-
thentication without user intervention. The num-
ber of required messages must be small for perfor-
mance and reliability reasons.

Generality: The query and registration mechanisms
must be application-independent. It must provide
a generic key service useful to any application. In
keeping with the end-to-end principle, we should
not care what the application is.

Security: The server response must serve as validation
of all messages in a key registration or lookup pro-
tocol. Further, to protect the private signing keys,
key registration and query servers should have lim-
ited contact with the system’s key-signing keys.

Consistency: The key-authentication guarantees ex-
pected by an end-user must be consistent with
the guarantees actually provided by the system.
Mismatches between the system model and user
model [46] can be disastrous.

IKS attempts to balance these requirements.

4.3 IKS Architecture
Our use of DNSSEC forauthenticated delegationpro-
vides for both a secure hand-off between DNS and
IKS servers, and a mechanism to authenticate server re-
sponses.

Each participating DNS domain delegates to one or
more IKS servers the responsibility for handling key
query and registration requests. This delegation is ac-
complished by adding resource records to the DNS zone
for the domain being delegated, and is under the domain
administrator’s direct control.

Clients wishing to lookup or register keys for a
name contained in a given domain learn of this delega-
tion through authenticated DNS queries, via DNSSEC.
Clients communicate with the IKS servers via HTTP, re-
trieving a URL to perform queries, and sending SOAP
datagrams [30] to perform registration.

To allow clients to validate responses, IKS servers
sign all keys returned with a named key-signing key
(KSK), the public half of which is committed in
DNSSEC. Clients can retrieve this commitment securely
from DNSSEC, and use the KSK to verify IKS signa-
tures on query results.

All registration acknowledgments, and query re-
sponses indicating query failure, are signed with a
response-signing key (RSK). The RSK, like all keys, can
be retrieved from the IKS and is signed by a KSK. This
indirection allows the server to provide the client with
authentic responses without risking exposure of KSKs.
If an RSK is attacked the worst an adversary can do is
convince the client that an entity has no published keys,
or that an unfulfilled key registration request has been
fulfilled. While this is a legitimate problem it is sub-
stantiably less problematic than an adversary obtaining
a KSK, with which it can arbitrarilly substitute keys. The
adversary’s abilities with an RSK however are not much
stronger than any adversary’s ability to launch a DoS at-
tack on an IKS server.

There is no implicit delegation in IKS, a domain that
does not explicitly publish delegation records is choos-
ing not to participate in IKS. DNSSEC will notify any
requesting clients that IKS is not configured for the do-
main through an authenticated response indicating that
no IKS servers have been designated.

Our scheme is conceptually decoupled from
DNSSEC, relying only on the presence of a trustworthy
name service, not any particular implementation. The
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Figure 1: IKS Architecture: Naming and authentication authority is given by domain administrators to DNS and IKS.
The client uses them to resolve names securely.

impact of changes to DNSSEC standards on our pro-
posal is likely to be minimal. Further, unlike previous
attempts to distribute keys via DNS(SEC), our proposal
does not suffer from any of the three pitfalls enumerated
in Section2.4: scalability, poor query-interface, and
mismatch of administrative authority.

Scalability
By layering IKS on to the hierarchical structure of DNS,
we decentralize the task of key distribution without im-
peding scalability. The additional data placed in DNS,
consisting of delegation records and KSK commitments,
is negligible and does not increase with the number of
keys active in the system. The number of DNS requests
needed to learn of the delegation and retrieve KSK com-
mitments are comparable to the number for resolving
other services (e.g., for publishing the location of a web-
site or FTP server). The delegation mechanism permits
simple weighted load balancing across an arbitrary set
of IKS servers, enhancing system scalability. IKS per-
mits domain administrators wide latitude in distributing
the key management workload, so that each deployment
site can adopt the approach that best fits its particular
requirements.

Query Interface
IKS uses a specialized query and registration protocol
which provides the appropriate level of expressiveness
for key registration and key distribution. Clients can per-
form narrow searches, based on attributes such as key
length, cryptographic algorithm, and key-container for-
mat, to discover keys suitable for their purposes.

Administrative Authority
Unlike proposals to distribute keys in DNS, IKS places
minimal burden on DNS administrators, and does not
cause rapid changes to DNS zone data. The delegation

records for a given domain are expected to be static, and
publication and revocation of key-signing keys are ex-
pected to be infrequent events, not driven by end-user
behavior.

5 Protocol Overview

We introduce IKS by showing how to fetch and register
a key corresponding to a name. We briefly discuss the
issue of key revocation in IKS.

5.0.1 Key Lookup

A nameN = (E,D) consists of two components: the
entitypartE that designates the user, host, or communi-
cation endpoint, and thedomainpartD, which is a DNS
domain name. A name may be associated with one or
more keys. A query specifies a nameN and a set of key
selection criteriaC, and is processed as follows.

1. Issue a DNS query for the IKS server registered
to handle queries for domainD. If the query suc-
ceeds, and the response can be authenticated via
the DNSSEC mechanisms described in Section2.3,
send a key-query message to the IKS server speci-
fying entityN.
IKS will respond with metadata for all public keys
registered forN, signed with a key-signing key
(KSK), whose name is included in the response.

2. Validate the IKS response as follows:

(a) Fetch the indicated KSK from the IKS server.
(b) Request the commitment for this KSK from

DNS. Validate this response using DNSSEC
zone signatures.

(c) Validate the KSK using this commitment.
(d) Verify the IKS signature on the metadata for

N’s keys using the KSK.
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3. The key metadata is now processed at the client
end, and metadata for keys matching the selection
criteria C are extracted. These keys are fetched
from IKS and verified using the appropriate KSK.

In the event thatN does not have any keys published
in IKS the query server will need to generate a signed
negative response. This negative response is signed with
a response-signing key that is registered in IKS so that
the client may validate the signature without requiring
the query server to risk exposure of the KSK by keeping
it available on-line in order to sign these responses.

Trust Guarantees for IKS Responses
In accordance with our discussion in Section4.2, we

explicitly state the guarantee made by the Internet Key
Service. A valid signature on a query response indicates
the following.

1. The IKS server for domainD asserts that the key
provided is bound to nameN in domainD.

2. The administrators of domainD have verified, to
the extentthey see fit, that the key in question was
registered in the IKS for domainD by the user or
agent in control of nameN.

A signed IKS responsemakes no guaranteesabout how
the verification was performed during key registration.
The client who receives a validated query response must
decide what degree of trust to place in the mechanisms
that are in place in domainD. Though IKS insulates
the end-user from the complexities of the mechanics of
key distribution, it is not intended to provide guarantees
about the trustworthiness of individual domains, which
ultimately hold contorl over names in that domain.

5.0.2 Key Registration

Given a target nameN = (E,D) and a public keyK,
registration proceeds as follows:

1. Issue a DNS query for the IKS server registered
to handle queries for domainD. If the query suc-
ceeds, and the response can be authenticated via
the DNSSEC mechanisms described in Section2.3,
send a key-registration message to the IKS server
specifying entityN, the keyK, relevant metadata
(permitted uses, expiration date, and so on), and au-
thentication information.

2. If authentication succeeds, and the registration is
authorized, the server returns a success message
signed by a named response-signing key (RSK).
The client can authenticate this RSK and the re-
sponse as it does for key lookups.

3. If authentication or authorization fails, the IKS re-
sponds with a list of supported authentication meth-
ods, as guidance for the client.

In the event that the authentication fails, the registra-
tion server will generate a signed response indicating ac-
ceptable methods of authentication in order to guide the
client in completing this transaction. As with negative
query responses these authentication failure responses
are signed with a response-signing key (RSK) rather
than the KSK.

Authentication During Registration
The flexibility constraint (Section4.2) requires that the
registration server have wide latitude with respect to
how to perform authentication when keys are registered.
Flexibility, however, works against the efficiency con-
straint, which requires us to simplify the common case.
Increasing flexibility can decrease security, and increase
both complexity and the likelihood that human interven-
tion will be needed.

To understand the challenges in designing authenti-
cation mechanisms for key registration, let us consider
some authentication schemes that IKS may need to sup-
port.

• It is common to authenticate on the basis of a
shared secret, typically a username and password.
While weak by modern cryptographic standards,
this mechanism has survived and is widely used.

• Variations on this theme abound, including one-
time password schemes such as S/Key [33] and
OTP [34], as well as two-factor schemes involv-
ing hardware devices such as RSA’s SecurID [52].
These schemes often appear identical to user-
name/password schemes from the system perspec-
tive.

• The coarsest authentication model we address is
“proxy” authentication, in which a trusted, well-
authenticated party is allowed to vouch for the iden-
tity of others. This may be a designated system ad-
ministrator attesting for the credentials for the re-
questing client out of band, and authenticating him-
self to the system to authorize the request.

Our challenge is to permit these and other authentica-
tion schemes to be incorporated in a flexible, yet man-
ageable, manner. We must be careful that our protocol
will facilitate the building of clients that will operate cor-
rectly in different domains. We have standardized three
authentication mechanisms for IKS.

Usename/Password:A client may authenticate to an
IKS server using a shared secret, such as a user-
name and password. A public RSA encryption key
for IKS would be published in IKS. A client may
use this key to securely send the the secret to the
server in a key-registration request.

User Key Management: A client acting on behalf of
a userU may authenticate its key-registration re-
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quests by signing it with the private half of a special
purpose key, the public half of which has been pre-
viously registered toU using IKS. The registration
server can then verify the request against this key.

Third-Party Authentication: IKS supports other, pos-
sibly domain-specific, authentication methods, by
allowing the authentication of registration requests
based on signatures using other certifying keys,
again published via IKS. The private half of these
keys can be distributed to a number of third-party
authentication servers, which can implement arbi-
trary authentication protocols and use signatures
with these keys to validate their authentication with
the IKS registration server. These external authen-
tication protocols are outside of the scope of IKS.

In practice, it is likely that the Username/Password
and User Key Management authentication methods will
be useful and sufficient for the majority of IKS instal-
lations. The third-party authentication method provides
an extensible approach for supporting arbitrary authen-
tication procedures. For example, IKS usage for VoIP
services is likely to require some form of key escrow
to support legal wire-tap warrants by law enforcement
agencies in the United States. Third-party authentica-
tion could be setup to require this key escrow prior to
authenticating a VoIP key-registration request.

5.0.3 Key Revocation
When a key is registered in IKS an expiration time is op-
tionally provided to allow for the gracefull degredation
of old keys. In the exceptional case in which a key’s se-
curity is compromised and it must be forceably revoked
before the end of its intended lifetime IKS supports a
simple mechanism for revoking the key. Before IKS re-
vokes a published key the key’s client must detect that
the key has been compromised and submit an authenti-
cated key revocation request to the IKS server. Macha-
nisms for timely dissemination of key revocation infor-
mation is both application specific, and a generally open
problem outside the scope of IKS. Once a key revoca-
tion request is authenticated and accepted by the IKS
server the key’s IKS entry is updated and a signed key
revocation response is prepared for responding to future
queries for this key.

The timing requirements between the acceptance of a
key revocation request and the publication of the signed
key revocation response are open but implementations
should seek to minimize this delay in order to mitigate
the dangers presented by a compromised key. It is re-
quired that no subsequent non-revoked key certificates
are published by IKS after a key has been revoked. IKS
is designed so that implementations may severely limit
the lifetime of key certificates in order to limit the ef-
fect of caching keys at clients. IKS servers using long

lived key certificates avoid continued lookup queries
from clients, who may cache authenticated responses for
longer time periods, but are less able to quickly respond
to key revocations.

5.1 Locating an IKS Server

A fundamental issue is how a client identifies the IKS
server responsible for handling requests for a given do-
main. We have chosen to use the existingSRVrecord
type, intended for service location [32].

DNS SRV Records
DNS SRVrecords are intended to allow clients to per-
form service discovery using DNS. As defined in RFC
1700 [49], a client locates a server for serviceS run-
ning a protocolP in domainD, through a DNS query
for S. P.D . The response includes a list of(host,
port) pairs, along with a priority for each matching
record and a weight used to distribute load across servers
of the same priority.

Key Service and Protocol Names
To locate a server using DNSSRVrecords, a client must
first know the service and protocol names. Since, in
principle, key lookups may be handled by a different set
of servers than registration requests, we will use two dis-
tinct service names. The choice of service names is en-
tirely capricious. We have currently chosenikqs , for
“Internet Key-Query Service”, andikrs , for “Internet
Key-Registration Service,” respectively.

Hence, a client wishing to locate a server capable of
handling queries for names in domainDwould query for
anSRVrecord matchingikqs. tcp.D . Similarly, to
locate a server capable of handling registration requests
for names inD, SRVrecords matchingikrs. tcp.D
would be requested.

The IKS for a given domain need not actually be
hosted in or by the owner of the domain. The domain
administrator may delegate this function by adding the
requiredSRVrecords. We see the potential for organi-
zations, possibly existing certifying authorities who al-
ready have a good understanding of the operational se-
curity issues involved in key management, to offer IKS
services to domain administrators.

5.2 Message Marshalling and Transport

We have chosen XML as the format for IKS messages
to ensure compatibility with the dominant message for-
mat protocol and the dominant class of applications on
the Internet. This approach conforms to current indus-
try best practices and standards for remote service loca-
tion and invocation. It is relatively straightforward for
a client to be able to parse and to generate the simple
XML messages used in IKS.
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Marshalling
The World Wide Web Consortium (W3C) has published
a multi-part recommendation called SOAP (Simple Ob-
ject Access Protocol) specifying an interoperable means
of using XML to exchange structured and typed infor-
mation in a distributed environment or application [30].

SOAP specifies message formatting, including the
overall structure of the message as an XML document
(called the SOAPenvelope), the structure of an optional
header carrying non-payload information, and the struc-
ture of the body carrying the message payload. SOAP
is transport-independent, dictating only the high-level
message format and providing bindings to various trans-
port mechanisms, including HTTP. A more complete
overview of SOAP, with supporting examples, can be
found in [44].

Since SOAP is an emerging standard, and XML is al-
ready a dominant message exchange format on the Inter-
net, we have chosen SOAP to encode registration mes-
sages. Relevant details of the SOAP message structure
will be explained as they are required.

Transport
With the increasing popularity of the Web Services
model of remote service invocation, HTTP and HTTPS
are fast becoming the de facto standard transport pro-
tocols for remote procedure call. One of the primary
reasons for this adoption is that HTTP and HTTPS are
typically permitted through firewalls and across differ-
ent administrative domains within an organization. This
is reinforced by the relative simplicity of the protocol, as
well as availability of client and server implementations.
Given SOAP’s transport independence, other transport
mechanisms may be supported in the future.

Query Optimization
Due to the relative simplicity of query operations, and
the need to optimize this common operation, we have
chosen to provide a simplified and optimized interface
to lookup operations. Query requests are mapped, by
the IKS client, into HTTP requests for static XML docu-
ments using a URL-safe encoding of the queried object’s
name [53]. This optimization allows the query server to
return the query response in the form of a precomputed
response. The response XML format is similar to the
SOAP formats used by the registration server but with-
out the overhead of the SOAP envelope, and without the
need for dynamic response generation.

5.3 Query and Registration URIs
Determining the name of the host providing the desired
service, as described in5.1, is insufficient to actually
contact the service end-point. Since SOAP services are
differentiated by URI, we use the service names estab-
lished previously as URI components. The path “/ikqs”

references the key-query service and “/ikrs” references
the key-registration service. Given the host and port in-
formation obtained from theSRVrecords, a client can
construct complete URIs for the desired service. Modern
HTTP servers provide flexible mechanisms to map the
published URI space into an arbitrary server side struc-
ture, so the mandate of public endpoint names does not
dictate server side details.

5.4 Authenticating Key-Signing Keys

As mentioned in Section4.3, query response messages
are signed by one of the domain’s key-signing keys
(KSK). To verify this signature, the client must fetch the
KSK from IKS as well as the commitment for that KSK
from DNSSEC. To avoid polluting a domain’s DNS
name space with a slew of standardized names, we al-
low the query response to identify the signature’s KSK
by name, and require only that a commitment to the KSK
be published in DNSSEC by the domain being queried.

While it is tempting to store these keys using theKEY
resource record format for DSA keys described in RFC
2536 [18], this strategy runs afoul of RFC 3445 [42],
which prohibits storing keys not directly consumed by
DNSSEC inKEY records. Instead, we store a key-
commitment (a SHA-1 hash) of the KSK in DNS, in-
stead of the entire key. (Recent cryptanalytic results
against SHA-1 mandate re-evaluating the use of SHA-1
as a secure hash function [8, 66].) The guarantees made
by DNSSEC will continue to apply, the achieved secu-
rity is equivalent, as long as a secure hash function is
used.

A named KSKK for domainDmust be a DSA key in
PEM format stored on the IKS server serving queries for
domainD for nameK. The hash of the PEM key data is
stored in a DNS text record with the namesha1 K. This
record will contain a hexadecimal representation of the
SHA-1 hash value in big-endian byte order.

To verify the results of a query, the client first ob-
tains the KSK by requesting the key named in the query
response from the server. Subsequently, the client re-
trieves the commitment of that KSK from DNSSEC and
confirms that the retrieved key matches the commitment.
Finally, the KSK is used to verify the query results.

We do not require KSKs to explicitly have a lifetime.
A KSK’s lifetime is bound by the validity period of its
commitment’s DNSSEC signatures and its appearance
in query responses. If a KSK is compromised, or is being
routinely refreshed, query responses signed with the old
key must be re-signed with the new key. Clients may
cache a KSK until its DNSSEC signature expires, and
use this cached key to validate any retrieved records that
use it.
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5.5 Key Metadata Specification
To facilitate the selection and use of keys stored in IKS,
we have specified the standardized metadata attributes
included in IKS key entries. We have selected a stan-
dardized set of key information that describes the valid
uses, lifetime, and storage format of the keys stored in
IKS. Table1 shows the supported attributes.

Attribute Description

Name Fully qualified entity name
Service Service name

Id Unique key identifier
Format Key storage format

Algorithm Signing algorithm
Length Key length

Allowed Use one of{privacy, authenticity,
privacy+authenticity}

Valid After Start of key lifetime
Valid Until End of key lifetime/null
Revoked At Key revocation time/null

Table 1: Key Metadata Supported by IKS

At the moment, other key information must be en-
coded into the stored key itself, requiring a suitable key
format specification, and requires fetching the key in or-
der to extract.

6 The Riverside Internet Key Server
We have built a prototype implementation of IKS, which
we call the Riverside Internet Key Server (RIKS). In this
section, we will describe the issues, the design choices,
and our preliminary experience with this system.

We decided early on to leverage as much existing code
as possible in building RIKS. Our discussions below
identify the third-party components used, and point out
relevant details of each.

Our presentation is in four parts: securing a zone us-
ing DNSSEC, the RIKS server components, the RIKS
client library, and our experience writing simple test
clients.

6.1 DNSSEC Theory into Practice
We now discuss several issues that we encountered in
using DNSSEC effectively in our work. We point out
difficulties, and describe how we addressed them.

Securing a Zone
The first issue was the provisioning of a security-aware
DNS server. The latest release candidates of BIND
(9.3rc1, at the time of this writing) are closely tracking
the latest DNSSEC IETF drafts, and include utilities to
perform key generation and zone signing [63]. The de-

tails of configuring DNS are outside the scope of this
paper, and the details of configuring DNSSEC are guar-
anteed to change over time, and are therefore omitted.

One general problem we observed was that while
DNSSEC implementations seem to be maturing quickly,
the documentation for implementors is often nonexistent
or inaccurate. We found the operational HOWTO by
Olaf Kolkman [40] useful guidance in configuring se-
cure resolvers and zones.

Secure Resolution
Secure resolution involves three actors: the security-
enabled server, the verifying resolver trusted by the
client, and the requesting client. The client, which may
be unaware of DNSSEC, submits a query to the veri-
fying resolver, which returns validated results. If vali-
dation is successful, the resolver responds with the re-
quested records, setting the authenticated data (AD) bit
to indicate the data has been verified.

The BIND distribution includes a lightweight resolver
daemon, calledlwresd . This daemon, intended to be
run on each client host and service only local requests,
provides implementations of the standard resolution in-
terfaces as well as extensions that give clients additional
control over name resolution. The documentation on
lwresd configuration and use is sparse, and improved
documentation would be helpful.

Secure Resolver Interface
Typically, the mechanics of name resolution are hidden
by networking libraries, allowing developers to work
in terms of higher-level network operations. DNSSEC
throws a proverbial monkey-wrench into the gears. Ex-
isting applications are unaware of DNSSEC. Conse-
quently, they have no way to interpret information about
the validity of query responses, and the application pro-
grammer interfaces (APIs) they use have no means to
express this information.

In the longer term, clients may expect that all DNS
responses will be validated by DNSSEC, and non-
verifiable responses will not be returned to them. In the
short term, it is unclear how applications that are inter-
ested in the security state of their name-resolution re-
quests will interface with the verifying resolver. It is un-
desirable to have each application embed a verifying re-
solver, but the standard library interfaces are inadequate.
Further, validation requires cryptographic code, which
is unlikely to find its way into the standard system li-
braries. The interface between clients and resolvers is
still a topic of active development and an evolving IETF
draft [28].

6.2 The RIKS Server
The RIKS server is composed of three components, one
to handle query requests, one to handle registration and
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revocation requests, and a separate update process to
generate signed query responses for the query handler
(and in the darkness BIND them.) For security rea-
sons, only the update process is given access to the do-
main’s KSKs. The components of the server communi-
cate through a relational database.

RIKS is designed to make key lookups efficient. All
valid keys are stored in an SQLite [60] database as XML
objects already signed with the KSK. A lookup is simply
a retrieval from the database. A separate activity (the
update process) periodically ensures that these objects
are current and carry valid signatures.

We have identified three signature generation strate-
gies, which differ in the time at which the KSK is needed
and which processes have access to it.

On-line: The key-registration handler signs keys with
the KSK immediately upon their acceptance by the
system. This method has the advantages that it
is easy to implement and updates are immediately
available to clients.

On-demand: The key-lookup handler checks the
database for a response object. If it exists and is
signed, it is returned. Otherwise, it is immediately
signed and returned to the requesting client. This
method has the advantage that no unnecessary sig-
natures are computed.

Off-line: All signatures are generated by an off-line
process that runs periodically. This method has
the advantages, because the key-signing key can be
kept offline during operation, it is most secure and
updates can be scheduled at regular intervals.

RIKS currently supports only the off-line method of sig-
nature generation. However, it would be very straight-
forward for us to add the other signature methods, and
for RIKS deployments to select one as a configuration
option. Figure2 shows the current RIKS Architecture.

a

6.2.1 Implementation Toolkit

We chose to implement RIKS in Python [51], using the
Zolera Soap Infrastructure (ZSI) [54], modpython[62].
Requests from clients take the form of HTTP queries,
and are handled using the Apache [61] web server. The
M2Crypto [58] wrapper provides Python access to the
cryptographic functionality in the OpenSSL library. The
server uses SQLite [60], an embeddable SQL’92 com-
pliant RDBMS engine, andpysqlite[47], a Python DB-
API [57] compliant interface layer, for underlying data
storage.

During our work, we identified and corrected de-
fects in the ZSI framework code, and exposed additional
OpenSSL functionality to the M2Crypto Python crypto-
graphic library. These improvements have been submit-

ted back to the respective package maintainers.

6.2.2 Registration Handler
New key-registration requests and key-revocation re-
quests are sent to the Registration handler. These re-
quests must be authenticated and authorized before ex-
ecution. Likewise, the server’s response to the client is
signed by a response-signing key (RSK), as confirmation
to the client that its request was received by the registra-
tion handler.

6.2.3 Update Process
Before the effects of registration and revocation opera-
tions performed by the registration handler are made vis-
ible to querying clients, the corresponding signed key-
query response messages have to be generated by the
update process, which is granted, potentially temporary,
access to at least one of the domain’s KSKs. Addition-
ally, as query response messages expire, replacement
signatures must be generated.

The update process runs in two stages, in the first
phase it queries the database to generate a worklist of
responses to generate. This is followed by a work phase
in which query responses are prepared and signed for the
query handler.

6.2.4 Query Handler
When a request for keys registered under a given name
arrives, the query handler simply looks in the database
for a pre-signed message with this information already
placed there by the update process (see Section6.2.3). If
no such object is found in the database, the query handler
returns a failure response signed with the RSK.

Caching can play the same role in reducing load on
IKS that it plays with DNS. Clients should actively
cache responses to avoid unnecessary queries to the IKS
query server. Caching will also improve the latency seen
by the application, since signatures need not be verified
for every request. Unlike DNS, where cache misses fre-
quently result in a query to a root name server, IKS cache
misses are sent directly to the IKS server responsible for
the indicated domain. No bottlenecks result since re-
quests are distributed across a large number of domains,
managed by different IKS servers.

6.2.5 Performance
We ran a series of tests to measure the registration, up-
date, and query performance of our RIKS prototype.
These tests were run on a single CPU (1.5GHz Pentium
4M) laptop machine with 512MB of RAM. The tests
were run with a moderate-sized database, containing be-
tween 50,000 and 60,000 entries (10 keys registered to
each user). This database was approximately 300 MB in
size. Table2 summarizes RIKS performance.
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Figure 2: RIKS Architecture using off-line signature generation.

Operation Registration Query Update

Transactions/sec 6.1 295 68

Table 2: RIKS Performance Summary

The RIKS prototype query handler was able to serve
295 key lookup requests per second, a number we re-
gard as adequate for use in practice. When IKS caching
is used on client sites, we expect the workload on the
IKS servers to be reduced dramatically. We also expect
IKS throughput to increase significantly once we opti-
mize our implementation further. A large, high-traffic,
domain can easilly parallelize their IKS server in order
to provide higher performance.

The RIKS registration handler was able to complete
6.1 registration requests per second. The bulk of its time
was spent in parsing incoming requests, serializing suc-
cess responses and sending them back to the client. Ap-
proximately 12% of the registration handler’s time was
spent authenticating requests, storing the new keys in the
database, and signing responses. Registrations are rel-
atively rare compared to key lookups, and we see this
performance as reasonable.

The update activity identifies keys that must be reg-
istered, re-signed, expired, or purged, and then process
them. The RIKS update process took 70 seconds to iden-
tify entries requiring reprocessing, with the database on
disk. Once the database was loaded into memory, this
same operation took 2.0 to 2.5 seconds. After construct-
ing this worklist, the update process completed generat-
ing and signing query responses at a rate of 68 per sec-
ond.

A successful registration of a 1024 bit DSA key re-
quires approximately 4 KB of SOAP messages to be sent
between the client and server. XML query responses
were approximately 1.8 KB each.

6.3 RIKS Client Library
Currently, the only complete client library available for
RIKS is a Python module that shares core portions of the
server’s code base. While this client library is functional,
it is not appropriate for inclusion in most client applica-
tions. We are re-implementing our client library in ANSI
C, and expect this effort to be completed shortly.

We have taken measures to limit the complexity of the
client library so that we can reasonably expect any cryp-
tographically aware application to include it in order to
publish and lookup keys in IKS. Aside from the cryp-
tographic operations provided by the OpenSSL toolkit
most IKS operations are handled by libraries included
with languages such as Python or Java and are easily
available for C or C++.

Python DNSSEC Resolver Status
Python lacks DNSSEC resolver support, and we are
in the process of building a bridge to the native-code
lwresd library. In the interim, our client library uses
a dummy DNSSEC resolver implementation which re-
solves DNS queries from its own trusted data source
(provided by the client).

6.4 Sample Client Code
Several small client applications have been written in
Python using the RIKS client library in order to vali-
date the correctness of the server and client as well as
to perform the performance measurements reported in
Section6.2.5. Each of these performance tests were sim-
ple, using only a few dozen lines of Python to drive the
RIKS. We feel that the API being exposed to the client
is easy to use and appropriate for adding IKS support to
existing applications.

6.5 Discussion
Our focus to date has been on ensuring the correctness
of the RIKS implementation. We have a fully functional
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and usable prototype, but several issues need to be ad-
dressed before it is ready for production deployment.
For example, our current implementation is suceptable
to SQL injection attacks that can compromise the in-
tegrity of the key database. Stringent filtering of user in-
put would protect the database from such un-authorized
changes.

Numerous optimizations are also possible on the
database. Performance may suffer when domains be-
come very large. Horizontal partitioning of the database
is a viable option in this case. Our architecture allows
the individual RIKS processes to run independently on
separate CPUs.

7 Conclusions & Future Work
Security and privacy are becoming major concerns as In-
ternet continues to grow. Powerful cryptographic tools
exist to address such concerns, but have not been widely
used since no convenient infrastructure is available for
distributed authenticated key distribution. IKS is in-
tended to accelerate the development and widespread
adoption of cryptographically-enabled applications by
addressing this need. IKS is a simple, scalable public
key distribution service, and its protocols have been de-
signed specifically to meet the requirements of this do-
main, conforming to current industry best practices and
standards for remote service location and invocation.

We rely on DNSSEC to provide authenticated and
trustworthy name resolution and delegation, conforming
to DNS’s domain delegation semantics, while keeping
the functional overhead of key distribution outside the
critical DNS infrastructure. This strategy allows us to
use the name service infrastructure to provide authentic-
ity guarantees while avoiding the scalability, efficiency,
and administrative pitfalls of earlier DNS-based mech-
anisms. Furthermore, we use DNS names directly, and
not a namespace orthogonal to it, facilitating its integra-
tion into the existing Internet infrastructure.

We have presented the design and implementation of
RIKS, the Riverside Internet Key Server, a prototype im-
plementation of IKS. RIKS consists of approximately
4000 lines of Python code, and demonstrates perfor-
mance adequate to justify confidence in our approach.
The RIKS client library API provides a simple interface
to IKS, making it easier to incorporate key authentica-
tion into existing collaborative tools.

Future Work
With our continuing work on IKS, we hope to progress
to the development of an IKS standard specification, to
incorporate input from the community and motivate de-
ployment in tandem with DNSSEC.

We will continue improving RIKS in order to improve
its performance, security, and manageability. Much

work remains to be done to allow RIKS to serve the
needs of large ISPs. We feel that that the current RIKS
key-lookup performance is adequate for use in the con-
text of a large ISP, but that we will need a five-fold
increase in registration performance and a smaller im-
provement in update performance. We believe these re-
quirements are achievable.

To verify the ease with which existing applications
can be extended to use IKS, we are planning the deploy-
ment of a secure application. While distributed applica-
tions, such as email and VoIP, will benefit most from IKS
in the longer term, it should be straightforward to deploy
IKS within a single domain, even with the current de-
ployment status of DNSSEC. Centralized applications,
including certain Instant Messaging applications, could
easily be secured using IKS today.

As DNSSEC gains adoption and penetration, we be-
lieve IKS will facilitate authenticated public key distri-
bution, improving the security of existing network appli-
cations and protocols, and enabling new developments.
When Alice must locate Bob’s key, she can turn to IKS.
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