
Ten Years of Saturation: a Petri Net Perspective

Gianfranco Ciardo, Yang Zhao, and Xiaoqing Jin

Department of Computer Science and Engineering, University of California, Riverside
ciardo@cs.ucr.edu zhaoy@cs.ucr.edu jinx@cs.ucr.edu

Abstract. Due to their appealing conceptual simplicity and availabil-
ity of computer tools for their analysis, Petri nets are widely used to
model discrete-event systems in many areas of engineering. However, the
computational resources required to carry out the analysis of a Petri
net model are often enormous, hindering their practical impact. In this
survey, we consider how symbolic methods based on the use of decision
diagrams can greatly increase the size of Petri nets that an ordinary com-
puter can reasonably tackle. In particular, we present this survey from
the perspective of the efficient saturation method we proposed a decade
ago, and introduce along the way the most appropriate classes of decision
diagrams to answer important Petri net questions, from reachability to
CTL model checking and counterexample generation, from p-semiflow
computation to the solution of timed or Markovian nets.

1 Introduction

Since their definition 50 years ago [45], Petri nets have become a well known
formalism to model discrete-state systems and many algorithms have been de-
veloped for their analysis [46]. However, even when the net is bounded, algo-
rithms that manipulate the set of reachable markings usually require enormous
computational resources when run on practical models.

Binary decision diagrams, introduced 25 year ago [8], have had a tremendous
impact on industrial hardware verification, due to their ability to symbolically
encode complex boolean function on enormous domains [9, 39]. More precisely,
while their worst-case complexity remains exponential in the number of boolean
variables, many cases of practical interest have much better behavior, as attested
by numerous successful verification and bug finding studies [24].

In this survey, we explore how decision diagram technology can greatly en-
hance our capability to analyze various classes of Petri nets. We do so in light
of an algorithm we introduced 10 years ago, saturation [13], which tends to
perform extremely well when applied to discrete-event systems having multiple
asynchronous events that depend and affect only relatively small subsystems, a
prime example of which is, of course, Petri nets. To provide a solid introduc-
tory treatment to decision diagrams, their manipulation algorithms, and their
application to Petri net problems, this survey contains many illustrations, de-
tailed pseudocode for representative algorithms, an extensive set of models, and
memory and time results obtained when running the algorithms on these models.

The rest of our survey is organized as follows. Section 2 discusses reachability-
set generation for Petri nets, from safe nets up to extended Petri nets, focusing
on efficient canonical forms of boolean-valued decision diagrams and the use
of acceleration techniques to improve efficiency, including saturation. Section 3
considers CTL model checking for Petri nets, which benefits from the techniques
introduced for reachability; to generate shortest CTL witnesses/counterexamples
or bound exploration, we employ instead a form of edge-valued decision diagrams
able to encode partial integer-valued functions, which can nevertheless be used
in conjunction with saturation. Section 4 moves to non-boolean Petri net ques-
tions: p-semiflows computation, using zero-suppressed decision diagrams; timed
and earliest reachability for a class of integer-timed Petri nets, using a com-
bination of boolean and integer-valued decision diagrams; stationary analysis
of generalized stochastic Petri nets, for which the generation of the transition
rate matrix using real-valued decision diagrams is usually quite efficient, but
for which an efficient fully-symbolic exact solution still eludes us; and heuristic
derivation of good variable orders for the decision diagram variables based on
the structural characteristics of the Petri net. Section 5 presents a brief list of
available decision diagram libraries and tools using decision diagram technology.

2 Reachability-set generation for Petri nets

This section recalls first the standard definition of Petri nets and later an ex-
tended definition for self-modifying nets, introduces the most basic classes of
decision diagrams, BDDs and MDDs, and uses them to generate a symbolic en-
coding of the reachability set. In addition to the simpler breadth-first approach,
it introduces more sophisticated fixpoint iteration strategies, chaining and satu-
ration, which can provide much greater memory and runtime efficiency.

2.1 Petri nets

We use the standard definition of a Petri net as a tuple (P,T ,D−,D+,iinit) where:

– P is a set of places, drawn as circles, and T is a set of transitions, drawn as
rectangles, satisfying P ∩ T = ∅.

– D− : P ×T → N and D+ : P ×T → N are the input arc and the output arc
cardinalities, respectively.

– iinit ∈ N
|P| is the initial marking, specifying a number of tokens initially

present in each place.

If the current marking is i ∈ N
|P|, we say that α ∈ T is enabled in i, written

α ∈ T (i), iff ∀p ∈ P,D−
p,α ≤ ip. Then, α ∈ T (i) can fire, changing the marking to

j, written i
α
⇁j, satisfying ∀p ∈ P, jp = ip −D−

p,α +D+
p,α. A Petri net is a special

case of a discrete-state system with a potential state space Xpot = N
|P|, a next-

state or forward function N : Xpot → 2Xpot given by the union N =
⋃

α∈T Nα of
the forward functions for each Petri net transition, where Nα(i) = ∅ if α 6∈ T (i),

while Nα(i) = {j} if instead i
α
⇁j, and an initial state set Xinit = {iinit}. Indeed,

we could have defined the Petri net with an arbitrary initial set of markings
Xinit ⊆ N

|P|, and let the net nondeterministically start in one of these markings.
The reachable state space Xrch, or reachability set, of such a model is then defined
as the smallest set X ⊆ Xpot containing Xinit and satisfying either the recursive
definition i ∈ X ∧ j ∈ N (i) ⇒ j ∈ X , which is the base for explicit state-space
generation methods, or, equivalently, the fixpoint equation X = X∪N (X), which
is the base for symbolic state-space generation methods. Either way, we can write

Xrch = Xinit ∪ N (Xinit) ∪ N
2(Xinit) ∪ N

3(Xinit) ∪ · · · = N
∗(Xinit).

2.2 Binary decision diagrams and their operations

An (ordered) binary decision diagram (BDD) over the sequence of domain vari-
ables (vL, . . . , v1), with an order vl ≻ vk iff l > k defined on them, is an acyclic
directed edge-labeled graph where:

– The only terminal nodes can be 0 and 1, and are associated with the range
variable 0.var = 1.var = v0, satisfying vk ≻ v0 for any domain variable vk.

– A nonterminal node p is associated with a domain variable p.var .
– A nonterminal node p has two outgoing edges labeled 0 and 1, pointing to

children denoted respectively p[0] and p[1].
– The variable of the children is lower than that of p, that is, p.var ≻ p[0].var

and p.var ≻ p[1].var .

Node p with p.var=vk encodes function fp : BL → B, recursively defined by

fp(iL, ..., i1) =

{

p if k = 0

fp[ik](iL, ..., i1) if k > 0

(we write fp as a function of L variables even when k < L, to stress that any
variable xh not explicitly appearing on a path from p to a terminal node is a
“don’t care” for fp, regardless of whether h < k or h > k).

We restrict ourselves to canonical forms of decision diagrams, where each
function that can be encoded by a given class of decision diagrams has a unique
representation in that class. For BDDs, canonicity is achieved by requiring that

1. There is no duplicate: if p.var=q.var , p[0]=q[0], and p[1]=q[1], then p=q.
2. One of the following forms holds.

Quasi-reduced form: there is no variable skipping, i.e., if p.var = vk, then
p[0].var=p[1].var=vk−1 and k=L if p is a root (has no incoming arcs).

Fully-reduced form: there is maximum variable skipping, i.e., no redundant
node p exists, with p[0] = p[1].

Fig. 1 shows a quasi-reduced and a fully-reduced BDD encoding the same func-
tion over (v4, v3, v2, v1), redundant nodes are indicated in grey.

Both canonical versions enjoy desirable properties: if functions f and g are
encoded using BDDs, then satisfiability, “f 6= 0?”, and equivalence, “f = g?”,

v4 v3 v2 v1 + (v4 + v3) (v2 + v1) 0 1

0 1

0 1

0 10 1

0 1

v3 v2 v1 + v3 (v2 + v1)

v2 v1 v2 + v1

v1

10

0 1

0 10 10 1

v2 + v1

v1

v2

v3

v4 0 1

0 1

0 1

0 10 1

0 1

10

v4 v3 v2 v1 + (v4 + v3) (v2 + v1)

v3 v2 v1 + v3 (v2 + v1)

v2 v1 v2 + v1

v1

Fig. 1. Quasi-reduced (left) and fully-reduced (right) BDDs for the same function.

∅ Xpot=B
4 {0011, 0101, 0110, 0111, 1001,

1010, 1011, 1101, 1110, 1111}
{0000, 0001, 0010,
0100, 1000, 1100}

0

0 1

0 1

0 1

0 1 v1

v2

v3

v4

1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 10 1

0 1

0 1

0 10 1 v1

v2

v3

v4 0 1

01

0 1

0 10 1

0 1

0 1

0 10 1

Fig. 2. Two sets and their complement, encoded as quasi-reduced BDDs.

can be answered in O(1) time, while the BDD encoding the conjunction f ∧g
or the disjunction f∨g can be built in O(||f || × ||g||) time and space, if using
the fully-reduced form, or

∑

L≥k≥1 O(||f ||k × ||g||k) time and space, if using the
quasi-reduced form, where ||f || is the number of nodes in the BDD encoding f
and ||f ||k is the number of nodes associated with vk in the BDD encoding f .

We can encode a set Y ⊆ B
L as a BDD p through its characteristic function,

so that i = (iL, ..., i1) ∈ Y ⇔ fp(iL, ..., i1) = 1. The size of the set encoded by
the BDD rooted at p is not directly related to the size of the BDD itself. For
example, any set requires as many nodes as its complement, as shown in Fig. 2.

Algorithms for the manipulation of decision diagrams follow a typical recur-
sive style. For example, Fig. 3 shows the pseudocode for the union operation on
two sets encoded by fully-reduced BDDs p and q (i.e., the logical “or” of their
characteristic functions). The pseudocode for Intersection or Diff (set difference)
differs from that for Union only in the terminal cases. For Intersection(p, q), we
return q if q = 0 or p= 1 and p if q = 1 or p= 0, while the case p= q, which
might arise before reaching the terminal nodes, remains the same; for Diff (p, q),
we return 0 if p=0 or q=1 and 1 if q=0 and p=1, while we return 0 if p=q.
Another fundamental operation is the relational product which, given a BDD on
(vL, ..., v1) rooted at p encoding a set Y ⊆ Xpot and a BDD on (vL, v

′
L, ..., v1, v

′
1)

rooted at r encoding a function N : Xpot → 2Xpot , as the set of pairs (i, j)

bdd Union(bdd p, bdd q) is • fully-reduced version

1 if p = 0 or q = 1 then return q;

2 if q = 0 or p = 1 then return p;

3 if p = q then return p;

4 if Cache contains entry 〈Union, {p, q} : r〉 then return r;

5 if p.var = q.var then

6 r ← UniqueTableInsert(p.var ,Union(p[0], q[0]),Union(p[1], q[1]));
7 else if p.var ≻ q.var then

8 r ← UniqueTableInsert(p.var ,Union(p[0], q),Union(p[1], q));
9 else since q.var ≻ p.var then

10 r ← UniqueTableInsert(q.var ,Union(p, q[0]),Union(p, q[1]));
11 enter 〈Union, {p, q} : r〉 in Cache;
12 return r;

Fig. 3. The union operation on fully-reduced BDDs.

such that j ∈ N (i), returns the root of the BDD on (vL, ..., v1) encoding the
set {j : ∃i ∈ Y ∧ j ∈ N (i)}. An interleaved order is usually adopted for N ,
that is, if j ∈ N (i), then the BDD encoding N contains a path corresponding
to (iL, jL, ..., i1, j1) from r to 1, except that, of course, some of the values may
be skipped if the fully-reduced form is used. Fig. 4 shows this function assuming
quasi-reduced BDDs. As it can be seen, this results in simpler code, as the nodes
in a recursive call, p and r in our case, are associated with the same variable.

We conclude this brief introduction to BDDs by observing that, to efficiently
ensure canonicity, all decision diagram algorithms use a Unique Table (a hash
table) which, given a search key consisting of a node’s variable vk and the node id
(e.g., the pointer to a unique memory location) of each child returns the node id
of either an existing node (if it exists, to avoid duplicates) or of a newly created
node associated with vk with those children. Since the manipulation is performed
recursively bottom-up, children are already in the Unique Table when looking up
their parent. Furthermore, to achieve polynomial complexity, the algorithms also
use an Operation Cache (also a hash table) which, given a search key consisting
of an op code and the sequence of operands’ node ids, returns the node id of the
result, if it has been previously computed. These two hash tables have different
requirements with respect to managing collisions on the hash value. The Unique
Table must be lossless, while a lossy implementation for the Operation Cache is
acceptable, as this at worst reduces efficiency.

2.3 Symbolic reachability-set generation for safe Petri nets

If a Petri net is safe (each place contains at most one token), Xpot = B
L, where

L = |P|, and we can store any set of markings Y ⊆ Xpot = B
L for such a Petri net

with an L-variable BDD, and any relation over Xpot, or function Xpot → 2Xpot ,
such as N , with a 2L-variable BDD. However, for safe nets, Pastor et al. showed
how to generate the reachability set [43] by encoding N using 4|T | boolean
functions, each corresponding to a simple L-variable BDD describing:

– APM α =
∧

p:D−p,α=1(vp = 1), i.e., all predecessor places of α are marked.

bdd RelProd(bdd p, bdd2 r) is • quasi-reduced version

1 if p = 0 or r = 0 then return 0;

2 if p = 1 and r = 1 then return 1;

3 if Cache contains entry 〈RelProd , p, r : q〉 then return q;

4 q0 ← Union(RelProd(p[0], r[0][0]),RelProd(p[1], r[1][0]));
5 q1 ← Union(RelProd(p[0], r[0][1]),RelProd(p[1], r[1][1]));
6 q ← UniqueTableInsert(p.var , q0, q1);
7 enter 〈RelProd , p, r : q〉 in Cache;
8 return q;

Fig. 4. The relational product operation on quasi-reduced BDDs.

– NPM α =
∧

p:D−p,α=1(vp = 0), i.e., no predecessor place of α is marked.
– ASM α =

∧

p:D+p,α=1(vp = 1), i.e., all successor places of α are marked.
– NSM α =

∧

p:D+p,α=1(vp = 0), i.e., no successor place of α is marked.

The effect of transition α on a set of markings U can then be expressed
as Nα(U) = (((U ÷ APM α) · NPM α) ÷ NSM α) · ASM α, where “·” indicates
boolean conjunction and “÷” indicates the cofactor operator, defined as follows:
given a boolean function f(vL, . . . , v1) and a literal vk = ik, with L ≥ k ≥ 1
and ik ∈ B, the cofactor f ÷ (vk = ik) is f(vL, . . . , vk+1, ik, vk−1, . . . , v1), and
the extension to multiple literals, f ÷ (vkc

= ikc
, . . . , vk1

= ik1
), is recursively

defined as f(vL, . . . , vkc+1, ikc
, vkc−1, . . . , v1)÷ (vkc−1

= ikc−1
, . . . , vk1

= ik1
).

If we instead follow a more traditional and general approach, N is stored ei-
ther in monolithic form as a single 2L-variable BDD, or in disjunctively partition
form as

⋃

α∈T Nα, where eachNα is encoded as a 2L-variable BDD. As the reach-
ability set Xrch is the fixpoint of the iteration Xinit∪N (Xinit)∪N (N (Xinit))∪· · · ,
we can compute it using a breadth-first search that only requires Union, Diff ,
and RelProd operations. Fig. 5 on the left shows the pseudocode for a traditional
implementation of this algorithm, where sets and relations are encoded using
BDDs, so that its runtime is proportional to the BDD sizes, not the size of the
encoded sets and relations. Fig. 5 on the right shows an alternative approach
that operates on a different sequence of sets: instead of applying the forward
function N to the unexplored markings U (at the dth iteration, the markings at
distance exactly d from Xinit), the “all” version applies N to all the markings O
known so far (at the dth iteration, the markings at distance up to d from Xinit).

The decision diagrams manipulated by these algorithms, like many of those
we will see in the following, encode an increasing amount of data as the fixpoint
iterations progress. However, a fundamental, and sometimes counterintuitive,
property of decision diagrams is that their size can swell and shrink during the
iterations, so that the final size of, for example, the BDD encoding Xrch is
often many orders of magnitude smaller than the peak BDD size encountered at
some point along these iterations. This means that attempts to limit exploration
(e.g., using partial order reduction techniques [52]) might be beneficial, or might
instead hinder, decision-diagram-based approaches. One must report both final
memory (for the decision diagram encoding the desired result) and peak memory
requirements (including decision diagrams used in the computation and the hash

SymbolicBFS(Xinit,N) is

1 Y ← Xinit; • known markings

2 U ← Xinit; • unexplored markings

3 repeat

4 W←RelProd(U ,N); • new markings?

5 U ← Diff (W,Y); • new markings!

6 Y ← Union(Y,U);
7 until U = ∅;
8 return Y;

SymbolicBFSall(Xinit,N) is

1 Y ← Xinit;

2 repeat

3 O ← Y; • old markings

4 W ← RelProd(O,N);
5 Y ← Union(O,W);
6 until O = Y;
7 return Y;

Fig. 5. Two versions of a symbolic BFS algorithm to generate the reachability set [15].

table for the operation cache and the unique table), as the latter determine when
it is feasible to run the analysis on a given machine and strongly affect runtime.

2.4 Multiway decision diagrams

When vk has finite but not necessarily boolean domain Xk={0,1,...,nk −1} for
some nk > 0, we can use multiple boolean variables to encode it. Two common
approaches are a standard binary encoding with ⌈log2 nk⌉ boolean variables, or
a one-hot encoding with nk boolean variables, exactly one of which is set to 1 in
each reachable marking. Another alternative, which we adopt, is to directly use a
natural extension of BDDs, (ordered) multiway decision diagrams (MDDs) [34].
The definition of an MDD is exactly as that of a BDD, except that the number
of a node’s children depends on its associated variable:

– For each ik ∈ Xk, a nonterminal node p associated with vk has an outgoing
edge labeled with ik and pointing to a child p[ik].

The quasi-reduced and fully-reduced canonical forms are also exactly analogous
to those for BDDs, except that, of course, p duplicates q if p.var = q.var and
p[ik] = q[ik] for all ik ∈ Xk, and p is redundant if p[0] = p[1] = · · · = p[nk − 1].

MDDs open an interesting possibility: while we might know (or even just
simply hope) that Xrch is finite, we might not know a priori the size of each
Xk, i.e., the bound on the number of tokens in each place. In this more general
setting, we only know that the reachability set satisfies Xinit ⊆ Xrch ⊆ N

|P|.
Thus, we need an MDD-based reachability-set generation approach where the
size of each node p associated with domain variable vk is conceptually infinite, as
we do not know a priori which children p[ik] might be eventually needed to store
the reachable marking (i.e., whether the place corresponding to vk might ever
contain ik tokens). However, if the net is indeed bounded, only a finite number
of these children will be on paths leading to the terminal 1 in the MDD encoding
Xrch. We then define a sparse canonical form, where a node has as many children
as the number of edges pointing to nodes encoding a non-empty set and only
nodes encoding the empty set can be classified as redundant. Fig. 6 shows the
same function encoded as a quasi-reduced, fully-reduced, and sparse canonical
MDD. In the first two forms, we must know that X4 = {0, 1, 2, 3}, X3 = {0, 1, 2},

v1

v2

v3

v4

0 1

0 1 2

0 1

0 1 2

0 1 2 3

0 1 20 1 2

0 1

0 1 20 1 2

0 10 1

0 1

0 1 2 3

0 1 20 1 2

0 1 2

0 1

20 1

1

1 2 3

0 1 20 1 2

0 1 1 0 1

0 1 20

0

2

Fig. 6. Quasi-reduced, fully-reduced, and sparse canonical forms for MDDs.

X2 = {0, 1}, and X1 = {0, 1, 2} while, in the third form, no such assumption is
required and the resulting MDD does not contain the terminal 0 nor any node
leading only to it (the two leftmost redundant nodes associated with variables
v2 and v1 in the quasi-reduced form), but it contains all other redundant nodes.
As the size of the nodes associated with a given vk is variable, this requires a
slightly more complex implementation, but this is usually a small price to pay
compared to the greater flexibility and generality they provide.

2.5 Extended Petri nets

Now that we know how to encode arbitrary finite sets Y ⊂ N
|P| of markings

using MDDs in sparse form, we can assume a more general extended Petri net
model, for example one that allows inhibitor arcs :

– D◦ : P × T → N ∪ {∞} are the inhibitor arc cardinalities,

so that transition α is disabled in marking i if there is a place p such that
D◦

p,α ≤ ip, or self-modifying behavior where arcs cardinalities depend on the
current marking:

– D−,D+ : P × T × N
|P| → N are the marking-dependent input and output

arc cardinalities,

so that α is enabled in i iff, ∀p ∈ P,D−
p,α(i) ≤ ip and, if α fires, it leads to marking

j satisfying jp = ip −D−
p,α(i) + D+

p,α(i). Both D−
p,α and D+

p,α are evaluated on
the current, not the new, marking; also, these two extensions can be combined,
allowing marking-dependent inhibitor arc cardinalities. It is well-known that
inhibitor arcs alone suffice to achieve Turing-equivalence, while self-modifying
behavior may or may not, depending on the type of functions allowed to specify
arc cardinalities. However, since our approach is to simply run the symbolic
reachability-set generation and “hope for the best” (i.e., for a finite Xreach that
can be encoded in an MDD), these extensions are welcome from the point of
view of modeling flexibility and ease.

We conclude this discussion of MDD encoding for general Petri nets by stress-
ing that, while we have so far assumed that each Petri net place is mapped to
an MDD variable, this is neither required in theory nor necessarily the most

efficient approach in practice. First of all, even when MDD variable vk corre-
sponds to a single Petri net place a with bound Ba, not all numbers of tokens
na ∈ {0, ..., Ba} might be possible in a (in particular, even Ba itself might be just
an overestimate on the real bound). It is then best to map the different numbers
of tokens observed in a during reachability-set generation to the indices 0, 1,
and so on; then, |Xk| ≤ Ba + 1 will at the end count the distinct numbers of
tokens achievable in a. More importantly, if we know that the range of values
for the number of tokens in a is large, we might want to split this number over
multiple MDD variables; this is of course required if we are using BDDs, as we
already observed. On the other hand, if multiple places are highly correlated,
we might want to merge them into the same variable; for example, if two places
are complementary, i.e., the sum of the tokens in them is a constant, we clearly
want to represent them with a single MDD variable as this does not increase the
complexity of the encoding but reduces instead the height of the MDD.

Unfortunately, finding a good mapping of places to variables is a difficult
problem, just as the related one about finding a good order for the variables,
known to be NP-hard [7]. This is especially true for the more advanced al-
gorithms we discuss later, which strongly rely on the structural dependencies
between the Petri net transitions and the MDD variables.

2.6 Running examples for experiments

Fig. 7 presents the Petri net models used to obtain memory and runtime results
for the various algorithms presented in this paper. All experiments are run on a
server of Intel Xeon CPU 2.53GHz with 38G RAM under Linux 2.6.18

To study a Petri net with MDDs, we decompose the potential state space into
the product of local state spaces, by partitioning the places into L submodels.
Each (sub)marking of the kth submodel is mapped to a local state in Xk, so
that, if the Petri net is bounded, the local state spaces Xk are finite. Hence,
the L MDD variables correspond to the L submodels. The choice of partition
affects the performance of our algorithms, and finding an optimal partition is
non-trivial. In the experiments, we use a partition that works well in practice.

phils [44] models the dining-philosophers problem, where N philosophers sit
around a table with a fork between each of them. To eat, a philosopher must
acquire both the fork to his left and to his right. If all philosophers choose to
take the fork to their left first, the model deadlocks (the same happens if all take
the fork to their right). The entire model contains N subnets, the figure shows
the ith one, for some i ∈ {1, ..., N}; place Fork mod (i,N)+1 is drawn with dashed
lines because it is not part of this subnet. We group the places for two adjacent
philosophers into a submodel, thus L = N/2 (with N even).

robin [28] models a round-robin resource sharing protocol, where N processes
cyclically can access a resource. Again, the model has N subnets and the ith

subnet (shown in the figure) can access the resource only when its place Pask i

contains the token initially in Pask1. Place Res , containing the resource when
idle, is drawn with bold lines because it is not part of any subnet. We group the

places for each process (Pask i,Pok i,Psnd i,Pwt i) into a submodel and assign
place Res to a separate submodel. The number of domain variables is L = N+1.

fms [20] models a flexible manufacturing system where N parts of each of three
types circulate around and are machined at stations. Parts of type 1 are machined
by machine 1, of which there are three instances. Parts of type 2 are machined
by machine 2, of which there is only one instance; however, when not working on
parts of type 2, machine 2 can work on parts of type 3. Finally, parts of type 1 and
2, when completed, can be shipped (and replaced by new raw parts of the same
type), just like parts of type 3, or might be joined by machine 3, of which there
are two instances. Transitions shown in black are immediate [1] (from a logical
standpoint, this simply means that they have priority over the other transitions,
more details on the analysis of this type of models is given in Section 4.3). As
N grows, only the possible number of tokens in (most of) the places grows,
not the net itself. We group {M1, P1wM1, P1M1}, {M2, P2wM2, P2M2} and
{M3, P12wM3, P12M3} into three submodels, and treat each remaining place
as an individual submodel. Thus, L = 16.

slot [43] models a slotted ring transmission protocol where, as in robin, a token
cycling around N subnets grants access to the medium. Unlike robin, though,
this resource is not modeled, thus each subnet is just connected to its two neigh-
bors through shared transitions, not to a globally shared place. We group the
places for each subnet (Ai, Bi, Ci, ..., Gi) into a submodel and L = N .

kanban [51] models an assembly line using tokens (kanbans) to control the flow
of parts to four assembly stations. Station 1, when completing work on a part,
feeds that part to both stations 2 and 3 for further processing, thus transition
s1 23 correspond to a “fork”. When both stations 2 and 3 have completed parts
waiting in places out2 and out3, the “join” transition s23 4 can pass them as a
single token to station 4. As in fms, N controls the token population but not
the size of the net. We group places for each station into a submodel and L = 4.

leader [32] models the distributed asynchronous protocol proposed by Itai and
Rodeh to elect a leader among N processes in a unidirectional ring, by sending
messages. The algorithm employs a randomization strategy to choose whether
each process will continue running for election (my pref=1) or not (my pref=0).
A process is eliminated from the race only if it chooses not to run and its clos-
est active predecessor chooses to run. Once this happens, the process becomes
inactive and only relays messages from active nodes. Termination is realized by
having the active processes send a token around the ring to count the inactive
nodes; if a process receives its own token with count N − 1, it knows to be the
elected leader. The model contains N subnets (thus the number of places grows
linearly in N , while the number of transitions grows quadratically in N) but,
in addition, the token population in some places also grows linearly in N . We
group places for each subnet into a submodel, thus L = N . We only show the
automaton model due to the size and complexity of the net.

counter models a simple N -bit counter, which is incremented by one at each
step, from 0 up to 2N − 1, then reset back to 0. We treat each place (bit) as a
submodel and L = N .

queen models the placement of N queens on an N × N chessboard in such
a way that they are not attacking each other. Places qi, for i ∈ {1, ..., N},
represent the queens still to be placed on the chessboard, while places pi,j , for
i, j ∈ {1, ..., N} represent the N2 chessboard positions, thus are initially empty.
The non-attacking restriction is achieved through inhibitor arcs (on the same
column or either of the two diagonals, k ranges from 1 to i−1) plus the limitation
on the row placed by having the single token in qi be contended among transitions
ti,j , for j ∈ {1, ..., N}. In addition, we force the placement of the queens to
happen in row order, from 1 to N , thus ti,j has inhibitor arcs from qk, again for
k ∈ {1, ..., i − 1}. The number of places and transitions grows quadratically in
N . We group the places for each queen (qi and pij) into a submodel and L = N .

2.7 Accelerating the fixpoint computation: chaining and saturation

So far, we have considered only breadth-first methods, characterized by the fact
that reachable markings are found strictly in order of their distance from Xinit.
If we are willing to forgo this property, enormous runtime and memory improve-
ments can often be achieved in practice.

The first such approach, chaining [47], observes that, when N is stored in
disjunctively partitioned form using one BDD or MDD Nα for each α ∈ T ,
the effect of statements 4 and 5 in Algorithm SymbolicBFS of Fig. 5 is exactly
achieved with the statements:

W ← ∅;
for each α ∈ T do

W ← Union(W,RelProd(U ,Nα));
U ← Diff (W,Y);

However, if we do not require strict breadth-first order, we can “chain” the Petri
net transitions and use the following statements instead:

for each α ∈ T do

U ← Union(U ,RelProd(U ,Nα));
U ← Diff (U ,Y);

The effect of this change is that, if i is in U , thus will be explored in the current
iteration, and we use a particular transition order, say α, then β, then γ, the
current iteration will discover all markings reachable from i by firing sequences
(α), (α, β), (α, β, γ), (α, γ), (β), (β, γ), and (γ). This may find more markings
in the current iteration than if we used a strictly breadth-first approach, which
instead just considers the individual effect of transitions α, β, and γ.

It is easy to prove that the use of chaining can only reduce, not increase,
the number of iterations. However, the cost of each iteration depends on the
size of the involved decision diagrams encoding the various sets being manip-
ulated (the encodings of the forward functions are fixed, thus independent of
the iteration strategy). Fewer iterations on different decision diagrams do not
necessarily imply higher efficiency in a symbolic setting. The same can be said

Idlei

WaitLi WaitRi

HasLi HasRi

GetRi

Forki

Reli

Forkmod(i,N)+1

GetLi

Eati
Poki

Tbufi

Paski Taski

Res
Bidlei

T2ldi

T1ldi

T2sndi

T1sndi

PwtiRi Bfulli

Psndi

Pldi

only
if i=1

Paskmod(i,N)+1 Pwtmod(i,N)+1

phils robin

N
P1 wM1 P1 M1

3

P1 d

tP1s

M1

2

P12 M3
P12

txtP12tP12M3

N

M3
P2 d

1M2

P2 wM2 P2M2

N tP3
P3 tP3M2

P3M2 P3 s
tP3s

tP2e

tM3

tP1M1tM1tP1

tP2 tM2 tP2M2

P1 wP2
tP1e
tP1j

P1 s

P2 wP1

P2 s

tP2j

P12 s

tP12s

P1

P2

tP2s

P12wM3

Hi Geti Freei

Fi

Ei

Gi
Di

Ci

Usedi
PutiOtheri

Owneri

Usedmod(i,N)+1

Ai

Bi Goi

Writei

Freemod(i,N)+1

fms slot

out1kan1

m1
bad1

t0

no1

ok1

re1

s1_23

N

s23_4

t4

out2kan2

m2
bad2

no2

ok2

re2

N

out3kan3

m3
bad3

no3

ok3

re3

N

out4kan4

m4
bad4

no4

ok4

re4

N

start

active inactive

leader

choose my_pref

[recv count=N-1]

[recv count < N-1]

send count [my_pref=0 & pre_pref=1]

relay pre-pref,
relay count+1

decide

[my_pref=1 V pre_pref=0]

kanban leader

...

Reset

...bitN-1

bitIncN-1 bitInc2

bit1

bitInc1

bit0

bitInc0

...

qi

pi,j

ti,j

pk,jpk,j-(i-k) pk,j+(i-k) qk

CELL i,j

1

i

j

N

1 N

counter queen

Fig. 7. The Petri net models used for experiments in our study.

for the difference between the two algorithms of Fig. 5, which end up encoding
either the frontier markings at exactly a given distance d from Xinit, or all the
markings up to distance d, respectively. Combining these two choices (BFS vs.
chaining, frontier vs. all) gives us the four algorithms shown in Fig. 8, whose per-

BfSsGen(Xinit, {Nα : α ∈ T })

1 Y←Xinit; • known markings

2 U←Xinit; • frontier markings

3 repeat

4 W←∅;
5 for each α ∈ T do

6 W←Union(W,RelProd(U ,Nα));
7 U←Diff (W,Y);
8 Y←Union(Y,U);
9 until U = ∅;

10 return Y;

ChSsGen(Xinit, {Nα : α ∈ T })

1 Y←Xinit; • known markings

2 U←Xinit; • frontier markings

3 repeat

4 for each α ∈ T do

5 W←Diff (RelProd(U ,Nα),Y);
6 U←Union(U ,W);
7 U←Diff (U ,Y);
8 Y←Union(Y,U);
9 until U = ∅;

10 return Y;

AllBfSsGen(Xinit, {Nα : α ∈ T })

1 Y←Xinit; • known markings

2 repeat

3 O←Y; • save old markings

4 W←∅;
5 for each α ∈ T do

6 W←Union(W,RelProd(O,Nα));
7 Y←Union(O,W);
8 until O = Y;
9 return Y;

AllChSsGen(Xinit, {Nα : α ∈ T })

1 Y←Xinit; • known markings

2 repeat

3 O←Y; • save old markings

4 for each α ∈ T do

5 Y←Union(Y,RelProd(Y,Nα));
6 until O = Y;
7 return Y;

Fig. 8. Four simple variants of symbolic reachability-set generation [15].

formance spans several orders of magnitude, as shown by the results of Fig. 9,
where AllChSsGen is a consistently good choice, both (peak) memory and time-
wise. Still, the memory required to store Xrch alone is a negligible fraction of the
peak requirement (except for the queen model, which is pathologically difficult
for symbolic methods), leaving hope for improvement, as we see next.

Much lower peak memory requirements can usually be achieved by adopting
a saturation strategy [13]. Before presenting this approach, we need to introduce
the concept of locality and a new reduction rule to exploit locality when encoding
forward functions of asynchronous systems.

Given α ∈ T , define the subsets of the state variables {vL, ..., v1} that can be
modified by α as VM (α) = {vk : ∃i, i′∈Xpot, i

′∈Nα(i) ∧ ik 6= i′k}, and that can
disable α as VD(α) = {vk : ∃i, j∈Xpot, ∀h 6=k, ih=jh ∧ Nα(i) 6=∅ ∧ Nα(j)=∅}.

If vk 6∈ VM (α)∪VD(α), we say that α and vk are independent. Most events in
globally-asynchronous locally-synchronous models are highly local ; for example,
in Petri nets, a transition is independent of any place not connected to it. We
let Top(α) = max(VM (α) ∪ VD(α)) and Bot(α) = min(VM (α) ∪ VD(α)) be the
highest and the lowest variables dependent on α, respectively, and observe that
the span of variables (Top(α), ...,Bot(α)) is often much smaller than (vL, ..., v1).

However, the canonical forms considered so far do not exploit this locality in
a symbolic encoding of Nα. We need a more general and flexible canonical form
that associates an individual reduction rule R(vk) with each variable vk:

Time Memory |Xrch|
N |Xrch| Bf AllBf Ch AllCh Bf AllBf Ch AllCh mem.

phils

50 2.22·1031 4.26 3.52 0.18 0.08 87.81 73.88 9.65 4.98 0.02
100 4.96·1062 61.01 50.49 1.04 0.34 438.51 371.44 35.18 16.01 0.04
200 2.46·10125 1550.86 1177.16 5.62 2.31 2795.03 2274.97 138.85 61.30 0.09

robin

50 1.26·1017 24.41 34.55 0.43 0.34 172.46 110.83 11.53 9.74 0.10
60 1.55·1020 51.17 72.41 0.74 0.69 294.42 178.61 17.24 15.70 0.14
70 1.85·1023 101.45 138.93 1.20 1.14 476.12 278.69 25.01 22.90 0.19

fms

15 7.24·108 9.49 4.12 1.35 0.80 91.11 46.63 23.56 17.68 0.05
20 8.83·109 37.13 14.00 4.35 2.26 166.10 79.42 64.00 29.05 0.08
30 3.43·1011 501.26 94.14 16.41 10.02 497.63 175.90 142.99 77.78 0.19

slot

20 2.73·1020 12.81 12.82 12.78 12.81 239.91 239.91 239.91 239.91 0.03
30 1.03·1031 93.23 92.33 93.18 93.07 1140.41 1140.41 1140.41 1140.41 0.07
40 4.15·1041 504.23 504.62 490.25 473.10 6272.78 6272.78 6272.78 6272.78 0.13

kanban

20 8.05·1011 4.63 4.52 0.92 0.85 89.10 81.12 60.37 53.38 0.07
30 4.98·1013 28.78 27.45 5.96 5.72 539.73 399.76 160.52 160.45 0.21
40 9.94·1014 124.92 130.47 28.48 43.45 1530.40 1098.08 527.80 482.77 0.47

leader

6 1.89·106 7.90 15.29 7.86 6.79 73.25 75.66 81.93 57.64 0.32
7 2.39·107 37.59 75.16 40.23 35.62 201.83 130.37 254.89 156.12 0.81
8 3.04·108 175.88 558.51 200.84 171.32 516.79 201.75 692.89 259.06 1.82

counter

10 1.02·103 0.01 0.04 0.01 0.01 0.71 1.72 0.79 0.67 0.00
15 3.27·104 2.29 5.84 1.50 2.38 22.73 5.17 12.14 6.80 0.00
20 1.04·106 652.15 447.09 192.11 204.36 795.92 9.33 212.35 15.28 0.00

queen

10 3.55·104 0.68 0.68 0.68 0.68 10.39 10.48 10.40 10.39 1.13
12 8.56·105 23.63 23.64 23.62 23.61 220.33 220.54 220.35 220.35 20.77
14 2.73·107 1096.51 1097.97 1094.58 1093.75 7305.90 7306.30 7305.93 7305.94 505.73

Fig. 9. Results for four reachability-set generation variants (memory: MB, time: sec).

– If R(vk)=F , variable vk is fully-reduced. No node p associated with vk can
have all children p[ik], for ik ∈ Xk, coincide.

– If R(vk) = I, variable k is identity-reduced. Let q associated with vk be
singular if it has exactly one edge q[ik] 6= 0; then, no edge p[il] can point to
q if il = ik or if the edge skips a fully-reduced variable vh such that ik ∈ Xh.

– If R(vk)=Q, variable vk is quasi-reduced. There must be at least one node
associated with vk and no edge can skip vk.

...

...

1 2

7

1 2 1 2 1 2

7

5 5

5

1 20

0 1 2

1 2

7

1 20vk

v′k

Fig. 10. Advantages of using the identity-reduced rule in the presence of locality.

The function fp : Xpot → B encoded by a node p associated with vk is then

fp(iL,...,i1)=











p if k=0

fp[ik](iL,...,i1) if k>0 and ∀vk≻vh≻p[ik].var , R(vh)=I ⇒ ih= ik

0 otherwise,

thus, if an edge p[ik] skips over an identity-reduced variable vh, the value of ih
must be the same as that of ik.

This more general reduction is particularly useful when encoding the forward
functions of a model with widespread locality. Specifically, when encoding Nα,
we still use an interleaved order for the variables, but set R(v′k) = I for all “to”,
or “primed”, variables v′k, while “from”, or “unprimed” variables are either all
fully-reduced or, alternatively, quasi-reduced if vk ∈ VM (α) ∪ VD(α) and fully-
reduced otherwise. Fig. 10 illustrates the effect of this choice. On the left, the
node associated with v′k is singular, thus it is eliminated (this corresponds to a
Petri net where the firing of α leaves the corresponding place pk unchanged if pk
contains five tokens). More importantly, the situation on the right considers the
common case where α is independent of place pk. The identity-reduced rule for
v′k means that all nodes associated with v′k will be singular, thus are eliminated;
but then, all nodes associated with vk, which is fully-reduced, will become re-
dundant, so are eliminated as well. The result is that all edges will simply skip
both variables vk and v′k in the MDD encoding of Nα.

To fully exploit locality and efficiently build an encoding for the forward
function, not only we partition N as the disjunction

⋃

α∈T Nα, but we further
encode each Nα as a conjunction. In the best case, Nα has a conjunctive rep-
resentation by variable, Nα = (

⋂

k∈VM (α)∪VD(α)Nk,α) ∩ (
⋂

k 6∈VM (α)∪VD(α) Ik),

where the local function Nk,α : Xk → 2Xk describes how α depends on vk and
affects v′k, independently of the value of all the other state variables, while Ik
is the identity for vk, that is, Ik(ik) = {ik} for any ik ∈ Xk. Along the same
lines, a disjunctive-then-conjunctive decomposition of N can be defined for ar-
bitrary models, Nα = (

⋂mα

c=1Nc,α) ∩ (
⋂

k 6∈VM (α)∪VD(α) Ik), where we now have
some mα conjuncts, each one depending on some set of variables Dc,α, so that
⋃mα

c=1Dc,α = VM (α) ∪ VD(α) and Nc,α : ×k∈Dc,α
Xk → 2×k∈Dc,α

Xk describes
how α is affected and affects the variables in Dc,α as a whole.

As an example, consider the portion of self-modifying Petri net in Fig. 11 (the
pseudocode on the right, to be interpreted as an atomic check and concurrent

s

p

r

q

 q-1

 2s r+1

α
if p>r ∧ q + 2s≤4 ∧ q>0 ∧ r + q≤4 then

p← p− (r + 1) ∧ q ← q + 2s ∧ r ← r + q − 1;

Assume we know the following domain constraints:
Xp={0,1,2}, Xq={0,1,2,3,4}, Xr={0,1,2,3}, Xs={0,1,2}

q

q’

p

p’

r

r’

s

Intersection

0 1 2

1 2

0 0 1

0 1

0 1 2

0 1 2

0 2 4 1 3 2

1 2 3

0

0

1

1

2

2

3

3

0 1

1 2

0 0 1

1 2

1 3 2

1 2

1 3 2

0

0

0

0 1

0

0

1

1 1

1

1

2

Nq,α Nr,α

NαNp,α

Fig. 11. A transition α in a self-modifying Petri net, its equivalent pseudocode, and
the conjunctive decomposition of its forward function Nα.

assignment, illustrates the semantic of transition α). The bottom of the figure
shows three conjuncts Np,α, Nq,α, and Nr,α, whose intersection describes the
overall enabling conditions and effect of transition α. For example,Np,α describes
how and when p might be updated: p must be greater than r and its value is
decreased by r+1 if α fires (for clarity, we use the quasi-reduced rule for variables
on which a conjunct depends). By decomposing each Nα in this fashion, we can
then build the MDD for each conjunct Nc,α explicitly (as shown in Fig. 11,
these conjuncts tend to be small because of locality), and then use symbolic
intersection operations to build the MDD encoding the overall Nα, which might
instead encode a very large relation. Note that, for this to work efficiently, we
need to “play a trick” with the reduction rules: for example, q, q′, s, s′ and any
other variable not explicitly mentioned must be interpreted as fully-reduced in
Np,α prior to performing the intersection with Nq,α; however, after performing
the intersection, s′ must be interpreted as identity-reduced (since s is not affected
by α), and any pair of unprimed and primed variables not explicitly mentioned
must be interpreted as fully-reduced and identity-reduced, respectively.

We can now describe the saturation strategy. We say that a node associated
with vk is saturated if it is a fixpoint with respect to all events α such that
Top(α) ≤ k. This implies that all MDD nodes reachable from p are also satu-
rated. The idea is then to saturate the nodes bottom-up, and to saturate any
new node prior to inserting it in the unique table:

– Build the L-variable MDD encoding of Xinit.
– Saturate nodes associated with v1: fire in them all events α s.t. Top(α) = 1.
– Saturate nodes associated with v2: fire in them all events α s.t. Top(α) = 2.

If this creates nodes associated with v1, saturate them immediately.
– . . .

mdd Saturate(variable vk, mdd p) is • quasi-reduced version

1 if vk = v0 then return p;

2 if Cache contains entry 〈Saturate, p : r〉 then return r;

3 foreach ik ∈ Xk do

4 rik ← Saturate(vk−1, p[ik]); • first, be sure that the children are saturated

5 repeat

6 choose α ∈ T , ik, jk ∈ Xk s.t. Top(α) = k and rik 6= 0 and Nα[ik][jk] 6= 0;

7 rjk ← Union(rjk ,RelProdSat(vk−1, rik ,Nα[ik][jk]));
8 until r0, ..., rnk−1 do not change;

9 r ← UniqueTableInsert(vk, r0, ..., rnk−1);
10 enter 〈Saturate, p : r〉 in Cache;
11 return r;

mdd RelProdSat(variable vk, mdd q, mdd2 f) is

1 if vk = v0 then return q ∧ f ;

2 if Cache contains entry 〈RelProdSat , q, f : r〉 then return r;

3 foreach ik, jk∈Xk s.t. q[ik] 6=0 and f [ik][jk] 6=0 do

4 rjk←Union(rjk ,RelProdSat(vk−1, q[ik], f [ik][jk]));
5 r ← Saturate(vk,UniqueTableInsert(vk, r0, ..., rnk−1));
6 enter 〈RelProdSat , q, f : r〉 in Cache;
7 return r.

Fig. 12. The saturation algorithm to build the reachability set [11].

– Saturate the root associated with vL: fire in it all events α s.t. Top(α) = L. If
this creates nodes associated with vk, L> k≥1, saturate them immediately.

Fig. 12 shows the pseudocode to implement these steps. With saturation, the
traditional idea of a global fixpoint iteration for the overall MDD disappears,
and, while markings are not discovered in breadth-first order, the tradeoff is
sometimes enormous memory and runtime savings when applied to asynchronous
systems. Saturation is not guaranteed to be optimal, but has many advantages:
(1) firing α in p benefits from having saturated the nodes below p, thus finds
the maximum number of markings under p, (2) once node p associated with vk
is saturated, we never fire an event α with Top(α) ≤ k on p or any of the nodes
reachable from p, (3) except for the nodes of the MDD describing Xinit, only
saturated nodes are placed in the unique table and the operation cache, and (4)
many of these nodes will still be present in the final MDD which, by definition,
can only contain saturated nodes.

We observe that, while the notion of a transition is clearly defined for a
Petri net level, it is somewhat arbitrary for the corresponding MDDs. Given
two transitions α and β with Top(α) = Top(β), we could choose to encode
Nα,β = Nα ∪ Nβ with a single MDD instead of two individual MDDs, without
affecting (much) the order of node operations performed by saturation. We then
consider two extreme cases, saturation by event, where each Petri net transition
is encoded with a separate MDD, and saturation by variable, where we use L
MDDs, the kth one encoding Nk =

⋃

α:Top(α)=vk
Nα (some Nk could be empty).

The latter requires fewer unions during saturation, but its efficiency depends on

N |Xrch|
Xrch N mem. Peak mem. Time

mem. Event Variable Event Variable Event Variable

phils

200 2.46·10125 0.09 0.64 0.43 2.05 2.59 0.19 0.20
500 3.03·10313 0.22 1.60 1.07 4.06 4.43 0.52 0.53

1000 9.18·10626 0.43 3.20 2.14 6.80 8.34 1.21 1.26

robin

100 2.85·1032 0.38 0.13 0.09 7.01 7.00 0.52 0.51
200 7.23·1062 1.44 0.26 0.18 47.64 47.47 5.19 5.11
500 3.68·10153 8.75 0.65 0.45 691.14 689.13 102.66 97.37

fms

30 3.43·1011 0.19 0.21 0.20 5.49 7.35 11.31 11.56
40 4.96·1012 0.37 0.35 0.32 7.81 15.61 34.47 35.71
50 4.08·1013 0.63 0.51 0.48 12.04 26.18 85.30 86.86

slot

30 1.03·1031 0.07 0.06 0.04 2.53 1.85 0.17 0.09
50 1.72·1052 0.20 0.10 0.07 4.22 4.17 0.78 0.35

100 2.60·10105 0.77 0.19 0.14 6.42 5.75 9.58 2.32

kanban

10 1.00·109 0.01 0.18 0.16 5.19 5.26 0.14 0.14
20 8.05·1011 0.07 1.22 1.08 44.65 46.13 4.36 4.39
30 4.98·1013 0.21 3.88 3.42 164.77 160.17 44.81 46.69

leader

8 3.04·108 1.82 0.18 0.09 9.59 9.28 20.26 19.33
9 3.90·109 3.75 0.23 0.11 16.36 16.27 66.84 68.43

10 5.02·1010 7.37 0.29 0.13 29.89 30.48 241.70 231.12

counter

100 1.26·1030 0.01 0.51 0.50 0.12 0.12 0.02 0.02
200 1.60·1060 0.01 2.01 1.99 0.21 0.21 0.11 0.11
300 2.03·1090 0.02 4.51 4.48 0.29 0.29 0.28 0.31

queen

12 8.56·105 20.77 0.12 0.11 46.69 46.71 2.96 2.69
13 4.67·106 99.46 0.16 0.14 218.54 218.57 16.29 14.91
14 2.73·107 505.73 0.21 0.19 1112.93 1112.96 95.69 88.12

Fig. 13. Results for saturation by event vs. by variable (memory: MB, time: sec).

the size of the MDD encoding Nk, as compared to that of the various Nα used
to build it. Experimentally, we have found that either approach can work best,
depending on the particular model, as shown in Fig. 13. Either one, however,
when compared with the results of Fig. 9, demonstrates the effectiveness of the
saturation algorithm for reachability-set generation: saturation can scale to much
larger values of N because of greatly reduced peak memory and runtime.

3 CTL model checking of Petri nets

The generation of the reachability set for a Petri net is usually just a first step.
Often, we want to analyze the behavior of the net, for example verify that certain

σ |=p ⇔ σ=(s, ···) and s |=p

σ |=¬q ⇔ σ 6|=q

σ |=q∨q′⇔ σ |=q or σ |=q′

σ |=q∧q′⇔ σ |=q and σ |=q′

σ |=Xq ⇔ σ[1] |=q

σ |=Fq ⇔ ∃n∈N, σ[n] |=q

σ |=Gq ⇔ ∀n∈N, σ[n] |=q

σ |=qUq′⇔ ∃n∈N, σ[n] |=q′ and ∀m < n, σ[m] |=q

σ |=qRq′ ⇔ ∀m≥0, if ∀n<m, σ[n] 6|=q then σ[m] |=q′

s |=a ⇔ a ∈ L(s)
s |=¬p ⇔ s 6|=p

s |=p∨p′⇔ s |=p or s |=p′

s |=p∧p′⇔ s |=p and s |=p′

s |=Eq ⇔ ∃σ=(s, ···), σ |=q

s |=Aq ⇔ ∀σ=(s, ···), σ |=q

Fig. 14. CTL semantics [23].

properties are satisfied. In this section, we consider the problem of CTL model
checking for Petri nets, including the generation of witnesses or counterexamples
and the use of bounded approaches, both of which use more general decision
diagrams that can encode integer, not just boolean, functions.

3.1 CTL model checking

Temporal logics usually refer to a Kripke structure (Xpot,Xinit,N ,A,L). For
Petri nets, we can think of the “Xpot,Xinit,N” portion as the potential state
space N

|P|, the initial marking(s), and the forward function, while A is a finite
set of atomic propositions of interest, such as “place a contains three tokens” or
“transition α is enabled”, and L : Xpot → 2A is a labeling function that specifies
which atomic propositions hold in each marking.

We consider the temporal logic CTL (computation tree logic) [23], which talks
about state formulas and path formulas using the following syntax:

– If p ∈ A, p is a state formula.
– If p and p′ are state formulas, ¬p, p ∨ p′, and p ∧ p′ are state formulas.
– If q is a path formula, Eq and Aq are state formulas.
– If p and p′ are state formulas, Xp, Fp, Gp, pUp′, and pRp′ are path formulas.

Fig. 14 illustrates the semantics of a CTL formula, where s |= p means that
state formula p holds in marking s, σ |= q means that path formula q holds on
path σ, and, given an infinite execution path σ = (s0, s1, s2, · · ·) and an integer
n ∈ N, we let σ[n] denote the infinite path (sn, sn+1, · · ·).

As we are ultimately interested in whether a certain marking (usually the
initial marking) satisfies a given state formula, CTL model-checking can be per-
formed by manipulating just sets of states, not paths, by considering all CTL
operators as being formed by the combination of a path quantifier, E or A, fol-
lowed by a temporal operator, X, F, G, U, or R. Then, we only need to be able
to build the set of markings corresponding to atomic propositions or to the for-
mulas EXp, EpUq, and EGp, where p and q are themselves atomic propositions
or EX, EU, or EG formulas, because of the following equivalences:
AXp=¬EX¬p, EFp=EtrueUp, AGp=¬EF¬p, EpRq=¬A¬pU¬q,
AFp=¬EG¬p, ApUq=¬(E¬qU(¬p ∧ ¬q)) ∧ ¬EG¬q, ApRq=¬E¬pU¬q.

3.2 Symbolic CTL model checking algorithms

To compute the set of markings satisfying a CTL formula such as EpUq, we
first compute the sets of markings Xp and Xq satisfying the inner formulas p
and q, respectively. Fig. 15 shows the explicit algorithms for the EX, EU, and
EG operators, on the left, while the their respective symbolic versions are on
the right. The symbolic algorithms use N−1, the backward function, satisfying
i ∈ N−1(j)⇔ j ∈ N (i), to “go backwards”. By doing so, they might go through
unreachable markings, but this does not lead to incorrect results because, while
N might contain transitions from unreachable to reachable markings, it cannot
by definition contain transitions from reachable to unreachable markings. It is
remarkable that, while the explicit EG algorithm first discovers all strongly-
connected components of N ∩Xp×Xp (or of its reachable portion), the symbolic
algorithm starts with a larger set of markings, (all those in Xp, and reduces it,
without having to compute the strongly connected components of N .

The symbolic EU and EG algorithms of Fig. 15 proceed in strict breadth-first
order. Thus, just as for reachability-set generation, it is natural to attempt to
improve them with a saturation-based approach. For EU, we start from Xq and
walk backwards using N−1, while remaining in Xp at all times. A breadth-first
exploration can simply perform an intersection with Xp at each step, but it is too
costly to do this at each lightweight saturation step. We then have two options.

The simplest one is to use constrained functions N−1
α,Xp

= N−1
α ∩ (Xpot×Xp),

i.e., symbolically remove from N−1
α any backward steps to markings not in Xp.

After computing these functions, we can run ordinary saturation, analogous to
that for reachability-set generation except that we start from Xq instead of Xinit

and we apply {N−1
α,Xp

: α ∈ T } instead of {Nα : α ∈ T }. The downside of this
approach is a possible decrease in locality, since, if Xp depends on vk, i.e., if its
fully-reduced encoding has nodes associated with vk, then Top(N−1

α,Xp
) � vk. In

particular, if Xp depends on vL, this approach degrades to chaining.

A second approach is instead constrained saturation, which uses the original
(unconstrained) backward functions N−1

α , but has three, not just two, parame-
ters in its recursive calls: s (a node in the MDD encoding the set of markings
being saturated), r (a node in the MDD encoding a backward function), and c
(a node in the MDD encoding the constraint Xp), as shown by the pseudocode
in Fig. 16. In other words, instead of modifying the backward functions, we con-
strain the marking exploration on-the-fly during the “check-and-fire” steps in
saturation, thus we do not reduce locality.

Fig. 17 reports peak memory and runtime experimental results for EU compu-
tation. Columns BFS , ConNSF rch, and ConSatrch correspond to the traditional
symbolic breadth-first algorithm of Fig. 15, the ordinary saturation algorithm
employing constrained functions, and the constrained saturation approach of
Fig. 16, respectively. In general, saturation does better than BFS, sometimes by
a huge factor. Then, among the two saturation approaches, constrained satu-
ration tends to do much better than explicitly constraining the functions and
running ordinary saturation. In particular, an advantage of constrained satura-

ExplicitEX (Xp,N) is

1 Y ← ∅;
2 while Xp 6= ∅ do
3 remove a marking j from Xp;

4 for each i ∈ N−1(j) do
5 Y ← Y ∪ {i};
6 return Y;

SymbolicEX (Xp,N) is

1 Y ← RelProd(Xp,N
−1);

2 return Y;

ExplicitEU (Xp,Xq,N) is

1 Y ← ∅;
2 for each i ∈ Xq do

3 Y ← Y ∪ {i};
4 while Xq 6= ∅ do
5 remove a marking j from Xq;

6 for each i ∈ N−1(j) do
7 if i 6∈ Y and i ∈ Xp then

8 Y ← Y ∪ {i};
9 Xq ← Xq ∪ {i};

10 return Y;

SymbolicEU (Xp,Xq,N) is

1 Y ← Xq;

2 repeat

3 O ← Y;
4 W ← RelProd(Y,N−1);
5 Z ← Intersection(W,Xp);
6 Y ← Union(Z,Y);
7 until O = Y;
8 return Y;

ExplicitEG(Xp,N) is

1 build the set of markingsW in the SCCs

in the subgraph of N induced by Xp;

2 Y ← ∅;
3 for each i ∈ W do

4 Y ← Y ∪ {i};
5 while W 6= ∅ do
6 remove a marking j from W;

7 for each i ∈ N−1(j) do
8 if i 6∈ Y and i ∈ Xp then

9 Y ← Y ∪ {i};
10 W ←W ∪ {i};
11 return Y;

SymbolicEG(Xp,N) is

1 Y ← Xp;

2 repeat

3 O ← Y;
4 W ← RelProd(Y,N−1);
5 Y ← Intersection(Y,W);
6 until O = Y;
7 return Y;

Fig. 15. Explicit vs. symbolic CTL model-checking algorithms [11].

tion is that its lightweight “check-and-fire” approach is not as sensitive to the
complexity of the constraint.

Improving the computation of EG using saturation is instead more difficult,
since EGp is a greatest fixpoint, which means that we initialize a larger set of
markings Y to Xp, then remove from it any marking i that cannot reach the
current set Y through any of the transitions in T . In other words, we cannot
eliminate i from Y just because Nα(i) ∩ Y = ∅ for a particular α. We then
take a completely different approach and build a 2L-variable MDD encoding the
backward reachability relation, using constrained saturation, that is, given a set
Y and a marking i ∈ Y, we define j ∈ (N−1

Y,Xp
)+(i) iff there exists a nontrivial

forward path of markings in Xp from j to i, where Xp is the constraint.

To compute the set of markings satisfying EGp, we set Y to Xp and observe
that, if j ∈ (N−1

Xp,Xp
)+(i), there must exist a marking i′ ∈ N−1(i)∩Xp such that

mdd ConsSaturate(mdd c,mdd s)

1 if InCache(ConsSaturate, c, s, t) then return t;

2 vk ← s.var ;
3 t← NewNode(vk);
4 r ← N−1

k ;

5 foreach i ∈ Xk s.t. s[i] 6= 0 do

6 if c[i] 6=0 then t[i]←ConsSaturate(c[i], s[i]); else t[i]← s[i];
7 repeat

8 foreach i, i′ ∈ Xk s.t. r[i][i′] 6= 0 do

9 if c[i′] 6= 0 then

10 u← ConsRelProd(c[i′], t[i], r[i][i′]);
11 t[i′]← Or(t[i′], u);
12 until t does not change;

13 t← UniqueTablePut(t);
14 CacheAdd(ConsSaturate, c, s, t);
15 return t;

mdd ConsRelProd(mdd c,mdd s,mdd r)

1 if s = 1 and r = 1 then return 1;

2 if InCache(ConsRelProd , c, s, r, t) then return t;

3 vl ← s.var ;
4 t← 0;

5 foreach i, i′ ∈ Xl s.t. r[i][i
′] 6= 0 do

6 if c[i′] 6= 0 then

7 u← ConsRelProd(c[i′], s[i], r[i][i′]);
8 if u 6= 0 then

9 if t = 0 then t← NewNode(vl);
10 t[i′]← Or(t[i′], u);
11 t← ConsSaturate(c,UniqueTablePut(t));
12 CacheAdd(ConsRelProd , c, s, r, t);
13 return t;

Fig. 16. The pseudocode for constrained saturation [57].

j ∈ ConsSaturate(Xp, {i
′}). To build (N−1

Xp,Xp
)+, we apply constrained saturation

to the primed variables of the MDD encoding N−1 ∩ (Xp ×Xp).

Then, EGp holds in marking j iff there exists a marking i ∈ Xp that can
reach itself through a nontrivial path in Xp, i ∈ (N−1

Xp,Xp
)+(i), and j can reach

i through a path in Xp, j ∈ (N−1
Xp,Xp

)+(i). To obtain the MDD encoding EGp,

we build the 2L-variable MDD for (N−1
Xp,Xp

)+, then the L-variable MDD for all
markings in nontrivial strongly connected components of the restriction of the
transition relation to Xp, Xscc = {i : i ∈ (N−1

Xp,Xp
)+(i)}, and finally the L-variable

MDD for EGp, by computing RelProd(Xscc, (N
−1
Xp,Xp

)+).

Building the reachability relation (N−1
Xp,Xp

)+ is the most expensive step in this
approach, but the use of constrained saturation instead of breadth-first iterations
greatly improves efficiency. Furthermore, (N−1

Xp,Xp
)+ contains information useful

beyond the computation of EG. For example, in EG computation under a fairness

N
BFS ConsNSF rch ConsSatrch

iter. time mem. time mem. time mem.

phils : E(¬HasL1 ∨ ¬HasR1)U(HasL0 ∧HasR0)

100 200 7.63 62.06 0.27 10.87 0.01 2.04
500 1000 1843.32 550.01 10.58 186.07 0.09 7.35

1000 – – – 73.41 720.98 0.20 13.83

robin : E(Pld1 = 0)U(Psnd0 = 1)

20 82 0.37 10.52 0.02 1.56 0.00 0.34
100 402 161.46 442.90 1.52 62.29 0.10 8.70
200 – – – 796.55 425.72 0.11 51.04

fms : E(P1M1 > 0)U(P1s = P2s = P3s = N)

10 103 7.11 16.40 0.44 5.35 0.03 2.32
25 – – – 410.34 20.73 0.93 8.24
50 – – – – – 53.29 40.17

slot : E(C0 = 0)U(C0 = 1)

10 16 0.06 1.94 0.01 1.54 0.00 0.34
20 31 1.46 27.05 0.17 9.39 0.01 1.04
30 46 9.67 129.56 1.50 29.09 0.03 2.20

kanban : E(true)U(out4 = 0)

20 21 0.51 46.13 1.49 46.14 0.04 46.13
30 31 3.75 160.46 16.00 160.47 0.23 160.17
40 41 19.29 378.91 62.67 378.98 0.93 378.91

leader : E(pref1 = 0)U(status0 = leader)

6 101 12.51 129.39 2.21 16.10 0.78 5.74
7 123 55.63 461.53 23.17 45.78 5.90 8.03
8 145 214.07 1191.79 192.06 119.81 28.23 12.51

counter : E(bitN−1 = 0)U(bitN−1 = 1)

10 513 0.02 1.31 0.00 0.29 0.00 0.04
15 16385 3.01 6.42 0.36 3.42 0.00 0.05
20 524289 394.35 61.62 28.33 7.14 0.00 0.05

queen : E(q0 = 1)U(q0 = 0)

12 13 11.92 164.95 2.51 185.77 4.40 76.87
13 14 80.83 889.39 18.58 1070.50 44.16 334.36
14 15 531.42 4566.38 – – 865.23 1677.45

Fig. 17. Results for CTL EU queries (memory: MB, time: sec).

constraint F , we seek an infinite execution where some markings in F appear
infinitely often. Marking j satisfies EGp under fairness constraint F iff there is a
marking i ∈ (N−1

F∩Xp,Xp
)+(i) such that j ∈ (N−1

F∩Xp,Xp
)+(i). In other words, we

simply build the backward reachability relation starting from F ∩ Xp, instead
of all of Xp. Experimentally, we found that, while traditional approaches suffer
when adding a fairness constraint, our approach may instead become faster, as
it performs the same computation, but starting from a reduced set of markings.

A question arising in symbolic CTL model checking is whether to constrain
the paths to the reachable markings Xrch during the iterations, since we are
usually only interested in reachable markings in the end. This is an issue because

backward search can reach unreachable markings from reachable ones but not
vice versa, by definition (forward search from a set of reachable markings only
finds reachable markings, instead). In other words, there are two reasonable ways
to define Xp: as Xp,pot (include in Xp all potential markings satisfying property
p, even if they are not reachable) and as Xp,rch (include in Xp only the reachable
markings satisfying property p), so that Xp,rch = Xp,pot ∩ Xrch. The latter of
course tends to result in (much) smaller sets of markings being manipulated, but
it does not follow that the MDD encoding these sets are correspondingly smaller.
Indeed, exploration restricted to Xp,pot usually depends on fewer variables, thus
may well lead to better saturation behavior.

Fig. 18 reports experimental results for EG computation. Columns BFS
and ReachRel correspond to the traditional symbolic breadth-first algorithm
of Fig. 15 and to the approach that builds the reachability relation using con-
strained saturation, respectively. Obviously, the high cost building ReachRel is
often overwhelming. However, it should be observed that most of the models we
consider are best-case-scenarios for BFS , since convergence is achieved imme-
diately (robin, fms, and kanban) or in relatively few iterations; for counter,
instead, BFS convergence requires 2N−1 iterations and the ReachRel saturation
approach is obviously enormously superior in runtime.

3.3 Integer-valued decision diagrams

In the following section, we will need to manipulate integer-valued, instead of
boolean-valued, functions. Specifically, we will need to encode partial functions
from Xpot to N, or, which is the same since it is natural for our purposes to think
of “undefined” as being “infinite”, total functions from Xpot to N ∪ {∞}.

We now introduce two variants of decision diagrams that can do just that.
The first one, (ordered) multi-terminal MDDs is a fairly obvious extension of
ordinary MDDs, where we allow each terminal to correspond to a distinct element
of the range of the function to be encoded:

– The terminal nodes are distinct elements of a range set X0 and are associated
with the range variable v0, satisfying vk ≻ v0 for any domain variable vk.

The semantic of this multiway generalization of the MTBDDs introduced by
Clarke et al. [22] is still very similar to that of BDDs and MDDs: to evaluate the
encoded function on (iL, ..., i1), we follow the corresponding path from the root
and the reached terminal node, now an element of X0 instead of just 0 or 1, is
the desired value. Quasi-reduced and fully-reduced (and even identity-reduced)
canonical forms can be defined exactly as for BDDs and MDDs.

The second variant additive edge-valued MDDs, or EV+MDDs [19], is instead
a more substantial departure from the decision diagrams seen so far, as there is
a single terminal node carrying no information:

– The only terminal node is Ω, associated with variable Ω.var = v0, satisfying
vk ≻ v0 for any domain variable vk.

N
BFS ReachRel

iter. time mem. time mem.

phils : EG¬(HasL0 ∧HasR0)

300 4 0.02 2.78 0.81 8.16
500 4 0.03 4.06 1.60 11.44

1000 4 0.08 7.63 16.91 20.89

robin : EG(true)

20 1 0.00 0.48 0.15 4.16
50 1 0.03 2.58 2.48 36.10

100 1 0.63 14.60 18.96 179.76

fms : EG(P1wP2 > 0 ∧ P2 = P3 = N)

8 1 0.00 1.53 27.29 17.92
10 1 0.01 2.18 215.12 31.07
12 1 0.02 2.32 2824.78 59.46

slot : EG(C0 = 0)

20 781 2.17 6.22 12.23 14.24
25 1227 7.30 11.31 252.18 20.29
30 1771 20.30 20.36 – –

kanban : EG(back2 = N − 1 ∨ back3 = N − 1)

10 1 0.00 5.26 3.08 5.29
15 1 0.00 17.43 31.59 17.49
20 1 0.01 46.13 189.99 46.40

leader : EG(status0 6= leader)

3 14 0.00 0.64 0.74 7.38
4 18 0.01 1.96 81.29 20.83
5 22 0.05 3.67 – –

counter : EG(bitN−1 = 0)

10 512 0.00 0.24 0.00 0.05
15 16384 0.23 2.46 0.00 0.07
20 524288 17.35 4.74 0.00 0.08

queen : EG(q0 = 1)

10 10 0.65 16.88 0.58 12.62
11 11 4.34 46.06 4.15 53.42
12 12 37.00 189.22 23.26 244.65

Fig. 18. Results for CTL EG queries (memory: MB, time: sec).

while each edge has not only a label but also a value:

– For each ik ∈ Xk, a nonterminal node p associated with vk has an outgoing
edge labeled with ik, pointing to p[ik].child and having a value p[ik].val ∈
N ∪ {∞}. We write p[ik] = 〈p[ik].val,p[ik].child〉 and call such pair an edge.

The function fp : Xpot → N ∪ {∞} encoded by a node p associated with vk is

fp(xL, ..., x1) =

{

0 if k = 0, i.e., p = Ω

p[ik].val + fp[ik].child(xL, ..., x1) if k > 0, i.e., p 6= Ω.

As we mostly operate on edges, we also define the function f〈σ,p〉 :Xpot→N∪{∞}
encoded by edge 〈σ,p〉 as f〈σ,p〉 = σ + fp.

The canonical forms already seen extend to EV+MDDs, once we give proper
care to edge values:

1. All nodes are normalized : for any nonterminal node p associated with vk, we
must have p[ik].val = 0 for at least one ik ∈ Xk. Thus, the minimum of the
function encoded by any node is 0, and a function f : Xpot → N ∪ {∞} is
encoded by an edge 〈ρ,p〉 where ρ = mini∈Xpot

{f(i)}.
2. All edges with value ∞ point to Ω: if p[ik].val =∞ then p[ik].child = Ω.
3. There are no duplicates : if p.var = q.var = xk and p[ik] = q[ik] for all

ik ∈ Xk, then p = q (now, p[ik] = q[ik] means equality for both the identities
of the children and the values of the edges).

4. One of the following forms holds
quasi-reduced form: there is no variable skipping, i.e., if p.var = vk, then

p[ik].child.var = vk−1 for any ik ∈ Xk, and k = L if p is a root node.
fully-reduced form: there is maximum variable skipping, i.e., no redundant

node p exists, with p[ik].val = 0 and p[il].child = q, for all ik ∈ Xk.
Thus, a constant function f = c ∈ N ∪ {∞} is encoded by 〈c,Ω〉.

Indeed, while not needed in this survey, we can even associate reduction rules
with individual variables, as already discussed for MDDs. If a node q associated
with an identity-reduced variable vk is singular, i.e., it has one edge q[ik] with
value 0 and all other edges with value ∞, then no edge p[il] can point to q if
il = ik or if it skips over a fully-reduced variable vh such that ik ∈ Xh. In other
words, EV+MDD edges 〈∞,Ω〉 play the same role as MDD edges to the terminal
0. The next section gives an example of MTMDDs and EV+MDDs.

EV+MDD manipulation algorithms are somewhat more complex than their
MDD or MTMDD analogues, as node normalization requires the propagation
of numerical values along the edges of the diagram, but they retain the overall
recursive flavor seen for other decision diagrams. For example, Fig. 19 shows
the pseudocode for the Minimum operator, assuming quasi-reduced EV+MDDs.
Observe that, when looking up the operation cache in the computation of the
minimum of 〈α,p〉 and 〈β,q〉, we can swap p and q to force a particular order on
them (e.g., increasing node id), since Minimum is commutative. Furthermore,
we can just focus on the difference α − β, which can be positive, negative, or
zero, instead on the actual values of α and β, since Minimum(〈3,p〉, 〈5,q〉) =
3 + Minimum(〈0,p〉, 〈2,q〉). As the result is always going to be of the form
〈min{α, β},r〉, thus 〈3,r〉 in our example, the cache only needs to remember
the node portion of the result, r.

We conclude this section by stressing a key difference between the original
definition of EVBDDs [37] and our EV+MDDs (beyond the facts that EV+MDDs
allow a non-binary choice at each nonterminal node and the use of∞ as an edge
value, both of which could be considered as “obvious” extensions). EVBDDs
extended BDDs by associating an integer (thus possibly negative) value to each
edge, and achieved canonicity by requiring that p[0].val = 0, so that a function
f : Xpot → N is encoded by an edge 〈ρ,p〉 where ρ = f(0, ..., 0). While this
canonical form has smaller memory requirements, as it eliminates the need to
explicitly store p[0].val, it cannot encode all partial functions, thus is not as

edge Minimum(edge 〈α,p〉, edge 〈β,q〉) • edge is a pair 〈int ,node〉

1 if α =∞ then return 〈β,q〉;
2 if β =∞ then return 〈α,p〉;
3 vk ← p.var ; • same as q.var
4 µ← min{α, β};
5 if p = q then return 〈µ,p〉; • includes the case k = 0, i.e., p = q = Ω

6 if Cache contains entry 〈Minimum, p, q, α− β : r〉 then return 〈µ,r〉;
7 r ← NewNode(k); • create new node associated with vk with edges set to 〈∞,Ω〉
8 foreach ik ∈ Xk do

9 r[ik]← Minimum(〈α−µ+p[ik].val ,p[ik].child〉, 〈β−µ+q[ik].val ,q[ik].child〉);
10 UniqueTableInsert(r);
11 enter 〈Minimum, p, q, α− β : r〉 in Cache;
12 return 〈µ,r〉;

Fig. 19. The Minimum operator for quasi-reduced EV+MDDs [19].

general as EV+MDDs. For example, EVBDDs cannot encode the function δ
considered in Fig. 21, because δ(1, 0, 0) = ∞ but δ(1, 0, 1) = 4, thus there is no
way to normalize the node associated with x1 on the path where x3 = 1 and
x2 = 0 in such a way that its 0-edge has value 0.

3.4 Symbolic computation of CTL witnesses

A witness for an existential CTL formula is a finite path i(0), i(1), ..., i(d) of
markings in the reachability graph, with i(0) ∈ Xinit, which proves the validity
of the formula. For EXa and EFa, assuming a is an atomic proposition, we simply
require that a holds in i(1), or i(d) for some d ≥ 0, respectively. For EaUb, a must
hold in i(0), i(1), ..., i(d−1), and b, also assuming it is an atomic proposition, must
hold in i(d). For EGa, all the markings on the path must satisfy a and, in addition,
i(d) must equal i(m), for some m ∈ {0, ..., d−1}, so that the path contains a cycle.
Of course, we cannot provide witnesses to a universal CTL formula, but we can
disprove it with a counterexample, i.e., a witness for its negation.

Witnesses and counterexamples can help us understand and debug a complex
model and they are most useful when they are short, thus, ideally, we seek
minimal length ones. We then define the distance function δ :Xpot→N∪ {∞} as
δ(i)=min{d : i ∈ N d(Xinit)}, so that δ(i)=∞ iff i 6∈Xrch.

We can build δ as a sequence of dmax + 1 sets encoded as MDDs, where
dmax is the maximum distance of any marking from Xinit, using one of the two
algorithms shown in Fig. 20. The difference between the two algorithms is that
X [d] contains the markings at distance exactly d while Y [d] contains the markings
at distance up to d (this is analogous to the “frontier vs. all” approaches to
reachability-set generation in Fig. 8). In fact, these algorithms essentially also

build the reachability set as a byproduct, since Xrch =
⋃dmax

d=0 X
[d] = Y [dmax].

Instead of encoding the distance function with a sequence of MDDs, we can
encode it more naturally with a single decision diagram having range N ∪ {∞}.
Fig. 21(a,b) illustrates how the same distance function δ is encoded by five

Build X [d]={i :δ(i)=d}, d=0, 1, ..., dmax

DistanceMddEQ(Xinit,N) is

1 d← 0;
2 Xrch ← Xinit;

3 X [0] ← Xinit;

4 repeat

5 X [d+1] ← N (X [d]) \ Xrch;

6 d← d+ 1;
7 Xrch ← Xrch ∪ X

[d];

8 until X [d] = ∅;
9 return X [0], ...,X [d−1];

Build Y [d]={i :δ(i)≤d}, d=0, 1, ..., dmax

DistanceMddLE(Xinit,N) is

1 d← 0;
2 Y [0] ← Xinit;

3 repeat

4 Y [d+1] ← N (Y [d]) ∪ Y [d];

5 d← d+ 1;
6 until Y [d] = Y [d−1];

7 return Y [0], ...,Y [d−1];

Fig. 20. Two ways to build a set of MDDs encoding the distance function.

v3 0 0 0 0 1 1 1 1

v2 0 0 1 1 0 0 1 1

v1 0 1 0 1 0 1 0 1

δ 0 2 3∞∞4 1 0 0 421 3

d=1 d=2 d=3 d=4d=0

1

0 1 1 0 0 1

010

10

1

0 1

0 1 0 1

0 1 0 1 0 1

δ
0 1

0 1 0 1

0 1 0 1 0 1

0

Ω

0 0

0 3 4 0

020 0 1 0

δ

(a) (b) (c)

Fig. 21. Encoding the distance function: sequence of MDDs, a MTMDD, an EV+MDD.

MDDs or a single MTMDD with five terminal nodes (plus terminal ∞, which is
omitted). However, while MTMDDs are a natural and often useful extension, it
is obvious that they can have poor merging toward the bottom of the diagram,
just as a sequence of MDDs might have an overall poor merging toward the top.
The real problem is that both approaches are explicit in the number of distinct
distance values. If the maximum distance dmax is very large, these symbolic
encodings do not help much: we need edge values, that is, EV+MDDs.

The canonical EV+MDD encoding the distance function δ previously con-
sidered is shown in Fig. 21(c), where edges with value ∞ are omitted and the
highlighted path describes δ(1, 0, 1) = 0+0+4+0 = 4. While this example does
not demonstrate the benefits of EV+MDDs over MTMDDs, one can simply con-
sider the function f(iL, ..., i1) =

∑L
k=1 ik ·

∏k−1
l=1 |Xl| to realize that an EV+MDD

for this function requires L nonterminal nodes and
∑L

k=1 |Xl| edges, an expo-

nential improvement over a canonical MTMDD, which requires
∑L

k=1

∏k
l=2 |Xl|

nonterminal nodes and
∑L

k=1

∏k
l=1 |Xl| edges.

While storing the distance function using EV+MDDs instead of multiple
MDDs or a MTMDD has the potential of improving memory and runtime, much
larger improvements are possible if we, again, apply the idea of saturation. First
of all, we need to revisit the idea of how the distance function is computed. If we

Xinit

δ[m](j) j

i

+1

δ[m](i)

Fig. 22. Computing the distance function as a fixpoint.

follow a traditional breadth-first thinking, we simply initialize δ to the default
constant function ∞, then lower its value to 0 for any marking in X [0] = Xinit,
then lower its value to 1 for any marking reachable from X [0] in one application
of N and not already in X [0], then lower its value to 2 for any marking reachable
from X [1] in one application of N and not already in X [0] or X [1], and so on.
However, we can also think of the distance function δ as the fixpoint of the
sequence (δ[m] : m ∈ N), initialized with δ[0] satisfying δ[0](i) = 0 if i ∈ Xinit

and ∞ otherwise, and recursively updated by choosing an α ∈ T and letting

δ[m+1] satisfy δ[m+1](i) = min
{

min
j∈N−1

α (i){1 + δ[m](j)}, δ[m](i)
}

, as illustrated

in Fig. 22. With this approach, each iteration reduces the value of δ[m](i) for
at least one marking i, until no more reduction is possible for any α ∈ T .
The value of the distance function for a particular marking i may be reduced
multiple times, as we keep finding new ways to improve our estimate, unlike the
traditional breadth-first iteration which reduces this value exactly once if i is
reachable: from δ[m](i) =∞, for values of m less than the actual distance d of i,
to δ[m](i) = d, for values of m greater or equal d.

Fig. 23 shows the memory and time requirements to generate the distance
function δ using three approaches: an EV+MDD and saturation (Es), MDDs and
the breadth-first iterations of Fig. 20 on the left, and then either accumulating
the distances of the markings X [d] into a single EV+MDD (Eb), or keeping them
as separate MDDs (Mb). Of course, Es and Eb result in the same final EV+MDD
encoding of δ, but they greatly differ in peak memory requirements, thus time.
Except for the queen model, where all techniques perform approximately the
same (and not particularly well compared to an explicit approach, since the
decision diagram is quite close to a tree in all cases), the results clearly show
the superiority of EV+MDDs over the simpler MDDs for the final encoding of δ.
More importantly, the results show the enormous memory and time superiority
of saturation over breadth-first search, except for the queen model (where Es is
better than Eb but both are somewhat worse than Mb), and the leader model
(where Es uses half the memory and twice the time of Eb, but both are worse
than Mb, sometimes by up to a factor of two or three, even if their final encoding
of δ is over four times better).

Once the distance function has been generated and encoded as an EV+MDD
〈ρ∗,r∗〉, we can generate a minimal witness for EFq as shown in Fig. 24, assuming
that q∗ is the MDD encoding the nonempty set of reachable markings satisfying q.
First, we build the EV+MDD 〈0,x〉, which is essentially the same as the MDD q∗,
except that (1) all its edges have an associated value of 0 unless the MDD edge
points to 0, in which case the associated value is ∞, and (2) the two MDD

N |Xrch| dmax
Time δ mem. Peak mem.

Es Eb Mb Es, Eb Mb Es Eb Mb

phils

100 4.96·1062 200 0.01 1.33 1.13 0.06 4.20 0.25 36.60 24.31
200 2.46·10125 400 0.02 21.60 20.07 0.11 17.10 0.44 117.14 70.86
500 3.03·10313 1000 0.05 – – 0.28 – 0.92 – –

robin

50 1.26·1017 394 0.01 2.04 1.88 0.12 2.78 1.33 34.06 25.06
100 2.85·1032 794 0.05 33.53 31.76 0.43 16.91 7.36 307.14 257.29
150 4.81·1047 1194 0.10 174.57 168.34 0.93 50.99 23.20 1206.50 1056.45

fms

10 2.53·107 80 0.02 0.82 0.77 0.03 0.73 0.71 19.89 17.56
15 7.24·108 120 0.06 5.49 5.00 0.06 2.24 1.55 57.05 49.23
20 8.83·109 160 0.17 24.56 24.08 0.10 5.22 3.24 118.53 102.65

slot

10 8.29·109 114 0.04 0.44 0.39 0.03 0.87 0.53 11.75 8.74
20 2.73·1020 379 0.34 30.12 28.49 0.17 15.95 3.73 120.93 66.42
30 1.03·1031 794 1.41 2576.32 2336.05 0.45 92.56 12.50 703.54 388.75

kanban

20 8.05·1011 280 0.85 3.26 2.92 0.10 9.32 4.26 75.94 49.57
30 4.98·1013 420 6.71 28.63 26.99 0.29 43.27 18.65 291.22 176.74
40 9.94·1014 560 38.84 180.23 162.43 0.66 130.92 43.78 836.24 452.74

leader

6 1.89·106 93 2.64 1.59 1.16 0.85 3.31 13.36 32.12 15.65
7 2.39·107 115 16.88 8.63 6.29 2.56 10.79 41.36 96.01 39.08
8 3.04·108 139 122.38 69.03 52.72 6.99 31.29 126.79 270.43 91.23

counter

10 1.02·103 1010−1 0.00 0.01 0.01 0.00 0.11 0.03 0.70 0.39
20 1.04·106 1020−1 0.00 400.42 95.13 0.00 112.00 0.04 510.09 183.41
30 1.07·109 1030−1 0.00 – – 0.00 – 0.04 – –

queen

12 8.56·105 12 3.75 3.77 2.77 23.54 20.77 71.84 95.07 63.69
13 4.67·106 13 21.57 21.53 16.59 112.61 99.46 340.26 452.85 309.37
14 2.73·107 14 127.69 130.78 102.06 572.20 505.74 1737.16 2308.17 1577.99

Fig. 23. Results for distance function computation (memory: MB, time: sec).

terminals 0 and 1 are merged into the unique EV+MDD terminal Ω. Then, we
build the EV+MDD 〈µ,m〉 encoding the elementwise maximum of the functions
encoded by 〈ρ∗,r∗〉 and 〈0,x〉). Note that µ is then the length of one of the
minimal witnesses we are seeking. Then, we simply extract from 〈µ,m〉 a marking

j(µ) = (j
(µ)
L , . . . , j

(µ)
1) on a 0-valued path from m to Ω, which is then a reachable

marking satisfying q and at the minimum distance µ from Xinit. Finally, we
“walk back” from j(µ), finding at each iteration a marking one step closer to
Xinit. We have described this last sequence of steps in an explicit, not symbolic,
fashion since its complexity is minimal as long as each N−1(j(ν+1)) is small; were
this not the case, a symbolic implementation is certainly possible.

marking sequence Witness(edge 〈ρ∗,r∗〉,mdd q∗)

1 〈0,x〉 ← MddToEvmdd(q∗); • f〈0,x〉(i)=0 if fq∗(i)=1, f〈0,x〉(i)=∞ otherwise

2 〈µ,m〉 ← Maximum(〈ρ∗,r∗〉, 〈0,x〉); • analogous to the Minimum algorithm

3 choose a marking j(µ) on a 0-valued path in 〈µ,m〉;
4 for ν = µ− 1 downto 0 do •walk backward a witness of length µ

5 foreach i ∈ N−1(j(ν+1)) do
6 if f〈ρ∗,r∗〉(i) = ν then • there must be at least one such marking i

7 j(ν) ← i;

8 break; •move to the next value of ν

9 return (j(0), ..., j(µ));

Fig. 24. Minimal EF witness computation using the distance function [19].

3.5 Bounded model checking

When the reachability set is infinite (because some place is unbounded), or even
simply when its MDD encoding is unwieldy, even the powerful symbolic methods
seen so far fail. Bounded model checking has then been proposed as a practical
alternative in these cases. Usually implemented through SAT solvers [6], the idea
of bounded model checking is in principle independent of their use, as it simply
centers around the idea of exploring only a smaller (and certainly finite) portion
of the reachability set. Answers to certain CTL queries may still be obtained, as
long as no marking can reach an infinite number of states in a single step, which
is certainly true for Petri nets, even in the self-modifying case.

As initially proposed, bounded model checking explores only markings whose
distance from the initial markings does not exceed a given a bound B. Then, for
safety queries, we might find a counterexample, or prove that no counterexample
exists, or, in the worst case, determine that no incorrect behavior arises within
the first B steps (in this last inconclusive case, we might choose to increase
B and repeat the analysis). Obviously, B breadth-first iterations starting from
Xinit can be used to encode the bounded reachability set as a BDD or MDD,
but performance tends to be poor compared to SAT-based methods [30, 31, 42].

One reason for this is that, as we have already observed, the MDD encoding
the set of markings reachable in exactly, or up to, d steps is often quite large.
Saturation tends to be much better than breadth-first iteration when exploring
the entire reachability set but, for bounded exploration, it does not offer an
obvious way to limit its exploration to markings within a given distance from
Xinit: ordinary saturation uses an MDD and computes a fixpoint at each node
p associated with vk, stopping only when p encodes all (sub)markings reachable
from the (sub)markings it initially encoded, by firing any α with Top(α) ≤ k.

We then introduced a bounded saturation approach that uses an EV+MDD,
not simply an MDD, to build a truncated distance function δtrunc and bound the
amount of exploration on a node p associated with vk, in one of two ways [56]:

– Ensure that, for any marking i ∈ XL × · · · × X1, δtrunc(i) = δ(i) if δ(i) ≤ B
and δtrunc(i) =∞ otherwise (EVMDD-Exact method).

– Ensure that, for any marking i ∈ XL × · · · × X1, δtrunc(i) = δ(i) if δ(i) ≤ B
and δtrunc(i) ≥ δ(i) otherwise, while also ensuring that, for any EV+MDD

node associated with vk and any ik ∈ Xk, p[ik].val ≤ B or p[ik].val =∞
(EVMDD-Approx method).

While EVMDD-Exact finds only and all the markings with distance exactly
up to B, EVMDD-Approx finds not only all those markings, but also many other
markings with distance up to L ·B. Even with these additional markings being
encoded in the EV+MDD, the EVMDD-Approx method is sometimes by far the
best approach, as shown in Fig. 25, which compares the traditional BFS bounded
exploration using MDDs with the two approaches just described. In addition,
since EVMDD-Approx explores a larger set of markings Xexpl, it is more likely
to find the (un)desired behavior we are looking than its exact alternatives, for
a given bound B. Indeed, for the two models where EVMDD-Approx performs
much worse than breadth-first search, the former ends up exploring the entire
state space, i.e., Xexpl = Xrch (in this case, of course, ordinary saturation using
MDDs would be much more efficient than bounded saturation using EV+MDDs).

4 Further synergy of decision diagrams and Petri nets

So far, we have considered logical applications of decision diagram technology
for the analysis of Petri nets. Even the non-boolean forms of decision diagrams
we introduced, MTMDDs and EV+MDDs, have after all been used only to count
distances between markings. However, analysis techniques involving numerical
computations are often required, especially when working with extensions of the
Petri net formalism that take into account timing and probabilistic behavior,
and decision diagrams have been successfully employed here as well. We now
briefly discuss three such applications where saturation might also be applied,
at least on some of the required computation. The last topic of this section, in-
stead of presenting decision diagram algorithms that improve Petri net analysis,
illustrates how the help can also “flow the other way”, by discussing a heuristic
based on the invariants of a Petri net to derive a good order for the variables of
the decision diagrams used to study the Petri net itself.

4.1 P-semiflow computation

Invariant or semiflow analysis can provide fast (partial) answers to Petri net
reachability questions. A p-semiflow is a non-negative, non-zero integer solution
w ∈ N

|P| to the set of linear flow equations wT ·D = 0, where D = D+ −D−

is the incidence matrix. If there exists a p-semiflow w with wp > 0, place p
is bounded regardless of the initial marking iinit. Indeed, given iinit, we can
conclude that ip ≤ (w · iinit)/wp in any reachable marking i. P-semiflows pro-
vide necessary, not sufficient, conditions on reachability: we can conclude that a
marking i is not reachable if there is p-semiflow w such that w · i 6= w · iinit.

Explicit p-semiflow computation. As any nonnegative integer linear com-
bination of p-semiflows is a p-semiflow, we usually seek the (unique) generator

BFS EVMDD-Exact EVMDD-Approx
N Xrch time mem. time mem. Xrch time mem.

phils : B=100

100 2.13×1059 0.85 18.52 6.38 14.30 4.96×1062 0.10 1.53
200 1.16×1086 2.63 38.56 22.32 41.10 2.46×10125 0.20 2.60
300 1.18×10101 5.60 89.27 42.54 70.20 1.22×10188 0.31 2.93

robin : B=N × 2

100 1.25×1018 2.44 30.17 2.34 22.04 8.11×1020 0.12 1.70
200 2.65×1035 37.72 250.80 35.06 264.61 7.62×1040 1.05 9.18
300 5.61×1052 192.53 909.86 187.83 1091.43 9.64×1060 3.98 28.09

fms : B=50

10 2.20×107 0.57 5.63 1.55 9.45 2.53×107 0.22 1.98
15 1.32×108 1.93 11.24 28.59 28.52 7.24×108 0.90 4.27
20 2.06×108 4.27 19.40 414.29 44.47 8.82×109 2.55 4.28

slot : B=30

20 1.57×1014 0.10 3.65 7.30 7.49 1.58×1020 0.19 1.14
25 1.93×1016 0.13 4.98 28.17 10.31 2.41×1025 0.26 1.50
30 1.14×1018 0.16 6.12 79.26 12.63 3.69×1030 0.34 2.12

kanban : B=100

11 7.35×108 1.52 18.77 0.74 6.38 2.43×109 0.23 6.10
12 1.05×109 2.51 29.70 1.11 9.30 5.51×109 0.34 9.13
13 1.42×109 3.45 25.87 1.57 11.79 1.18×1010 0.53 12.09

leader : B=50

7 7.34×106 0.94 6.02 90.03 70.55 2.38×107 18.54 22.33
8 4.73×107 1.97 6.91 1342.46 204.01 3.04×108 143.67 72.37
9 3.11×108 4.15 8.28 – – 3.87×109 1853.66 243.89

counter : B=2N/10

100 1.02×103 0.32 13.39 0.01 0.12 2.04×103 0.02 0.07
200 1.04×106 745.80 107.62 3.31 36.96 2.09×106 0.06 0.11
300 – – – – – 2.14×109 0.18 0.14

queen : B=5

13 3.86×104 0.06 1.18 0.20 2.40 3.86×104 0.15 1.80
14 6.52×104 0.07 1.73 0.35 3.58 6.52×104 0.25 2.97
15 1.05×105 0.10 2.58 0.58 5.59 1.05×105 0.42 4.45

Fig. 25. Results for bounded saturation (memory: MB, time: sec).

G, i.e., the set of minimal p-semiflows w satisfying: (1) w has a minimal sup-
port Supp(w) = {p ∈ P : wp > 0}, i.e., no other p-semiflow w′ exists with
Supp(w′) ⊂ Supp(w), and (2) w is scaled back, i.e., the greatest common divi-
sor of its (non-zero) entries is one.

The standard explicit approach to compute G is Farka’s algorithm [26], which
manipulates a matrix [T|P] stored as a set A of integer row vectors of length
m + n, where m and n are the number of transitions and places, respectively.
Initially, [T|P] = [D | I] ∈ Z

n×m×N
n×n, where D is the flow matrix and I is the

n × n identity matrix, thus A contains n rows. Then, we iteratively force zero
entries in column j for j = 1, ...,m, using the following process:

1. Let AN (AP) be the set of rows with negative (positive) j-entry, respectively.
2. Remove the rows in AN or AP from A.
3. For each aN ∈ AN and aP ∈ AP , add row {(−v/aN [j]) ·aN +(v/aP [j]) ·aP }

to A, where v is the minimum common multiple of −aN [j] and aP [j].

The number of rows may grow quadratically at each step, as we add |AN | · |AP |
rows to A but only remove |AN | + |AP | rows from it (the number decreases iff
AN or AP is a singleton). Thus A can grow exponentially in m in pathological
cases. Also, if at the beginning of a step either AN or AP is empty but not both,
no p-semiflows exist.

Once the first m columns of [T|P] are all zeros, P, i.e., the rows in A describe
the required p-semiflows, except that some of them may be need to be scaled back
and some might not have minimal support. Scaling back A can be accomplished
by dividing each a ∈ A by the GCD of its entries, with time complexity O(|A|·n).
To eliminate non-minimal support rows, instead, we compare the supports of
each pair of distinct a and b in A and delete b if its support is a superset of
that of a, with time complexity O(|A|2 · n). Alternatively, we can minimize A
during Farka’s algorithm, so that, before iteration j, A contains the minimal
support p-semiflows ignoring transitions j, ...,m, and iteration j adds a row to
A only if it scaled back and its support is not a superset of that of a row already
in A; this tends to perform better in practice.

Symbolic p-semiflow computation using zero-suppressed MDDs [16].
As described, Farka’s algorithm manages a set of rows with elements from Z (in
the first m columns) or N (in the last n columns). This is similar to managing a
set of markings, for which MDDs are ideally suited, with two differences:

– The first m row can have negative entries. We cope by letting MDD nodes
have index set Z instead of N. In either case, the key restriction is the same,
only a finite number of indices can be on a path to the terminal node 1.

– Many of the entries are zero (and the first m entries of each row will be zero
at the end). While this is not a problem for MDDs, it turns out that a new
MDD reduction rule (initially proposed for BDDs [55]) improves efficiency.
We use zero-suppressed MDDs (ZMDDs) [16], where no node p has p[ik] = 0
for all ik 6= 0, and the semantic of an edge p[ik] = q skipping over variable vh,
is the same as if vh were quasi-reduced and we inserted a node p′ associated
with vh along that edge, with p′[0] = q and p′[ih] = 0 for ih 6= 0, see Fig. 26.

In [16] we described a fully symbolic algorithm for p-semiflow computation
that implements Farka’s algorithm using an (m+ n)-variable ZMDD to encode
the set of rows A. After the jth iteration, all the rows in A have zero entries in
the first j columns, thus the ZMDD encoding of A skips those first j variables
altogether. Symbolic algorithms were provided to perform the required linear
combinations, to eliminate non-minimal support p-semiflows (either periodically
or at the end), and to scale back a set of p-semiflows.

Experimental results show that our symbolic approach is more efficient than
the explicit algorithm implemented in GreatSPN [3] for large enough instances

A = {000, 001, 002, 110, 111, 112}

1

0 1

1

0 1

0

2

1

0 1

1

0 1 2

(a) (b)

Fig. 26. An MDD (a) and a ZMDD (b) encoding the same set A.

of Petri nets whose generator contains even just a few p-semiflows, while it is of
course enormously more efficient when the generator is pathologically large.

While our symbolic algorithms are not expressed as fixpoints, thus do not
use saturation, it is conceivable that saturation could be used, especially for the
elimination of non-minimal support p-semiflows, to further improve efficiency.

4.2 Integer timed Petri nets

Two classic ways to incorporate timed, but not probabilistic, behavior in Petri
nets are timed Petri nets [58] (the firing time of a transition α is a non-negative
real constant) and time Petri nets [40] (the firing time lies in a non-negative
real interval). In [53], we considered a variant, integer-timed Petri nets (ITPNs),
where the firing time of a transition is nondeterministically chosen from a finite
set of positive integers, and explored two fundamental reachability problems:

– Timed reachability : find the set of markings where the Petri net can be at a
given finite point θf in time.

– Earliest reachability : find the first instant of time ǫ(i) when the Petri net
might enter each reachable marking i.

We tackle timed reachability by performing a symbolic simultaneous sim-
ulation that manipulates sets of states of the form (i, τ), where i ∈ N

|P| is a
marking and τ ∈ (N ∪ {∞})|T | is a vector of remaining firing times (RFTs), so
that τt is the number of time units until t will attempt to fire (∞ if t is disabled
in i). We use an MDD on |P|+ |T | variables to encode the set of states in which
the ITPN might be at global time θ, starting with θ = 0. Then, we iteratively:

1. Compute the minimum RFT τb for any state encoded by the MDD.
2. Advance θ to the next breakpoint θ+τb, and update the MDD by subtracting

τb from every RFT.
3. Now the MDD contains some vanishing states (having one or more RFT

equal to zero). Fire all possible maximally serializable sets of transitions
having zero RFT, until finding all the tangible states (having only positive
remaining firing times) reachable without further advancing the global time.

When θ reaches the desired final time θf , we stop and call a function Strip that,
given the MDD encoding the states Sθ reachable at time θ, computes the MDD
encoding just the corresponding markings Xθ = {i : ∃τ , (i, τ) ∈ Sθ}.

For earliest reachability, we carry out timed reachability, calling Strip at
every breakpoint, and accumulating the results in an EV+MDD over just the
place variables. Initially, the EV+MDD encodes the function ǫ(i) = 0 if i is an
initial marking, and ǫ(i) =∞ otherwise. Then, after stripping the set of markings
Xθ from the set of states Sθ encoded by the MDD at time θ, we transform it into
an EV+MDD ǫθ evaluating to θ if i ∈ Xθ and to ∞ otherwise, and we update
the EV+MDD so that it encodes the function min(ǫ, ǫθ). In other words, we set
the earliest reachability time of any marking in Xθ to θ, unless it has already
been reached earlier, thus already has a smaller earliest reachability time.

The timed reachability algorithm is guaranteed to halt because θf is finite,
all firing times are positive integers, and the number of possible firing times for
a transitions is finite, However, the earliest reachability algorithm is guaranteed
to halt only if the set of reachable markings is finite. Furthermore, the earliest
reachability algorithm can be halted only if we accumulate the set of states en-
countered during the timed reachability iterations: failure to increase this set at
a breakpoint indicates that no more states can be found; however, accumulating
just the reachable markings, or even their earliest reachability function, is not
enough, as it is possible to advance to a breakpoint and increase the set of states
encountered so far, but not the set of markings.

The results in [53] indicate excellent scalability, showing that problems with
very large reachable state spaces can be explored, thanks to the use of symbolic
data structures and algorithms. In particular saturation is used in the compu-
tation of the tangible states reachable after advancing to a new breakpoint, as
this process can be expressed as a fixpoint computation where we need to fire
all transitions with a zero RFT in all possible (non-conflicting) sequences. Of
course, much of the approach presented is feasible due to the assumption of a
discrete set of possible positive integer firing times. Extension to more general
firing time assumptions is an interesting challenge that remains to be explored.

4.3 Continuous-time markovian Petri nets

As a last application of decision diagram technology to Petri net analysis, we
now consider the generation and numerical solution of Markov models.

Generalized stochastic Petri nets (GSPNs) and their explicit solution.
GSPNs [1] extend the (untimed) Petri net model by associating a firing time
distribution to each transition. Formally, the set of transitions is partitioned
into TT (timed, with an exponentially-distributed firing time) and TV (immediate,
with a constant zero firing time). Immediate transitions have priority over timed
transitions, thus, a marking i is either vanishing, if T (i) ∩ TV 6= ∅, which then
implies T (i) ⊆ TV as any timed transition is disabled by definition, or tangible,
if T (i) ⊆ TT , which includes the case of an absorbing marking, T (i) = ∅.

If marking i is vanishing, its sojourn time is 0 and the probability that a par-
ticular t ∈ T (i) fires in i is wt(i)/(

∑

y∈T (i) wy(i)), where w : TV ×N|P | → [0,+∞)

specifies the marking-dependent firing weights (i.e., unnormalized probabilities)

of the immediate transitions. If i is instead tangible, its sojourn time is exponen-
tially distributed with rate λ(i) =

∑

y∈T (i) λy(i), where λ : TT ×N
|P | → [0,+∞)

specifies the marking-dependent firing rates of the timed transitions (of course,
the sojourn time is infinite if λ(i) = 0, i.e., if i is absorbing). A race policy is
employed in this case, thus the probability of t ∈ T (i) firing in i is λt(i)/λ(i).

Except for pathological cases containing absorbing vanishing loops [2], a
GSPN defines an underlying continuous-time Markov chain (CTMC) [10] whose
state space is the set of reachable tangible markings of the GSPN, Xtan, and
whose transition rate matrixR satisfiesR[i, j]=

∑

i
t
⇁h

λt(i)·
∑

σ∈T ∗
V
:h

σ
⇁j

Pr{h
σ
⇁},

where Pr{h
σ
⇁} is the probability of firing the sequence σ of immediate transi-

tions when the marking is h; of course, i and j are tangible markings and either
h is vanishing or h = j, σ is the empty sequence, and we let Pr{h

σ
⇁} = 1.

Explicit approaches to GSPN analysis mostly focus on the efficient elimi-
nation of the vanishing markings, that is, on ways to compute the probability
of reaching the tangible frontier reachable through immediate firings following
a timed firing (although a preservation approach that uses as an intermediate
step an embedded discrete-time Markov chain with state space including both
tangible and vanishing markings has been used as well [18]). Once R has been
obtained, the CTMC can be solved numerically for its steady-state probability
(using Gauss-Seidel or Jacobi, possibly with relaxation [50]) or transient prob-
ability (using uniformization [29]), after which further measures defined at the
net level through reward measures can be computed.

We assume that the CTMC is finite and ergodic (all tangible markings are
mutually reachable), and focus on steady-state analysis, i.e., computing the prob-
ability vector π ∈ [0, 1]|Xtan| solution of π · Q = 0, where the infinitesimal
generator Q is defined as Q[i, j] = R[i, j] if i 6= j, and Q[i, i] = −

∑

j 6=i R[i, j].

Symbolic encoding of R. As is often the case, the main obstacle to the
analysis of GSPNs is the size of the reachability set Xrch, or even just of its
tangible portion Xtan, and of the transition rate matrix R. The symbolic gen-
eration of Xrch or Xtan can be performed along the lines of the algorithms of
Section 2. However, while the weight and rate information can be ignored dur-
ing reachability-set generation, the priority of immediate transitions over timed
transitions must be taken into account. One way to do so is to build the MDD
encoding the set of potential vanishing markings Xpotvan (i.e., the union of the
enabling conditions of any immediate transition) and restrict the forward func-
tion Nα of any timed transition α to Nα ∩ (Xpot \ Xpotvan)× Xpot. Indeed, this
idea can even be extended to enforce multiple priority levels, not just that of
timed vs. immediate transitions [41]. An ordinary saturation approach can then
be used to find the reachable markings Xrch, from which the set of reachable
tangible markings can be obtained as Xtan = Xrch \ Xpotvan.

In many practical models, immediate transitions often have very localized
effect. Then, a simpler approach is possible, where a forward function MDD
encodes the firing of a timed transition α followed by that of any immediate
transition that may become enabled because of the firing of α. For example,

consider the fms GSPN of Fig. 7, where the firing of transition tP1 deposits a
token in place P1wM1, enabling immediate transition tM1 whenever place M1 is
not empty. The forward function NtP1,tM1

will then depend on the union of the
input and output places for tP1, i.e., P1 and P1wM1, and of tM1, i.e., P1wM1,
M1, and P1M1. Thanks to our conjunctive encoding of each forward function, the
resulting MDD is usually quite manageable. Then, NtP1,tM1

can be treated as the
forward function of an ordinary timed transition. If this approach is used for all
timed transitions that might enable immediate transitions, ordinary saturation
can be employed for state-space generation without having to consider priorities,
and the resulting algorithm is essentially as efficient as for ordinary Petri nets.
This approach is applicable even if a sequence of immediate transitions might fire
following a timed transition, although in practice it becomes inefficient to build
the corresponding forward function if the possible sequences are too complex.

To encode R, real-valued MTBDDs can be employed [36, 38], but, as we
have already seen, edge-valued approaches are potentially much more efficient.
Our EV∗MDDs [54], the multiplicative analogue of EV+MDDs, are particularly
well suited to generate and store very large transition rate matrices described by
GSPNs. In EV∗MDDs, all edge values are real values between 0 and 1 (except for
the edge pointing to the root, whose value equals the maximum of the function
encoded by the EV∗MDD), a node must have at least one outgoing edge with
value 1, an edge with value 0 must point to Ω, and the function is evaluated by
multiplying the edge values encountered along the path from the root to Ω.

The EV∗MDD encoding R can be built with an approach analogous to the
one used for the forward functions in GSPN state-space generation. We first
build the EV∗MDD encoding matrix Rα,∗, corresponding to firing timed transi-
tion α (with the appropriate marking-dependent rates) followed by the firing of
any sequence of immediate transitions (with the appropriate marking-dependent
probabilities). The main difficulty is that the GSPN does not directly specify
the firing probabilities of immediate transitions, only their firing weights, which
must then be normalized, for example, by encoding the total marking dependent
weight in each (vanishing) marking in an EV∗MDD, and performing an element-
wise division operation on EV∗MDDs. R may be computed as

∑

α∈TT
Rα,∗, or

we might choose to carry on the required numerical solution leavingR in disjunct
form, i.e., as the collection of the EV∗MDDs encoding each Rα,∗.

Unfortunately, the steady-state solution vector rarely has a compact symbolic
representation (the MTMDD or EV∗MDD encoding π is often close to a tree).
Thus, the state-of-the-art for an exact numerical solution is a hybrid approach
where the (huge) tangible reachability set Xtan is stored with an MDD and the
(correspondingly huge) transition rate matrix R is stored with an EV∗MDD or
an MTBDD, but π is stored in a full real-valued vector of size |Xtan|, where the
mapping between tangible markings and their position in this vector, or indexing
function ρ : Xtan → {0, ..., |Xtan| − 1}, can be encoded in an EV+MDD which
has the remarkable property of being isomorphic to the MDD encoding Xtan if
the index of marking i is its lexicographic position in Xtan [17].

While this enables the solution of substantially larger CTMC models, since
the memory for π is a small fraction of what would be required for an explicit
storage of R, it falls short of enabling the analysis of models having similar
size as those for which we can answer reachability or CTL queries. In [54], we
propose a technique that obviates the need to allocate this full vector, but uses
instead memory proportional to the size of the MDD encoding Xtan to store an
approximation of the solution vector. However, characterizing the quality of the
result of this approximation is still an open problem.

In conclusion, saturation helps the analysis of GSPNs when generating the
reachability set, and could in principle be used to obtain R when a fixpoint
iteration is required to traverse the sequences of immediate transitions (i.e., if
the GSPN gives rise to transient vanishing loops [2]) but, at least so far, it
has not been employed for the actual numerical solution, even if the traditional
solution algorithms are expressed in terms of a fixpoint computation.

4.4 Using Petri net invariants to derive variable order heuristics

We already mentioned that the order of the variables used to encode a par-
ticular function with an appropriate form of decision diagrams can affect the
resulting size, sometimes exponentially, but finding an optimal variable order is
NP-hard [7]. Of course, the problem is even worse in practice, since the fixpoint
symbolic algorithms we described manipulate evolving sets of markings, not just
a fixed function. Thus, both static and dynamic heuristics have been proposed,
the former to determine a good variable order a priori, the latter to improve the
variable order during decision diagram manipulation.

For static orders, a starting point is often to determine groups of two or more
variables that should appear “close” in the overall variable order. An obvious
example is the relative order of unprimed and primed variables in the represen-
tation of the forward function for a transition α; since x′

k is usually a function
of xk (indeed, the two coincide if xk is independent of α), the size of the MDD
encoding Nα is usually minimized by an interleaved order, and so is the cost
of performing a relational product involving Nα. An interleaved order is then
almost universally assumed, and the (much harder) remaining problem is that
of choosing the order for the L state variables used to encode sets of marking,
which then determines the order of the L unprimed-primed state variable pairs
used to encode the forward functions.

For this, heuristics such as “inputs to the same logic gate should appear
close the output of the logic gate in the variable order” are often employed when
verifying digital circuits. Assuming for now that each variable corresponds to
a place, the analogous idea for Petri nets is “places connected to a transition
should appear close in the variable order”, but the problem is more complex
since the graph of a Petri net is often cyclic and rather more connected. In [48],
we proposed two heuristics to approach this goal in the context of the saturation
algorithm for state-space generation: sum-of-spans and sum-of-tops.

As the name suggests, sum-of-spans aims at finding a variable order that
minimizes SOS =

∑

α∈E Top(α) − Bot(α). This tends to “keep together” the

input, output, and inhibitor places of each transition. However, since places can
be connected to multiple transitions, and vice versa, minimizing SOS is shown to
be NP-hard in general. Nevertheless, even just orders that result in small values
of SOS tend to perform well (and enormously better than random orders).

Sum-of-tops aims instead at finding a variable order that simply minimizes
SOT =

∑

α∈E Top(α). Also this heuristic tends to reduce spans but, in addition,
it tends to “push down” the range of variables affected by each transition. When
generating the state-space using saturation, which works bottom-up, this means
that more transitions can be applied sooner (recall that Nα is applied to the
MDD encoding the currently known set of markings only when we begin satu-
rating nodes associated with Top(α) = vk). Minimizing SOT is also NP-hard
but, again, small values of SOT tend to do quite well.

Both sum-of-spans and sum-of-tops, however, are after all quite localized
heuristics that fail to take into account the entire structure of the Petri net.
Indeed, they do not prioritize the grouping of places connected to a particular
transition over those connected to another transition, they simply delegate this
choice to the algorithm performing the minimization of SOS or SOT .

In [14], we showed how Petri net invariants can help in a heuristic derivation
of static orders. Informally, if places a, b, and c form the support of an invariant
wa · ia +wb · ib +wc · ic = const , it is good to keep the corresponding variables
close to each other in the MDD. While in principle one of the three places can be
eliminated because its number of tokens can be derived from the other two and
the invariant equation, this can decrease locality, which is essential for saturation
to work well (and for a compact encoding of the forward functions, regardless of
the iteration approach being used). Thus, we showed instead how the bottom two
places (in the chosen variable order) should be merged into the same variable,
resulting in an increased locality and a provably smaller MDD. Ultimately, the
goal is a mixed heuristic to minimize both SOS or SOT and the invariant support
spans (ISS). While much work remains to be done (e.g., an important question
is “What relative weights should be used when minimizing SOS+ISS?”, since a
net can have exponentially more invariants than transitions), we are starting to
gain an understanding of the intuition behind static variable order heuristics.

5 Decision diagram implementations and packages

Over the past two decades, many decision diagram libraries have been developed
and many logic, timing, and probabilistic verification tools making use of decision
diagram technology have been built. In the following, we mention just a few
representative libraries and tools. This list is by no means complete, and new
libraries and tools are developed every year.

CUDD (http://vlsi.colorado.edu/~fabio/CUDD/) [49] is by far the most
stable and well-known decision diagram library. CUDD implements BDDs,
Algebraic Decision Diagrams (similar to MTBDDs), and Zero-suppressed
BDDs (the restriction of ZMDDs to boolean domains). Powerful dynamic
variable reordering heuristics are provided.

Task Best suited class of decision diagrams

State-space generation MDDs

CTL model checking MDDs for yes/no answers
EV+MDDs for witness generation

Bounded model checking MDDs if using BFS
EV+MDDs if using saturation

P-semiflow computation ZMDDs

Timed reachability MDDs

Earliest reachability MDDs and EV+MDDs

GSPN analysis MDDs for state-space generation
EV+MDDs for state indexing
EV∗MDDs for transition rate matrix

Fig. 27. Summary: classes of decision diagrams best suited for various analysis tasks.

Meddly (http://meddly.sourceforge.net/) [5] is a recent and still very much
under development open-source library that implements most (and likely all,
eventually) of the classes of decision diagrams discussed in this paper.

NuSMV (http://nusmv.fbk.eu/) [21] is an open-source reimplementation of
the SMV tool originally developed by McMillan [33]. It uses both decision
diagrams and SAT solvers to carry on logic verification. NuSMV is based on
CUDD, thus it only uses the classes of decision diagrams supported by it.

GreatSPN (http://www.di.unito.it/~greatspn/) [4] is a well known tool for
the analysis of GSPNs and related models. Initially developed with explicit
analysis techniques in mind, it evolved to include stochastic well-formed
nets (SWNs), which tackle state-space growth through symmetry exploita-
tion. More recently, GreatSPN has been enhanced with decision diagram
algorithms implemented using Meddly.

PRISM (http://www.prismmodelchecker.org/) [35] is an open-source prob-
abilistic model checker. One of its solution engines uses BDDs and MTBDDs
for the fully symbolic or hybrid solution of Markovian models.

CADP (http://www.inrialpes.fr/vasy/cadp.html) [27] is a tool suite for
the design and analysis of communication protocols. Its capabilities include
symbolic verification using BDDs.

SmArT (http://www.cs.ucr.edu/~ciardo/SMART/) [12] is our own tool, devel-
oped at the College of William and Mary, University of California at River-
side, and Iowa State University. Initially conceived for explicit analysis of
stochastic models, SmArT provides now a wide suite of symbolic capabilities.
All the results in this paper were obtained using SmArT.

6 Conclusion

We have presented a survey of how decision diagram technology, and in particular
the saturation algorithm, can be leveraged to greatly improve the size of Petri
net models that can be reasonably studied. Fig. 27 summarizes the classes of
decision diagrams best suited for the various analysis tasks we discussed.

We believe that this synergy between Petri nets (or similarly structured for-
malisms) on the one hand and decision diagrams on the other will continue to
provide valuable insight into how to advance our ability to analyze increasingly
large and complex discrete-state systems.

Acknowledgments: This work was supported in part by the National Science
Foundation under Grant CCF-1018057.

References

1. M. Ajmone Marsan, G. Balbo, and G. Conte. A class of generalized stochastic
Petri nets for the performance evaluation of multiprocessor systems. ACM Trans.
Comp. Syst., 2(2):93–122, May 1984.

2. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. John Wiley & Sons, 1995.

3. S. Baarir, M. Beccuti, D. Cerotti, M. De Pierro, S. Donatelli, and G. Franceschinis.
The GreatSPN tool: recent enhancements. SIGMETRICS Perform. Eval. Rev.,
36:4–9, March 2009.

4. J. Babar, M. Beccuti, S. Donatelli, and A. S. Miner. GreatSPN enhanced with
decision diagram data structures. In Proc. ICATPN, LNCS 6128, pages 308–317.
Springer, 2010.

5. J. Babar and A. S. Miner. Meddly: Multi-terminal and Edge-valued Decision
Diagram LibrarY. In Proc. QEST, pages 195–196. IEEE Computer Society, 2010.

6. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. TACAS, pages 193–207. Springer, 1999.

7. B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is NP-
complete. IEEE Trans. Comp., 45(9):993–1002, Sept. 1996.

8. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, Aug. 1986.

9. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98:142–
170, 1992.

10. E. Çinlar. Introduction to Stochastic Processes. Prentice-Hall, 1975.
11. G. Ciardo. Data representation and efficient solution: a decision diagram ap-

proach. In Formal Methods for Performance Evaluation, LNCS 4486, pages 371–
394. Springer, May 2007.

12. G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. Logical and stochastic
modeling with SMART. Perf. Eval., 63:578–608, 2006.

13. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation: An efficient iteration
strategy for symbolic state space generation. In Proc. TACAS, LNCS 2031, pages
328–342. Springer, Apr. 2001.

14. G. Ciardo, G. Lüttgen, and A. J. Yu. Improving static variable orders via invari-
ants. In Proc. ICATPN, LNCS 4546, pages 83–103. Springer, June 2007.

15. G. Ciardo, R. Marmorstein, and R. Siminiceanu. The saturation algorithm for
symbolic state space exploration. Software Tools for Technology Transfer, 8(1):4–
25, Feb. 2006.

16. G. Ciardo, G. Mecham, E. Paviot-Adet, and M. Wan. P-semiflow computation
with decision diagrams. In Proc. ICATPN, LNCS 5606, pages 143–162. Springer,
June 2009.

17. G. Ciardo and A. S. Miner. A data structure for the efficient Kronecker solution
of GSPNs. In Proc. PNPM, pages 22–31. IEEE Comp. Soc. Press, Sept. 1999.

18. G. Ciardo, J. K. Muppala, and K. S. Trivedi. On the solution of GSPN reward
models. Perf. Eval., 12(4):237–253, 1991.

19. G. Ciardo and R. Siminiceanu. Using edge-valued decision diagrams for sym-
bolic generation of shortest paths. In Proc. FMCAD, LNCS 2517, pages 256–273.
Springer, Nov. 2002.

20. G. Ciardo and K. S. Trivedi. A decomposition approach for stochastic reward net
models. Perf. Eval., 18(1):37–59, 1993.

21. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV Version 2: an open source tool for symbolic
model checking. In Proc. CAV, LNCS 2404. Springer, July 2002.

22. E. Clarke, M. Fujita, P. C. McGeer, J. C.-Y. Yang, and X. Zhao. Multi-terminal
binary decision diagrams: an efficient data structure for matrix representation. In
IWLS ’93 International Workshop on Logic Synthesis, May 1993.

23. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Proc. IBM Workshop on Logics of
Programs, LNCS 131, pages 52–71. Springer, 1981.

24. E. M. Clarke, J. M. Wing, R. Alur, R. Cleaveland, D. Dill, A. Emerson, S. Garland,
S. German, J. Guttag, A. Hall, T. Henzinger, G. Holzmann, C. Jones, R. Kurshan,
N. Leveson, K. McMillan, J. Moore, D. Peled, A. Pnueli, J. Rushby, N. Shankar,
J. Sifakis, P. Sistla, B. Steffen, P. Wolper, J. Woodcock, and P. Zave. Formal
methods: state of the art and future directions. ACM Comp. Surv., 28(4):626–643,
Dec. 1996.

25. S. Donatelli. Superposed generalized stochastic Petri nets: definition and efficient
solution. In Proc. ICATPN, LNCS 815, pages 258–277. Springer, June 1994.

26. J. Farkas. Theorie der einfachen ungleichungen. Journal für die reine und andge-
wandte Mathematik, 124:1–27, 1902.

27. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. Cadp 2010: A toolbox for the
construction and analysis of distributed processes. In Proc. TACAS, LNCS 6605,
pages 372–387. Springer, 2011.

28. S. Graf, B. Steffen, and G. Lüttgen. Compositional minimisation of finite state
systems using interface specifications. Journal of Formal Aspects of Computing,
8(5):607–616, 1996.

29. W. K. Grassmann. Finding transient solutions in Markovian event systems through
randomization. In Numerical Solution of Markov Chains, pages 357–371. Marcel
Dekker, Inc., 1991.

30. K. Heljanko. Bounded reachability checking with process semantics. In CONCUR,
volume 2154 of LNCS, pages 218–232, 2001.

31. K. Heljanko and I. Niemelä. Answer set programming and bounded model checking.
In Answer Set Programming, 2001.

32. A. Itai and M. Rodeh. Symmetry breaking in distributed networks. In 22th Annual
Symp. on Foundations of Computer Science, pages 150–158. IEEE Comp. Soc.
Press, Oct. 1981.

33. K. L. McMillan. The SMV system, symbolic model checking - an approach. Tech-
nical Report CMU-CS-92-131, Carnegie Mellon University, 1992.

34. T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. Multi-valued
decision diagrams: theory and applications. Multiple-Valued Logic, 4(1–2):9–62,
1998.

35. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In Proc. CAV, LNCS. Springer, 2011. To appear.

36. M. Z. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model
checking with PRISM: a hybrid approach. In Proc. TACAS, LNCS 2619, pages
52–66. Springer, Apr. 2003.

37. Y.-T. Lai, M. Pedram, and B. K. Vrudhula. Formal verification using edge-valued
binary decision diagrams. IEEE Trans. Comp., 45:247–255, 1996.

38. K. Lampka and M. Siegle. MTBDD-based activity-local state graph generation.
In Proc. PMCCS, pages 15–18, Sept. 2003.

39. K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.
40. P. M. Merlin. A study of the recoverability of computing systems. PhD thesis,

Department of Information and Computer Science, University of California, Irvine,
1974.

41. A. S. Miner. Efficient state space generation of GSPNs using decision diagrams.
In Proc. DSN, pages 637–646, June 2002.

42. S. Ogata, T. Tsuchiya, and T. Kikuno. SAT-based verification of safe Petri nets.
In Proc. ATVA, volume 3299 of LNCS, pages 79–92, 2004.

43. E. Pastor, O. Roig, J. Cortadella, and R. M. Badia. Petri net analysis using boolean
manipulation. In Proc. ICATPN, LNCS 815, pages 416–435. Springer, June 1994.

44. J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.
45. C. Petri. Kommunikation mit Automaten. PhD thesis, University of Bonn, 1962.
46. W. Reisig. Elements of Distributed Algorithms (Modeling and Analysis with Petri

Nets). Springer, 1998.
47. O. Roig, J. Cortadella, and E. Pastor. Verification of asynchronous circuits by

BDD-based model checking of Petri nets. In Proc. ICATPN, LNCS 935, pages
374–391. Springer, June 1995.

48. R. Siminiceanu and G. Ciardo. New metrics for static variable ordering in decision
diagrams. In Proc. TACAS, LNCS 3920, pages 90–104. Springer, Mar. 2006.

49. F. Somenzi. CUDD: CU Decision Diagram Package, Release 2.4.2.
http://vlsi.colorado.edu/∼fabio/CUDD/.

50. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

51. M. Tilgner, Y. Takahashi, and G. Ciardo. SNS 1.0: Synchronized Network Solver.
In 1st Int. Workshop on Manufacturing and Petri Nets, pages 215–234, June 1996.

52. A. Valmari. A stubborn attack on the state explosion problem. In Proc. CAV,
pages 156–165. Springer, June 1991.

53. M. Wan and G. Ciardo. Symbolic reachability analysis of integer timed Petri nets.
In Proc. SOFSEM, LNCS 5404, pages 595–608. Springer, Feb. 2009.

54. M. Wan, G. Ciardo, and A. S. Miner. Approximate steady-state analysis of large
Markov models based on the structure of their decision diagram encoding. Perf.
Eval., 68:463–486, 2011.

55. T. Yoneda, H. Hatori, A. Takahara, and S.-I. Minato. BDDs vs. zero-suppressed
BDDs: for CTL symbolic model checking of Petri nets. In Proc. FMCAD, LNCS
1166, pages 435–449, 1996.

56. A. J. Yu, G. Ciardo, and G. Lüttgen. Decision-diagram-based techniques for
bounded reachability checking of asynchronous systems. Software Tools for Tech-
nology Transfer, 11(2):117–131, Apr. 2009.

57. Y. Zhao and G. Ciardo. Symbolic CTL model checking of asynchronous systems
using constrained saturation. In Proc. ATVA, LNCS 5799, pages 368–381. Springer,
Oct. 2009.

58. W. L. Zuberek. Timed Petri nets definitions, properties, and applications. Micro-
electronics and Reliability, 31:627–644, 1991.

