
IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 1

Mining Requirements from
Closed-Loop Control Models

Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V. Deshmukh, Sanjit A. Seshia

Abstract—Formal verification of a control system can be per-
formed by checking if a model of its dynamical behavior conforms
to temporal requirements. Unfortunately, adoption of formal
verification in an industrial setting is a formidable challenge
as design requirements are often vague, non-modular, evolving,
or sometimes simply unknown. We propose a framework to
mine requirements from a closed-loop model of an industrial-
scale control system, such as one specified in Simulink. The
input to our algorithm is a requirement template expressed in
Parametric Signal Temporal Logic: a logical formula in which
concrete signal or time values are replaced with parameters.
Given a set of simulation traces of the model, our method
infers values for the template parameters to obtain the strongest
candidate requirement satisfied by the traces. It then tries to
falsify the candidate requirement using a falsification tool. If a
counterexample is found, it is added to the existing set of traces
and these steps are repeated; otherwise, it terminates with the
synthesized requirement. Requirement mining has several usage
scenarios: mined requirements can be used to formally validate
future modifications of the model, they can be used to gain
better understanding of legacy models or code, and can also help
enhancing the process of bug-finding through simulations. We
demonstrate the scalability and utility of our technique on three
complex case studies in the domain of automotive powertrain
systems: a simple automatic transmission controller, an air-fuel
controller with a mean-value model of the engine dynamics, and
an industrial-size prototype airpath controller for a diesel engine.
We include results on a bug found in the prototype controller by
our method.

Index Terms—Model-based design; Parametric Temporal Log-
ics; Simulink; software engineering and verification

I. INTRODUCTION

Industrial-scale controllers used in automobiles and avionics
are now commonly developed using a model-based develop-
ment (MBD) paradigm [?], [?]. The MBD process consists of
a sequence of steps. In the first step, the designer captures the
plant model, i.e., the dynamical characteristics of the physical
parts of the system using differential, logic, and algebraic
equations. Examples of plant models include the rotational
dynamics model of the camshaft in an automobile engine, the
thermodynamic model of an internal combustion engine, and
atmospheric turbulence models. The next step is to design a
controller that employs some specific control law to regulate
the behavior of the physical system. The closed-loop model
consists of the composition of the plant and the controller.

X. Jin and J. Deshmukh are with Toyota Technical Center e-mail:
{xiaoqing.jin,jyotirmoy.deshmukh}@tema.toyota.com.

A. Donzé and S. A. Seshia are with the University of California, Berkeley
e-mail: {donze,seshia}@eecs.berkeley.edu.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

In the next step, the designer may perform extensive simu-
lations of the closed-loop model. The objective is to analyze
the controller design by observing the time-varying behavior of
the signals of interest by exciting the exogenous, time-varying
inputs of the closed-loop model. An important aspect of this
step is validation, i.e. checking if the time-varying behavior
of the closed-loop system matches a set of requirements.
Unfortunately, in practice, these requirements are high-level
and often vague. Examples of requirements the authors have
encountered in the automotive industry include “better fuel-
efficiency”, “signal should eventually settle”, and “resistance
to turbulence”. If the simulation behavior is deemed unsatis-
factory, then the designer refines or tunes the controller design
and repeats the validation step.

In the formal methods literature, a requirement (also called
a specification) is a mathematical expression of the design
goals or desirable design properties in a suitable logic. In
an industrial setting, many companies have made a strenuous
effort to document clear and concise requirements. However,
for systems built on legacy models or legacy code, require-
ments are normally not available. Moreover, to date, formal
validation tools have been unable to digest the format or
scale of industrial-scale requirements and models. As a result,
widespread adoption of formal tools has been restricted to
testing syntactic coverage of the controller code, which is
an open-loop system without the important behavior of the
physical system, with the hope that higher coverage implies
better chances of finding bugs.

In this paper, we propose a scalable technique to system-
atically mine requirements from the closed-loop model of
an industrial-scale control system from observations of the
system behavior. In addition to the closed-loop model, our
technique takes as input a template requirement. The final
output is a synthesized requirement matching the template.
We assume that the model is specified in Simulink [?], an
industry-wide standard that is able to: (1) express complex
dynamics (differential and algebraic equations), (2) capture
discrete state-machine behavior by allowing both Boolean and
real-valued variables, (3) allow a layered design approach
through modularity and hierarchical composition, and (4)
perform high-fidelity simulations.

Formalisms such as Metric Temporal Logic (MTL) [?], [?],
and later Parametric Signal Temporal Logic (PSTL) [?] have
emerged as logics adept at capturing both the real-valued and
time-varying behaviors of hybrid control systems. PSTL is
particularly well-suited to expressing template requirements
of a broad nature: It can be used both to express control-
theoretic properties such as overshoot, undershoot, settling-

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 2

time, rise-time, RMS error, and dwell-time, as well as proper-
ties involving timing relations between events corresponding
to discrete switching behavior. With the increasing acceptance
of temporal logics in practical domains such as automotive
systems [?], [?], it is reasonable to expect that libraries of
commonly-used requirements will become available to control
designers.

As a concrete example of an STL requirement, consider the
following English specification: “eventually between time 0
and some unspecified time τ1, the signal x is less than some
value π1, and from that point for some τ2 seconds, it remains
less than some value π2”. In PSTL the above property would
be expressed as:

3[0,τ1](x < π1 ∧ 2[0,τ2](x < π2)).

We refer to the unspecified values τ1, τ2, π1, π2 as parameters.
The proposed mining algorithm is an iterative procedure; in

each iteration, it does the following steps:

1) In the first step, the algorithm synthesizes a candidate
requirement from a given template requirement expressed in
PSTL and a set of simulation traces of the model.
2) It then tries to falsify the candidate requirement using an
optimization-based search algorithm.
3) If the falsification tool finds a counterexample, we add this
trace to the existing set of simulation traces, and go to Step
1 of the next iteration. If no counterexample is found, the
algorithm terminates.

For our implementation of the mining algorithm, we use
the framework provided by the BREACH tool [?]. BREACH
contains both key ingredients for the mining algorithm: a
sophisticated parameter synthesizer [?] and an efficient STL
falsifier [?]. At the heart of Step 1 is an efficient search over
the space defined by the parameters in the PSTL property in
order to generate a candidate requirement. A naı̈ve way to
use BREACH would (1) grid the parameter-space, (2) for each
point in the grid, instantiate the PSTL property for each grid
value (to get an STL property), and (3) pick the grid-point
leading to an STL property with the minimum satisfaction
value over all traces. (A lower satisfaction value1 corresponds
to a stronger STL property.) If the number of parameters is
n, and the number of grid points for each parameter is m,
then the number of times this naı̈ve approach would invoke
BREACH to compute the satisfaction values is O(mn), i.e.,
exponential in the number of parameters.

However, we observe that the satisfaction value of certain
PSTL properties is monotonic in the parameter values. For
example, for the property 3[0,τ](x > π), the satisfaction value
monotonically increases in the parameter τ and decreases in
π. When monotonicity holds, we can get exponential savings
when searching over the parameter-space by using methods
like binary search. Though syntactic rules for polarity of a
PSTL property identified in previous work [?] ensure satis-
faction monotonicity, these rules are not complete. Hence, we
provide a general way of reasoning about monotonicity of ar-

1We define satisfaction value of an STL property with respect to a given
trace in Sec. IV-A

bitrary PSTL properties using Satisfiability-Modulo-Theories
(SMT) solving [?].

In this paper, we explore two applications for requirement
mining. The first application is the obvious one: to generate
requirements that serve as high-level specifications for the
closed-loop model. The second application explores the use
of mining as an enhanced bug-finding procedure.

In an industrial setting, formalized requirements that can be
used for design validation are often unavailable. For example,
consider the case of legacy controller code. Such code usually
goes through several years of refinement, is developed in a
non-formal setting, and is not very easy to understand for any
engineers other than its original developers. In this context,
mined requirements can enhance understanding of the code
and help future code maintenance.

Consider another scenario. The model-based design of a
controller usually involves different representations of the
same controller at varying levels of abstraction. For example,
a controller model could be in a visual, block-diagram-based
language such as Simulink, or as just low-level code (e.g. in a
language like C); it could be a research prototype, or the final
mass-production-stage controller, and so on. A requirement
mined for one model at any of these levels of abstraction could
be used to validate the behavior of all other models, and thus
ensure consistency across models.

To better explain the second application, we consider a
motivating example. Suppose we wish to check if the model
behavior ever has a signal that oscillates with an amplitude
greater than a threshold. Considering the huge space of input
signals, simply running tests on the closed-loop model requires
executing a large number of simulations in order to detect
such behavior. We instead attempt to mine the requirement,
“the signal settles to a steady value π in time τ” (roughly
corresponding to the negation of the original property). In each
step, our algorithm pushes the trajectory-space exploration
of the falsification tool in a region not already subsumed
by existing traces. Hence, the search for a counterexample
is guided by the intermediate candidate requirements. Note
that state-of-the-art falsifiers such as S-TALIRO and BREACH
would require a concrete STL property encoding the oscil-
lation behavior, which would require tedious manual effort
given many possible expressions of such behavior arising from
unknowns such as the oscillation amplitude, frequency, and the
time at which oscillations start.

To summarize, our contributions are as follows:
1) We propose a novel counterexample-guided iterative pro-
cedure for mining temporal requirements satisfied by signals
of interest of an industrial-scale closed-loop control model
(i.e., a highly nonlinear hybrid system of significant dynamical
and mode complexity). Specifically, we target the mining of
properties expressible in PSTL.
2) We extend BREACH to support Simulink models and the
falsification of STL formulas. In addition we enhance the
BREACH tool framework with efficient strategies for synthe-
sizing parameters of monotonic PSTL properties. To extend
the range of formula for which we can prove monotonicity,
and hence apply these strategies, we formulate the query for
monotonicity in a fragment of first order logic with quantifiers,

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 3

Fig. 1: The close-loop Simulink model of an automatic trans-
mission controller. The input to the model is the throttle position
and the brake torque.

real arithmetic and uninterpreted functions, and use an SMT
solver to answer the query.
3) We demonstrate the practical applicability of our technique
in three case studies: (a) a simple automatic transmission
controller, (b) a complex air-fuel control closed-loop model,
and (c) an industrial closed-loop model of the airpath-control
in an automobile engine model. We also demonstrate the use
of the mining technique as a bug-finding tool, showing how
it found a bug in the industrial model that was confirmed
by a designer. All three case studies use closed-loop models
specified in the Simulink language.
The rest of the paper is as follows: In Sec. II, we present
a transmission controller as a running example. In Sec. III
we present the background, the problem formulation, and
an overview of our technique. We present our approach for
finding the counterexample to a candidate requirement in
Sec. IV, and the procedure for synthesis of parameter values
for a template requirement from simulation traces in Sec. V.
We collect a set of common requirements for automotive
control systems and express them in temporal logic in Sec. VI.
Finally, we present three case studies and experimental results
for each in Sec. VII, and conclude with a discussion on related
work in Sec. VIII.

II. A RUNNING EXAMPLE

As an illustrative example throughout the paper, we consider
a closed-loop model designed for a four-speed automatic trans-
mission controller of a vehicle (shown in Fig. 1). Although this
model is not a real industrial model, it has all necessary me-
chanical components: models for the engine, the transmission,
and the vehicle. The transmission block computes the torque
converter impeller torque (Ti) and the transmission output
torque (Tout) from engine speed (Ne), gear status (Gear),
and transmission output speed (Nout). The logic of gear
selection for the transmission is implemented using a Stateflow
block [?] labeled ShiftLogic. Block ThreshholdCalculation
computes the upshift and downshift speed thresholds for the
gear shifting logic. The model takes as inputs the percentage
of the throttle position and the brake torque.

The transmission controller has four gears, and the system
switches from gear i up to gear i + 1 or down to gear i − 1
based on certain conditions on the current gear i, the current

0 5 10 15 20 25 30
0

50

100
Throttle

0 5 10 15 20 25 30
0

2000

4000

6000
RPM

0 5 10 15 20 25 30
0

50

100

150
Speed

Violation

Violation

Fig. 2: Falsifying trace for the automatic transmission controller
and the requirement that RPM never goes beyond 4500 or speed
beyond 120 mph.

vehicle speed and the applied throttle. The threshold speed that
causes a shift in the gear is specified using a look-up table that
is indexed by the current gear and the applied throttle.

We are interested in the following signals: the vehicle
speed, transmission gear position, and engine speed mea-
sured in RPM (rotations per minute). Suppose we want to use
this controller to ensure the requirement that the engine speed
never exceeds 4500 rpm, and that the vehicle never drives
faster than 120 mph. After simulating the closed-loop system
Fig. 2 shows that these requirements are not met.

However, this negative result does not provide further
insight into the model. If a requirement does not hold, we
would like to know what does hold for the controller, and
how narrowly the controller misses the requirement. Such
a characterization would shed more light on the working
of the system, especially in the context of legacy systems
and for reverse engineering the behavior of a very complex
system. In the context of this example, it would help to know
the maximum speed and RPM that the model can reach, or
the minimum dwell time that the transmission enforces to
avoid frequent gear shifts. Next, we present a technique to
automatically obtain such requirements from the model.

Note that such specific, precise requirements automatically
mined from the model can help understand and enforce a
high-level requirement. For example, the frequency of gear
shifting is correlated with the less precise requirement of
“better driving experience” and “better fuel consumption”.

III. PRELIMINARIES AND OVERVIEW

Signals and Systems. The systems considered in this paper
are hybrid dynamical systems, that is systems mixing discrete
dynamics (such as the shifting logic of gears) and continuous
dynamics (such as the rotational dynamics of the car engine).
We define a signal as a function mapping the time domain
T = R≥0 to the reals R. Boolean signals, used to represent
discrete dynamics, are signals whose values are restricted to
false (denoted ⊥) and true (denoted >). Vectors in Rn with
n > 1 are denoted in bold fonts and their components are

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 4

indexed from 1 to n, e.g., p = (p1, · · · , pn). Likewise, a multi-
dimensional signal x is a function from T to Rn such that ∀t ∈
T, x(t) = (x1(t), · · · , xn(t)). A system S (such as a Simulink
model) is an input-output state machine: it takes as input a
signal u(t) and computes an output signal x(t). A trace is a
collection of output signals resulting from the simulation of a
system, i.e., it can be viewed as a multi-dimensional signal.
In the following, we use interchangeably the words trace and
signal.

Signal Temporal Logic. Temporal logics were introduced in
the late 70s by Amir Pnueli [?] to reason formally about
the temporal behaviors of reactive systems – originally input-
output systems with Boolean, discrete-time signals. Tempo-
ral logics to reason about real-time signals, such as Timed
Propositional Temporal Logic [?], and Metric Temporal Logic
(MTL) [?] were introduced later to deal with dense-time
signals. More recently, Signal Temporal Logic [?] was pro-
posed in the context of analog and mixed-signal circuits as a
specification language for constraints on real-valued signals.
These constraints, or predicates can be reduced to inequalities
of the form µ = f(x) ∼ π, where f is a scalar-valued function
over the signal x, ∼∈ {<,≤,≥, >,=, 6=}, and π is a real
number.

Temporal formulas are formed using temporal operators,
“always” (denoted as 2), “eventually” (denoted as 3) and
“until” (denoted as U). Each temporal operator is indexed
by intervals of the form (a, b), (a, b], [a, b), [a, b], (a,∞)
or [a,∞) where each of a, b is a non-negative real-valued
constant. If I is an interval, then an STL formula is written
using the following grammar:

ϕ := > | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

The always and eventually operators are defined as spe-
cial cases of the until operator as follows: 2Iϕ , ¬3I¬ϕ,
3Iϕ , >UI ϕ. When the interval I is omitted, we use the
default interval of [0,+∞). The semantics of STL formulas
are defined informally as follows. The signal x satisfies
f(x) > 10 at time t (where t ≥ 0) if f(x(t)) > 10. It
satisfies ϕ = 2[0,2) (x > −1) if for all time 0 ≤ t < 2,
x(t) > −1. The signal x1 satisfies ϕ = 3[1,2) x1 > 0.4 iff
there exists time t such that 1 ≤ t < 2 and x1(t) > 0.4. The
two-dimensional signal x = (x1, x2) satisfies the formula ϕ =
(x1 > 10) U[2.3,4.5] (x2 < 1) iff there is some time u where
2.3 ≤ u ≤ 4.5 and x2(u) < 1, and for all time v in [2.3, u),
x1(u) is greater than 10. Formally, the semantics are given as
follows:
(x, t) |= µ iff x satisfies µ at time t
(x, t) |= ¬ϕ iff (x, t) |=/ ϕ
(x, t) |= ϕ1 ∧ ϕ2 iff (x, t) |= ϕ1 and (x, t) |= ϕ2

(x, t) |= ϕ1 U[a,b] ϕ2 iff ∃t′ ∈ t+ [a, b] s.t. (x, t′) |= ϕ2

and ∀t′′ ∈ [t, t′], (x, t′) |= ϕ1

Extension of the above semantics to other kinds of intervals
(open, open-closed, and closed-open) is straightforward. We
write x |= ϕ as a shorthand of (x, 0) |= ϕ.

Hunter et al. [?] show that MTL with rational constants
(of which STL is a generalization) is as expressive as first
order logic with < (a binary order operation), and a family of

unary functions +q, q ∈ Q. This indicates the rich expressive
power of STL. The kind of properties that cannot be expressed
in STL require quantifying over time or parameter values. For
example, the following property (inexpressible in STL) defines
the standard Lyapunov stability of a system: ∀ε∃δ : (‖x‖ <
δ ⇒ 3(‖x‖ < ε)).

Parametric Signal Temporal Logic (PSTL) is an extension of
STL introduced in [?] to define template formulas containing
unknown parameters. Syntactically speaking, a PSTL formula
is an STL formula where numeric constants, either in the con-
straints given by the predicates µ or in the time intervals of the
temporal operators, can be replaced by symbolic parameters.
These parameters are divided into two types:
• A Scale parameter π is a parameter appearing in predi-

cates of the form µ = f(x) ∼ π,
• A Time parameter τ is a parameter appearing in an

interval of a temporal operator.
An STL formula is obtained by pairing a PSTL formula

with a valuation function that assigns a value to each symbolic
parameter. For example, consider the PSTL formula ϕ(π, τ) =
2[0,τ]x > π, with symbolic parameters π (scale) and τ (time).
The STL formula 2[0,10]x > 1.2 is an instance of ϕ obtained
with the valuation v = {τ 7→ 10, π 7→ 1.2}.

Example III.1. For the example from Sec. II, suppose we want
to specify that the speed never exceeds 120 and RPM never
exceeds 4500. The predicate specifying that the speed is above
120 is: speed>120 and the one for RPM is RPM>4500. The
STL formula expressing these to be always false is:

ψ = 2(speed ≤ 120) ∧2(RPM ≤ 4500). (III.1)

To turn this into a PSTL formula, we rewrite by introducing
parameters πspeed and πrpm :

ϕ(πspeed , πrpm) = 2(speed ≤ πspeed) ∧2(RPM ≤ πrpm).
(III.2)

The STL formula ψ expressed in (III.1) is then obtained by
using the valuation v = (πspeed 7→ 120, πrpm 7→ 4500).

In this work, we evaluate the satisfaction of STL formulas
over finite traces resulting from numerical simulation. In
principle, this means that formulas such as ((III.2)) with
unbounded horizon cannot be evaluated. In practice, however,
we adopt the view of [?] where finite traces are completed
toward ∞ with constant extrapolation, and assume that the
simulation time is long enough to give meaningful results.

Problem III.1. Given (a) a system S with a set U of
inputs, and, (b) a PSTL formula with n symbolic parameters
ϕ(p1, . . . , pn) where p could either be scale parameter π or
time parameter τ , the objective is to find a “tight” valuation
function v such that

∀u ∈ U : S(u) |= ϕ(v(p1), . . . , v(pn)).

Note that by “tight”, we mean to enforce mining for non-
trivial or not overly conservative requirements. E.g., we are
not interested in the requirement that “the car cannot go
faster than 500 mph”. We define this notion more precisely
in Section V-A.

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 5

Algorithm 1: Requirement mining algorithm. Note that the
initial trace x is obtained using some nominal input of the system
S. The algorithm can also be initiated with a set of traces or
inputs. Using particular inputs (extremal or corner cases) can
sometimes speed up the convergence.

Data: A Model S, a trace x, and a PSTL Formula ϕ
Result: An STL formula ϕ(p)

1 FTraces← {x};
2 while True do
3 p← FINDPARAM(FTraces, ϕ);
4 FTracesnew = FALSIFYALGO(S, ϕ(p));
5 if FTracesnew == ∅ then
6 return ϕ(p)
7 else
8 FTraces← FTraces ∪ FTracesnew;

Simulink
Model

+ Controller Plant
Model

e u

y

FINDPARAM

Counter-
example
Traces

Simulation
Traces

Candidate
Requirement FALSIFYALGO

2[0,τ1](x1 < π1 ∧
3[0,τ2](x2 > π2))

Template Requirement

2[0,1.1](x1 < 3.2 ∧
3[0,5](x2 > 0.1))

Inferred Requirement

Counter-
example
Found

No Counterexample

Fig. 3: Flowchart of the requirement mining.

Requirement Mining Algorithm: Overview. Our algorithm
(Algorithm 1) for mining STL requirements from the closed-
loop model in Simulink is an instance of a counterexample-
guided inductive synthesis procedure [?], shown in Fig. 3. It
consists of two key components:
1) A falsification engine, which, given a formula ϕ generates
a set of traces F = {x1, . . .xl} such that for all x in F , there
is an input u such that x(t) = S(u)(t) |=/ ϕ. We denote this
functionality by FALSIFYALGO.
2) A synthesis function denoted FINDPARAM that given a set
of traces x1, . . . ,xk, finds parameters p such that ∀i, xi |=
ϕ(p). We denote this function by FINDPARAM.
The algorithm terminates if the set F , i.e., the result of
FALSIFYALGO(S, ϕ(p)) is empty (the falsification algorithm
failed to find a falsifying trace). In the next sections, we detail
possible implementations of FALSIFYALGO and FINDPARAM.

IV. FALSIFICATION PROBLEM

Recall that we need to implement a function F =
FALSIFYALGO(S, ϕ) such that x ∈ F is a valid output signal
of a system S and x |=/ ϕ. Unfortunately, this is an undecidable
problem for general hybrid systems. Indeed, if ϕ is a simple
safety property, this problem can be reduced to the reachability
problem which is undecidable except for specific subclasses,

such as initialized rectangular hybrid automata [?]. For such
classes the mining technique can be complete, i.e., absence of
a counterexample means that we have identified the strongest
requirement. Due to its incompleteness for general systems,
the falsification tool may not be able to find a counterexample
though one exists. We argue that a requirement mined in
this fashion is still useful as it is one that FALSIFYALGO is
unable to disprove even after extensive simulations, and is thus
likely to be close to the actual requirement. An alternative
is to use a sound verification tool [?], [?]. However, in our
experience, they do not scale to the complex control systems
that we consider here. In this paper, we follow the approach
taken by the developers of the tool S-TALIRO [?] and propose
a falsification algorithm based on the minimization of the
quantitative satisfaction of a temporal logic formula.

A. Quantitative Semantics of STL

The quantitative semantics of STL are defined using a real-
valued function ρ of a trace x, a formula ϕ, and time t
satisfying the following property:

ρ(ϕ,x, t) ≥ 0 iff (x, t) |= ϕ. (IV.1)

Quantitative semantics capture the notion of robustness of
satisfaction of ϕ by a signal x, i.e., whenever the absolute
value of ρ(ϕ,x, t) is large, a change in x is less likely
to affect the Boolean satisfaction (or violation) of ϕ by x.
In [?], different quantitative semantics for STL have been
proposed. Without loss of generality, an STL predicate µ can
be identified to an inequality of the form f(x) ≥ 0 (the use
of strict or non strict inequalities is a matter of choice and
other inequalities can be transformed into this form). The
quantitative semantics of STL are then defined inductively
using the following rules:

ρ(µ,x, t)= f(x(t)) (IV.2)
ρ(¬ϕ,x, t)=−ρ(ϕ,x, t) (IV.3)

ρ(ϕ1 ∧ ϕ2,x, t)=min(ρ(ϕ1,x, t), ρ(ϕ2,x, t)) (IV.4)

ρ(ϕ1UIϕ2,x, t)= sup
t′∈t⊕I

min

(
ρ(ϕ2,x, t

′),
inf

t′′∈[t,t′)
ρ(ϕ1,x, t

′′)

)
(IV.5)

Then it can be shown [?] that ρ satisfies (IV.1) and thus defines
a quantitative semantics for STL. Additionally, by combining
(IV.5), and 2Iϕ , ¬3I¬ϕ, we get:

ρ(3Iϕ,x, t) = sup
t′∈t+I

ρ(ϕ,x, t′) (IV.6)

ρ(2Iϕ,x, t) = inf
t′∈t⊕I

ρ(ϕ,x, t′) (IV.7)

Example IV.1. Consider again the STL property:

ϕ = 2(speed ≤ 120) ∧2(RPM ≤ 4500).

It has two predicates, say µ1 : speed ≤ 120 and µ2 : RPM ≤
4500. To put them into the standard form µi : fi(x) ≥ 0, we
define x = (speed, RPM), f1(x) = 120− speed and f2(x) =
4500− RPM. From (IV.2), we get

ρ(speed ≤ 120,x, t) = 120− speed(t).

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 6

Algorithm 2: FALSIFYALGO algorithm.

Data: A Model S and an STL Formula ϕ
Result: A falsifying input u∗ or S |= ϕ.

1 Solve ρ∗ = minu∈U ρ(ϕ,S(u), 0)
2 if ρ∗ < 0 then return u∗ = argmin

u∈U
ρ(ϕ,S(u), 0)

3 else return S |= ϕ

Applying rule (IV.7) for the semantics of 2, we get:

ρ(2(speed ≤ 120),x, t) = inf
t∈T

(120− speed(t)).

Similarly for µ2,

ρ(2(RPM ≤ 4500),x, t) = inf
t∈T

(4500− RPM(t)).

Finally, by applying rule (IV.4):

ρ(ϕ,x, t) = min(inf
t∈T

(120− speed(t)), inf
t∈T

(4500− RPM(t)).

In other word, the resulting satisfaction function ρ looks
for the maximum speed and RPMs over time and returns the
minimum of the differences with the thresholds 120 and 4500.

Note that, in the previous example, speed and RPM are
measured in different units. However, the standard quantitative
semantics for STL does not capture this difference. BREACH
supports weighted STL (WSTL) semantics which associate
a weight with each predicate to normalize the numerical
difference and improve the expressiveness [?].

B. Solving the Falsification Problem

The objective of the falsification problem can be reduced to:
given an STL formula ϕ, find a signal u such that S(u) |=/ ϕ.
Following the above definitions, this is equivalent to finding a
trace x of S such that ρ(ϕ,x, 0) < 0. A common approach to
solve this problem, described in the Algorithm 2, is to frame
it as an optimization problem, where the objective function (to
minimize) is ρ(ϕ,x, 0) and the decision variable is u.

The undecidability of the falsification problem is reflected
here in the fact that the minimization problem (Line 1 in
Algorithm 2) is a general non-linear optimization problem
for which no solver can guarantee convergence, uniqueness
or even existence of a solution. On the other hand, many
heuristics can be used to find an approximate solution. In a
series of recent papers, the authors of S-TALIRO proposed
and implemented different strategies, namely Monte-Carlo [?],
ant-colony optimization [?] and the cross entropy method [?].
Going into the details of these methods and their comparison is
beyond the scope of the paper. In previous work, we document
the use of S-TALIRO as a falsification tool [?]. In this paper,
we focus on using the falsification engine in BREACH to attack
(Line 1 in Algorithm 2) as follows:

1) Define the space of permissible input signals with the
help of m input parameters k = (k1, . . . , km) that take
values from a set Pu, and a generator function g such
that u(t) = g(v(k))(t) is a permissible input signal for
S for any valuation v(k) ∈ Pu.

2) Sample the space of the signal-parameters uniformly at
random to obtain Ninit distinct valuations vi(k) ∈ Pu.

3) For i ≤ Ninit, solve min
v(k)∈Pu

ρ(ϕ,S(g(v(k))), 0) using

Nelder-Mead non-linear optimization algorithm and vi(k)
as an initial guess.

4) Return the minimum ρ thus found.
One motivation for implementing a falsification module in

BREACH has been to get more flexibility in the definition of
input parameters than available in existing implementations of
falsifiers such as S-TALIRO. For example, if permissible input
signals are step functions, then the input parameters would
characterize the amplitude of the step, and the time at which
the step input is applied. Note that g does not necessarily
generate all possible inputs to the system. However, it is
useful in a very generic way to restrict the search space of
possible input signals. It is worth mentioning again that many
different strategies exist to solve the falsification problem us-
ing optimization algorithms. The particular strategy described
above was chosen to allow some trade-off between global
randomized exploration (by the number Ninit of random initial
valuations) and local optimization (using Nelder-Mead) ex-
ploiting the gradient of the satisfaction function. Experiments
in Section VII-A illustrates the importance of this trade-off.

V. PARAMETER SYNTHESIS

A. Parameter Synthesis Algorithm

We now discuss the function FINDPARAM. Recall that given
a trace2 x, we need to find a valuation v for the parameters
p1, . . . , pn, of ϕ such that x satisfies ϕ(v(p1), . . . , v(pn))
(which we sometimes abbreviate in ϕ(v) in the following).
In the following, we call such a valuation a valid valuation
for x and ϕ (or simply a valid valuation if x and ϕ are clear
from the context). This problem can be treated as a dual of the
falsification problem: instead of minimizing the satisfaction
function in an attempt to make it negative, we can try to
maximize it in an attempt to make it positive, i.e., to make
the formula ϕ true. However, this approach is not directly
applicable in the context of this work, due to the additional
tightness requirement on the mined parameters. The rationale
is that for a specification to be useful it should not be too
conservative: it is of not much use to know that a vehicle
speed will never exceed 200 miles per hour. Now maximizing
the satisfaction function will precisely tend toward the most
conservative parameters: not exceeding 200 miles per hour
is a very robustly true property, i.e., with a high satisfaction
function value. A more useful piece of information is to know
that a car can go up to 100 miles per hour, but not 101. More
generally, for each parameter mined in a formula, when it is
possible, we require that a change of some amplitude δ > 0 in
a given direction makes the formula false. We formalize this
with the following notion of δ-satisfaction:

Definition V.1. Given 1 ≤ i ≤ n and δi > 0, the signal x
δi-satisfies ϕ(v), denoted as x |=δi ϕ(v), iff x |= ϕ(v) and

2We restrict our presentation to one trace even though in Algorithm 1,
FINDPARAM is applied to a set of traces. The generalization to multiple traces
is straightforward.

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 7

−100

−100

−5
0

−50

−50

−50

0

0

0

0

0

50
50

10
0

5 10 15 20 25 30 35

20

40

60

80

100

120

140

ϕ(π, τ) = 2[0, τ](speed < π)

x |=/ ϕ(π, τ)

x |= ϕ(π, τ)

time parameter τ

sc
al

e
pa

ra
m

et
er
π

(s
pe

ed
)

v1

v2

Fig. 4: Validity domain of a simple formula for a trace
x obtained from the automatic transmission model. The
FINDPARAM algorithm will return valuation v1 (resp. v2)
depending if time (resp. scale) parameter is optimized first. The
contour lines are isolines for the satisfaction function ρ.

there exists a valuation v′ such that |v(pi)− v′(pi)| ≤ δi and
x |=/ ϕ(v′). In that case, v is called a δi-tight valuation for x
and ϕ.

When a valuation is tight for all pi, we can omit the index
i and call it a δ-tight valuation for x and ϕ, where δ is the
n-dimensional vector δ = (δ1, . . . , δn).
In general, there is no guarantee of existence or uniqueness of
δ-tight valuations. We note

D(ϕ,x) , {v(p) s.t. x |= ϕ(v(p))}

the validity domain of ϕ and x, i.e., the set of valid valuations
for x and ϕ. The existence of a valid valuation is given by
D(ϕ,x) ∩ P 6= ∅, where P is feasible parameter range. A
δ-tight valuation v is such that there exists another valuation
v′ such that v′(p) is at distance at most δ from v(p) and is
not in D(ϕ,x). Intuitively, this means that the valuation is
closed to the boundary of the validity domain. Under certain
regularity conditions, one can show that on such boundary, the
satisfaction function ρ is equal to 0. On Fig. 4, we represent
the validity domain for a simple property and a signal. In
this example, the boundary of the validity domain is exactly
given by the isoline ρ(ϕ(v),x, 0) = 0, and any valuation above
this line at a distance less than δ is a δ-tight valuation. This
suggests a generic optimization strategy to solve the parameter
synthesis problem. If we note Bδ(v) = {v′ s.t. maxi |v(pi)−
v′(pi)| < δ}, then a δ-tight valuation, if it exists, is given by

v∗ = argmin
v
|ρ(ϕ(v),x, 0)| (V.1)

s.t. v(p) ∈ D(ϕ,x) ∩ P (V.2)
Bδ(v) 6⊂ D(ϕ,x) (V.3)

A simple practical solution for (V.1-V.3) is to solve (V.1) using
the same strategy as for the optimization-based falsification
approach, then check (V.2-V.3) on the solution found. Clearly,

Algorithm 3: FINDPARAM algorithm.

Data: A trace x, a PSTL Formula ϕ, and parameter set
P , δ > 0

Result: A valuation v s.t. x |=δ ϕ(v)
1 Find v> s.t. x |= ϕ(v>) or return ϕ unsat.;
2 Find v⊥ s.t. x |=/ ϕ(v⊥) or return v maybe not tight;
3 Let v = v>;
4 for i = 1 to n do
5 Find vi and set v(pi) = vi s.t. x |=δi ϕ(v)

other approaches are possible, but the problem is difficult in
general without additional assumptions. In this work we focus
on the specific situation where the PSTL formula is monotonic
in its parameters, as described in the following sections.

B. Computing δ-tight Valuations for Monotonic Formulas

Intuitively, a formula is monotonic if when it is satisfied
with a valuation v, then it is satisfied by any valuation v′

greater than v. For example, if the car cannot go faster than
100 mph, it cannot go faster than 101, 150, 200 or any speed
above 100 mph. Formally:

Definition V.2. A PSTL formula ϕ(p1, · · · , pn) is monotoni-
cally increasing with respect to pi if for every signal x,

∀v, v′,x |= ϕ(. . . , v(pi), . . .),

v′(pi) ≥ v(pi)⇒ x |= ϕ(. . . , v′(pi), . . .) (V.4)

It is monotonically decreasing if this holds when replacing
v′(pi) ≥ v(pi) with v′(pi) ≤ v(pi).

Asarin et al. [?] noted that, if the formula is monotonic, the
boundary of the validity domain has the properties of a Pareto
surface for which there are efficient computational methods,
basically equivalent to multi-dimensional binary search. Here
we propose an algorithm for monotonic formulas that takes
advantage of this property (Algorithm 3) to find a valuation
satisfying (V.2-V.3), i.e., a δ-tight valuation. It starts by trying
to find a valuation v> that satisfies the property and a valuation
v⊥ that violates it in a parameter range P provided by the
user. By property of monotonicity, it is sufficient to check
the corners of P for the existence of v> and v⊥. Then, each
parameter i is adjusted using a binary search initialized with
v>(pi) and v⊥(pi). The user can choose which parameter to
optimize in priority by specifying a different order for the
input parameters.

Example V.1. Consider ϕ(π, τ) = 2[0, τ](speed < π)
and the scenario that the vehicle constantly accelerates at
throttle = 100. The validity domain of ϕ is plotted on
Fig. 4. The algorithm will return different values depending
on the tightness parameter δ and if we order the parameters
as (π,τ) or (τ, π). Here, the order represents the preference
in optimizing a parameter over the other when mining for a
tight specification.

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 8

Formula Monot. Time (sec)

2(0,∞)(x < π) + 0.09
2[s,s+1](x≥3⇒ 3(0,∞)x<3) – 0.10
2(0,100)((x < π)⇒ 3(0,5)(x > π)) – 0.09
geariU(s,s+5)geari+1 * 0.13

TABLE I: Proving monotonicity with an SMT solver.

C. Satisfaction monotonicity

In this section, we provide additional results on monotonic-
ity of PSTL formulas. We first show that checking if an
arbitrary PSTL formula is monotonic in a given parameter
is undecidable.

Theorem V.1. The problem of checking if a PSTL formula
ϕ(p) is monotonic in a given parameter pi is undecidable.

Proof. First, we observe that STL is a superset of MTL. We
know from [?] that the satisfiability problem for MTL is unde-
cidable. Thus, it follows that the satisfiability problem for STL
is also undecidable. This, in turn, implies undecidability of
the satisfiability problem of PSTL with at most one parameter
(denoted as PSTL-1-SAT). We now show that PSTL-1-SAT
can be reduced to a special case of the problem of checking
monotonicity of a PSTL formula.

Let ϕ(p) be an arbitrary PSTL formula where the set of
parameters p is the singleton set with one time parameter τ
(thus, τ ≥ 0). Construct the formula ψ(p) .= (τ=0) ∨ ϕ(p).

Consider the monotonicity query for ψ(p) in parameter τ :

∀v, v′,x : [x |=ψ(v(τ)) ∧ v(τ)≤v′(τ)] ⇒ x |=ψ(v′(τ)).

Consider the specialization of this formula for the case v(τ) =
0. Note that, in this case, ψ(0) = >, and that v′(τ) ≥ 0 for
all v′. Thus, the query simplifies to ∀v′,x : x |= ψ(v′(τ)),
which is checking the validity of the PSTL formula ψ(τ).

Thus, if one needs to check monotonicity of PSTL formula
ϕ in one parameter τ , one needs to check that the negation
of ψ(τ) is unsatisfiable. Thus the above specialization of the
problem of checking the monotonicity of PSTL formulas is
also undecidable, implying undecidability of the general case.

Monotonicity is closely related to the notion of polarity
introduced in [?], in which syntactic deductive rules are
given to decide whether a formula is monotonic based on
the monotonicity of its subformulae. Thus, one way to tackle
undecidability is to first query if the given PSTL formula
belongs to the syntactic class described in [?]. Unfortunately,
the syntactic rules described therein are not complete; there are
monotonic PSTL formulas that do not belong to this syntactic
class, for instance, formulas with intervals in which both end-
points are parameterized, such as the following:

2[τ,τ+1]((x ≥ 3)⇒ 3(0,∞)(x < 3)) (V.5)

Next, we show how we can use SMT solving to query
monotonicity of a formula. If the SMT solver succeeds, it
tells us that the formula is monotonic and allows us to use
a more efficient search in the parameter space. For instance,
we were able to show that the PSTL formula represented in
(V.5) is monotonically decreasing in the parameter τ .

Encoding PSTL as constraints. Given a PSTL formula ϕ,
we define the SMT encoding of ϕ in a fragment of first-order
logic with real arithmetic and uninterpreted functions. Let
E(ϕ) denote the encoding of ϕ, which we define inductively
as follows:
− Consider a constraint µ , g(x) > τ , where x =
(x1, . . . , xn). We model each signal xi as an uninterpreted
function χi from R to R. We create a new free variable t
of the type Real and replace each instance of the signal xi
in g(x) by χi(t). We assume that the function g itself has a
standard SMT encoding. For example, consider the formula
g(x) > τ , where x = {x1, x2}, and g(x) = 2 ∗ x1 + 3 ∗ x2.
Then E(µ) is: 2 ∗ χ1(t) + 3 ∗ χ2(t) > τ .

− For Boolean operations, the SMT encoding is inductively
applied to the subformulas, i.e., if ϕ = ¬ϕ1, then E(ϕ) =
¬E(ϕ1). If ϕ = ϕ1 ∧ ϕ2, then first we ensure that if E(ϕ1)
and E(ϕ2) both have a free time-domain variable, then we
make it the same variable, and then, E(ϕ) = E(ϕ1) ∧ E(ϕ2).
Note that as a consequence, there is at most one free time-
domain variable in any subformula.

− Consider ϕ = H(a,b)(ϕ1), where a, b are constants or
parameters, and H is a unary temporal operator (i.e., 3,2).
There are two possibilities:
(1) The SMT encoding E(ϕ1) has one free variable t. In this
case, we bound the variable t over the interval (a, b) using a
quantifier that depends on the type of the temporal operator
H. With 3 we use ∃ as the quantifier, and with 2 we use ∀.
E.g., let ϕ = 3(2.3,τ)(x > π), then E(ϕ) is:

∃t : (2.3 < t < τ) ∧ (χ(t) > π).

(2) The SMT encoding E(ϕ1) has no free variable. This can
only happen if ϕ1 is > or ⊥, or if all variables in ϕ1 are bound.
In the former case, the encoding is done exactly as in Case
1. In the latter case, the encoding proceeds as before, but all
bound variables in the scope are additionally offset by the top-
level free variable. Suppose, ϕ = 2(0,∞)3(1,2)(x > 10). Then,
the encoding of the inner 3-subformula has no free variable.
Note how the bound variable of this formula is offset by the
top-level free variable in the underlined portion in E(ϕ) below:

∀t : [∃u : [(t+ 1 < u < t+ 2) ∧ (χ(u) > 10)]].

− Consider ϕ = ϕ1U(a,b)ϕ2, where a, b are constants or
parameters. For simplicity, consider the case where ϕ1 and ϕ2

have no temporal operators, i.e., E(ϕ1) and E(ϕ2) both have
exactly one free variable each. Let t1 be the free variable in
E(ϕ1) and t2 the free variable in E(ϕ2). Then E(ϕ) is given
by the formula:

∃t2 : [(t2 ∈ (a, b)) ∧ E(ϕ2) ∧ ∀t1 : [(t1 ∈ (a, t2))⇒ E(ϕ1))].

If ϕ1, ϕ2 contain no free variables, then t1, t2 are respectively
used to offset all bound variables in their scope as before.

Using an SMT solver to check monotonicity. To check
monotonicity, we check the satisfiability of the negation of
each of the following assertions:

E(ϕ(τ)) ∧ (τ > τ ′) ∧ ¬E(ϕ(τ ′))
E(ϕ(τ)) ∧ (τ < τ ′) ∧ ¬E(ϕ(τ ′))

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 9

If either of these queries is unsatisfiable, then it means that
satisfaction of ϕ is indeed monotonic in τ . If both queries
are satisfiable, then it means that there is an interpretation
for the (uninterpreted) function representing the signal x and
valuations for τ, τ ′ which demonstrate the non-monotonicity of
ϕ. We conclude by presenting a small sample of formulas for
which we could prove or disprove monotonicity using the Z3
SMT solver [?] in Table I. The symbols +, –, and * represent
monotonically increasing, monotonically decreasing, and non-
monotonic formulas respectively.

VI. REQUIREMENT TEMPLATES FOR AUTOMOTIVE
CONTROL SYSTEMS

We now discuss a set of PSTL formulas that serve as useful
template requirements for continuous and hybrid dynamical
systems. We start with a general discussion on useful templates
for such systems, and then present particular templates special-
ized to express requirements on closed-loop control systems,
with an emphasis on the automotive domain. Most of the
requirements discussed herein were obtained by discussions
with designers, and correspond to well-known metrics and
tests used to judge design quality. In what follows, we use
T to represents the simulation time horizon.

A. Temporal Requirements on Hybrid behaviors

By hybrid behaviors, we mean typical behaviors of hybrid
dynamical systems, i.e., a continuous-time evolution of the
continuous states of the system consistent with a given set
of ordinary differential equations, interleaved with discrete
transitions corresponding to a discrete mode-change.

Dwell-time Requirements. A common requirement on a
switched or hybrid system is that the system should not switch
discrete modes (chatter) too often. This can be achieved by
enforcing that the system dwells in a given discrete mode
for a desired minimum amount of time. Let m be a discrete-
valued signal denoting the system mode. Then the requirement
specifying that the dwell-time is at least τ is specified as
follows:

2[0,T]

(
(m 6= mj)∧
3[0,ε](m = mj)

)
⇒ 2[ε,τ](m = mj) (VI.1)

Timed and Untimed Safety. A basic safety requirement for

a hybrid or continuous system can be specified as follows:

2[0,T]ϕ(m,y). (VI.2)

Here, y is the continuous state of the system, m is the
discrete mode, and ϕ(m,y) is a bounded-time STL formula
over the hybrid state-space. For example, ϕ(m,y) could be the
propositional formula (m = m0)∧(|x| < c). A minor variation
on a basic safety requirement is timed safety requirement; here,
the outermost temporal operator 2 is also bounded by some
time τ . For example, the property: 2[0,τ](x < c).

Timed Inevitability. A timed inevitability requirement spec-
ifies that a certain temporal behavior must happen before
a certain time τ expires. This is useful to specify timed

reachability of a certain mode or a certain region in the state
space. The template for such a property is as follows:

3[0,τ]ϕ(m,y). (VI.3)

Here, ϕ(m,y) is some bounded-time STL formula. For exam-
ple, ϕ(m,y) could be the propositional formula (m = m0).

B. Temporal Requirements on Control Systems

1) Input Profiles: So far, the requirements discussed in this
paper are temporal specifications on the behavior of output
signals or states of a closed-loop control system. Typically,
a control system is designed to regulate the behavior of the
state or outputs of a dynamical system when stimulated by
an external disturbance or to respond to an external input. To
quantify the performance of a control system, control designers
typically make certain assumptions about the disturbances or
external inputs. Often, these assumptions can be characterized
using a STL formula.
1) A common assumption for control systems is for distur-
bance signals to have a bounded norm. Suppose u(t) is a
disturbance signal, then a disturbance signal with the infinity
norm bounded above by D is specified by the STL formula:
2[0,T)|u| < D.
2) One of the basic tests that control designers use to under-
stand the efficacy of their designs is a step response. A step
input can be specified by the STL formula:

3[d,d+δ)(u = u`) ∧3[0,δ)(u = uh).

Here, d is an initial delay, u` is a constant specifying the input
value before the step, uh − u` is the amplitude of the step,
and δ is a small number representing the smallest simulation
step time.
3) Also of interest to control designers is a pulse response.
To define a pulse, we first define some parameterized events.
Here u` is a parameter representing the input value before
the pulse, and uh − u` is a parameter representing the pulse
amplitude.

rise ≡ (u = u`)⇒ 3[0,δ)(u = uh)
fall ≡ (u = uh)⇒ 3[0,δ)(u = u`)

Now, a pulse signal of period p, initial delay d, and pulse
width w can be specified using the STL formula:

2[d,T]

((
rise⇒ 3[w,w]fall

)
∧(

fall⇒ 3[p−w,p−w]rise
))

We remark that other input profiles such as sinusoidal
inputs, ramp inputs can also be specified using STL.

2) Control-theoretic Requirements on Outputs: In general,
the form of requirements of interest for control systems
takes the form of ϕI ⇒ ϕO, where ϕI is a STL property
characterizing the input profile. Note that ϕI can be the
property true , i.e., no assumptions are placed on the input. In
what follows, we focus on the RHS of the above implication,
i.e., on the requirements on the output signals.

Overshoot/Undershoot. An overshoot/undershoot require-
ment is a basic safety requirement. As output signals often

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 10

represent physical quantities in a system, e.g., pressure, tem-
perature, acceleration, etc., control designers try to impose
requirements on the maximum “overshoot” or “undershoot”,
i.e., maximum and minimum excursions of a given signal from
a reference value yref . The following STL requirements re-
spectively specify limits c1 and c2 on the maximum overshoot
and undershoot of a signal x between the times t1 and t2.

2[t1,t2](y − yref < c1) (VI.4)
2[t1,t2](yref − y < c2) (VI.5)

As mentioned before, a step response is a standard technique
in control theory to gauge the temporal behavior of a system
(especially linear dynamical systems), and is often used to
estimate maximum overshoot and undershoot.

Settling Time. A settling time requirement is a safety require-
ment. In a control system, a disturbance or a change in an input
may lead to transient oscillations in the regulated output. It is
important for these oscillations to be within the settling region,
i.e., a region specifying the tolerated deviations from the given
reference value, and for them to settle to the reference within a
specified settling time. Let disturbance denote a disturbance
event. Let y be the output signal of interest, let yref be the
reference value for y, and let |y−yref | < δ denote the settling
region. The STL property specifying the requirement that the
settling time is less than η is given below:

2[0,T]

(
disturbance⇒ 2[η,T] (|y − yref | < δ)

)
(VI.6)

Error measurement. In any control system, an important
quantity is the error between the desired reference value and
the actual signal. A standard way of measuring this error is
the root mean square (RMS) value of the error over time. We
first define an RMS error signal:

yrms(t) =

√
1

t

∫ t

0

(y(τ)− yref)2dτ

RMS error is essentially the value of yrms(t) at t = T . The
following STL formula specifies that the RMS error is always
less than c; note that this is a timed inevitability requirement.

3[T,T](yrms < c) (VI.7)

VII. CASE STUDIES

In what follows, we present three case studies of require-
ment mining from the automotive doman. The first is the
running example described in Sec. II, the second is an air-
fuel ratio-control benchmark model [?], and the third is an
industrial-scale experimental model of an airpath controller
for a diesel engine.

A. Automatic Transmission Model

For the model described in Sec. II, we tested different
template requirements:
1) Requirement ϕsp_rpm(π1, π2) specifying that always the
speed is below π1 and RPM is below π2 :

2(speed < π1) ∧2(RPM < π2).

2) Requirement ϕrpm100(τ, π) specifying that the vehicle can-
not reach the speed of 100 mph in τ seconds with RPM always
below π:

¬(3[0,τ](speed > 100) ∧2(RPM < π)).

3) Requirement ϕstay(τ) specifying that whenever the sys-
tem shifts to gear 2, it dwells in gear 2 for at least τ seconds:

2

((
gear 6= 2 ∧
3[0,ε]gear = 2

)
⇒ 2[ε,τ]gear = 2

)
.

Here, the left-hand-side of the implication captures the event of
the transition to gear 2 from another gear. The operator 3[0,ε]

here is an MTL substitute for a next-time operator. With dense
time semantics, ε should be an infinitesimal quantity, but in
practice, we use a value close to the simulation time-step.

The above requirements have strong correlation with the
quality of the controller. The first is a safety requirement
characterizing the operating region for the engine parameters
speed and RPM. The second is a measure of the performance
of the closed loop system. By mining values for τ , we can
determine how fast the vehicle can reach a certain speed,
while by mining π we find the lowest RPM needed to reach this
speed. The third requirement encodes undesirable transient
shifting of gears. Rapid shifting causes abrupt output torque
changes leading to a jerky ride.

Results on the mined specifications are given in Table II.
We used the Z3 SMT solver [?] to show that all of the
requirements are monotonic. For the second template, we
tried two possible orderings for the parameters. By prioritizing
the time parameter τ , we obtained the δ-tight requirement that
the vehicle cannot reach 100 mph in less than 12.2s (we set δ
to 0.1). As the requirement mined is δ-tight, it means that we
found a trace for which the vehicle reaches 100 mph in 12.3s.
Similarly, by prioritizing the scale parameter π, we found
that the vehicle could reach 100 mph in 50s keeping the RPM

below 3278 (δ = 5 in that case). For the third requirement, we
found that the transmission controller could trigger a transient
shift as short as 0.056s. This corresponds to the up-shifting
sequence 1-2-3. Using a variant of the requirement (not
shown here), we verified that a (definitely undesirable) short
transient sequence of the form 1-2-1 or 3-2-3 was not possible.

Based on results shown in Table II and our experience, we
make some observations:
• The FINDPARAM algorithm takes in general significantly
less time than the FALSIFYALGO algorithm in the mining
process. As can be expected, there is a correlation between the
number of simulations and the time spent in the falsification
process, and between the number of iterations and the time
spent in parameter synthesis.
• The space of input signals needs to be parameterized with a
sensible number of signal parameters. If too many parameters
are used, the search space is too big and falsification becomes
difficult. This is demonstrated in the 4 first instances in Table II
which are all performed on formula ϕsp_rpm with different
input parameterization. For this formula, it is straightforward
to obtain exact tigth parameter values since the maximum

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 11

Template dim. Pu Ninit Parameter mined Nb. Sim. Nb. Iter. Fals. time (sec) Synth. time (sec)

1 ϕsp_rpm(π1, π2) 1 1 π1 = 155.5 mph, π2 = 4857 rpm 120 11 75.89 34.26
2 ϕsp_rpm(π1, π2) 2 1 π1 = 155.5 mph, π2 = 4857 rpm 513 24 199.02 94.23
3 ϕsp_rpm(π1, π2) 2 10 π1 = 155.5 mph, π2 = 4857 rpm 1482 23 534.65 80.01
4 ϕsp_rpm(π1, π2) 4 10 π1 = 155.5 mph, π2 = 4857 rpm 2362 35 862.26 185.31
5 ϕrpm100(π, τ) 3 2 π = 3682 rpm, τ = 49.90 s 1475 23 885.31 143.83
6 ϕrpm100(τ, π) 3 2 τ = 12.20 s, π = 4997 rpm 340 3 182.32 2.60
7 ϕstay(π) 3 5 τ = 1.05 s 77 5 50.21 6.84
8 ϕstay(π) 3 100 τ = 0.1367 s 243 7 116.14 9.40
9 ϕstay(π) 3 1000 τ = 0.0586 s 1246 8 608.24 9.55

TABLE II: Results on mining requirements for the automatic transmission control model. For each instance, we indicate the template
formula used, the dimensionality of the input parameter space, the value of Ninit used, the parameter values returned, the number of
simulations, the number of iterations of the mining algorithm, the time spent in falsification and the time spent in parameter synthesis.

speed and rpm corresponds to the case of constant acceleration
with maximum throttle. The correct values are found for all
instances, but the time needed to obtain these parameters
significantly increases with dimensionality of Pu.
• Requirements involving discrete modes are challenging be-
cause they induce “flat” quantitative satisfaction functions that
are challenging to optimizers and thus have limited value in
guiding the falsifier. This is illustrated by the performance
of the mining algorithm with template ϕstay (instances 7-9).
The satisfaction function is locally “flat” due to the fact that
the predicate gear = 2 induces piecewise-constant integer
quantitative satifaction (equal to -1 if gear is 1, 0 if gear is 2,
etc). For small Ninit, the algorithm stops after a few iterations
because the optimizations around the Ninit initial valuations are
stuck in those locally flat regions. On the other hand, for higher
values of Ninit, the input parameter space is better covered by
the initial sampling, hence a better valuation for τ is found.

B. Air-Fuel Ratio Control Model

Next, we consider the model of a fuel control system for a
gasoline engine presented in [?]. The model consists of an air-
fuel ratio (AFR) controller and a model of the engine dynamics
specifying the mean behavior of the engine over the various
combustion cycle phases. While the model presented in [?]
allows four discrete modes of operation, we are interested in
mining requirements in the nominal mode (called the normal

mode of operation). The basic purpose of the control system
is to regulate the AFR quantity to a reference value (known
as the stoichiometric value). The experimental results shown
in Table III use the following requirements.

The requirement ϕabs_over(π) specifies the absolute value
of the deviation of AFR from the reference value. In other
words, it specifies the maximum allowed overshoot or under-
shoot. The requirements ϕovershoot(π) and ϕundershoot(π)
separately specify the maximum value for the overshoot and
the minimum value for the undershoot respectively.

The requirement ϕsettling_time(τ, π) specifies the settling
time for the AFR signal when the throttle angle input of the
model is excited by a train of pulses. In our first experiment
mining this requirement, we prioritize the settling region π,
i.e., we wish to find the smallest region in which the AFR
signal settles, at the cost of allowing a longer time (τ) for
the transients. In the second experiment, we wish to find the
smallest time at which the AFR signal settles, but at the cost

Abstract fuel control model
Template Parameter value Time (sec) #Iter.

ϕabs_over(π) π = 9.76e− 3 3111 2
ϕovershoot(π) π = 8.78e− 3 3201 2
ϕundershoot(π) π = −9.76e− 3 3121 2
ϕsettling_time(π, τ) τ = 1.405, π = 0.005 3502 7
ϕsettling_time(τ, π) τ = 1.244, π = 0.0075 3117 5
ϕrms(π) π = 0.040 3301 4

TABLE III: Results on mining requirements for the abstract
fuel control model of [?]. The stopping criterion for the last
falsification step was set to 1000 simulations.

of settling in a larger region. Both experiments are valuable,
as the first experiment is an indicator of how tightly the
control system can track the reference value, while the second
experiment indicates the control system’s response time.

C. Diesel Engine Model

Next, we consider two different versions of an industrial-
scale, closed-loop Simulink model of an experimental airpath
controller for a diesel engine. The original model has more
than 4000 Simulink blocks such as data store memories,
integrators, 2D-lookup tables, functional blocks with arbitrary
Matlab functions, S-Function blocks, and blocks that induce
switching behaviors such as level-crossing detectors and sat-
uration blocks. The models takes two signals as input: the
fuel injection rate and the engine speed. The output signal is
the intake manifold pressure denoted by x. For proprietary
reasons, we suppress the mined values of the parameters and
the time-domain constants from our requirements. We replace
the time-domain constants by symbols such as c1 and c2. As
before, we use T to represent the simulation time-horizon.

We note that in this case study, we have available two
sets of results. In previous work that appears in [?], we
mined requirements on an older version of the closed-loop
diesel airthpath control system. We first summarize the results
obtained therein. We then present the results3 of mining re-
quirements on a new version of the model, which incorporates
the feedback that we provided to the designers through our first
set of mining experiments.

3In Fig. 5 and Fig. 6 respectively corresponding to the two experiments,
we suppress the values along the plot-axes for proprietary reasons. We remark
that the actual values are irrelevant and the intention is to show the shape of
the design behaviors.

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 12

0

�

TimePr
es

su
re

di
ff

.(
x

)

0

Fig. 5: The simulation trace (in blue) for the signal x denoting
the difference between the intake manifold pressure and its
reference value4found when mining ϕsettling_time(τ, π) dis-
plays unstable behavior. The maximum error threshold that we
expected to mine is depicted in red. The ideal x signal is in
green.

We found from the designers that characterizing the over-
shoot behavior is important for the intake manifold pressure
signal. The inputs to the closed-loop model are a step function
to the fuel injection rate input at time c1, and a constant value
for the engine speed input. The first requirement is:

ϕovershoot(π) = 2(c1,T)(x < π).

This template characterizes the requirement that the signal
x never exceeds π during the time interval (c1, T), i.e., it
finds the maximum peak value (i.e., π) of the step response.
Our mining algorithm obtained 7 intermediate candidate re-
quirements that were falsified by S-TALIRO, till we found a
requirement that it could not falsify in its 8th iteration. The
total number of simulations was 7000 over a period of 13
hours.

Next, we chose to mine the settling behavior of the signal.
The settling time is the time after which the amplitude of
signal is always within a small error from its calculated ideal
reference value. We wish to mine both the error and how fast
the signal settles. Such a template requirement is given by the
following PSTL formula:

ϕsettling_time(τ, π) = 2[τ,∞)(|x| < π).

It specifies that the absolute value of x is always less than
π starting from the time τ to the end of the simulation. The
smaller the settling time and the error, the more stable is the
system. We found out from the control designer that a smaller
settling time needs to be prioritized over the error (as long as
the error lies within the 10% of the signal amplitude), so we
prioritize minimizing τ over minimizing π.

After 4 iterations, the procedure stopped as the inferred
value for τ was very close to the end of the simulation trace,
but the error was still larger than the tolerance. The implication
here is that the algorithm pushed the falsifier to finding
a behavior in the model that exhibits hunting behavior, or
oscillations of magnitude exceeding the tolerance. This output
signal is shown in Fig. 5. This behavior was unexpected;
discussions with the designers revealed that it was a real bug.
Investigating further, we traced the root-cause to an incorrect
value in a lookup table; such lookup tables are commonly used
to speed up the computation time by storing pre-computed
values approximating the control law.

This experiment demonstrates the use of mining as an
advanced, guided debugging strategy. Instead of verifying

Time

Pr
es

su
re

di
ff

.(
x

)

0

Fig. 6: The simulation trace (in blue) for the signal x denotes
the worst case settling time for the difference between the intake
manifold pressure and its reference value found by mining
ϕsettling_time(τ, π) in the newer diesel engine model.

correctness with a concrete formal requirement, the process
of trying to infer what requirement a model must satisfy can
reveal erroneous behaviors that could be otherwise missed.

The counterexample we found helped the designers to
rectify the erroneous behavior. Incidentally, the designers also
chose to refactor the model by eliminating some blocks to
reduce the computation time for the control code. This is
reflected in the decreased simulation time, which in turn leads
to a reduction in the time required for mining requirements.
The resulting new version contains around 3000 blocks. The
results are shown in Table IV. Here, we list the number of
simulations, the total elapsed time (in hours), and the number
of iterations of the mining algorithm. Here, through extensive
simulation, the worst-case behavior we found on the new
version of the model for ϕsettling_time is shown in Fig. 6,
with the absence of the previous hunting behavior. Through
this example, we demonstrate that requirement mining process
could be use to help designers detect corner cases in a design
and ensure quality in design evolution.

Template #Sim. Time (hour) #Iter.

ϕovershoot(π) 4733 4.12 5
ϕsettling_time(τ, π) 100828 9.15 18

TABLE IV: Requirement mining results on the new diesel
control model. The stopping criterion for the last falsification
step was set to 2000 simulations.

VIII. RELATED WORK

Mining requirements from programs and circuits is well-
studied in the field of computer science [?], [?], [?], [?], [?],
[?], [?], [?]. In computer science, the word “requirement”
is often synonymous with “specification”. These techniques
vary based on what is mined, e.g., automata, temporal rules,
and sequence diagrams. They also differ on the input to the
mining tool; e.g., techniques based on static analysis or model
checking operate on the source code, dynamic techniques mine
from execution traces. Work on mining temporal rules [?],
[?] involves learning an automaton to capture the temporal
behavior and focusses on API usage in libraries, and spec-
ification automata encode legal interaction-patterns between
library components. In contrast to most software programs
with discrete-time semantics, the behavioral requirements that
we mine are for systems with both continuous and discrete-
time semantics. It may be worthwhile to see if automata-based

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 13

mining could be adapted to the hybrid systems domain. The
work closest to the proposed approach appears in [?], where
the authors introduce Parametric MTL (PMTL), which is able
to specify single time or scale parameters in MTL formulas.
These parameters are estimated using stochastic optimization
within the tool S-TALIRO. We remark that we provide a way
to reason about monotonicity of PSTL formulas with arbitrary
number of parameters, and also allow mining non-monotonic
PSTL formulas (albeit less efficiently).

Asarin et al. [?] introduce Parametric Signal Temporal Logic
and use it to infer properties of continuous-time signals. This
technique only statically infers specifications, where given
signals are queried, without mention (and, a fortiori, actuation)
of a model that produces these signals. Kong et al. [?] also
focus on inferring temporal logic patterns from data. They
define a fragment of PSTL that allows a separation of cause
and effect formulas. With this structural separation, the authors
can impose a lattice structure on the space of the PSTL
formulas, allowing for simultaneous parameter estimation and
structural identification. Note that in our prior work [?], as well
as in this paper, we do not address the problem of learning the
structure of the PSTL formula. An important part of our future
work will involve exploring the space of PSTL templates,
using the algorithms developed in this paper.

We note that falsification of a given STL formula by a
model behavior is a key component of our framework. The
complement of the falsification problem is the verification
problem. Reachability analysis tools such as SpaceEx [?],
Flow* [?], C2E2 [?], HyCreate [?], and CORA [?], are verifi-
cation tools based on overapproximating the set of reachable
behaviors of a given dynamical system. These tools can check
(in a sound fashion) whether a given model contains a finite
time behavior that violates a specified safety property. Such
safety properties are expressed using regions in the state-
space that should not be reached. Verification algorithms do
not typically produce counterexamples (which we need in our
counterexample-guided mining algorithm), thus their use in a
falsification setting is unlikely. If verification tools are able to
support checking general temporal logic specifications, then it
may be possible to use them as a final step to check if the
mined requirement is satisfied by all model behaviors.

To the best of our knowledge, this work is among the
first to address the specification mining problem for cyber-
physical systems. From a broader perspective, the literature
reports several attempts to apply formal methods to industrial-
scale block-based design tools such as Simulink. There is prior
work [?] on verifying simple safety properties using sensitivity
analysis. Other approaches that are able to work with Simulink
diagrams include approaches to transform Simulink diagrams
into models amenable to formal verification [?], [?], [?] or
approaches to perform guided symbolic simulation using user-
provided block-level annotations [?], [?]. When successful,
such approaches provide very strong guarantees. However,
in the former class of approaches, the type of blocks that
can be handled is usually limited and we are not aware of
scalable analysis tools for models representing general hybrid
systems. The approaches based on symbolic simulation could
be interesting alternatives for falsification.

ACKNOWLEDGMENT

We thank the anonymous referees for their comments, and
James Kapinski, Koichi Ueda, and Ken Butts for help with
Simulink models, experiments, and insightful discussions. The
second and fourth authors were funded in part by Toyota
via the Center for Hybrid and Embedded Software Systems
(CHESS) at UC Berkeley, and by the MultiScale Systems
Center (MuSyC), funded under the Focus Center Research
Program, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

REFERENCES

[1] M. Althoff. Reachability Analysis of Nonlinear Systems using Con-
servative Polynomialization and Non-Convex Sets. In Proc. of Hybrid
Systems: Computation and Control, pages 173–182, 2013.

[2] R. Alur, T. Feder, and T. A. Henzinger. The Benefits of Relaxing
Punctuality. J. ACM, 43(1):116—-146, Jan. 1996.

[3] R. Alur and T. A. Henzinger. A Really Temporal Logic. J. ACM,
41(1):181–203, 1994.

[4] R. Alur, A. Kanade, S. Ramesh, and K. C. Shashidhar. Symbolic
Analysis for Improving Simulation Coverage of Simulink/Stateflow
Models. In Proc. of Int. Conf. on Embedded Software, pages 89–98,
2008.

[5] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of Interface
Specifications for Java Classes. ACM SIGPLAN Notices, 40(1):98–109,
2005.

[6] G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications. ACM
Sigplan Notices, 37(1):4–16, 2002.

[7] Y. S. R. Annapureddy and G. E. Fainekos. Ant Colonies for Temporal
Logic Falsification of Hybrid Systems. In Proc. of the 36th Annual Conf.
of the IEEE Industrial Electronics Society, pages 91–96, 2010.

[8] Y. S. R. Annapureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan.
S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems.
In Proc. of Tools and Algorithms for the Construction and Analysis of
Systems, pages 254–257, 2011.

[9] E. Asarin, A. Donzé, O. Maler, and D. Nickovic. Parametric identifi-
cation of temporal properties. In Proc. of Runtime Verification, pages
147–160, 2011.

[10] S. Bak and M. Caccamo. Computing Reachability for Nonlinear Systems
with HyCreate. In Demo and Poster Session at Hybrid Systems:
Computation and Control, 2013.

[11] H. A. Bardh Hoxha and G. Fainekos. Benchmarks for Temporal
Logic Requirements for Automotive Systems. In Workshop on Applied
Verification for Continuous and Hybrid Systems, 2014.

[12] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability
modulo theories. In A. Biere, H. van Maaren, and T. Walsh, editors,
Handbook of Satisfiability, volume 4, chapter 8. IOS Press, 2009.

[13] X. Chen, E. Abraham, and S. Sankaranarayanan. Flow*: An Analyzer for
Non-Linear Hybrid Systems. In Proc. of Computer Aided Verification,
pages 258–263, 2013.

[14] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proc.
of Tools and Algorithms for the Construction and Analysis of Systems,
page 337–340, 2008.

[15] A. Donzé. Breach, A Toolbox for Verification and Parameter Synthesis
of Hybrid Systems. In Proc. of Computer Aided Verification, pages
167–170, 2010.

[16] A. Donzé, T. Ferrère, and O. Maler. Efficient Robust Monitoring for
STL. In Proc. of Computer Aided Verification, pages 264–279, 2013.

[17] A. Donzé, B. Krogh, and A. Rajhans. Parameter Synthesis for Hybrid
Systems with an Application to Simulink Models. In Proc. of Hybrid
Systems: Computation and Control, pages 165–179, 2009.

[18] A. Donzé and O. Maler. Robust Satisfaction of Temporal Logic over
Real-Valued Signals. In Proc. of Formal Modeling and Analysis of Timed
Systems, pages 92–106, 2010.

[19] P. S. Duggirala, S. Mitra, and M. Viswanathan. Verification of Annotated
Models from Executions. In Intl. Conf. on Embedded Software, 2013.

[20] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of
likely invariants. Science of Computer Programming, 69(1-3):35–45,
2007.

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 14

[21] G. E. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel. Verifi-
cation of Automotive Control Applications using S-TaLiRo. In Proc. of
the American Control Conference, 2012.

[22] G. Frehse, C. Le Guernic, A. Donzé, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable Verification of
Hybrid Control Systems. In Proc. of Computer-Aided Verification, 2011.

[23] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What’s Decidable about
Hybrid Automata? In Proc. of the Symposium on Theory of Computing,
pages 373–382, 1995.

[24] P. Herber, R. Reicherdt, and P. Bittner. Bit-precise formal verification
of discrete-time matlab/simulink models using smt solving. In Proc.
International Conference on Embedded Software, 2013.

[25] P. Hunter, J. Ouaknine, and J. Worrell. Expressive completeness for
metric temporal logic. In Proc. of Logic in Computer Science, pages
349–357, 2013.

[26] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts. Powertrain
Control Verification Benchmark. In Proc. of Hybrid Systems: Compu-
tation and Control, pages 253–262, 2014.

[27] X. Jin, A. Donzé, and G. Ciardo. Mining Weighted Requirements
from Closed-loop Control Models. In Workshop on Numerical Software
Verification (NSV), 2013.

[28] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia. Mining Require-
ments from Closed-loop Control Models. In Proc. of Hybrid Systems:
Computation and Control, 2013.

[29] A. Kanade, R. Alur, F. Ivančić, S. Ramesh, S. Sankaranarayanan, and
K. C. Shashidhar. Generating and Analyzing Symbolic Traces of
Simulink/Stateflow Models. In Proc. of Computer Aided Verification,
pages 430–445, 2009.

[30] Z. Kong, E. A. G. Austin Jones, Ana Medina Ayala, and C. Belta.
Temporal logic inference for classification and prediction from data. In
Proc. of Hybrid Systems: Computation and Control, 2014.

[31] R. Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Syst., 2(4):255–299, 1990.

[32] C. Lee, F. Chen, and G. Rosu. Mining Parametric Specifications. In
Proc. of Int. Conf. on Software Engineering, page 591–600, 2011.

[33] W. Li, A. Forin, and S. A. Seshia. Scalable Specification Mining for
Verification and Diagnosis. In Proc. of Design Automation Conference,
page 755–760, 2010.

[34] O. Maler and D. Nickovic. Monitoring Temporal Properties of Con-
tinuous Signals. In Proc. of Formal Modeling and Analysis of Timed
Systems/ Formal Techniques in Real-Time and Fault Tolerant Systems,
pages 152–166, 2004.

[35] T. Nghiem, S. Sankaranarayanan, G. E. Fainekos, F. Ivancic, A. Gupta,
and G. J. Pappas. Monte-carlo techniques for falsification of temporal
properties of non-linear hybrid systems. In Proc. of Hybrid Systems:
Computation and Control, pages 211–220, 2010.

[36] G. Nicolescu and P. J. Mosterman. Model-Based Design for Embedded
Systems. CRC Press, 2009.

[37] A. Pnueli. The Temporal Logic of Programs. In Proc. of Foundations
of Computer Science, pages 46–57, 1977.

[38] S. Sankaranarayanan and G. E. Fainekos. Falsification of Temporal
Properties of Hybrid Systems using the Cross-Entropy Method. In Proc.
of Hybrid Systems: Computation and Control, 2012.

[39] S. Sankaranarayanan, F. Ivancic, and A. Gupta. Mining Library Speci-
fications using Inductive Logic Programming. In Proc. of Int. Conf. on
Software Engineering, page 131–140, 2008.

[40] S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia. Static Specification
Mining using Automata-based Abstractions. IEEE Trans. on Software
Engineering, 34(5):651–666, 2008.

[41] Simulink. version 8.0 (R2012b). The MathWorks Inc., Natick, Mas-
sachusetts, 2012.

[42] S. Skogestad and I. Postlethwaite. Multivariable feedback control:
Analysis and Design. Wiley, 2007.

[43] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A. Saraswat.
Combinatorial Sketching for Finite Programs. ACM SIGPLAN Notices,
pages 404–415, 2006.

[44] A. Tiwari. HybridSAL Relational Abstracter. In Proc. of Computer
Aided Verification, pages 725–731, 2012.

[45] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating Discrete-
Time Simulink to Lustre. ACM Trans. on Embedded Comput. Syst.,
4(4):779–818, 2005.

[46] W. Weimer and G. Necula. Mining Temporal Specifications for Error
Detection. In Proc. of Tools and Algorithms for the Construction and
Analysis of Systems, page 461–476, 2005.

[47] H. Yang, B. Hoxha, and G. Fainekos. Querying Parametric Temporal
Logic Properties on Embedded Systems. In Int. Conf. on Testing
Software and Systems, pages 136–151, 2012.

[48] C. Zhou and R. Kumar. Semantic Translation of Simulink Diagrams
to Input/Output Extended Finite Automata. Discrete Event Dynamic
Systems, 22(2):223–247, 2012.

Xiaoqing Jin Xiaoqing Jin is a research engineer
with the Model-Based Development group at the
Toyota Technical Center in Los Angeles. She re-
ceived the B.Eng. and M.S. degrees in Computer
Science from the Wuhan University, China in 2005
and 2007 respectively, and the Ph.D. degree in
Computer Science from the University of California
Riverside in 2013. Her work at Toyota focuses
on advanced research on verification and validation
techniques for automotive control systems modeled
as nonlinear and hybrid dynamical systems. Her

research interests include techniques for modeling, monitoring, analysis, and
formal verification of large scale control systems.

Alexandre Donzé Alexandre Donzé is a research
scientist at the University of California, Berkeley
in the department of Electrical Engineering and
Computer Science. He received his Ph.D. degree
in Mathematics and Computer Science from the
University of Joseph Fourier at Grenoble in 2007.
He worked as a post-doctoral researcher at Carnegie
Mellon University in 2008, and at Verimag in Greno-
ble from 2009 to 2012. His research interests are in
simulation-based design and verification techniques
using formal methods, Signal Temporal Logic (STL)

with applications to cyber-physical systems and systems biology.

Jyotirmoy V. Deshmukh Jyotirmoy V. Deshmukh
is a research engineer at Toyota Technical Center
in Los Angeles. His research interests are in the
broad area of formal verification of cyberphysical
systems, automatic synthesis and repair of systems,
and temporal logic. His current focus is in the area
of automotive control systems, nonlinear and hybrid
dynamical systems. He received the Ph.D. degree
from the University of Texas at Austin in 2010, and
worked a post-doctoral researcher at the University
of Pennsylvania from 2010-2012.

Sanjit A. Seshia Sanjit A. Seshia received the
B.Tech. degree in Computer Science and Engineer-
ing from the Indian Institute of Technology, Bombay
in 1998, and the M.S. and Ph.D. degrees in Com-
puter Science from Carnegie Mellon University in
2000 and 2005 respectively. He is currently an As-
sociate Professor in the Department of Electrical En-
gineering and Computer Sciences at the University
of California, Berkeley. His research interests are in
dependable computing and computational logic, with
a current focus on applying automated formal meth-

ods to embedded and cyber-physical systems, electronic design automation,
computer security, and synthetic biology. He has served as an Associate Editor
of the IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems. His awards and honors include a Presidential Early Career Award
for Scientists and Engineers (PECASE) from the White House, an Alfred P.
Sloan Research Fellowship, the Prof. R. Narasimhan Lecture Award, and the
School of Computer Science Distinguished Dissertation Award at Carnegie
Mellon University.

