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Abstract

Test and verification procedures are a vital aspect of the devel-
opment process for embedded control systems in the automotive
domain. Formal requirements can be used in automated proce-
dures to check whether simulation or experimental results ad-
here to design specifications and even to perform automatic test
and formal verification of design models; however, developing
formal requirements typically requires significant investment of
time and effort for control software designers. We propose Sig-
nal Template Library (ST-Lib), a uniform modeling language
to encapsulate a number of useful signal patterns in a formal
requirement language with the goal of facilitating requirement
formulation for automotive control applications. ST-Lib con-
sists of basic modules known as signal templates. Informally,
these specify a characteristic signal shape and provide numer-
ical parameters to tune the shape. We propose two use-cases
for ST-Lib: (1) allowing designers to classify design behav-
iors based on user-defined numerical parameters for signal tem-
plates, and (2) automatic identification of worst-case values for
the signal template parameters for a given closed-loop model of
an embedded control system. We show how ST-Lib can be used
to improve user productivity by demonstrating its effectiveness
on two case studies.

INTRODUCTION

Verification and validation (V&V) for automotive applications
is a vital activity for ensuring that embedded control software
performs as intended. The success of V&V activities is cru-
cially dependent on the availability of appropriate requirements
characterizing correctness and performance of the embedded
control system. Often, such requirements define the intended
behaviors of the sytem being designed. While requirements can
take several forms, machine-checkable, formal requirements are
ideal for V&V purposes, as they can be easily incorporated into
automated testing procedures. Though control designers often

use informal requirements, adoption of formal requirements in
the automotive industry is limited due to the challenges involved
in developing them. In order to improve the requirement-driven
V&V processes, we present a library of signal templates (ST-
Lib) intended for use in the automotive industry. Each template
in the library is a building block in creating formal require-
ments, and templates in the library can be combined to generate
complex formal requirements specifying correct behaviors.

A concrete usage scenario for a requirement-driven V&V pro-
cess is the paradigm of model-based development (MBD) [9].
To manage the growing complexity of embedded control sys-
tem development and the resulting increase in cost associated
with test and verification, many organizations are now embrac-
ing MBD. MBD provides a way to create, document, and evalu-
ate control software components and environment models in an
integrated environment. A key feature of MBD is that it can be
used to ensure that control design goals are met at every stage
of the development process, as long as appropriate requirements
are defined upfront.

Figure 1 illustrates an MBD process known as the Design V .
Activities on the left hand side of the V are associated with
models of the system, where each subsequent activity repre-
sents an enhancement of the model from the previous activity.
Processes on the right hand side of the V correspond to exper-
imental (testing) activities. System requirements are provided
upfront, at the top left hand side of the V , and are used to check
whether the models produce behaviors that are acceptable.

V&V activities can be performed on the system models to check
whether the design satisfies requirements early in the design
process (before hardware is developed) and have the benefit of
allowing necessary improvements to be made early in the design
process. Performing improvements early in the design process
reduces development cost as compared to the cost of rework at
later stages. To use V&V methodologies in an MBD design
process, it is essential to have formal requirements. Formal re-
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Figure 1: The model-based development design V.

quirements offer two key benefits:

• Provide a clear definition of correct behavior, which can be
used by ad hoc model testing techniques to evaluate system
performance, and

• Are essential inputs to automated model testing and verifi-
cation tools.

Given a collection of formal requirements, there are several
methods for performing V&V on embedded control system
models. The simplest technique is to perform simulations of
the models in an ad hoc fashion. Simulations are numerical
estimates of the behaviors of the models based on a collec-
tion of operating parameters. Simulations can be used to check
whether system models conform to requirements for specific
operating parameters. Using an ad hoc approach, parameter val-
ues are selected manually based on designer insight. This ap-
proach has the benefit that the designer is often aware of system
parameters that correspond to critical system behaviors. The
downside is that it is time-consuming for control engineers to
identify system parameters that correspond to significant behav-
iors.

To address the shortcomings of ad hoc testing, automated model
testing tools can be employed. Tools such as S-TaLiRo [1, 5]
and Breach [2, 3] automate the search for significant system be-
haviors based on a Simulink® model of the system and a formal
requirement. These tools use the formal requirement to formu-
late a function that maps system behaviors to real values, where
the values quantify the degree to which the requirement is sat-
isfied (or is not satisfied), with positive values corresponding
to satisfactory behaviors and negative values corresponding to
unsatisfactory behaviors. This quantity indicates how well the
system behavior satisfies a given performance requirement, and
can be used as the cost function to a suitably framed optimiza-
tion problem. Then, a global optimization tool is used to select
system parameters to minimize the cost function. If the opti-
mizer selects parameters that correspond to a negative cost val-
uation, then the parameters correspond to behaviors that do not
satisfy the requirement, and the parameters are returned to the
user for inspection so that the design can be reexamined. These
tools have the benefit that they provide an automatic way to test

system models against requirements and thus alleviate the bur-
den on control engineers to some extent. The downside is that
these tools are best-effort tools, that is, it is not guaranteed that
the tools will identify behaviors that do not satisfy requirements
(if they exist).

Machine-checkable formal requirements are not commonplace
in the automotive industry. There are several reasons for this;
first, traditional metrics used to evaluate control system perfor-
mance, such as overshoot and settling time, are inherently diffi-
cult to formulate in the languages typically used to create formal
requirements. This is because formal requirement languages are
traditionally used to specify behaviors of finite state systems,
rather than the continuous behaviors considered by control en-
gineers. The second reason is that formal requirements take
time to develop, and automotive design cycles are usually tight,
meaning that the time available for activities that lie outside of
the traditional automotive development processes such as re-
quirements development is quite limited. The final issue is that
of cross-domain knowledge: automotive engineers are not typi-
cally familiar with the languages used to create formal require-
ments. Such languages and associated logics are typically better
known to computer scientists, while automotive engineers are
typically trained as mechanical and electrical engineers.

In an ideal process, formal requirements are identified during
the initial development phase and do not evolve during the de-
velopment process. In practice this is not realistic; the challenge
is that many automotive control systems exhibit complex behav-
iors that are difficult to anticipate at design time. Nevertheless,
formal requirements provide value even for cases where behav-
iors are not anticipated; once the behaviors have been identified,
they can be captured as new requirements, included in the set of
system requirements, and used during the next development cy-
cle to check whether the system behaves correctly.

In what follows, we give a brief background on temporal logic,
the underlying formalism supporting the proposed signal tem-
plate library.

Background

A temporal logic is a language in which formal specifications
can be written for embedded control systems, such as automo-
tive control systems. In this section, we provide a brief back-
ground on temporal logics, and we give an overview of Signal
Temporal Logic (STL), which is the logic that we propose to
use to create requirements for automotive applications.

In the late 70s, Amir Pnueli [10] introduced temporal logic to
computer science to reason formally about the temporal be-
haviors of reactive systems. The use of temporal logic was
originally to reason about input-output systems with Boolean,
discrete-time signals, and heavily focused on verification, spec-
ification, and synthesis of concurrent systems. A number of
temporal logics were introduced to reason about real-time sig-
nals, such as Metric Temporal Logic (MTL), and, more re-
cently, Signal Temporal Logic (STL) [7]. MTL typically al-
lowed reasoning over Boolean signals but over dense-time do-
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mains while STL [8] was proposed in the context of analog and
mixed-signal circuits as a specification language for constraints
on real-valued signals.

An STL formula is composed of a set of logical connectives,
like ∧ and ∨, temporal operators, and atomic subformulae. An
atomic formula expresses constraints on signals and, without
loss of generality, can be reduced to a form f(x) ./ 0, where
x represents the name of a signal (a function from R≥0 to Rn),
./∈ {<,≤, >,≥,=}, and f is an arbitrary function from Rn
to R. A temporal formula is formed using temporal operators
“always” (denoted as �), “eventually” (denoted as ♦) and “un-
til” (denoted as U). Each temporal operator is indexed by an
interval I over R≥0 ∪ {∞}; this can be an open interval (a, b),
a closed interval [a, b], open-closed (a, b] or closed-open [a, b).

For example, consider the following STL formula:

�[0,100] (boost pressure < 250) . (1)

The requirement in STL formula (1) specifies that for all times
t in [0, 100], the physical quantity boost pressure is less than
250 kPA. This STL requirement can be used to characterize the
maximum value allowed for a given signal. For another STL
requirement example, consider the following:

�[0,100]

(
(gear = 1 ∧ ♦[0,ε] gear = 2)

=⇒ �[ε,τ+ε] (gear = 2)
)
. (2)

The requirement (2) specifies that if the gear changes from 1 to
2 within a small time (ε), then it stays at 2 for at least τ seconds.
Such a requirement can be used to specify the minimum dwell-
time for a transmission gear.

In the following section, we explain how to use STL formulae
to describe common control signal behaviors using ST-Lib.

TAXONOMY OF COMMON CONTROL BEHAVIORS

There is often a mismatch between the languages used to create
formal requirements, such as STL, and the kinds of qualitative
behaviors considered by control engineers, which exacerbates
the challenges that control engineers face in creating formal re-
quirements. Below, we explain why this is, and we describe
behaviors that automotive control engineers expect that are dif-
ficult to capture in languages such as temporal logic.

System performance measures commonly used by control engi-
neers typically arise out of test scenarios. For example, a step
response requirement implies that the output signal of interest
should adhere to some performance requirement (such as the
overshoot or settling time) in response to the step input. Con-
trol engineers usually expect the step response performance to
hold in response to any edge in the input signal, such as from
a single pulse or a train of pulses. While using either a step
or a pulse signal to excite a system is natural to a control engi-
neer, from a formal requirements perspective, this corresponds
to a multiplicity in acceptable behaviors, and hence corresponds
to multiple individual formal requirements (or a single but a
complex requirement). Envisaging all possible scenarios that

may correspond to a step response for a control engineer and
capturing them as a uniform requirement requires considerably
more work than an informal statement about the desired step
response.

Even when control engineers have a clear idea of the expected
input/output behavior (or behavior they want to avoid), the be-
havior may be difficult to express using STL. For example, con-
sider the case where the control engineer wants to avoid a ring-
ing behavior. Ringing may be easy to describe informally and
may be easy to identify manually when it is exhibited, but defin-
ing it formally may require precise articulation of different “fea-
tures” that comprise a ringing behavior. If the ringing signal has
a known average value, it may be easier to define, but in some
cases such an average value is not known a priori, or simply
does not exist; for example, consider the case when the ringing
occurs on the slope of a ramp function.

Lastly, control engineers expect qualitative behaviors from the
system that they themselves may have difficulty describing,
even informally. For example consider the case where the con-
trol engineer expects a system to exhibit an oscillating (sinu-
soidal) behavior (or something similar to it) but instead the en-
gineer observes a pulse train. It is not obvious how to differenti-
ate the expected signal from the pulse train. One could specify,
for example, how sharp the rising and falling parts of the sig-
nal are (e.g., the magnitude of the derivative), but it is not clear
what derivative magnitude limit separates the sinusoidal behav-
ior from the pulse train.

In the following, we describe behavior classes that the automo-
tive control engineer typically wants to avoid; formal system
requirements will typically dictate that these behaviors do not
occur. The following is a partial list of common undesirable be-
haviors. We note that some of the behaviors described below
can be challenging for control engineers to articulate using a
formal requirement language such as STL.

• Ringing: Some practical systems are designed to ring (or
oscillate) indefinitely. For example, the air charge in the
combustion cylinder of an internal combustion engine will
alternate between charged and discharged over every en-
gine cycle. But ringing in most systems is considered un-
desirable. Ringing behavior defined as a signal oscillating
around a given average value can be easily captured in a
temporal logic like STL, but more subtle ringing that mod-
ulates, some qualitatively different signal like a ramp may
be difficult to capture for a non-expert.

• Spikes and Glitches: Sharp changes in a signal value
can lead to unacceptable system performance and are of-
ten considered to be undesirable. As with ringing, using a
temporal logic like STL to capture the case where a spike
modulates some signal can be challenging.

• Excessive Overshoot or Undershoot: Control systems
are often expected to exhibit some overshoot (or under-
shoot), but these quantities are usually expected to respect
some upper (or lower) limit. Since the related requirement
involves the corresponding input signals that trigger the
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step response behavior, many relational behaviors are as-
sumed to be acceptable.

• Slow Response Time (settling, rising, or falling): As in
the case of overshoot and undershoot, settling, rising, and
falling times are expected behaviors from a control system
in response to a step input.

• Undesirable Timed Relation Behaviors: Expressing
timed relationships between signals is elegant in a formal-
ism like STL. For example, consider two signals a and b
and suppose the designer wants to forbid b from switch-
ing from low to high within x seconds of a switching from
low to high. This kind of behavior can be easily captured
by STL. A requirement template to express such timed re-
lations can be useful for control engineers.

• Steady State or Tracking Error: Steady state errors are
usually undesirable, but they are often tolerated in moder-
ation. As with the overshoot and response time require-
ments, steady state error requires at least two signals to
specify. While this can be accomplished using STL, a re-
quirement template with parameters that the control engi-
neer is more familiar with can be quite useful.

In the sequel, we present a library of signal templates, ST-Lib,
along with a framework that will allow the automotive control
engineer to easily construct formal requirements related to each
of the above behavior types.

ST-LIB

We present ST-Lib, a library of formal requirements for behav-
ior classes that are often the focus of testing processes per-
formed by automotive control engineers. We provide a de-
scription and use case for each requierment-class, the param-
eters used to define each requirement, and examples illustrating
the difference between allowed and disallowed signals for each
class. The requirements are provided in STL format and can be
used in testing and verification environments such as the Breach
tool.

Assumptions

The following assumptions are made regarding the signals used
to define the STL formulae in the ST-Lib. We assume that the
requirements are based on some signal x, which is defined at
a finite set of time instants t0, . . . , tN ∈ R≥0. Here t0 = 0,
and tN = T is called the time horizon. Also, we assume that
mini∈[0,N−1] ti − ti+1 > ε, which provides a lower bound for
the time-step of the signals, ε. Signals may contain measure-
ment noise (or approximation error), which has the potential to
trigger false positive results, but also can be used to automat-
ically detect undesirable levels of certain types of noise. We
use xdiff to denote the discrete-time derivative of x, where
xdiff (ti) = x(ti+1)−x(t1)

ti+1−ti for all i ∈ {1, . . . , N − 1}, and
xdiff (tN ) is not defined.

In the automotive domain, the term requirements is often used
to capture high-level stipulations of the system behavior, while

in the formal verification community in computer sciences, the
term specification is used for the same purpose [11]. In an au-
tomotive context, a specification model typically implies an ex-
ecutable model of the embedded control software. In the rest
of this section, we use the words requirements and specification
interchangeably, as in computer science.

Also, to ease the exposition, we provide requirements that de-
scribe behaviors that are not acceptable. To create a requirement
that allows any signal except a selected unacceptable behavior,
say behavior B1, one would use the negation of the given for-
mula, which is obtained by placing a not (¬) operator in front of
the indicated STL formula, as in ¬B1. To create a requirement
that allows any behavior except those indicated by multiple for-
mulas, for example B1 and B2, one would use a logical and (∧)
operator between the negated formulae, as in (¬B1) ∧ (¬B2).

Ringing

Formally defining ringing behavior can be challenging for two
reasons. First, it is often the case that the ringing behavior is
defined around some mean value, which may not be defined at
the time the formal requirement is defined. Second, there may
be some ringing behaviors that are acceptable, while others are
not, as in the case where ringing that occurs at the magnitude of
signal noise may be allowable but ringing of larger magnitude
may not.

The following STL formula addresses the case where the mean
signal value is not known by defining predicates on the differ-
ence between the signal and its time-shifted version as follows:

rise
def
= x(t+ d)− x(t) > a, (3)

fall
def
= x(t)− x(t+ d) > a. (4)

The time-shift d, and the minimum amplitude a are both param-
eters controlled by the user. The following formula is satisfied
by signals that have one peak followed by one valley at time 0:

ring once 0
def
= rise ∧

(
♦[0,2d]fall

)
. (5)

The following formula accepts signals that have at least one in-
stance of ringing at some time between time 0 and the horizon
T :

ring once
def
= ♦[0,T ]ring once 0. (6)

The next formula represents signals that have at least two con-
secutive instances of ringing starting at some time in [0, T ]:

ring twice
def
= ♦[0,T ]

(
ring once 0 ∧ ♦[2d,4d]ring once 0

)
. (7)

The user specifies d and a as parameters. The parameter a con-
trols the minimum amplitude of the ringing, whereas d is related
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to the largest period (i.e., the smallest frequency) of the ringing
behavior. We note that d should be selected to be no larger than
approximately 25% of the smallest period that the designer in-
tends to capture, to avoid effects of undersampling the signal
with (3) and (4).

Figure 2 provides examples of signals that satisfy (unaccept-
able) and do not satisfy (acceptable) a given ringing specifica-
tion, given parameters d = 0.0625 and a = 0.25. Note that the
examples of ringing modulate an exponential signal; this is to
illustrate that the formula is agnostic to a given reference value,
as opposed to a naı̈ve formulation that only considers the num-
ber of times a signal crosses some mean signal value.
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Figure 2: Example of acceptable and unacceptable signals, as
defined by the STL specification for ringing behavior.

Spike

A spike can be informally defined as a large, brief jump in
a signal value. The spike specification allows the designer to
formally define unacceptable sharp transient system behaviors.
Many signals will be expected to exhibit some brief jumps in
value of some magnitude even though larger jumps in value will
be unacceptable. The following STL formula is a template to
define unacceptable spike behaviors.

♦[0,T ]

(
(xdiff > m) ∧ ♦[0,w] (xdiff < −m)

)
(8)

Here, m,w are positive real numbers, with w > ε. The param-
eter w is related to the spike width, and m ·w is proportional to
the spike amplitude.

There are several specializations and generalizations of the
above formula that could be made to restrict or loosen the kind
of signals that are classified as spikes. For example, modest
changes to the formula could specify that only one spike in a
given w interval is acceptable but more than one is not.

Figures 3 and 4 illustrate acceptable and unacceptable behav-
iors as defined by the spike specification for a given m and

w. For Figure 3, the parameter specifications are m = 10.0
and w = 0.5. For Figure 4, the parameter specifications are
m = 8.0 and w = 0.5. Note that the distinguishing feature be-
tween the acceptable and unacceptable signals is the magnitude
of the spikes.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (seconds)

U
ni

ts

Unacceptable
Acceptable

Figure 3: Example of acceptable and unacceptable signals, as
defined by the spike STL specification.
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Figure 4: Advanced example of acceptable and unacceptable
signals, as defined by the spike STL specification.

Overshoot

Overshoot and undershoot are quantities that define how much
a signal goes beyond an expected steady state value in response
to a step input and is often used as an indicator of control system
performance. The overshoot specification provides parameters
to allow the designer to differentiate acceptable from unaccept-
able signal excursions beyond steady state values in response to
steps in the input.

As with the ringing specification, defining a formal specifica-
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tion capturing unacceptable levels of overshoot is challenging
because the expected steady state value of the signal may be
unknown when the specification is created. The following STL
formula assumes that the overshoot is defined with respect to a
known reference signal (reference tracking).

We first define a predicate characterizing a step of amplitude at
least r units in a given signal at some time t.

step(y, r)
def
= y(t+ ε)− y(t) > r (9)

In specifying overshoot, we assume that the system is trying to
track such a step in a given reference signal. Given a reference
signal xref , and a signal x, the following STL formula charac-
terizes signals x that overshoot the reference signal xref by a
quantity greater than the user-specified threshold c.

♦[0,T ] (step(xref , r) ∧ ♦ (x− xref > c)) (10)

Figure 5 provides an example of an acceptable and an unac-
ceptable signal as defined by the overshoot specification, using
parameters r = 5.0 and c = 2.5. The unacceptable signal has
a significantly higher peak amplitude than the unacceptable sig-
nal.
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Figure 5: Example of acceptable and unacceptable signals, as
defined by the overshoot STL specification.

Settling Time

Settling time is the time it takes a signal to reach and remain
within a band around a steady state value in response to a step
input. Settling time is a common measure of control system per-
formance and is one common way to define worst case timing
performance for a control system.

Settling time is usually measured in response to a step input in
a given reference signal, and quantifies how soon the signal can

settle to some region around the reference signal. The follow-
ing STL formula characterizes signals x exhibiting settling time
greater than s for a region of size β around the reference signal.

♦[0,T ]

(
step(xref , r) ∧ ♦[s,T ] (|x− xref | > βxref)

)
(11)

Here, β is some small fraction (typically between 1 and 5%) of
the steady state value of the reference signal xref . Figure 6 pro-
vides examples of acceptable versus unacceptable settling time
as defined by (11), based on parameter values r = 5.0, s = 5.0,
and β = 0.1. As expected, the signal exhibiting unacceptable
settling time takes longer to approach the reference value than
the acceptable signal.
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Figure 6: Example of acceptable and unacceptable signals, as
defined by the settling time STL specification.

Rise Time

Rise and fall times are defined informally as the amount of time
it takes for a signal to change from an initial value to another
value some distance from an expected steady state value in re-
sponse to a step input. As with settling time, rise time is a com-
mon measure of control system performance and is another way
to define worst case timing performance for a control system.

The following STL formula assumes a reference signal, xref ,
along with parameters, T , ζ, and µ, that allow the designer to
define acceptable rise time system performance. Here, we as-
sume that the steady state value of the signal x1 is known (de-
noted x∗1), and rise time measures the amount of time required
to reach a user-specifed fraction µ of x∗1 after a given step event
of amplitude at least r units in the stimulating signal xref . The
following STL formula characterizes signals that exceed the rise
time requirement.

♦[0,T ]

(
step(xref , r) ∧�[0,ζ] (x1 < µ · x∗1)

)
(12)
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Figure 7 provides examples of acceptable versus unacceptable
rise time performance, as defined by (12), using parameters r =
5.0, ζ = 1.0, µ = 0.8, and x∗1 = 10.0.
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Figure 7: Example of acceptable and unacceptable signals, as
defined by the rise time STL specification.

Timed Relationships

The timed relationship signal behavior class characterizes the
temporal difference in behaviors between two or more signals.
This class of signal behaviors is useful to characterize accept-
able performance when one signal is expected to exhibit a des-
ignated behavior at some specified time after another signal
exhibits some other specified behavior. The ability to specify
timed relationships between signals is vital whenever signals
are expected to exhibit coordinated behavior.

Timed behaviors are easily specified using temporal logic, as
this is the type of behavior that these languages were originally
designed to capture. The following STL formulae provide pa-
rameters that allow the designer to specify acceptable timed re-
lational behaviors between two signals. The formulae are based
on two Boolean signals p1 and p2. In the list below, for each
item, a desired time relation is stated, and then the formula char-
acterizing signals not satisfying the relation is given.

• Desired relation: p2 becomes high within τ seconds af-
ter p1 goes high. Signals not satisfying this relation are
characterized by:

♦[0,T ]

(
p1 ∧�[0,τ ]¬p2

)
. (13)

• Desired relation: If p1 stays high for τ seconds, p2 be-
comes high immediately. Signals not satisfying this rela-
tion are characterized by:

♦[0,T ]

(
p1U[τ,τ ]¬p2

)
. (14)

Figure 8 illustrates examples of acceptable versus unacceptable
timed behaviors as defined by (13), based on the parameter

value τ = 3.0. For the unacceptable example, p2 takes longer
than 3.0 seconds to react to p1. This is as compared to the ac-
ceptable case, where p2 takes much less than 3.0 seconds to
react to p1.
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Figure 8: Example of acceptable and unacceptable signals, as
defined by the timed relationship STL specification.

Steady State Error

Steady state error is informally defined as the difference be-
tween the final value of a signal and the desired final value.
Steady state error is a common way to characterize the accu-
racy of a control system. The steady state error specification
provides the designer with a formal way to define acceptable
versus unacceptable accuracy after transient behaviors have dis-
sipated.

For the steady state error specification, we assume that a refer-
ence is available to compare against a given output signal. We
provide formulae for two different classes of reference signals:
step inputs and pulse trains. For each case, we assume we have
a reference signal xref and the steady state error of the signal x
is measured with respect to xref .

First, consider the case where the input reference signal is a step
function. Here, we can assume that x is in steady-state at the
time horizon T . The STL formula characterizing a steady state
error of greater than a is

♦[T,T ]|x− xref | > a. (15)

Next, consider the case where the input reference signal is sim-
ilar to a pulse train. Assume the reference signal is a series of
steps of varying magnitudes. We assume that if both xref and
x are not changing or are changing slowly for at least k steps,
then x has reached steady state for the corresponding step. The
corresponding STL formula is
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♦[0,T ]

(
(|xdiff |<β ∧ |xref diff |<β)U[kε,kε]|x− xref | > a

)
.

(16)

Here, xref diff is the discrete-time derivative of xref , k is a user-
defined parameter such that kε is smaller than the duration of
any two consecutive steps in the reference signal, and β is some
small positive number. Both k and β can be chosen by the user.
The constant a is the magnitude of the tolerated steady-state
error.

Figure 9 provides examples of acceptable versus unacceptable
steady state error behaviors as defined by (15), based on the
parameter value a = 0.5. In the figure, the steady state value for
xref is 10.0; signals satisfying the specification will therefore
fall within 9.5 and 10.5 at t = 10.0 seconds. Notice that the
steady state value for the unacceptable trace is slightly larger
than 10.5, while the steady state value for the acceptable trace
is between 9.5 and 10.5.
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Figure 9: Example of acceptable and unacceptable signals, as
defined by the steady state error STL specification.

CASE STUDIES

In this section, we describe an example model of an automotive
powertrain control system and demonstrate how specification
templates from ST-Lib can be used in conjunction with a design
analysis tool to automatically test the model against specifica-
tions.

Example model: abstract prototype automotive fuel control
system

Consider the automotive powertrain control (PTC) system pre-
sented in [6]. The model is a simplified representation of the
fuel control system (FCS) in a gasoline engine; the purpose of
the system is to accurately regulate the ratio of air-to-fuel in
the engine. The model is implemented in Simulink® and con-
tains representations of the air-fuel controller and the air-fuel

dynamics in the engine. The engine is represented by a simpli-
fied mean-value model and contains the throttle, intake mani-
fold air, and fuel dynamics. The controller has three modes of
operation: STARTUP, NORMAL, POWER, and FAULT. In the
NORMAL mode of operation, the controller uses a simple pro-
portional plus integral (PI) control scheme.

ω

AIR-FUEL

CONTROLLER

ENGINE

AIR-FUEL

DYNAMICS

THROTTLE

CONTROL

Fc

θ

θ̂

λ

ṁaf

Figure 10: Block diagram of the fuel control system.

Inputs to the model are the throttle position command in de-
grees, θ, and the engine speed in RPM, ω. The output of the
plant model to the controller is the air-fuel ratio, λ, and the in-
take manifold inlet mass airflow rate in grams per second, ṁaf .
The controller output to the plant is the fuel rate command in
grams per second, Fc. The main output signal is the air-fuel
ratio, λ. Figure 10 provides a block diagram of the fuel control
system. For a detailed description of the model, see [6].

The FCS model contains multiplicative error terms that model
calibration and other tolerances in the corresponding compo-
nents. Multiplicative error terms are present in the following
components: the air-fuel ratio sensor, the fuel injection actua-
tor, and the mass air flow sensor. In the experiments that follow,
the multiplicative error terms associated with the fuel injection
actuator and the mass air flow sensor are set to 1.0 (0.0% error),
and the multiplicative error parameter for the air-fuel ratio sen-
sor error rAF is assumed to be between 0.98 to 1.02 (±2.0%).

ST-Lib application: checking overshoot and settling time

One application of ST-Lib is simulation-based requirement fal-
sification. This technique has been successfully applied to au-
tomotive applications [4] and provides valuable insights to help
design engineers improve control designs; however, this tech-
nique requires users to specify requirements in a formal logic
language. The ST-Lib provides an easy way for engineers to
write correct and accurate formal requirements. In the follow-
ing, we describe how to use the ST-Lib to create formal re-
quirements for the FCS model and then describe how to use the
resulting requirements in the Breach tool [2] to automatically
check whether the design satisfies the property.

The Breach tool provides a framework to perform automatic
testing of Simulink models, based on given requirements spec-
ified in STL format. To analyze the FCS model, we create
input scripts for Breach, which contain the formal specifica-

8



10 12 14 16 18 20 22 24 26 28 30
0

10

20

30

40
θ

10 12 14 16 18 20 22 24 26 28 30
13

14

15

16

λ
r
e
f

10 12 14 16 18 20 22 24 26 28 30
14

14.5

15

15.5

Time (seconds)

λ

Figure 11: The counterexample trace found by Breach for the
overshoot requirement.

tions, along with other analysis parameters, such as input signal
bounds. Breach then uses an automated procedure to select in-
put sequences. The input sequences are used to produce simula-
tions using a numerical integration package built into Simulink.
The simulation traces are evaluated to determine whether they
satisfy the given STL formula; if any traces do not satisfy the
formula, the trace is reported back to the user.

To perform the analysis for the FCS model, we select templates
and example parameters for two behaviors types: overshoot and
settling time. For the overshoot case, we use modified versions
of Equations (9) and (10) and select parameters r = 5, T = 30,
ε = 0.02, and c = 0.04 ∗ λref . The resulting STL formula is as
follows.

♦[10,30] (step(θ, 5) ∧ ♦ (λ− λref > 0.04 ∗ λref )) (17)

Breach can falsify the requirement in about 70 seconds on a
typical desktop PC. Figure 11 shows the resulting output trace
from Breach, which demonstrates a case where the overshoot
is greater than 4% of the reference λref ; the top red line in the
fourth sub-figure shows the threshold 0.04∗λref for the require-
ment. Note that, though the behavior of interest occurs just after
the rising edge in the pedal input that occurs near t = 23.5 sec-
onds, the sequence of rising and falling edges in the input that
occur between 10.0 and 27.5 seconds contribute to the behavior;
before t = 10.0 seconds, the controller is in the STARTUP mode
and does not react to inputs. In a typical development context,
the counterexample trace shown in Figure 11 could be used by
engineers to improve the control design.

Next, we formulate the settling time specification using Eq. (11)
and parameters r = 5, s = 3, T = 30, ε = 0.02 and β = 1%.
The resulting STL formula used for the Breach analysis is as
follows:

♦[10,30]

(
step(θ, 5) ∧ ♦[3,5] (|λ− λref | > 0.01 ∗ λref )

)
.
(18)

Breach can successfully falsify the requirement within approx-
imately 10 seconds using a standard desktop PC. Figure 12 il-
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Figure 12: The counterexample trace found by Breach for the
settling time requirement.

lustrates the resulting output trace from Breach, which demon-
strates an instance where the settling time is greater than the
specified 3.0 seconds; the red band shows the range that the
signal should remain in after 3.0 seconds. The counterexample
found demonstrates a situation where the system cannot settle
before a new falling edge of the pedal signal occurs. As with
Figure 11, the counterexample trace shown in Figure 12 could
be used by engineers to improve the control design.

CONCLUSIONS

We introduced ST-Lib, a new framework for constructing for-
mal requirements for automotive control applications. The new
framework produces requirements in a temporal logic language
called signal temporal logic (STL), which can be used by au-
tomated testing tools to evaluate design models. Requirements
developed using ST-Lib can be integrated with a model-based
development (MBD) process to decrease the cost of V&V activ-
ities for automotive applications. We demonstrated how ST-Lib
can be used to automatically test design models using a bench-
mark powertrain control model. The examples we present use
Breach, an advanced simulation-based testing tool, to automat-
ically evaluate the benchmark model.

One challenge is that it may be difficult to select appropriate
parameters for the specifications created from ST-Lib. Future
work will investigate the use of automated techniques for in-
ferring appropriate parameters for the template specifications.
Also, in this paper, we consider time domain requirements on
signals. Future work will also enhance ST-Lib to express fre-
quency domain requirements. Lastly, we plan to extend ST-Lib
to handle performance requirements that are difficult to articu-
late, such as requirements on the smoothness of a signal.
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