
Mining Weighted Requirements from

Closed-Loop Control Models

Xiaoqing Jin1, Alexandre Donzé2, and Gianfranco Ciardo1

1 University of California, Riverside
{jinx,ciardo}@cs.ucr.edu

2 University of California, Berkeley
donze@eecs.berkeley.edu

Abstract. Specification defects are a major source of ambiguities and
errors. We propose a new weighted requirement mining framework to ad-
dress this problem. We define weighted and parametric weighted signal
temporal logic (STL) as the underlying formalism to improve the ex-
pressiveness. This also improves convergence of the mining process. We
provide some primitive results to show the benefit of the new framework.

1 Introduction

Specification defects are one of the most important issues when verifying the
design of a system. Ideally, design requirements should range from higher system-
level specifications describing desired performance in a suitable formal logic, to
lower implementation-level specifications accurately describing expected inputs
and outputs, as well as the functionality of each component. A good system-
level requirement for a transmission controller design could be “the car should
not shift from gear 2 to gear 1 and back to gear 2 within 0.8 seconds”. In
reality, industry requirements are rarely documented in a formal language, but
are instead given as informal and vague statements, often in natural language.
Occasionally, they are open-ended statements, such as “the idle engine speed
should be less than 3000rpm”, or assume common knowledge, making it difficult
to evaluate test results. Moreover, industrial applications are often saddled with
large amounts of undocumented legacy code and legacy models.

To address this problem, we proposed a general requirement mining frame-
work [4] that applies temporal logic and is designed for signals to guide counter-
example search and parameter synthesis. A counterexample-guided refinement
procedure mines requirements from a closed-loop model. In this framework, for-
malisms such as metric temporal logic (MTL) [5] and signal temporal logic
(STL) [6] can effectively capture both the real-valued and the time-varying be-
havior of hybrid control systems and express the requirements. Parametric signal
temporal logic (PSTL) [1], an extension of STL, is suited to express template re-
quirements to be mined. However, STL, MTL, and PSTL do not distinguish the
different contributions associated with each component constraint in a complex
requirement or consider the effect of the different units of various signals. Thus,
we propose new weighted temporal logics with better expressiveness: weighted
STL (WSTL) and parametric weighted STL (PWSTL).

2 Preliminaries

A signal is a function mapping the time domain T = R
≥0 to the reals R. Boolean

signals restrict their values to false (denoted ⊥) and true (denoted ⊤). Vectors
are elements of Rn, n > 1 (denoted in bold). A trace x is a multi-dimensional
signal, i.e., for t ∈ T, x(t) = (x1(t), · · · , xn(t)) ∈ R

n. A system S maps input
signals u(t) to output signals, x(t) = S(u(t)), simply written as x = S(u).

Signal temporal logic (STL) [6] represents specification predicates using in-
equalities µ of the form “f(x)∼πconst”, where f is a scalar-valued function over
signal x, ∼ is one of {<,≤,≥, >,=, 6=}, and πconst is a real value. STL extends
the LTL [7] temporal operators by indexing them with an interval of the form
(a, b), (a, b], [a, b), [a, b], (a,∞), or [a,∞), where a and b are nonnegative real
constants, with a ≤ b. If I is an interval, the syntax of an STL formula is:

ϕ := ⊤ | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2.

The “always” and “eventually” operators are special cases of the until operator:
GIϕ , ¬FI¬ϕ and FIϕ , ⊤UI ϕ. If interval I is omitted, the default interval
[0,∞) is implied. Formally, the semantics are given as follows:

(x,t) |=µ iff x satisfies µ at time t (2.1)

(x,t) |=¬ϕ iff (x, t) |=/ ϕ (2.2)

(x, t) |=ϕ1 ∧ ϕ2 iff (x, t) |=ϕ1 ∧ (x, t) |=ϕ2 (2.3)

(x,t) |=ϕ1 U[a,b] ϕ2 iff ∃t′∈ [t+a,t+b], (x,t′) |=ϕ2 ∧ ∀t′′∈ [t,t′], (x,t′′) |=ϕ1. (2.4)

Instead of a Boolean function, the quantitative semantics of STL uses a real-
valued function ρ of a trace x, a formula ϕ, and a time t, satisfying:

ρ(ϕ,x, t) ≥ 0 iff (x, t) |= ϕ. (2.5)

Quantitative semantics capture the notion of robustness of satisfaction of ϕ by
a trace x. If the absolute value of ρ(ϕ,x, t) is large, perturbations in x are less
likely to affect the Boolean satisfaction of ϕ.

Without loss of generality, an STL predicate µ can be identified with an
inequality of the form f(x) ≥ 0. From this form, a straightforward quantitative
semantics for predicate µ is defined as

ρ(µ,x, t) = f(x(t)). (2.6)

The semantics of ρ for every STL formula is defined inductively as follows [3]:

ρ(¬ϕ,x, t) = −ρ(ϕ,x) (2.7)

ρ(ϕ1 ∧ ϕ2,x, t) = min{ρ(ϕ1,x, t), ρ(ϕ2,x, t)} (2.8)

ρ(ϕ1UIϕ2,x, t) = supt′∈t+I

{

min
{

ρ(ϕ2,x, t
′), inft′′∈[t,t′) ρ(ϕ1,x, t

′′)
}}

. (2.9)

Applying (2.9), the semantics of the derived “always” and “eventually” operators
is ρ(GIϕ,x, t) = inft′∈t+I ρ(ϕ,x, t

′) and ρ(FIϕ,x, t) = supt′∈t+I ρ(ϕ,x, t
′).

Fig. 1. The close-loop Simulink model of an automatic transmission controller.

Parametric Signal Temporal Logic (PSTL) [1] extends STL with STL tem-
plate formulas having unknown symbolic Scale parameters π in the predicate
constraints, µ = f(x) ∼ π, or Time parameters τ in the interval of temporal op-
erators. Given a valuation function assigning a value to each symbolic parameter,
an STL formula is instantiated from a PSTL formula.

For example, Fig. 1 shows an automatic transmission controller model taking
in throttle position and brake torque and computing gear position, vehicle speed,
and RPM. To verify that, within the first 10 seconds, speed never exceeds 120
mph and RPM never exceeds 4500 rpm, the following STL formula can be used:

ϕ = G[0,10](speed ≤ 120 ∧ RPM ≤ 4500). (2.10)

The quantitative semantics of (2.10) from time 0, i.e., ρ(ϕ,x, 0), or simply
ρ(ϕ,x), is ρ(ϕ,x) = inft∈[0,10]{min{120 − speed(t), 4500 − RPM(t)}}. If the ex-
act values of the maximum speed or RPM are unknown, we can turn them into
symbolic parameters πspeed and πRPM , transforming (2.10) into a PSTL formula:

ϕ(πspeed , πrpm) = G[0,10](speed ≤ πspeed ∧ RPM ≤ πrpm). (2.11)

STL formula (2.10) is obtained by the valuation v = (πspeed 7→ 120, πrpm 7→
4500) applied to PSTL formula (2.11). If we want to know how long the system
remains in (speed ≤ 120) and (RPM ≤ 4500), we can use the PSTL formula
ϕ = G[0,τd](speed ≤ 120 ∧ RPM ≤ 4500), which uses the time parameter τd.

3 Weighted STL and parametric weighted STL

Consider now the example in (2.10), where speed ≤ 120 and RPM ≤ 4500 have the
same contribution, even though speed and RPM are measured in different units.
For example, speed = 150 has the same contribution to robustness value as
RPM = 4530, since both exceed their respective thresholds by 30 units. However,
a counterexample with a 30mph excessive speed is much more meaningful than
one 30rpm above the threshold. To better describe the desirable behavior of the

system, we then propose new weighted temporal logics: weighted STL (WSTL)
and parametric weighted STL (PWSTL).

Similar to STL, a WSTL formula is written using the following grammar:

ϕ := ⊤ | µ.ω | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2 ,

which associates a weight parameter ω with each predicate µ, to express the
interest or the importance of the predicate. Thus, the quantitative semantics of
WSTL is defined using a real-valued function ρw satisfying the property

ρw(ϕ.ω,x, t) ≥ 0 iff (x, t) |= ϕ.ω, (3.1)

where ω = (ω1, ω2, . . . , ωm), ωi ∈ R
>0, and m is the number of predicates in ϕ.

The quantitative semantics for each predicate µ with a weight parameter ω in
WSTL is defined as:

ρw(µ.ω,x, t) = ω · f(x(t)). (3.2)

Note that the semantics defined for WSTL still captures the robustness satisfac-
tion and does not change the temporal semantics of any operator. Thus, ρw can
be inductively defined using the same rules (2.7-2.9). Analogous to PSTL, we
equip WSTL with scale and time parameters to obtain PWSTL and the scalar
parameter π in predicates is in the form of µ.ω = ω · (f(x) ∼ π). STL and PSTL
are the special case for WSTL and PWSTL when all the elements of ω are one.

In the previous example, we could improve (2.10) by using the WSTL formula

ϕ.(ω1, ω2) = G[0,10]((speed ≤ 120).ω1 ∧ (RPM ≤ 4500).ω2). (3.3)

Further, we can change PSTL formula (2.11) into PWSTL formula

ϕ(πspeed , πrpm).(ω1, ω2) = G[0,10]((speed≤ πspeed).ω1 ∧ (RPM≤πrpm).ω2), (3.4)

and its qualitative semantics ρw(ϕ(πspeed , πrpm).(ω1, ω2),x, t) is defined as:

inf
t∈[0,10]

{min {ω1 · (πspeed − speed(t)), ω2 · (πrpm − RPM(t))}} .

An especially meaningful case would be ω1 = 1/πspeed and ω2 = 1/πrpm ,
which eliminates the impact of measuring signals in different units. Moreover,
if ω1/ω2 > πrpm/πspeed , we assign more weight to predicate speed ≤ πspeed ,
indicating that the scenario where speed is over the threshold is more critical.

We improve the general requirement mining framework [4] by using WSTL
and PWSTL as the underlying formalism instead of STL and PSTL. The frame-
work contains a falsification engine and a synthesis engine. The framework takes
in a Simulink model and a PWSTL formula, and synthesizes a candidate WSTL
formula from a random trace. The falsification engine searches the input domain
and tries to find a counterexample. Then, the synthesis engine takes in a set of
found counterexamples and searches the parameter domain for a tight valuation
function from the corresponding PWSTL formula. The valuation function gener-
ates the new candidate WSTL for the falsification engine. This counterexample-
guided refinement procedure repeats until the falsification engine fails to find
any counterexample. The final candidate WSTL will be the mined specification.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

ϕ(πspeed , πrpm) (2.11)

Time (second)

S
p
ee
d
(m

p
h
)

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

ϕ(πspeed , πrpm).(ω1, ω2) (3.4)

Time (second)

S
p
ee
d
(m

p
h
)

Fig. 2. The vehicle speed of the counterexamples collected during the mining procedure
for PSTL (2.11) and PWSTL (3.4).

We choose the tool Breach [2] for both engines in our framework. Fig. 2
demonstrates the benefit of using WSTL and PWSTL. We use ω1 = 50 and
ω2 = 0.01 to give more weight to vehicle speed. The mined requirement is
ϕ.(50, 0.01) = G[0,10]((speed ≤ 120).50 ∧ (RPM ≤ 4773).0.01). We observe that
our choice of weights causes the falsification engine to find counterexamples
where speed is higher than RPM. In this example, speed and RPM values are
correlated, so the use of weights reduces the runtime for the entire mining pro-
cedure only by about 20 seconds. For weakly-related constraints, especially for
the non-convex problems, the previous solution [4] by using priority might cause
the mining to linger at the alternating local pole, while overlooking the possible
global optimizations. Thus, weights can help accelerate mining convergence and
provide more useful information about the system’s behavior when debugging.
In the future, we plan to provide a better evaluation of this framework.

References

1. E. Asarin, A. Donzé, O. Maler, and D. Nickovic. Parametric identification of tem-
poral properties. In RV, pages 147–160, 2011.

2. A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In CAV, pages 167–170, 2010.

3. A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-valued
signals. In FORMATS, pages 92–106, 2010.

4. X. Jin, A. Donzé, J. Deshmukh, and S. Seshia. Mining requirements from closed-
loop control models. In Processings of HSCC 2013: International Conference on
Hybrid Systems: Computation and Control (to be appear). ACM, 2013.

5. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Syst., 2(4):255–299, 1990.

6. O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals.
In FORMATS/FTRTFT, pages 152–166, 2004.

7. A. Pnueli. The temporal logic of programs. In Proc. 18th Annual Symposium on
Foundations of Computer Science (FOCS), pages 46–57, 1977.

