
Efficient Guiding Strategies for Testing of
Temporal Properties of Hybrid Systems

Tommaso Dreossi1, Thao Dang1, Alexandre Donzé2,
James Kapinski3, Xiaoqing Jin3, and Jyotirmoy V. Deshmukh3

1 Verimag {tommaso.dreossi, thao.dang}@imag.fr
2 University of California, Berkeley donze@berkeley.edu

3 Toyota Technical Center firstname.lastname@tema.toyota.com

Abstract. Techniques for testing cyberphysical systems (CPS) currently
use a combination of automatic directed test generation and random
testing to find undesirable behaviors. Existing techniques can fail to ef-
ficiently identify bugs because they do not adequately explore the space
of system behaviors. In this paper, we present an approach that uses the
rapidly exploring random trees (RRT) technique to explore the state-
space of a CPS. Given a Signal Temporal Logic (STL) requirement, the
RRT algorithm uses two quantities to guide the search: The first is a
robustness metric that quantifies the degree of satisfaction of the STL
requirement by simulation traces. The second is a metric for measuring
coverage for a dense state-space, known as the star discrepancy measure.
We show that our approach scales to industrial-scale CPSs by demon-
strating its efficacy on an automotive powertrain control system.

1 Introduction

Model-Based Development (MBD) for cyberphysical systems (CPS) is a paradigm
based on an end-to-end use of high-level executable models of physical systems
interacting with software. These models facilitate a wide array of design and
analysis techniques such as accurate simulation, control design, test generation,
and code generation. This allows validating the behavior of the CPS early in
development cycles, which not only enhances product reliability but also brings
significant cost savings.

Techniques for testing CPSs typically employ a combination of automatic
directed test generation and random testing [23, 20] to detect undesirable be-
haviors. The prevalent practice is to use coverage metrics such as Modified-
Condition Decision Coverage (MCDC) inspired from software testing [23]. Such
metrics help quantify the degree to which the models of software components
of the CPS (typically embedded/control software) have been tested. Models of
CPS, however, often contain physics-based models (also called plant models)
tightly coupled with the models of embedded software. In contrast to models of
control software (that are akin to standard computer programs), plant models
typically represent behaviors that evolve over continuous time and state-space.
Existing code-coverage metrics are thus not applicable when reasoning about
the “coverage” of the possibly infinite state-space of a CPS. Furthermore, the
idea of using temporal logic to specify behavioral specifications of CPSs has

been gaining traction [11, 16, 24]. Existing directed testing tools are inadequate
as they typically try to generate test inputs to satisfy code-coverage criteria or
inputs to violate static assertions in the model [23, 20].

In this paper, we propose a testing-based approach that hopes to fill these
two lacunae. It builds on two recent results: the first is a hybrid systems test
generation technique that is based on the rapidly exploring random trees (RRT)
algorithm and guided by the star-discrepancy coverage measure [5]. The other
is a technique for robust monitoring of properties expressed in Signal Temporal
Logic (STL) [7, 8]. The combination of coverage and robustness analysis allows
increasing the effectiveness of generated test suites in terms of error detection.

Another goal of this work is to create a tool that supports industrial CPS
models by considering modeling environments that are prevalent in industry,
such as Simulink R©. Simulink has become a de facto standard in the automotive
engine controls domain. It is used as an MBD platform to perform system mod-
eling, simulation, and automatic code generation. Tools that can identify design-
bugs in Simulink models offer a significant benefit over testing-based techniques,
as the cost of addressing problems during the later stages of development is
significantly greater than at the modeling stage.

Our contribution can be summarized as follows. Given a user-provided tem-
poral logic specification ϕ, our technique can automatically identify examples of
system behaviors that falsify ϕ. Our method uses an RRT algorithm, guided by
a combination of two metrics: a metric quantifying state-space coverage and a
metric quantifying the robust satisfaction degree of the given specification. We
provide experimental results that compare the performance of our implementa-
tion with the falsification tool S-TaLiRo.

Related Work Our technique brings together two lines of work. The first is
the development of efficient sampling-based exploration algorithms. The use of
Rapidly-exploring Random Trees (RRT) has been popularized in the context of
path planning in robotics [17, 13] and applied and extended later for falsification
of safety properties, using the observation that the latter reduces to finding a
path from an initial state to some unsafe state [14, 4, 22].

The second line of work is falsifying temporal specifications on CPS mod-
els. This is a very active area of research, and tools based on search guided by
stochastic and nonlinear optimization (as implemented in the tools S-TaLiRo [1]
and Breach [6]) have been already applied in an industrial context to Simulink
models [11, 9]. There are two key differences between falsification tools and our
approach. First, S-TaLiRo and Breach essentially assume a parameterized rep-
resentation of input signals, and at the beginning of a simulation run, fix a
valuation for the parameters.

By contrast, our RRT-based algorithm allows the flexibility to change input
values based on robustness values of a partial system trajectory; in Section 5,
we demonstrate how this flexibility leads to superior falsification performance
compared to S-TaLiRo for some examples. The second difference is that falsi-
fication tools typically do not measure the coverage of the hybrid state-space
by the set of test inputs explored, while our approach uses the star-discrepancy
based coverage metric to quantify coverage.

The dual of falsification, the problem of control with temporal logic specifi-
cations, has been considered recently [15, 12]. The work in [3] is similar to our
work, in that RRT algorithms are considered to derive control inputs enforcing
temporal logics goals. However, most of the work in this area assumes either
simpler (linear) dynamical models, or simpler specification formalisms such as
LTL. To the best of our knowledge, our work is the first to consider the problem
of STL falsification based on a modified RRT algorithm.

2 Preliminaries

2.1 Dynamical System Model

We assume that a system modelM is specified as a gray-box, that is, we assume
we know qualitative information about M (e.g., the number of state variables)
but we do not know detailed information (e.g., the closed-form analytic represen-
tation of system dynamics). We assume that the underlying system described by
the gray-box is a continuous-time hybrid system. We also assume that the system
is provided with a simulator that takes as input discrete-time input sequences,
and returns discrete-time output sequences.

The system modelM is defined as a tuple (X ,U , sim), where X is a finite or
infinite set of states, U is a finite or infinite set of input values. Let x denote a
function that maps a given time point t over a given time domain to the state
x(t) ofM at time t; we also call x as the state variable. Let u denote a function
mapping a given time point t to the input value u(t) ∈ U ; we also call this
function an input signal. The function sim maps a state and an input at a given
time tk, i.e., x(tk) and u(tk), and a rational time-step hk > 0, to a new state
at time tk+1 = tk + hk. In other words, M can be viewed as a nonautonomous
discrete-time dynamical system, with the update function given by sim:

x(tk+1) = sim(x(tk),u(tk), hk) (1)

In general, X can be a product of n different domains (such as the Boolean
{true, false} domain, Z, R, etc.). We say that the state dimension of M is
n. Similarly, U can be a product of m different input domains, and the input
dimension is called m.

A simulation trace of the model M is defined as a sequence of times and
pairs of state and input values:

(t0,x(t0),u(t0)) , (t1,x(t1),u(t1)) , . . . , (tN ,x(tN),u(tN))

where ∀i : x(ti+1) = sim(x(ti),u(ti), hi), and ti+1 = ti + hi.
We stress that we do not require the function sim to be known in an analytic

or symbolic form, but assume that there is a simulator that returns the states
computed by sim. Formally, a simulator is a program that, given an initial time
t0, an initial state value x(t0), a sequence of non-zero time-steps h0, . . . , hN , and
a sequence of input values u(t0), . . . ,u(tN) is able to compute the corresponding
simulation trace of M.

In the case of Simulink models, the simulator can be provided with a fixed
time step hi. Simulation traces are computed by performing numerical integra-
tion of the differential (or difference) algebraic equations corresponding to the
continuous or hybrid dynamical systems that the models describe.

Simulator assumptions We assume that the inputs ofM are controllable by the
user and the full state of M is observable. We also assume that it is possible
to reset any stateful element of the model to a permissible value in X . These
assumptions are meaningful in the context of model-based testing as they allow a
user or a test program to start a simulation trace from an arbitrary initial state.
Note that, in theory, our technique could be applied to a testing scenario, where
the result of sim is provided by performing a particular test case. While our
assumptions are plausible for this case, they would be quite difficult to enforce,
as observing and resetting the state of the system is often difficult or impossible
in a testing scenario.

2.2 Signal Temporal Logic

We require a formal language to specify how a model M is expected to behave
and employ Signal Temporal Logic (STL) for this purpose. STL was proposed
in [19] as a specification language for properties of signals (i.e., functions from a
time domain to some domain of values). In the following we present the syntax
and semantics of STL for a continuous time domain (R+

0). In practice, STL
semantics have to be adapted to discrete time signals (such as the simulation
traces of a system M) on a dense time domain by use of linear interpolation
(i.e., for t between tk, tk+1, we define x(t) by linear interpolation between x(tk)
and x(tk+1)).

An STL formula is formed of atomic predicates connected with Boolean and
temporal operators. Atomic predicates can be reduced to inequalities of the form
µ = f(x) ∼ 0, where f is a scalar-valued function over the signal x, ∼∈ {<,≤
,≥, >,=, 6=}. Temporal operators are “always” (denoted as �), “eventually”
(denoted as ♦) and “until” (denoted as U). Each temporal operator is indexed
by intervals of the form (a, b), (a, b], [a, b), [a, b], (a,∞) or [a,∞) where each of
a, b is a non-negative real-valued constant, and a < b. If I is an interval, then an
STL formula is written using the following grammar:

ϕ := > | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

The always and eventually operators are defined as follows: �Iϕ , ¬♦I¬ϕ,
♦Iϕ , >UI ϕ. When the interval I is omitted, we use the default interval of
[0,+∞). The semantics of STL formulas are defined informally as follows. The
signal x satisfies f(x) > 0 at time t (where t ≥ 0) if f(x(t)) > 0. It satisfies
ϕ = �[0,2) (x− 1 > 0) if for all time 0 ≤ t < 2, x(t) − 1 > 0. The signal x1
satisfies ϕ = ♦[1,2) x1 + 0.5 > 0 iff there exists time t such that 1 ≤ t < 2 and
x1(t) > −0.5. The two-dimensional signal x = (x1, x2) satisfies the formula ϕ
= (x1 > 0) U[2.3,4.5] (x2 < 0) iff there is some time t where 2.3 ≤ t ≤ 4.5 and
x2(t) < 0, and ∀t′ in [2.3, t), x1(t′) is greater than 0. The complete semantics is
given in the appendix.

Quantitative semantics We define a quantitative semantics of STL as a function
ρ such that the sign of ρ(ϕ,x, t) determines whether (x, t) satisfies ϕ and its
absolute value estimates the robustness of this satisfaction. A common way of
defining such functions, as presented in [7], is as follows. For a predicate µ =

x > 2, one can simply use the value x(t) − 2 as a robustness estimate. For the
conjunction of two formulas ϕ = ϕ1 ∧ϕ2, with robustness ρ1 and ρ2, we can use
ρ = min(ρ1, ρ2). For ♦[0,2] (x− 1 > 0), the robustness at time 0 can be estimated
by the maximum for t ∈ [0, 2] of x(t)− 1. The inductive formal definition of ρ is
given in the appendix.

3 Coverage-Based Testing

The original RRT algorithm is a technique for quickly exploring the state space
for systems with differential constraints [18]. In this section, we recall the gRRT
version of RRT, which is a testing approach used to maximize state space cover-
age [5]. The gRRT algorithm stores the visited states in a tree, the root of which
corresponds to the initial state. The construction of the tree is summarized in
Algorithm 1.

We will now present how the algorithm is applied to a Simulink model. The
procedure takes as input a Simulink model M, an initial state value xinit ∈ X ,
and an iteration limit kmax . The function sample samples a goal-state xgoal from
X . The goal-state is intended to indicate the direction towards which the tree
is expected to evolve. Then, a starting state xnear is determined as a neighbor
of xgoal using some predefined distance. The point xnear is expanded towards
xgoal as follows:
– The function findInput is used to select a sample from the input set u ∈ U .

This can be performed by randomly selecting a point in U .
– The initial condition forM is set to xnear , and a simulation is performed for
h seconds using the input u. A new edge from xnear to xnew , labeled with
the associated input u, is then added to the tree.
Unlike the original RRT algorithm, the goal state sampling in the gRRT

algorithm is not uniform, and the function sample is used to guide the exploration
to improve the star-discrepancy coverage, which we define below.

3.1 Star-Discrepancy Coverage

The star discrepancy is a notion in equidistribution theory (see for example [2])
that has been used in quasi-Monte Carlo techniques for error estimation. Let P
be a set of k points inside B = [l1, L1]× . . .× [ln, Ln] ⊂ Rn. Let p = (β0, . . . , βn)
be a point inside B, this point together with the bottom left vertex of B forms a
subbox J = [l1, β1]× . . .× [ln, βn]. The local discrepancy of the point set P with
respect to the sub-box J is:

D(P, J) =
∣∣∣A(P, J)

k
− vol(J)

vol(B)

∣∣∣ (2)

where A(P, J) is the number of points of P that are inside J , and vol(J) is
the volume of the box J . We use J to denote the set of all subboxes J such that
li ≤ βi ≤ Li for each i ∈ 1, . . . , n. The star discrepancy of a point set P with
respect to the box B is defined as:

D∗(P,B) = sup
J∈J

D(P, J). (3)

Algorithm 1 The gRRT Algorithm

1: function gRRT(M,xinit ,kmax ,h)
2: k ← 0; T .init(xinit)
3: repeat
4: xgoal ← T .sample()
5: xnear ← T .neighbor(xgoal)
6: u ← T .findInput(xnear ,xgoal)
7: xnew ← sim(xnear ,u, h)
8: T .addState(xnew ,u)
9: k ← k + 1

10: until k ≥ kmax

11: end function

Algorithm 2 The Rrt-Rex Algorithm

1: function Rrt-Rex(M,xinit ,ϕ,kmax , h)
2: k ← 0; T .init(xinit)
3: repeat
4: xgoal ← T .sample()
5: xnear ← T .neighbor(xgoal)
6: u ← T .findInput(xnear ,xgoal)
7: xnew ← sim(M, xnear , u, h)
8: traj ← T .getTrajectory(xnew)
9: v ← ρest(traj , ϕ)

10: T .addState(xnew ,u,v)
11: k ← k + 1
12: until (v < 0) or (k ≥ kmax)
13: end function

The star discrepancy of a point set P with respect to a box B satisfies 0 <
D∗(P,B) ≤ 1. We define the coverage of P as γ(P,B) = 1−D∗(P,B). Intuitively,
the star discrepancy is a measure for the irregularity of a set of points. A large
value D∗(P,B) means that the points in P are not distributed well over B.

We use the star discrepancy to evaluate the coverage of a set of states. Since
there is no efficient way to compute the star discrepancy, we approximate it with
an upper and lower bound. The estimation is based on a finite box partition, C,
of the box B (see [5] for more detail). Below, we describe how this information is
used to guide the exploration of the system behaviors to the elements of C that
are not as well explored as other elements.

4 Combining Coverage and Robustness

In this section we show how to combine the robustness and coverage information
to guide the test generation process. To guide the exploration towards the states
violating the property, robustness information can be used to select a starting
state with a low robustness value; however, this objective can result in poor
performance, as the initial robustness values can lead the exploration to some
local positive minima. The star discrepancy coverage information can be used to
ameliorate this problem by steering the algorithm to other parts of the feasible
space. Intuitively, the algorithm uses the robustness to bias towards critical
behaviors and the coverage to explore freely in the search space.

Note that while the coverage is defined for a set of states, robustness is
defined for a trace. Each state in the RRT tree stems from a unique trace from
the initial state (at the root of the tree). This trace may be incomplete, that is,
the trace is not long enough to determine the true robustness value; however,
a “predictive” value can be estimated and used for the purpose of guiding the
search. The estimation will be discussed in Section 4.2. When a trace is complete,
the robustness value indicates whether it satisfies the STL property in question.

We now describe the sampling method used in the function sample. The
search space is partitioned into a set C of rectangular regions called cells. Each cell

c is associated with a local star discrepancy value, denoted by D(c), determined
by the geometric distribution of the current set of states with respect to the cell
(see the definition (2)). When a new state is added, the estimates for the affected
cells are updated.

4.1 Guiding Strategies

Using the above information, the main steps of the goal state sampling process
are as follows:

– Step 1: a goal cell cgoal ∈ C is selected, based on the coverage estimate;
– Step 2: a goal state xgoal is randomly selected from inside the chosen cell
cgoal.

The goal cell selection in Step 1 is performed by defining a probability distri-
bution for the cells in the partition. We create a discrete probability distribution
by assigning a probability value to each c based on the estimated star discrep-
ancy. Let C be the current set of cells. For each cell we define a weight:

w(c) = s(ρ(c))

where s(ρ(c)) = 1
1+e−ρ(c)

is the sigmoid function. A goal cell is then sampled

according to the following probability distribution:

Prob[cgoal = c] =
w(c)∑
c∈C w(c)

.

The computation of the neighbor is biased by the robustness. Indeed, we
can choose m nearest neighbors of the xgoal and then pick the one with the
lowest robustness estimate. So the robustness plays a role in the selection of the
neighbor which determines the initial state for the next iteration.

4.2 Defining Branch Robustness

The syntax and semantics of STL introduced in Section 2.2 are defined for traces
with a possibly unbounded time horizon. In practice, one usually assumes that
simulation time is long enough to estimate the satisfaction of a property. How-
ever, this assumption cannot be made in our case since we construct a tree of
incomplete trajectories and estimate the satisfaction of a property for each node
of the tree corresponding to incomplete trajectories. In this section, we introduce
an interval quantitative semantics which is well-defined even for partial traces.

Consider the simple property ϕ ≡ �[10,20](x > 1) and assume that we simu-
lated the system until some time Tsim. There can be three situations: Tsim < 10,
10 ≤ Tsim < 20 or 20 ≤ Tsim. In the first case, the trace does not contain
any information relevant to the property, hence its satisfaction cannot be de-
termined in any way. In the last case, the trace contains all the information
needed for computing the Boolean and quantitative satisfaction. In the mid-
dle case, we cannot know what happens between Tsim and 20s, but the values

of x between 10s and Tsim provide some information. For instance, we have
ρ(ϕ, x, t) = mint∈[10,20](x(t)− 1) ≤ mint∈[10,Tsim](x(t)− 1), hence the minimum
of x(t) − 1 in [10, Tsim] is an upper bound of ρ(ϕ, x, t). If this upper bound is
negative, we know that the property is falsified, even though we do not know the
actual robust satisfaction value. Similarly, if ϕ ≡ ♦[10,20](x > 1), then we can
easily deduce that the maximum of x(t) − 1 over [10, Tsim] is a lower bound of
ρ(ϕ, x, t). If it is positive, we know already that no matter what happens between
Tsim and 20, the property will be satisfied. The computation of upper and lower
bounds for ρ can be done automatically by induction on formulas. Let x be a
signal defined on R+, x|Tsim

its restriction to [0, Tsim] for some Tsim > 0 and ϕ
an STL formula.

Formally, we define the function ρ̄ for x|Tsim
and an arbitrary STL formula

as:

ρ̄(µ,x|Tsim
, t) = f(x(t)) if t ≤ Tsim, +∞ otherwise. (4)

ρ̄(¬ϕ,x|Tsim
, t) = −ρ(ϕ,x|Tsim

, t) (5)

ρ̄(ϕ1 ∧ ϕ2,x|Tsim
, t) = min(ρ̄(ϕ1,x|Tsim

, t), ρ̄(ϕ2,x|Tsim
, t)) (6)

ρ̄(ϕ1U[a,b]ϕ2,x|Tsim
, t) =

sup
t′∈[t+a,t+b]

(
min(ρ̄(ϕ2,x|Tsim

, t′), inf
t′′∈[t,t′)

ρ̄(ϕ1,x|Tsim
, t′′)

)
. (7)

Then ρ satisfies the same self inductive rules except that +∞ is replaced by
−∞ in (4) and ρ̄ and ρ are switched in (5). The following lemma is true by
construction:

Lemma 1. Define the time horizon T (ϕ) of ϕ inductively by T (µ) = 0, T (¬ϕ) =
T (ϕ), T (ϕ1, ϕ2) = max(T (ϕ1), T (ϕ2)) and T (ϕ1U[a,b]ϕ2) = max(T (ϕ1), T (ϕ2))+
b. Then

Tsim > 0⇒ ρ̄(ϕ,x|Tsim
, 0) ≥ ρ(ϕ,x, 0) ≥ ρ(ϕ,x|Tsim

, 0) (8)

Tsim ≥ T (ϕ)⇒ ρ̄(ϕ,x|Tsim
, 0) = ρ(ϕ,x|Tsim

, 0) = ρ(ϕ,x, 0) (9)

From (8), it follows that if ρ̄ is negative for x|Tsim
, we can conclude that x

falsifies ϕ. Similarly, a non-negative ρ for x|Tsim
means that x satisfies ϕ, which

means we can stop expanding the tree from x|Tsim
. From (9), it follows that if

a trace issued from a node in the exploration tree is longer than T (ϕ), its satis-
faction status is fully determined. If it falsifies ϕ, then we are done, otherwise,
the branch issued from this node does not need to be explored any further.

In practice, it is often the case that ρ̄ and/or ρ do not provide any useful
information (e.g., if they are equal to +∞ or −∞). For guiding purposes, we
use an intermediate estimate obtained by computing ρ on the unbounded signal
defined by constant extrapolation of the last value. Since such extrapolation does
not provide any guarantee on the Boolean satisfaction of ϕ, we use ρ only for
guiding, ρ̄ to determine falsification and ρ to determine definite satisfaction.

4.3 Algorithm for Testing a Simulink Model against an STL formula

We describe an implementation of our approach called Rrt-Rex (RRT Robustness-
guided EXplorer), which uses Simulink as a simulation engine. The pseudocode
in Algorithm 2 summarizes the new algorithm. The algorithm receives as input
a Simulink modelM, an STL formula ϕ, and the maximum number of iterations
kmax ∈ N. The algorithm iterates until a negative robustness estimate is found,
i.e., a trace that does not satisfy the property is discovered, or the maximum
number of iterations is reached. In this algorithm we use a fixed time step h for
simplicity of presentation but it is possible to use a variable time step for more
accurate simulation performance.

In Rrt-Rex, as the sim function, we use the numerical differential equation
solvers within Simulink to produce an updated state xnew . This is performed
by first resetting the solver state to xnear and then setting the input to u; the
solver then provides a solution over h seconds. For the Simulink tool, this is
computationally costly, due to a time-consuming model-compilation step that
is performed before each simulation is computed. This is an inefficiency in the
solver implementation, but it does not reflect a fundamental drawback of our
technique.

Our implementation of the function neighbor uses the Approximate Nearest
Neighbors (ANN) library [21]. The ANN library can quickly identify members
of the elements of T in close proximity to a given point xnear . Also, we use a
part of HTG (Hybrid Test Generation Tool [5]) to build and maintain the T
structure, as well as to implement the function sample. The Breach [6] tool is
used to implement the ρest function. The function addState primarily adds a new
point to the RRT T ; it additionally updates the partitions in the tree with the
star- discrepancy information as well as the robustness estimate. These quantities
are then subsequently used as part of the functions sample and neighbor. All of
the T -related functions use the implied partition C. We note that this partition
can be dynamically refined for more accurate star discrepancy estimation, faster
neighbor computation, and better cell robustness estimation.

5 Case Studies

This section discusses case studies of the application of our technique. We con-
sider four case studies: an academic model of a system that measures how much
longer a signal remains positive than it remains negative, a mode-selection exam-
ple that uses a number of Boolean connectives to determine an operating regime
and accordingly sets a reference value, an abstract model for the closed-loop
fuel-control in an internal combustion gasoline engine, and a closed-loop model
of the airpath in a diesel engine.

For each model, we try to falsify a given STL requirement and compare the
performance of Rrt-Rex with a state-of-the-art falsification tool: S-TaLiRo.
S-TaLiRo uses robust satisfaction values of an MTL requirement computed on
complete simulation traces in iteration i to guide the choice of inputs and initial
conditions of the model in iteration i+1. This guidance is provided by stochastic
optimization algorithms such as simulated annealing, cross-entropy, and ant-
colony optimization. Recall that S-TaLiRo chooses a fixed parameterization of

ẋ1 = 0
ẋ2 = sign(x1)
τ̇ = 1
y = x2

τ ≥ ∆/
τ := 0
x1:= u

Fig. 1: Sampled polarity integrator system

the input signal-space and at the beginning of each simulation picks a set of
valuations for the parameters to define the concrete input signals.

The results of the study are summarized in Table 1. Note that for each item
in the table, an average over 10 cases is reported. For the Falsified columns
(denoted Fals.), all of the 10 cases for each item were either falsified or not,
except for the footnoted item.

5.1 Sampled polarity integrator system (SPI)

A sampled polarity integrator is an academic model that highlights the advan-
tages of using intermediate robustness values as a search heuristic for guiding
the RRT search. As shown in Fig. 1, every ∆ seconds, the system samples the
input u(t), and stores the value in state x1. We assume that u is a signal that
ranges over [−v, v] for some real number v. The state x2 evolves with rate −1 if
x1(t) < 0, and +1 if x1(t) > 0. Finally, the output of the system (denoted y) is
the state x2. We pick ∆ = 1 for our experiment, and initial conditions x1(0) = 0,
x2(0) = 0, τ(0) = 0.

We introduce the following artificial safety requirement, where n, k are fixed
positive integers, k ∈ [−v, v], and n > k: �[0,n∆](y < k). We assume the following
fixed parameterization of the input signals: u(t) = ui if (i − 1)∆ ≤ t < i∆ for
1 < i ≤ n, and ui ∈ [−v, v]. Each ui is called a control point. We observe
that in order to falsify the requirement, the required input u would have to be
positive at greater than dn+k2 e control points. For a tool based on Markov-chain

Monte-Carlo based random testing techniques, the probability of at least dn+k2 e
of n uniform-randomly chosen numbers in the interval [−v, v] being positive is
tiny (when k is comparable4 to n). For example, for k = 30, and n = 50, the
probability is about 10−5.

One of the Rrt-Rex heuristics is to pick multiple goal points and select one
based on lower branch robustness. The next step is then to perform a local opti-
mization in order to choose an input that drives the RRT towards the goal point.
In this variant, in each step, the probability that Rrt-Rex selects a positive in-
put effectively exceeds that in the previous step (starting with a probability of
0.5 in the first step). Thus, as a result of the robustness-guided goal-point selec-
tion and local optimization, the probability that Rrt-Rex discovers a sequence
containing greater than n+k

2 positive values is much better than that for MCMC
techniques. This is reflected in the experimental results shown in Table 1. For the

4 One could use the (conservative) Chernoff bounds on the sum of binomial coefficients,

which yields the following bound on probability: exp
(

−k2

2n

)
.

results in the table, we use a time step of h = 1.0 seconds for the Rrt-Rex al-
gorithm over each of the various time horizons (50,200,500). For the associated
S-TaLiRo tests, the time horizon is equivalent to the dimension of the search
space explored by the falsification engine.

5.2 Mode-specific Reference Selection Model (MRS)

Next, we consider a model that selects an operating regime based on the input
signals, and then sets a reference value based on the operating regime. We present
a simplified version of the mode-selection logic occuring in an actual model for
proprietary reasons. The simplified model takes as input 9 signals u1, . . . , u9,
where the range for each input in u1, . . . , u8, is [0, 100], and the range for u9 is
[−5, 5]. The model has three outputs, and we consider it a violation if any one
of the outputs is less than a specified bound for that output. Thus, we consider
three requirements of the form:

�[τ,Thoz](yi > −ρi). (10)

In the above, we assume τ = 5 seconds, Th = 10 seconds, and ρ1 = 8,
ρ2 = 100 and ρ3 = 20. Analyzing the structure of the models, we observe that for
each requirement, selection of the mode corresponding to the following condition
leads to the failing case:∧

i∈[1..4]

((u2i(t) > 90) ∧ (u2i−1(t) < 10)) . (11)

We thus know that is is possible to falsify each of the requirements by set-
ting the appropriate input values, so as to enable the particular failing mode.
However, such a configuration is difficult to find since the probability of finding
a time t at which (11) is true is 10−8 (8 inputs, and for each input there is a
probability of 1

10 for choosing the right value for that input).
We select a time step of h = 2.5 seconds for the Rrt-Rex algorithm over the

10 second time horizon. For the associated S-TaLiRo tests, this corresponds to
4 decision variables per each of the 9 inputs (i.e., a 36 dimension search space).
As expected, neither Rrt-Rex nor S-TaLiRo were able to falsify any of the
requirements with their default configurations.

5.3 Fuel Control System (AFC)

Next we consider a closed-loop model of an automotive powertrain control (PTC)
subsystem. The system consists of two separate parts: (1) a plant model that
describes some key physical processes in an internal combustion engine, and (2)
a controller model that represents the embedded software used to regulate the
ratio of air-to-fuel (A/F) within the engine. A detailed description of this model
can be found in [10], section 3.1.; here, we only focus on features relevant to
this case study. The model has 7 continuous state variables (5 for the plant,

RRT S-TaLiRo
Model Spec. Fals. Time (sec) Iter. Fals. Time Iter.×Run

�[0,50](y < 20) yes 60.81 199.10 yes 104.95 1176.60
SPI �[0,200](y < 50) yes 432.07 558.00 no 1103.46 2000×10

�[0,500](y < 150) yes 2251.01 2014.30 no 9771.45 5000×10

�[5,10](yi > −8) no 401.70 5000 no 813.36 1000×10
MRS �[5,10](yi > −100) no 372.71 5000 no 997.80 1000×10

�[5,10](yi > −20) no 379.73 5000 no 905.93 1000×10

�[5,50](|λ| ≤ 0.05) yes 1162,13 185.33 no 5737.43 5000×10
AFC �[5,50](|λ| ≤ 0.02) yes 1658.48 290.67 no 6755.09 5000×10

♦[50,50](λrms ≤ 0.05) no 6359.22 1000 yes 928.97 10.00

�[1.1,50](x < 2) yes 14.23 2.3 yes 35.01 1
DAP �[1.1,50](x < 4) yes 155.55 15.3 yes 46.30 1.4

�[1.1,50](x < 6) yes/no5 416.38 40.0 yes 204.36 7.6

Table 1: Results of comparison between RRT approach and S-TaLiRo tool6.

and 2 for the controller), a delay function7, 4 discrete modes of operation in the
controller, and two exogenous inputs. In this case study we focus on: (1) the plant
state λ denoting the measured, normalized A/F ratio, (2) a fixed engine speed
ω ∈ [900, 1100], which is treated as a parameter, and (3) the exogenous user input
θ representing the throttle angle command. We assume that θ(ti) ∈ [0, 61.2], and
is permitted to change value at a rate of h = 1.0 seconds.

We provide three requirements for the closed-loop model. The first two are
specified in (12). Here, ϕ1 specifies the bounds on the worst-case overshoot or
undershoot on λ, while ϕ2 characterizes the settling time on λ (time it requires
λ to return to a small neighborhood of the reference value λref after a pertur-
bation). In (13), we introduce the signal λrms to help measure the RMS error
between λ and λref . In the definition of λrms, we exclude model behaviors for an
initial τI seconds of time in order to discard transients in the startup mode and
transients arising from a mode switch to the normal mode of operation. Note
that u(t) denotes the Heaviside step function. The third requirement (shown in
(14)) specifies the bounds on the RMS error incurred in the A/F ratio state in
the normal model of operation.

7 A continuous-time delay is a function described by the input/output relation
y(t) = u(t − ∆) for some ∆ ∈ R≥0. Systems with delays pose a significant chal-
lenge to techniques such as Rrt-Rex, as they correspond to systems with infinite
state variables. We assume that we can simulate such systems, but do not assume
that we can measure the states associated with the delays.

ϕ1 ≡ �[0,Th](|λ| ≤ 0.05) ϕ2 ≡ �[τ,Th](|λ| ≤ 0.02) (12)

λrms(t) =

√
1

t− τI

∫ t

0

(λ(τ)− λref)2 · u(t− τI)dτ (13)

ϕ3 ≡ ♦[Th,Th](λrms ≤ 0.05) (14)

In the above formulas, we select parameter values τ = 11 seconds and Th = 50
seconds, and we use a time step of h = 1.0 seconds for the Rrt-Rex algorithm. In
this study Rrt-Rex and S-TaLiRo present mixed results (see Table 1). Rrt-Rex
was able to falsify both the specifications 1) and 2) but not 3); however, S-TaLiRo
was not able to falsify the properties 1) nor 2), but found a counterexample for
the specification 3). The results support the theory that constructing input traces
incrementally, as is the case for Rrt-Rex, can offer performance benefits over
other approaches for some cases; however, such incremental approach may be a
drawback in some instances. For instance, specification 3) imposes a constraint
on a precise time instant rather then on a time interval. This does not provide
Rrt-Rex with incremental quantitative information that will lead to the failing
trace, which makes it difficult for Rrt-Rex to identify a falsifying instance.

5.4 Diesel Air-Path Model (DAP)

In this section, we consider an industrial closed-loop Simulink model of a pro-
totype airpath controller for a diesel engine. The model contains more than
3, 000 blocks. It has a detailed plant model and a controller with more than 20
lookup tables and function blocks containing customized Matlab functions and
legacy code. Moreover, more than half of these lookup tables are high dimen-
sional (greater than one dimension). One of the challenges is, due to the high
model complexity, obtaining simulation traces for this model is computationally
expensive.

For this case study, we choose a safety property specifying upper bounds
on the overshoot of a particular signal. This is represented by the following
STL formula: �[1.1,50](x < c). We select a time step of h = 5.0 seconds, and
compare the results of running Rrt-Rex and S-TaLiRo on this model, using
three different values for c (2, 4, and 6). These values for c are not realistic, in
the sense that the actual worst-case bounds on the system behavior are much
larger. We select these smaller bounds due to the significant computational costs
required to find falsifying traces using either Rrt-Rex or S-TaLiRo. The c values
we select are adequate to study the performance of the Rrt-Rex approach versus
S-TaLiRo as a function of the relative difficulty of the falsification task.

Table 1 indicates the results of the experiments. For the c = 2 case, Rrt-Rex
is able to identify falsifying traces early in the simulation runs, and so explores
simulation runs that are significantly shorter in length than the 50 second time
horizon. By contrast, S-TaLiRo has to complete at least one simulation trace
over the 50 second time horizon to determine that a trace falsifies the property.
Since this requirement is easily falsified, Rrt-Rex is able to identify falsifying

traces by exploring a small number of short simulation traces. The result is that
Rrt-Rex performs better than S-TaLiRo for this case.

For the c = 4 and c = 6 cases, S-TaLiRo performs better than Rrt-Rex.
The reason for this is that the requirements are such that the robustness values
are sufficient to guide the global optimizer within S-TaLiRo directly to falsifying
traces. This is in contrast to the Rrt-Rex approach, which introduces a signif-
icant amount of randomness into the search. This additional randomness incurs
computational costs (due to the increased number of required simulations) that
are larger than those incurred by S-TaLiRo.

6 Conclusions

In this paper we proposed a testing-based technique to find bugs in CPS systems.
Given a specification expressed in terms of an STL formula, the search for an
input sequence that causes the system to exhibit behaviors that violate the
formula (falsifying behaviors) is guided using a combination of two criterion:
the coverage of the system state space and the satisfaction robustness value of
the specification. The coverage indicates “how well” we are exploring the state
space of the system, while the robustness reflects “how much” the specification
is satisfied, giving us the numerical intuition of how far we are from falsifying the
formula. We incrementally build a simulation tree to best cover the state space,
favoring those branches that correspond to low robustness value (with respect
to the specification).

We implemented our framework in a prototype tool called Rrt-Rex, we
applied it to both academic and industrial models, showing its applicability to
practical systems, and we compared it with the S-TaLiRo tool.

Our experiments reveal that the relative performance of Rrt-Rex and S-
TaLiRo depends on the nature of the model and the associated specification. We
demonstrated that the incremental random Rrt-Rex search performs well on
system with large input spaces and long input sequence; however, the Rrt-Rex
approach is weak in the case of specifications defined of precise temporal instants.
This drawback suggests directions for future developments. In subsequent work,
we plan to study a dynamic exploration technique triggered by the formula itself,
where the sampling space from which Rrt-Rex selects the exploration directions
varies according to logical subformulas within the specification.

References

1. Annapureddy, Y., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-TaLiRo: A
Tool for Temporal Logic Falsification for Hybrid Systems. In: TACAS. pp. 254–
257 (2011)

2. Beck, J., Chen, W.: Irregularities of Distribution. Cambridge Studies in Social and
Emotional Development, Cambridge University Press (1987)

3. Bhatia, A., Maly, M., Kavraki, E., Vardi, M.: Motion planning with complex goals.
Robotics Automation Magazine, IEEE 18(3), 55–64 (2011)

4. Dang, T., Donzé, A., Maler, O., Shalev, N.: Sensitive state-space exploration. In:
CDC. pp. 4049–4054 (2008)

5. Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid
systems. Formal Methods in System Design 34(2), 183–213 (2009)

6. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: CAV. pp. 167–170 (2010)

7. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: FORMATS. pp. 92–106 (2010)

8. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for stl. In: CAV. pp.
264–279 (2013)

9. Fainekos, G., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of automo-
tive control applications using s-taliro. In: ACC (2012)

10. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain Control
Verification Benchmark. In: HSCC (2014)

11. Jin, X., Donzé, A., Deshmukh, J., Seshia, S.: Mining requirements from closed-loop
control models. In: HSCC (2013)

12. Karaman, S., Frazzoli, E.: Linear temporal logic vehicle routing with applications
to multi-UAV mission planning. Int. J. of Robust and Nonlinear Control 21(12),
1372–1395 (2011)

13. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning.
Int. J. of Robotics Research 30(7), 846–894 (2011)

14. Kim, J., Esposito, J.M., Kumar, V.: An rrt-based algorithm for testing and vali-
dating multi-robot controllers. In: RSS. pp. 249–256 (2005)

15. Kloetzer, M., Belta, C.: A fully automated framework for control of linear sys-
tems from temporal logic specifications. IEEE Trans. Auto. Control 53(1), 287–297
(2008)

16. Kong, Z., Jones, A., Ayala, A.M., Gol, E.A., Belta, C.: Temporal logic inference
for classification and prediction from data. In: HSCC (2014)

17. LaValle, S.M.: Planning Algorithms, chap. 5. Cambridge University Press, Cam-
bridge, U.K. (2006), available at http://planning.cs.uiuc.edu/

18. Lavalle, S.M., Kuffner, J.J., Jr.: Rapidly-exploring random trees: Progress and
prospects. In: Algorithmic and Computational Robotics: New Directions. pp. 293–
308 (2000)

19. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
FORMATS/FTRTFT. pp. 152–166 (2004)

20. Mathworks, T.: Simulink design verifier, http://www.mathworks.com/products/
sldesignverifier/

21. Mount, D.M., Arya, S.: Ann: A library for approximate nearest neighbor searching,
http://www.cs.umd.edu/~mount/ANN/

22. Plaku, E., Kavraki, L., Vardi, M.: Hybrid systems: From verification to falsification
by combining motion planning and discrete search. Formal Methods in System
Design 34(2), 157–182 (2009)

23. Systems, R.: Model based testing and validation with reactis, reactive systems inc.,
http://www.reactive-systems.com

24. Yang, H., Hoxha, B., Fainekos, G.: Querying parametric temporal logic properties
on embedded systems. In: Int. Conference on Testing Software and Systems. vol.
7641, pp. 136–151 (2012)

Appendix

Boolean and Quantitative Semantics of STL

Given a signal x and a time t, the Boolean semantics of any STL formula is
given inductively by

(x, t) |= µ iff x satisfies µ at time t
(x, t) |= ¬ϕ iff (x, t) |=/ ϕ
(x, t) |= ϕ1 ∧ ϕ2 iff (x, t) |= ϕ1 and (x, t) |= ϕ2

(x, t) |= ϕ1 U[a,b] ϕ2 iff ∃t′ ∈ [t+ a, t+ b] s.t.(x, t′) |= ϕ2

and ∀t′′ ∈ [t, t′), (x, t′) |= ϕ1

Extending these semantics to other kinds of intervals (open, open-closed, and
closed-open) is straightforward. We write x |= ϕ as a shorthand of (x, 0) |= ϕ.

The quantitative semantics ρ is defined inductively as follows:

ρ(µ,x, t) = f(x(t))

ρ(¬ϕ,x, t) = −ρ(ϕ,x, t)

ρ(ϕ1 ∧ ϕ2,x, t) = min(ρ(ϕ1,x, t), ρ(ϕ2,x, t))

ρ(ϕ1U[a,b]ϕ2,x, t) =

sup
t′∈[t+a,t+b]

(
min(ρ(ϕ2,x, t

′), inf
t′′∈[t,t′)

ρ(ϕ1,x, t
′′)
)
,

where we assume each predicate is of the form µ ≡ f(x(t)) ≥ 0. Additionally, by

combining the rules above with ♦Iϕ , >UI ϕ, we get

ρ(♦[a,b]ϕ,x, t) = sup
t′∈[t+a,t+b]

ρ(ϕ,x, t′).

For �, we get a similar expression using inf instead of sup.

